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Abstract of the Thesis

Analysis by Synthesis:

3D Image Parsing Using Spatial Grammar and

Markov Chain Monte Carlo

by

Siyuan Qi

Master of Science in Computer Science

University of California, Los Angeles, 2015

Professor Song-Chun Zhu, Chair

Scene understanding is a fundamental problem in computer vision research. We address

this problem in an “analysis by synthesis” fashion - explain observed data (an 2D image)

according to a set of spatial grammar (describes the underlying functional arrangement

and 3D geometric structure of a scene) that generate it. The inference process is car-

ried out in a Bayesian framework. The posterior probability includes a prior probability

reflecting the knowledge of indoor 3D scene structure encoded by grammar, and a likeli-

hood that evaluates the accuracy of the re-projected image and the physical plausibility.

The most reasonable explanation of the image is given by a parse tree that maximizes

the posterior probability, and it is found by reversible-jump Markov Chain Monte Carlo

sampling.
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CHAPTER 1

Introduction

A central goal of computer vision is to create a computational system that recognizes

and understands the world at a level that is comparable to the biological vision system.

A large portion of vision literature studied the scene understanding problem as a classi-

fication problem. We argue that discriminative approaches that classifies each pixel to

a semantic label, are insufficient to understand the geometric and functional relations

between objects and the scene. Hence we propose a generative method that explains a

scene according to a spatial grammar we defined. An explanation of a scene is given by

a parse tree, which integrates high level functional category of objects, layout structures,

3D geometric parameters of object, and camera parameters. A solution of the scene pars-

ing problem is a parse tree that maximizes the posterior probability, which combines a

prior probability reflecting high-level knowledge of functional arrangement and 3D scene

structure encoded by a stochastic grammar, and a likelihood evaluated by calculating

the difference between synthesized image and the observed image. The inference process

is accomplished by reversible-jump Markov Chain Monte Carlo sampling. Hence the fi-

nal result of the proposed approach expresses the high level structure of the scene and

explains the scene by understanding.

1.0.1 Motivation

Traditional computer vision tasks such as object detection and labeling have made re-

markable progress over the past years. However, recognizing and understanding indoor

scenes in the way human perceive the world is still a challenging task. Most computer

1



vision algorithms are designed to analyze low-level information and features, but they

are unable to understand the images based on commonsense knowledge of the 3D world.

In order to construct an abstract knowledge representation of the real world, we propose

the scene grammar and pose the scene understanding problem as parsing an image, in

analogy to natural language parsing problems.

1.0.2 Literature review

Scene representation There are mainly four scene representations: (i) Feature-based

representation: A series of early work on exploring feature representation of scenes leads

the research of scene understanding, including spatial envelope (gist representation) by

Oliva and Torralba [OT01], spatial pyramid matching by S.Lazebnik and Ponce [LSP06]

reconfigurable models by S.N.Parizi and Felzenszwalb [POF12], and S. Wang and Zhu

[WWZ12]. (ii) Region-based representations: The method of conditional random felds

by Lafferty et al [LMP01], and 2D context models by Choi et al [CLT10]. (iii) Non-

parametric representation: label transfer by C. Liu and Torralba [LYT11], SuperParsing

by Tighe and Lazebnik [TL13b, TL13a], scene collage by Isola and Liu [IL13]. Satkin et

al [SLH12], Satkin and Hebert [SH13] applies nearest-neighbor search to 3D scenes. Lim

et al [LPT13], Del Pero et al [DBK13] detected indoor objects by matching with fine-

grained furniture model. (iv) Block world representation: Block world representation:

Representation of 3d blocks enables reasoning about the physical constraints within the

3D scene. Gupta et al (2010) represents the 3D objects as blocks and infers 3D properties

of objects such as occlusion, exclusion and stability in addition to labeling surface orien-

tation. They showed that a global 3D prior does improve 2D surface labeling. Hedau et

al [HHF09, HHF10, HHF12], Wang et al [WGK10b], Lee et al [LHK09, LGH10], Schwing

et al [SHP12, SFP13] parameterized the geometric scene layout of the background and/or

foreground blocks. Their models are trained by the Structured SVM (or Latent SVM). Hu

[Hu12], Xiao et al [XRT12], Hejrati and Ramanan [HR12], Xiang and Savarese [XS12],

Pepik et al [PGS12], Fidler et al [FDU12] designed several variants of the deformable
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part-based models to detect 3D entities under different view points.

