
UCLA
UCLA Electronic Theses and Dissertations

Title
Sentiment classification Using different machine learning algorithms and different word
vectorizer

Permalink
https://escholarship.org/uc/item/1rp121j1

Author
Cui, Shuyang

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1rp121j1
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Sentiment classification Using different machine learning algorithms and different word vectorizer

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Applied Statistics

by

Shuyang Cui

2021

© Copyright by

Shuyang Cui

2021

ii

ABSTRACT OF THE THESIS

Sentiment classification Using different machine learning algorithms and different word vectorizer

by

Shuyang Cui

Master of Applied Statistics

University of California, Los Angeles, 2021

Professor Yingnian Wu, Chair

The goal of this thesis is to apply different machine learning algorithms and different word

vectorizer methods on twitter messages to do the sentiment classification. By applying two

word vectorizer methods and three machine learning algorithms, I will get six different

models’ results. After that, I will analyze the model results to find out the best machine

learning algorithm and best word vectorizer method for the data.

iii

The thesis of Shuyang Cui is approved.

Frederic R. Paik Schoenberg

Nicolas Christou

Yingnian Wu, Committee Chair

University of California, Los Angeles

2021

iv

Table of Contents

1 Introduction..1

2 Problem Statement... 3

3 Data Analysis ... 4

3.1 Data set...4

3.2 EDA... 5

3.2.1 EDA on the sentiment part... 5

3.2.2 EDA on the message part... 9

4 Methodology.. 13

4.1 Text Pre-processing..13

4.1.1 Tokenization..13

4.1.2 Countvectorizer.. 14

4.1.3 TF-IDF... 15

4.2 Machine Learning Models..17

4.2.1 Logistic Regression.. 17

4.2.2 Random Forest Classifier... 19

4.2.3 Multinomial NaiveBayes Classifier...22

5 Model Analysis.. 24

v

5.1 Random Forest Classifier...26

5.1.1 Random Forest Classifier with countvectorizer......................... 27

5.1.2 Random Forest Classifier with TF-IDF...................................... 28

5.2 Multinomial NaiveBayes Classifier... 29

5.2.1 Multinomial NaiveBayes Classifier with countvectorizer........... 30

5.2.2 Multinomial NaiveBayes Classifier with TF-IDF...................... 30

5.3 Logistic Regression..31

5.3.1 Logistic Regression with countvectorizer................................... 31

5.2.2 Logistic Regression with TF-IDF.. 32

6 Conclusion... 34

Reference...36

vi

List of Figures

3.1 Display of the last five row... 5

3.2 Display of the last five row after replacement.. 5

3.3 Distribution of sentiment.. 6

3.4 Distribution of message length... 7

3.5 Length distribution grouped by sentiment...9

3.6 Word cloud..9

3.7 Word count plot .. 10

3.8 Word cloud for News..10

3.9 Word cloud for Anti..11

3.10 Word cloud for Pro... 11

3.11 Word cloud for Neutral...11

4.1 Countvectorizer...14

4.2 TF-IDF.. 16

4.3 Sample of cut-off point... 18

4.4 Decision Tree.. 20

4.5 Random Forest.. 21

4.6 Sample of Naive Bayes Classification.. 22

5.1 Code ...24

5.2 Classification report.. 27

5.3 Confusion matrix...27

vii

5.4 Classification report.. 28

5.5 Confusion matrix...28

5.6 Classification report.. 29

5.7 Confusion matrix...30

5.8 Classification report.. 30

5.9 Confusion matrix...31

5.10 Classification report..31

5.11 Confusion matrix.. 32

5.12 Classification report..32

5.13 Confusion matrix.. 33

viii

List of Tables

3.1 . 6

3.2 . 7

4.3 . 8

1

CHAPTER 1

Introduction

As more and more people are willing to share thoughts and opinions on social

media, interpreting the voices with efficiency and accuracy becomes crucial to

many industries. By automatically sorting and clustering the conversations, tweets,

and comments, decision makers can retrieve information about a customer’s

perception of a topic or a product faster and easier. This thesis aims to apply the

machine learning techniques to predict the sentiment classification pertaining to

the well-known topic – Climate change. Climate change could affect the society

through impacts on human health, energy, and even water supplies. Some people

hold the opinion that global warming is primarily as a result of human activities.

Oppositely, others think global warming has nothing to do with human beings.

With the use of sentiment classification, people could investigate the perceptions

of people on climate change which could potentially benefit decision-makers with

the understanding of public voice. Another benefit of using sentiment classification,

in this case, is that it can significantly increase the efficiency of the process. If people

have to manually go through each tweet to draw conclusions and con- duct statistical

analysis, it will be extremely time-consuming and even inaccurate. Sentiment

classification can help us to systematically gather information, identify potential

trends, and extract useful information with efficiency and limited human efforts from

an objective point of view.

However, it is tough for machine learning methods to train the textual con-

2

tents directly. The numerical contents are the best friend with the computer.To

solve this problem, there are several message vectorization methods which are

widely used. In this thesis, we will focus on TF-IDF and Countvectorizer.

In this thesis, TF-IDF vectorizer and Countvectorizer are two methods to

vectorize the textual message to vectors and count the importance of different

words in determining sentiment. In the following thesis, I will apply TF-IDF and

Countvectorizer methods to vectorizer the textual message, and after that, the two

groups of vectors will be separately trained by the same group of machine

learning approaches. At the end, we will do the comparison between the results

made by both different word vectorizers and machine learning algorithms.

3

CHAPTER 2

Problem Statement

The goal of the thesis is to analyze different machine learning models and different

word vectorizers on predicating the sentiment classification. The prediction involves

one input and one output. The input will be tweets’ textual messages, and the output

is classifications. At the end, we will do analysis on the predicted classification results.

In order to achieve this goal, the following steps will be needed:

• Retrieve the data from website

• Grub the stop word and symbols to clean up our data

• Do the explanatory data analysis to know the data

• Utilize the TF-IDF vectorizer to vector the textual messages

• Training the machine learning models on vectors

• Utilize the Countvectorizer technique to vector the textual messages

• Training the vectors with the same machine learning algorithms

• Perform analysis on results grouped by different vectorization methods

• Based on the result analysis, make conclusion

4

CHAPTER 3

Data Analysis

3.1 Date set

The data set was collected by Edward Qian, and was funded by the University

of Waterloo. It contains twitter comments related to the global warming or

climate change topic. There are 43943 tweets in total which are from April 2015

to February 2018. Data set contains three columns: sentiment(-1, 0, 1, 2), mes-

sage(tweets), and tweet id. For the sentiment column, it has four classifications.

Every tweet is read by three reviewers, and the classified labels are agreed by all

reviewers. Detailed meaning for the numerical classifications is following:

• Anti(-1): The tweet shows it doesn’t believe in human-made global warming

or climate change

• Neutral(0): The tweet shows the indifferent between whether the global

warming is human-made or not

• Pro(1): The tweet shows it believes that the global warming or climate

change is a man-made issue

• News(2): the tweet is linked with a factual account about climate change or

global warming

5

3.2 EDA

3.2.1 EDA on the sentiment part

First of all, we look at the last five rows of data to have a better understanding

of this data set.

Figure 3.1 Display of the last five rows

As we can see, the sentiment is labeled by the number in the original data set,

which is easy for a machine learning step, but classification of numbers would

make data visualization harder to understand. Hence, I change the numbers to

its actual meaning while doing the EDA, where “Anti” represents -1, “neutral”

represents 0, “Pro” represents 1, “News” represents 2. After the replacement, the

last five rows become:

Figure 3.2 Display of the last five rows after replacement

We have three columns: sentiment, message, and tweet id. Tweet id does not

contain any useful information, so the data analysis part will mainly focus on the

sentiment and message parts. I will do the EDA on the sentiment part first.