Object function and affordance. The concept of affordance, which was first pro-

posed by the perceptual psychologist Gibson [Gib77], refers to the perceived fundamental

properties of an object that determine how the object could possibly be used. More re-

cently, approaches have been proposed to detect objects based on human interactions.

In Wei et al [WZZ13], human activities are annotated by extracting human motion from

rgbd video data and used to indirectly identify objects. In Bar-aviv and Rivlin [BR06],

Grabner et al [GGG11], they hallucinate embodied agents in the 3D CAD data and

depth data respectively, and detected chairs accordingly. Gupta et al [GSE11] proposed

an approach to infer the human workable space by adapting human poses to the scene.

Lin et al [LFU13], Choi et al [CCP13], Zhao and Zhu [ZZ13] raised holistic approaches

to exploits 2D segmentation, 3D geometry, as well as contextual relations between scenes

and objects for parsing rgbd and 2D images. Recently, Zhu and Zhao [ZZZ15] proposed

a method to analyze the potential tool-use of arbitrary objects by physical simulations.

Single-view 3D reconstruction. In order to achieve a meaningful 3D recon-

struction from a single image, assumptions about the scene have to be made and prior

knowledge is necessary to regularize the solution. These assumptions include: (i) Sketch

smoothness assumption: Han and Zhu [HZ04] first approached the problem by assum-

ing the local sketch smoothness and global scene alignment. (ii) Piece-wise smoothness

assumption: Saxena et al [SSN09] presented a fully supervised method to learn a map-

ping between informative features and depth values under a conditional random field

framework. Payet and Todorovic [PT11] proposed a joint model to recognize objects and

estimate scene shape simultaneously. (iii) Surface assumption: Hoiem et al [HEH09] rec-

ognized the geometric surface orientation and fit ground-line that separate the floor and

objects in order to pop-up the vertical surface. Delage et al [DLN07] proposed a dynamic

Bayesian network model to infer the floor structure for autonomous 3D reconstruction

from a single indoor image. Mobahi et al [MZY11] extracted low rank textures of repeated

patterns to construct surfaces like building facades. (iv) Manhattan world representation:
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Recent studies on indoor scene parsing, including Hedau et al [HHF09, HHF10, HHF12],

Wang et al [WGK10a], Lee et al [LHK09, LGH10], Schwing et al [SHP12, SFP13], Zhao

and Zhu [ZZ11, ZZ13] and Del Pero et al [DGB11, DBF12, DBK13] adopted the Manhat-

tan world representation extensively. This assumption stated that man-made scenes were

built on a cartesian grid which led to regularities in the image edge gradient statistics.

Stochastic image grammar. Fu [Fu82] depicted an program of block world scene

understanding using grammars. Tu et al [TCY05] introduced the decomposing an image

into a hierarchical “parse graph” by a data-driven data-driven Monte Carlo sampling

strategy. Zhu and Mumford [ZM07] proposed an AND/OR graph model to represent

the compositional structures in vision. Han and Zhu [HZ09] applied grammar rules, in a

greedy manner, to detect rectangular structures in man-made scenes. Porway and Zhu

[PZ10] proposed an cluster sampling algorithm to parse aerial images. An earlier version

of the work presented in this thesis appeared at Zhao and Zhu [ZZ11, ZZ13].
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CHAPTER 2

Model

2.1 A 3D representation of visual scenes

Motivated by the goal of understanding the scene as human do, we model the a scene as

a functional arrangement of 3D objects by an observation: objects, especially man-made,

are defined by their affordance and actions that they are involved, and scenes are defined

by activities and actions that they can provide space for. Therefore, an indoor scene can be

decomposed into different functional groups, and the groups can be further decomposed

and the scene forms a hierarchical structure, e.g. a bedroom can be decomposed into

a “bed set” and a “dressing set”, and a “bed set” can be further decomposed into a

“bed”, two “nightstands” and an “ottoman”, the “dressing set” can be decomposed into

a “dressing table” and a “chair”. We represent this grammatical semantic meaning of a

scene as a tree structure as shown in Figure 2.1. In addition, the geometric information

is encoded into this tree structure, as the geometric relations between a parent and a

child node are represented by a geometric transformation. Hence this generative model

combines the grammar model and the geometric model, and it is able to reconstruct a

scene according to the tree.