6

Table 3.1

From the table 3.1, we noticed there are 22962 tweets hold the “Pro”

sentiment; 9276 tweets hold the “News” sentiment; 7715 tweets hold “Neutral”

sentiment, while 3990 tweets shows “Anti” sentiment. As we can see, the

sentiment is not perfectly balanced, and there is no way to combine any of two

classifications to one due to the actual meaning of labels. Unbalanced may lead to

the low accuracy of our model.

Figure 3.3: Distribution of sentiment

Sentiment Number

Anti 3990

Neutral 7715

Pro 22962

News 9276

7

The rank of sentiment from the largest group to the lowest group are: Pro,

News, Neutral, Anti. This means that more than half of tweets’ publishers prefer

to believe that climate change is caused by human activities. To develop a better

understanding of message columns, the following EDA contains two parts: the

first part will be the analysis of the message length which tries to find connection

between tweet length and sentiment. The second part will be the analysis of the

textual content of frequent words or tags. EDA is an essential step to help us know

our data set, and a better understanding of data would save us great energy in the

model building process.

Table 3.2 Figure 3.4: Distribution of message length

From the table 3.2 and figure 3.4, we can see that the 25% to 75% interval of

messages’ length is from 14 to 21 with a mean of 17.4 and standard deviation of

4.6, and only a few of messages contain more than 25 words. The maximum

length of message is 97 while the minimum length is 1. In the next step, it is

Count 43943

Mean 17.4

Std 4.6

Min 1

25% 14

50% 18

75% 21

Max 97

8

interesting to check what is the relationship between message length and

sentiment classification.

Table 3.3

From the table 3.3, we can see the mean length of “Anti” message is the

longest with the length of 18.14, and the mean length of “News” message is the

shortest with the length of 15.32. However, there is no evidence showing there

exists a statistically significant difference between the mean of four lengths. In

other words, adding length as a variable into the model training needs more

evidence to support.

Figure 3.5: Length distribution grouped by sentiment

Sentiment Mean length

Anti 18.14

Neutral 16.26

Pro 18.5

News 15.32

9

From the figures 3.5, all the four distributions look fine without too many

outliers. Both of four sentiments’ distributions are not too skewed. For the next

part, I will introduce the exploratory data analysis on the message part.

3.2.2 EDA on the message part

Before drawing any plot related to the message, we need to clean the data. First of

all, the original textual messages contain too many useless signals. To get more

accurate EDA result and also for better model training, we need to clean the data

by filtering out the extra signals and stop words.

Word and hash-tags inside the message are the essential indicators in

sentiment classification. To have better useful word frequency plot, we cleaning

up the messages with removing the stop words, then lemmatizered the words.

Figure 3.6: Word cloud

10

Figure 3.7: Word count plot

It is reasonable for words such as: “climate”, “warming”, “change”, “global” ,

being the top frequently in the messages. Also, considering the data collected

during Donald Trump’s term of office, seeing that “trump”, “president” are the

top frequent words are also not surprising.

Since the data will be used to do the sentiment classification, it is crucial to

have a basic understanding on word frequency in different sentiment classes.

Hence, I will locate data by its sentiment labels, and draw the word-cloud plots

for four different sentiment classifications to check the common and difference.

Figure 3.8: Word cloud for News

11

Figure 3.9: Word cloud for Anti

Figure 3.10: Word cloud for Pro

Figure 3.11: Word cloud for Neutral

From the figures, the messages from all four classifications share lots of common

top frequent words, such as: “climate”, “change”, “warm”, and etc. However, there are

still some differences between messages from various classifications. For example, we

can see that the messages with “Anti” class contain more political words, such as:

12

“realdonaldtrump”, “Obama”, and they also have more negative emotional words

compared to others, such as: “hoax”, “scam”.

In the following chapter, the thesis will mainly focus on methodologies which are

used to clean the data and train the model.

13

CHAPTER 4

Methodology

For this thesis, the methodologies can be divided into two major parts. The first

part is the data(text) pre-processing, involving the tokenization, countvectorizer,

and term frequency - inverse document frequency (TF-IDF). The second part

consists of three different machine learning techniques: Logistic Regression,

Random Forest, Naive Bayes.

4.1 Text Pre-processing

For the text pre-processing part, I will first apply the tokenization to split the

sentence into a set of words. Then for the word embedding part, two methods:

countvectorizer and TF-IDF will be applied. Hence, we will have two different

groups of vectors: one is applied with a countvectorizer and the other one is

applied with TF-IDF.

4.1.1 Tokenization

Tokenization is regarded as the very first step of the natural language process(NLP),

and it has the function of splitting a sequence of texts into units with its semantic

meaning [1]. Also it is necessary to do the tokenization since generally textual

content is the set of characters at the very beginning, and all text analysis

processes require the textual data is readable to the computer [2]. In this thesis, we

will apply the tokenization inside the TF-IDF and countvectorizer algorithms by

setting the parameter “analyzer = ‘word’ ”.

Take the first message as an example, the original text message is “climate

change be an interesting hustle”. After applying the tokenization from NLTK, it

14

becomes [’climate’, ’change’, ’be’, ’an’, ’interesting’, ’hustle’].

After the tokenization, we still need to vectorizer the textual content, and this

step enables the data for machine learning training. TF-IDF and Countvectorizer

are the two techniques involved in this thesis. Also, one of the goals of our thesis

is to find which word vectorization technique is the best fit for our model.

4.1.2 Countvectorizer

For this thesis, I will apply the countvectorizer as the first word embedding

technique. Countvectorizer is a simple but efficient way of word vectorization.

The basic idea for countvectorizer is to create a vector that has the same

dimension as the size of sentence, and for each word, we put it as one into the

dimension. For every time this vocabulary appears, we increase the count in the

dimension by one[3].

Figure4.1: countvectorizer (‘https://towardsdatascience.com/natural-language-

processing-count-vectorization-with-scikit-learn-e7804269bb5e’)

The above figure shows us the basic idea of the countvectorizer, and different

from the picture, in the practice, the countvectorizer also should transfer the

column names, in this example “red”, “yellow”, “green”, to numerical index for

15

model training convenience. For the next part, I will introduce the second word

vectorization method in this thesis, the term frequency - inverse document

frequency (TF-IDF).

4.1.3 TF-IDF

Term frequency - inverse document frequency (TF-IDF) is considered as one of

the most commonly used term weight schemes in the nature language process for

the words retrieving [4]. Compared to the countvectorizer, term frequency not

only considers how many times the words appear, but also takes how many times

the same words appear in other documents into account. Although the words may

appear frequently in the document, if they also appear frequently in other

documents, they are likely to have lower TF-IDF score. Hence, the TF-IDF is

aimed to have more precise measure of how important the words for the

documents are and avoid to overrate the stop words and common frequent words.

To show some mathematical background of TF-IDF, the TF-IDF score is

calculated by determining the relative frequency of words in the specific

document compared to the words’ inverse proportion over the entire document

corpus [5]. The calculation of TF-IDF can be divided into two parts. The first part

is TF(term-frequency), and second part is IDF(inverse document frequency).

16

Figure 4.2: TF-IDF (‘https://towardsdatascience.com/introduction-to-word-embeddings-

4cf857b12edc’)

We first calculate the TF part, this calculation shows us about how many

times a word is showing in its document, the formula is following:

In this formula, where:

• d is the given document

• w is a given word in this document

Secondly, we calculate the inverse term frequency, and the formula is following:

In this formula, where:

• N is the number of total documents in the data set

17

• D is the set of all documents which contain the word “w”

After have TF and IDF parts, we finally calculate our TF-IDF by the following:

As we can see, the TF-IDF contains both TF and IDF scores. If the word “w”

appears frequently in other documents, it will have low IDF score which result in

the low TF-IDF score[6].