2.2 Stochastic scene grammar model

The stochastic scene grammar is applied to represent the stochastic distribution of such

a structure, namely a parse tree. The grammar starts from a root node and ends in a set

of terminal nodes. The production rules characterize the compositionality of functional
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Figure 2.1: An example of a parse tree of a bedroom.

entities on the tree, and a geometric transformation is calculated between each parent-

child pair.

The stochastic scene grammar is defined as a four-tuple G = (S, V,R, P ), where S

is a start symbol; V is a set of nodes which includes the non-terminal nodes V NT and

terminal nodes V T : V = V NT ∪ V T ; R = {r : α → β} is a set of production rules that

represent the top-down sampling process from a parent node α to its children node β;

P : p(r) = p(β|α) is the probability for each production rule.

The posterior probability for a parse tree pt conditioned on an input image I is

formulated as

p(pt|I) ∝ p(pt)p(I|pt) = pphy(pt)pgrm(pt)p(I|pt), (2.1)

where the prior probability p(pt) is composed of the physical probability pphy(pt) and the

grammar probability pgrm(pt). pphy(pt) represents the probability that the parse tree is

6



Figure 2.2: An example of a parse tree of a bedroom.

physically plausible, and pgrm(pt) represents the probability of generating the parse tree

from the root node. p(I|pt) is the likelihood of the image given the parse tree, which is

calculated by evaluating the difference between the re-projected and the original image.

2.3 Geometric model

For each object we define an anchor point around which the object can rotate itself,

and the geometric transformation between the object and its parent that specifies the

position of the child’s anchor point under the parent’s coordinate system, the child’s

rotation angle.

By default, we set the anchor point to be the center of the object. we set the default

7



base orientation for an object so that its back is against the wall of parent that is closest

in distance to its sampled position in parent, and a small noise of orientation is sampled

and added to the base orientation. Take into consider the fact that most objects lay flat

on other objects, we only model the relative orientation/rotation the horizontal plane.

Hence for each node, we have 7 parameters: size (l, w, h) (3 DoF), relative position

(x, y, z) (3 DoF) and relative orientation θ (1 DoF). We use Gaussian mixture model

as their prior distributions: p(θ) =
∑K

i=1N(µi,Σi). Notice that since the position and

orientation parameters are describing the relative geometric relation between a node and

its parent, the sampling process is independent from parent.

The absolute position of a point in the child cuboid can be recursively calculated

by applying the relative transformations from child to parent. Denote the child as c,

parent as p, and the anchor points for child and parent as ac and ap. The coordinate

of a point in the child coordinate system Xc can be transformed to a coordinate in the

parent coordinate system Xp equation 2.2. Hence the position of a point in the world

coordinate system can be calculated recursively.

Xp = Hc→pXc

= Hap→pHc→acXc

=


cos(θ) sin(θ) xap

−sin(θ) sin(θ) yap

0 0 1




1 0 xac

0 1 yac

0 0 1

Xc

(2.2)

The process of generating a child node from a parent node is illustrated in Figure

2.3. (1) The size of the child node is first sampled from a prior distribution according to

the label, e.g., bed. (2)-(3) Anchor points are sampled for the child node and the parent

node respectively. (4) The child cuboid is placed so that its anchor point matches the

parent’s anchor point. (5) Find the default orientation of the child node by placing the

“back” surface to be the closest surface to a wall [YYT11]. (6) Rotate the child node

cuboid by the sampled angle.

8



Hence, after specifying the probability distributions for each node in a set of grammar,

it is straightforward to top-down sample a whole parse tree from the root node. Figure

2.4 shows four examples of random samples of a bedroom.

Figure 2.3: Sampling process of a child node from a parent node

2.4 Probability formulation

2.4.1 Prior probability

The prior probability p(pt) can be decomposed into a physical probability pphy(pt) and

a grammar probability pgrm(pt). The physical probability pphy(pt) is defined as a Boltz-

mann distribution: 1
Z

exp(−Ephy(pt)), where the energy is proportional to the volume

of intersection of cuboids. This encourages less collisions in the physical world. The

grammar probability is the probability of top-down sampling a parse tree from the root

node according to the grammar:

pgrm(pt) = p(root)
∏
r:α→β

p(β|α)

= p(root)
∏
r:α→β

[p(#β|α)
∏
β

p(attβ)]
(2.3)
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Figure 2.4: Top-down samples of a bedroom

where p(#β|α) is the probability of number of children nodes given parent, and p(attβ)

is the probability of the attributes (size, position and orientation) of a particular node.