4.2 Machine LearningModels

After cleaning and vectorizing the text, the data is ready for the machine learning

training. Machine learning training can be divided into the supervised training and

unsupervised training. All methods in this thesis are grouped in the super- vised

training. Furthermore, the supervised model training is set into two parts: one is

regression and the other one is classification. The prediction outcomes are four

labels in this case: -1(Anti), 0(Neutral), 1(Pro), 2(News), so the super- vised model

training would be the classification in this project. Wewill have four machine

learning classifications to introduce: logistic regression, random forest classifier,

multi-nomial naive bayes, and KNN.

4.2.1 Logistic Regression

The logistic regression is designed to solve the binary classification problem. How-

ever, for the multi-class classifications, logistic regression is also a very popular

and efficient method. The basic idea for the multi-class logistic regression

classification is the same as for the binary class.

For the binary class logistic regression, the mathematical algorithm for the

18

logistic regression is based on the probability prediction lies between 0 to 1.

The function of the sigmoid function is to transfer the predicted values to the

probabilities.

The mathematical formula for the sigmoid function is following:

After mapping the predicted values to the probabilities, the probability

prediction function looks like following:

As the outcome is binary, either 0 or 1, a threshold value is necessary, which is

also known as cutoff point. Usually the 0.5 is an ideal cutoff point, any probability

higher than 0.5 is assigned to one classification, and any probability lower than

0.5 is assigned to another classification.

Figure 4.3: Sample of cut-off point

For multi-class classification, the basic algorithm is similar to the binary case.

I will take our thesis project as an example: the data has four possible outcomes:

19

-1(Anti), 0(Neutral), 1(Pro), 2(News). When the logistic regression works on the

-1(Anti), it will treat -1(Anti) as a classification, and regard the rest of classes as

another classification. If the logistic regression works on the 0(Neutral), it will

treat 0(Neutral) as a classification, and treat others as another. Hence, we can also

think of multi-class logistic regression as multi-step binary logistic regression.

4.2.2 Random Forest Classifier

Random forest is developed based on the decision tree algorithm. Hence, to

understand the random forest, it is crucial to learn the basics about decision tree.

Decision tree is one of the most commonly used supervised machine learning

algorithms. It is a “tree ” structure algorithm which contains root nodes, interior

nodes, leaf nodes and branches. Root node is the original sample of data. Interior

node is the subset from the upper level node which satisfies specific conditions.

Leaf node is the outcome node. Branches are the condition rules and connect the

root node, interior node and leaf node together. By weighing the cost of splits

(the cost is calculated by the cost function), the decision tree algorithm chooses

the split with the lowest cost. This process is also known as greedy algorithm.

20

Figure 4.4: Decision Tree(‘https://www.python-course.eu/Decision_Trees.php’)

Random forest is basically a collection of many decision trees. It is developed by

Leo Breiman, a statistician from University of California at Berkeley, and

Random forest is a machine learning algorithm, which aims to improve classification

of data by applying the random sampling and attributes selection [7]. Compare to

the decision tree, the random forest has two major differences:

• Random forest apply the random subsets of features for each time splitting

nodes, this aims to avoid some features to become too dominated

• Random forest train different samples of data which aims to reduce the

variance compare to the decision tree.

21

Figure 4.5: Random Forest

As we can see from the picture, random forest assigns the random samples

and subset of features to each decision tree, and gets the final class based on the

results of all decision trees. Due to the Law of Large Numbers, random forests

are more less likely to have an overfitting problem, and also the random inputs

and random features are more likely to give good results in classification [8].