2.4.2 Likelihood

We evaluate the likelihood of the sampled parse tree p(I|pt) by comparing the re-projected

image with the approximated ground truth labeling of the original image.

Given the complexity in graphics rendering, such as environmental lighting, object

material and textures, it is not practical to infer all the scene parameters. So we propose

to render two abstract images - the object label map and orientation map for each image,

10



which encode semantics and geometry of the scene, and are invariant to lighting factors.

The likelihood is formulated as the probability of I given the current parse tree:

p(I|pt) =

∫
Is

p(I|Is)p(Is|pt) =

∫
Is

p(I|Is)1(Is = f(pt, c)) = p(I|Is = f(pt, c)) (2.4)

where f is the graphics engine that takes the parse tree pt and camera parameters c

and outputs a synthesized abstract images or label maps Is. The p(I|Is) is defined

as a Boltzmann distribution: 1
Z

exp(−E(I|Is)), where the energy is determined by the

number of different pixels between the pre-computed labeling maps from recognition and

the reprojected labeling maps of the parse tree.

11



CHAPTER 3

Inference

The algorithm aims to find a parse tree that can best explain the scene. The entire

inference process includes a pre-processing step and a sampling step using Monte Carlo

Markov Chain (MCMC). The pre-processing step takes the images as input, and estimates

the camera parameters, generates proposals for cuboids (object detection), and label

maps for likelihood evaluation. The parser then takes the result from the pre-processing

step as input, and finally outputs the optimal parse tree and the reconstructed 3D scene.

In the parsing step, we apply top-down and bottom-up inference [HZ09, WZ11] during

the reversible jump Monte Carlo Markov Chain sampling process. The overall structure

is shown in Figure 3.1.

Figure 3.1: A high-level abstraction of the algorithm

3.1 Preprocessing and cuboid proposals

The preprocessing process generates proposals for the next-stage sampling and computes

labeling maps for verification of samples during the sampling process. We detect all

possible 3D cuboids, 2D labeling of the image and estimate camera parameters from

12



vanishing points.

First we estimate the 3D geometry of the image. The recovery of 3D geometric mea-

sure includes utilizing line segment clustering and vanishing point estimation to determine

the intrinsic and extrinsic parameters of the camera, and grouping the line segments to

reconstruct 3D cuboid proposals. Each cuboid proposal is assigned with a weight indi-

cating the confidence based on the clustering of line segments. After normalizing the

weights, an initial probability distribution for all cuboids detected in the image is built.

Second, we compute the orientation map and segmentation map for the image These

label maps serve as evidences to evaluate the likelihood in order to calculate the posterior

probability, so that we can decide whether the sample should be accepted or rejected

during the MCMC sampling process. An example of the label maps is shown in Figure

3.3.

Figure 3.3: Example: orientation map and segmentation map computed from an image

of a living room.

Third, we further process the cuboid proposals by building a non-parametric distri-

bution of the cuboid proposals. Originally, all cuboid proposals come from the first step

and share the same initial probability distribution. Since different objects have differ-

13



Figure 3.2: Sampled reconstructed cuboids from line segments detected from image
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ent distributions of sizes, we filter all cuboid proposals by the sizes of different objects

and combine the score with the original weights as shown in Figure 3.4, to generate

different cuboid distributions for specific objects. We represent each cuboid as a six di-

mensional variable (three dimensions of position and three dimensions of size), and the

non-parametric distribution is approximated by a weighted KDE (kernel density estima-

tion):

f(x) =
w

h

n∑
i=1

K(
x− xi
h

)

Notice that the landscape of a distribution becomes smoother when the bandwidth for

KDE increases. The sampling process would easily get stuck in local minimums if the

bandwidth is set too small. Hence it is important to apply an annealing algorithm on

the bandwidth and re-estimate the cuboid distributions during the sampling process.

Figure 3.4: Original cuboid proposals and re-weighted cuboid proposals for “Bed”

15



Figure 3.5: An illustration of kernel density estimation under different bandwidths

3.2 Reversible jump MCMC

To find an optimal solution in the huge solution space of parse trees, we adopt the

reversible-jump Monte Carlo Markov Chain algorithm considering the fact that the di-

mension of the solution is not fixed.

3.2.1 Metropolis-Hastings acceptance rate

Conventionally, the true probability of a distribution in the MCMC framework is denoted

as π(x), and for the traditional MCMC moves that does not involve dimension change,

the Metropolis-Hastings acceptance ratio is defined as:

α = min(1,
π(x∗)q(x|x∗)
π(x)q(x∗|x)

) (3.1)

In reversible jump MCMC, the following acceptance rate is used for a change from m

to n dimensions:

α = min(1,
π(x∗)q(x|x∗)
π(x)q(x∗|x)

Jfm→n) (3.2)

where Jfm→n is the Jacobian of the dimension matching function. fm→n is the dimension

matching function. Jfm→n is the Jacobian of the dimension matching function:

Jfm→n = |det∂fm→n(xm, um,n)

∂(xm, um,n)
| (3.3)

It is used to map the variables at dimensionalities m and n into a space of com-

mon dimensionality. It is usually done by introducing additional n −m parameters, or

16



projecting out the corresponding m− n parameters.

Hence in our case the Jacobian matrix becomes:

Jfpt→pt∗ = |det∂fpt→pt
∗(pt,∆pt)

∂(pt,∆pt)
| (3.4)

Notice that each variable in ∆pt is independently sampled from pt since they represent

relative relations between nodes, hence the Jacobian is 1 in this case [YYW12]. Therefore

the acceptance rate is formulated as:

α = min(1,
π(pt∗)q(pt|pt∗)
π(pt)q(pt∗|pt)

)

= min(1,
p(pt∗|I)q(pt|pt∗)
p(pt|I)q(pt∗|pt)

)

= min(1,
p(pt∗)p(I|pt∗)q(pt|pt∗)
p(pt)p(I|pt)q(pt∗|pt)

)

(3.5)

3.2.2 Simulated annealing

We introduce a linearly decreasing temperature T to control the landscape of posterior

probability π:

π(pt|I) =
1

Z
exp(−E(pt|I)

T
) (3.6)

We also update the bandwidth of the non-parametric distribution of the data pro-

posals along with temperature, to increase the dynamic of the Markov Chain, and make

the process more effective.

3.3 Top-down / bottom-up proposals

We design jump and diffusion methods to ensure the ergodicity of the reversible jump

Markov Chain. The following two types of dynamics are designed for jump proposals:

add: sample a subtree from a non-terminal node randomly chosen from the current parse

tree; delete: delete a subtree whose root is a node randomly chosen from the current

parse tree.

17



Proposal probabilities q:

Add:

q(pt∗|pt) = p(v ∈ V NT )p(child|v)p(ptchild) (3.7)

Delete:

q(pt∗|pt) = p(v ∈ pt) (3.8)

Figure 3.6: Jump: add and delete

Three dynamics are designed for the diffusion moves:

(i) α diffusion: data-driven bottom-up detection. This dynamic directly draws cuboid

proposals from the non-parametric distribution built up by the line segments detected

from the image. After a node is chosen from the parse tree, the six-dimension cuboid

variable will be assigned to the node. Note that the non-parametric distribution gives us

the cuboid coordinates in the world coordinate system, thus recalculation is needed for

the geometric transformations between this node and its parent and children.

q(pt∗|pt) = p(v ∈ pt)pKDE(attv|labelv) (3.9)

where pKDE represents the non-parametric distribution of the cuboid proposals.

18



Figure 3.7: Diffusion: α channel

(ii) β diffusion: grammar-driven bottom-up prediction. This dynamic proposes cuboid

for a parent node in the parse tree from the children nodes by inversely sampling a

geometric transformation. After a parent node in the parse tree is chosen, we randomly

chose a child node from its children, and sample a geometric transformation from the

prior distribution of the child node. Therefore the attributes of the chosen node will be

recalculated, and the transformations between the chosen node and other children will

be recalculated as well.

q(pt∗|pt) = p(v ∈ V NT )p(sizev)p(child|v)p(poschild)p(orichild) (3.10)

where sizev, posv, and oriv are the size, relative position and relative orientation for the

node v respectively.
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Figure 3.8: Diffusion: β channel

(iii) γ diffusion: grammar-driven top-down prediction. This dynamic proposes cuboid

by top-down sampling a child node in the parse tree from its parent node based on the

prior distribution, i.e., pre-defined geometric model. Sampling directly from the prior

distribution is helpful in adjusting occluded objects or parts in certain contexts. This

could also be used in the initialization of the parse tree (create a parse tree according to

our prior knowledge before seeing the picture).