22

4.2.3 Multinomial Naive Bayes Classifier

Figure 4.6: Sample of Naive Bayes

Multinomial Naive Bayes (MNB) addresses the task of text classification from

a Bayesian principle. MNB makes a simple assumption that word occurrences are

conditionally in- dependent of each other given the class of the document. [9]

so we can transform the equation to:

In this case, the features are all available, and we are using them to predict

its’ class. Hence, given the feature in a specific document, the MNB algorithm is

able to give how likely the document belongs to a specific class. This time, we

23

have four classes: -1(Anti), 0(Neutral), 1(Pro) and 2(News). The MNB algorithm

will calculate all four possibilities for a document, and assign the document to the

class with the largest probability among these four.

24

CHAPTER 5

Model Analysis

Figure 5.1: Code

Data split is an essential step in modeling. In the exploratory data analysis

part, the existing evidences did not show the length of message is statistically

different between four classifications. Hence, in this case, the input is only texts

message, while the output is sentiment. I divide 90% percent data to the model

training group, and the 10 percent data to the testing group.

The reason that I assign 90% percent data to the training group is the data

set contains 43943 observations with four possible outcomes. This is also a text

classification, the most of observations has more than 10 features. To avoid over-

fitting or underfitting problem, in the consideration of relative small data samples

compare to the number of features and outcomes, I decided to assign more percent

of data to the training group than usual. At the end, the training group contains

39548 samples and testing group contains 4395 samples. I set the random_state

to be 42, and the random_state is a seed to the random generator which aims to

keep split remain unchanged. Also, I do the data split with shuffling.

Then, I will apply two text vectorization methods to the message. These two

methods(countvectorizer and TF-IDF) will transfer the same group of text to

25

the vectors. Hence, we will have two groups of vectors, and these two groups will

be separately trained by the same machine learning algorithms. One of our model

analysis goal is to compare the results grouped by the different vectorization

methods and find which one is the best fit to the data. The countvectorizer and

TF-IDF are imported from sklearn package.

For the next step, I will apply three machine learning algorithms(Logistic

Regression, Random Forest Classifier, Multinomial Naive Bayes Classifier) to

two groups of vectors(Countvectorizer, TF-IDF). Hence, at the end, we will have

six results, and I will do the model analysis based on these six results.

For the model comparison and analysis part, we will plot the confusion matrix

and get the F1 score, accuracy score, recall score and precision score. In text

categorization, the F1-score is often used to evaluate classifier performance [10].

Precision score penalizes false positives but does not penalize false negatives.

Recall score penalizes false negatives but it do not penalizes the false positives

[11]. F1 score is an average of the precision and recall score. The accuracy score

is a simple but efficient measurement which equals to the ratio of correct

predictions to all prediction.

The formula for accuracy is:

The formula for precision is:

26

The formula for recall is:

The formula for F1 score is:

5.1 Random Forest Classifier

In this thesis, Random Forest Classifier algorithm is imported from the sklearn

package. To have more precise outcomes, I set the parameter “max_depth” to be

200, which means the maximum depth of a tree will be 200. Big tree can carry

more information than the smaller one, which is more likely to make better

prediction. I also set the number of trees to as many as the computer can handle

which is also more likely to give me better prediction. In the EDA part, we find

the data in unbalanced, so I set the class_weight= ‘balanced’ to reduce the effect

of unbalanced data. As I mentioned before, I will apply the same machine

learning techniques to train two different groups of vectors: one is created by

countvectorizer, and the other one is created by TF-IDF.

27

5.1.1 Random Forest Classifier with countvectorizer

First, I will show the classification report of predictions made by random forest

classifier with countvectorizer:

Figure 5.2: Classification report

As from the classification report, we can see the overall classification accuracy

score is only 0.59, which means the ratio of correct prediction to all prediction is

barely more than half. The precision score is high for “1(Pro)”, and for f1-score,

labels “1(Pro)” and “2(News)” have better performance than other two.

Figure 5.3: Confusion matrix

From the confusion matrix, we can see that the label “2”(News) has pretty

good performance on the recall score, but it is fair on precision score due to large

number of false positive.