q(pt∗|pt) = p(v ∈ pt)p(attv|parv) (3.11)
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Figure 3.9: Diffusion: γ channel

To make the Markov Chain more efficient, we design two different moves for each

diffusion dynamic: individual diffusion and group diffusion. Individual diffusion: only

the node chosen will be moved, all the other nodes keep their absolute position in the

world coordinate system. Hence the geometric transformations between the node and

its children need to be recalculated to keep the absolute positions of its children. This

helps when the algorithm tries to adjust certain cuboids locally without affecting other

cuboids. Group diffusion: move the whole subtree of the children node. This is useful

when the algorithm tries to move/diffuse a functional group , e.g., a bed set, together to

a desired place. An illustration is shown in Figure 3.10.

Figure 3.10: Individual diffusion and group diffusion

21



CHAPTER 4

Results

Figure 4.2 shows the inference process of parsing an image of a bedroom. Several steps

are retrieved and shown as intermediate results in the process. The seven column shows

the Markov Chain starts from random and gradually burns-in as the temperature cools

down.The top three rows show parse images, rendered label maps, rendered 3D depth

maps and their corresponding parse trees respectively. The red/blue/green arrows denote

three different dynamics: the α bottom-up detection, β bottom-up prediction and γ top-

down prediction. The output of the algorithm is a parse tree and the reconstructed 3D

scene shown in the last row.

The algorithm has a strong flexibility, and can be easily adapted to different kinds

of scene. We tested it on various types of indoor scenes. Figure 4.3 and Figure 4.4

shows the reconstruction result of an auditorium and a lobby respectively. We can see

that the reconstruction results on rather complicated scenes such as auditoriums are also

satisfying.

The algorithm is also tested on the UIUC indoor scene dataset. Some results are

shown in Figure 4.5 and Figure 4.6. The first column shows the original picture, the

second column to fourth column shows the reconstructed 3D structure, orientation map

and label map respectively. The last column shows the energy curve during the MCMC

sampling. For more results, please refer to a series of previous work [ZZ11, ZZ13].
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Figure 4.1: The analysis-by-synthesis MCMC sampling process.
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Figure 4.2: Result of parsing an image of a bedroom.
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Figure 4.3: Result of parsing an image of a auditorium.
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Figure 4.4: Result of parsing an image of a lobby.
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Figure 4.5: More results from the UIUC dataset.
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Figure 4.6: More results from the UIUC dataset.
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CHAPTER 5

Discussion and Conclusion

Image understanding is not only about the image itself but also the knowledge of the

world. Humans recognize images at a deep level because we know how the world works.

Prior knowledge about the functional, physical mechanics of objects in the 3D world is

the key for understanding. However, there is a huge gap between the observed images

and the knowledge we have in our minds. In order to appropriately recognize an image,

computers must have an internal abstract representation of what units of image are and

how to put them together.

There are four major representations for scene understanding: i) Non-parametric

models: such as label transfer by [LYT11], SuperParsing by [TL13b] and scene collage

by [IL13] interpret a new scene by searching nearest neighbors from images in the scene

dataset, and then transfer the label maps to the target through warping or contextual

inference. Interestingly, [SH13] recently generalize the idea of nearest-neighbor search to

the 3D scenes, so that their approach can recognize objects cross viewpoints. [LPT13],

[DBK13] detected indoor objects by matching with fine-grained furniture models. ii)

Parametric models: Representation of parametric 3D shapes allows reasoning about the

physical constraints within the 3D scene. [GEH10] posed the 3D objects as blocks and

inferred their 3D properties such as occlusion, exclusion and stability in addition to sur-

face orientation labels. [HHF12, WGK10b, LGH10, SFP13] parameterized the geometric

scene layout of the background and/or foreground blocks and trained their models by

the Structured SVM (or Latent SVM).

The approaches proposed in this paper and some early work [ZZ11, ZZ13] represent a
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3D scene by a generative language model, a stochastic grammar, to characteristic the 3D

structures of the world. We then augmented hidden commonsense knowledge, i.e. object

functionality and physics, to grammar structure. The high-level knowledge projected

onto a sentence/image thus forms contexts of the language/vision. With the analysis-by-

synthesis approach, a computer can imagine 3D scenes by building a mental picture of the

world or even action associated to the functional objects, which provide a machine the

fundamental potential to reason, predict, answer questions, and hold intelligent dialog.
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