28

5.1.2 Random Forest Classifier with TF-IDF

Here is the classification report of prediction made by random forest classifier with

TF-IDF:

Figure 5.4: Classification report

Figure 5.5: Confusion matrix

As from the classification report, we can see that the overall classification ac-

curacy has improved compare to the random forest classifier with countvectorizer.

Also, except for “-1(Anti)”, the f1-score for other labels has improved.

From the confusion table, we can see that the recall for label “2(News)” is still

remains at a high level.

29

5.2 Multinomial Naive Bayes Classifier

For the multinomial naive bayes classifier, I import this algorithm from sklearn. In

the practice, I did not change its parameters since the default one has the better

performance. For the default setting, it sets the “alpha” to 1, the “class_prior” to

none, and “fit_prior” to true. I also set the class_weight=’balanced’ due to the

unbalanced data. I will also apply multinomial naive bayes classifier to both

vector groups created by countvectorizer and TF-IDF.

5.2.1 Multinomial Naive Bayes Classifier with countvectorizer

I will show the classification report for prediction made by Multinomial Naive

Bayes Classifier with countvectorizer first:

Figure 5.6: Classification report

From the classification report, the classification accuracy score is 0.7 which is

not bad compare to the result of the random forest model with countvectorizer.

Recall score for “-1(Anti)” and “0(Neutral)” are pretty low meaning there are too

many false negative on these two classifications.

30

Figure 5.7: Confusion matrix

From the confusion plot, it shows the same issues as in the classification report

table: the multinomial naive bayes model makes much better prediction for label

“1(Pro)” and “2(News)”. The performance for the label “-1(Anti)” and “0(Neutral)”

is not as well as expected.

5.2.2 Multinomial Naive Bayes Classifier with TF-IDF

Figure 5.8: Classification report

31

Figure 5 .9: Confusion matrix

Unlike the comparison between TF-IDF an countvectorizer with the random forest

classifier, this time the TF-IDF with multinomial naive bayes classifier make less

accurate prediction compare to the model with countvectorizer. The classification

accuracy is 0.68 and the model performance for four labels are pretty skewed.

Model makes much better prediction for label “1(Pro)” and fair prediction for

“2(News)”. As for label “-1(Anti)” and “0(Neutral)”, the performance is notgood.

5.3 Logistic Regression

For the logistic regression, I also set the class_weight=’balanced’ to reduce the

effect of unbalanced data.

5.3.1 Logistic Regression with countvectorizer

Figure 5 .10: Classification report

32

Figure 5.11: Confusion matrix

From the classification report and confusion matrix, the logistic regression

with countvectorizer makes pretty good prediction performance. The overall

classification accuracy is 0.75 which is the highest score I have so far. The f1-

scores are also relatively balanced compared to the previous results. Recall scores

for label “1(Pro)” and “2(News)” are still much higher than other two, which

means this model still makes many false negative for “-1(Anti)” and “0(Neutral)”.

5.3.2 Logistic Regression with TF-IDF

Figure 5.12: Classification table

33

Figure 5.13: Confusion matrix

As we can see from the classification report and confusion matrix, the

classification accuracy of model on testing group is 0.72, which is lower than the

accuracy score for the same machine learning model but with the

countvectorizer vectors. This model also makes high recall scores for label

“1(Pro)” and label “2(News)”. However, compare to the previous models, the

recall scores for label “-1(Anti)” and “0(Neutral)” have improved a lot.

34

CHAPTER 6

Conclusion

The goal of this thesis is to use two different vectorization methods(TF-IDF and

Countvectorizer) on three machine learning algorithms(Random Forest, Naive

Bayes, Logistic Regression) to get six predictions of sentiment classification on

tweets related to the global warming or climate change topics.

Firstly, according to the EDA, I get better understanding of the data. Secondly,

with the word vectorizers, I transfer the same textual messages into two different

group of vectors: one is vectorized by TF-IDF and the other one is vectorized by

countvectorizer. By applying three different machine learning algorithms, we

finally get six model results.

When we analyzing the results based on the different vectorizers, I find it is

hard to judge which vectorizer is better fit for the data. This is because that for

random forest classifier, the model with TF-IDF vectors has much better

performance than model with countvectorizer. However, for logistic regression

and multinomial naive bayes, the models with countvectorizer have better

performance. Hence, it is really hard to say which vectorizer is better fit for this

data based on the evidence we have yet.

When we analyzing the results based on the different machine learning

algorithms, it is no doubt that logistic regression makes the best prediction

performance among three machine learning algorithms. For both classification

accuracy score, f1 score, precision and recall score, the logistic regression models

have better performance than other machine learning techniques do.

35

There is also some drawbacks of this data set which I could improve in the

future. For example, the data set is unbalanced. For the sentiment part, there are too

many more “1(Pro)” sentiment compare to others, which lead to unbalanced model

training result. How to solve the model unbalanced is a potential topic to continue

studying on.

36

References

[1] Ane Berasategi, “Overview of tokenization algorithms in NLP, Introduction to

tokenization methods, including subword, BPE, WordPiece and SentencePiece”, Aug

2020

[2] Vijayarani Mohan, “Text Mining: Open Source Tokenization Tools: An Analysis”,

Advanced Computational Intelligence: An International Journal (ACII), Vol.3, No.1,

January 2016

[3] Hunter Heidenreich, “Natural Language Processing: Count Vectorization with

scikit-learn”, Aug 2018

[4] Akiko Aizawa, “An information-theoretic perspective of tf–idf measures”,

Information Processing and Management 39 (2003) 45–65

[5] Juan Ramos, “Using TF-IDF to Determine Word Relevance in Document Queries ”,

2003

[6]Marius Borcan, “TF-IDF Explained And Python Sklearn Implementation”, Jun 2020

[7]Frederick Livingston, “Implementation of Breiman’s Random Forest Machine

Learning

Algorithm”, ECE591Q Machine Learning Journal Paper. Fall 2005.

[8]Leo Breiman, “RANDOM FORESTS”, Jan 2001

[9]Li Zhao, Minlie Huang, Ziyu Yao, Rongwei Su*, Yingying Jiang*, Xiaoyan Zhu,

“Semi-Supervised Multinomial Naive Bayes for Text Classification by Leveraging

Word-Level Statistical Constraint ”, Proceedings of the Thirtieth AAAI Conference on

Artificial Intelligence (AAAI-16)

[10] Akinori Fujino, Hideki Isozaki, and Jun Suzuki, “Multi-label Text Categorization

with Model Combination based on F1-score Maximization”, NTT Communication

37

Science Laboratories NTT Corporation 2-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto,

Japan 619-0237

[11]Sergio A. Alvarez, “An exact analytical relation among recall, precision, and

classification accuracy in information retrieval”, Boston College, 2002

	Sentiment classification Using different machine l
	Sentiment classification Using different machine l
	3.2.1EDA on the sentiment part
	3.2.2EDA on the message part

	CHAPTER 4
	4.1Text Pre-processing
	4.1.1Tokenization
	4.1.2Countvectorizer
	4.1.3TF-IDF

	4.2Machine Learning Models
	4.2.1Logistic Regression
	4.2.2Random Forest Classifier
	4.2.3Multinomial Naive Bayes Classifier

	CHAPTER 5
	5.1Random Forest Classifier
	5.1.1Random Forest Classifier with countvectorize
	5.1.2Random Forest Classifier with TF-IDF

	5.2Multinomial Naive Bayes Classifier
	5.2.1Multinomial Naive Bayes Classifier with coun
	5.2.2Multinomial Naive Bayes Classifier with TF-I

	5.3Logistic Regression
	5.3.1Logistic Regression with countvectorizer
	5.3.2Logistic Regression with TF-IDF

