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Direct Prediction of Phonon Density of States With
Euclidean Neural Networks

Zhantao Chen, Nina Andrejevic, Tess Smidt, Zhiwei Ding, Qian Xu, Yen-Ting Chi,
Quynh T. Nguyen, Ahmet Alatas, Jing Kong, and Mingda Li*

Machine learning has demonstrated great power in materials design,
discovery, and property prediction. However, despite the success of machine
learning in predicting discrete properties, challenges remain for continuous
property prediction. The challenge is aggravated in crystalline solids due to
crystallographic symmetry considerations and data scarcity. Here, the direct
prediction of phonon density-of-states (DOS) is demonstrated using only
atomic species and positions as input. Euclidean neural networks are applied,
which by construction are equivariant to 3D rotations, translations, and
inversion and thereby capture full crystal symmetry, and achieve high-quality
prediction using a small training set of ≈ 103 examples with over 64 atom
types. The predictive model reproduces key features of experimental data and
even generalizes to materials with unseen elements, and is naturally suited to
efficiently predict alloy systems without additional computational cost. The
potential of the network is demonstrated by predicting a broad number of
high phononic specific heat capacity materials. The work indicates an efficient
approach to explore materials’ phonon structure, and can further enable rapid
screening for high-performance thermal storage materials and
phonon-mediated superconductors.
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One central objective of materials sci-
ence is to establish structure-property
relationships; that is, how specific atomic
arrangements lead to certain macroscopic
functionalities. This question is histori-
cally addressed through trial-and-error of
a combination of structure and property
characterization, theory, and calculation.
However, recent advances in machine
learning (ML) suggest a paradigm shift in
how structure-property relationships can
be directly constructed.[1,2] To date, ML
has seen success in a growing spectrum of
materials applications, including materials
discovery and design,[3–6] process automa-
tion and optimization,[7,8] and prediction of
materials’ mechanical (elastic moduli),[9–12]

thermodynamic and thermal transport
(formation enthalpy, thermal conductivity,
Debye temperature, heat capacity),[10,12–16]

and electronic (bandgap, superconductivity,
topology) properties,[11,17–24] and atomistic
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Figure 1. Overview of the E(3)NN architecture for phonon DoS prediction. a) Crystals are converted to periodic graphs by considering all periodic
neighbors within a radial cutoff rmax = 5Å. The example of SrTiO3 is shown. b) Atom types are encoded as a mass-weighted one-hot encoding. c) Edges
join neighboring atoms and store the relative distance vector from the central atom to neighbor. d) The radial distance vectors are used for the continuous
convolutional filters W(r⃗ab) comprising learned radial functions and spherical harmonics. e) The E(3)NN operates on the node and edge features using
convolution and gated nonlinear layers. The result is passed to a final activation, aggregation, and normalization to generate the predicted output. The
network weights are trained by minimizing the loss function between the predicted and ground-truth phonon DoS.

potentials (potential energy surfaces and force constants).[25–31]

Most property prediction studies consider a low-dimensional out-
put consisting of one or few discrete points. However, the pre-
diction of continuous properties from limited input information
remains challenging due to the output complexity and finite data
volume. Moreover, for crystalline solids, the crystallographic sym-
metry poses additional constraints on a generic neural network.

In this work, we build a ML-based predictive model that di-
rectly outputs the phonon density of states (DoS) using atomic
structures as input. Phonon DoS is a key determinant of materi-
als’ specific heat and vibrational entropy and plays a crucial role in
interfacial thermal resistance.[32] It is also tightly linked to ther-
mal and electrical transport [33] and superconductivity.[34] How-
ever, the acquisition of experimental and computed phonon DoS
is nontrivial due to limited inelastic scattering facility resources
and high computational cost of ab initio calculations for complex
materials.[33,35] Moreover, the phonon calculations in alloys sys-
tems pose significant challenge. Some existing approaches like
virtual crystal approximation (VCA) can fail both qualitatively and
quantitatively without well-controlled approximations.[36] This
calls for an approach that acquires phonon DoS more efficiently,
especially for alloy systems. To build such a model, we employ a
Euclidean neural network (E(3)NN) which naturally operates on
3D geometry and is equivariant to 3D translations, rotations, and
inversion. [37–40] E(3)NNs preserve all geometric information of
the input and eliminate the need for expensive (approximately
500 fold) data augmentation. Additionally, all crystallographic
symmetries of input data are preserved by the network.[41] In this
work, we use E(3)NNs as implemented in the open-source e3nn

repository [40] which merges implementations of Ref. [37] and
Ref. [39] and additionally implements inversion symmetry. High-
fidelity phonon DoS predictions are achieved using the density
functional perturbation theory (DFPT)-based phonon database
[42] containing phonon DoS data of approximately 1,500 crys-

talline solids. Our predictive model can capture the main features
of phonon DoS, even for crystalline solids with unseen elements.
By predicting the phonon DoS in 4,346 new crystal structures, we
identify a list of high heat capacity materials, supported by addi-
tional DFPT calculations. Our work offers an efficient technique
to acquire phonon DoS directly from atomic structure, making
it suitable for high throughput materials design with desirable
phonon-related properties.

Crystal structures operated on by the E(3)NN are first con-
verted into a periodic graphs where atoms are nodes N with edges
E connecting neighboring atoms within a specified radial cutoff,
including periodic images (Figure 1). Each edge eab ∈ E stores
the radial distance vector between atom a and neighbor b, r⃗ab, up
to some radial cutoff |rmax|, and is used by the convolutional ker-
nels of the E(3)NN. The input node features are scalars that cap-
tures its atomic type and mass using one-hot encoding; for in-
stance, a hydrogen atom is encoded as xH = [mH, 0,… , 0]. After
an initial embedding layer which takes the 118-length one-hot
mass-weighted encodings to 64 scalar features, the constructed
graph is then passed to the E(3)NN, which iteratively operates on
the features with multiple “Convolution and Gated Block” lay-
ers as described for the L1Net of ref. [43] (see Supporting Infor-
mation for more details). After the final layer, which consists of
only a convolution, all resulting node features are summed and
passed through a final activation (ReLU) and normalization layer
to predict the phonon DoS, comprising 51 scalars. The absolute
magnitude of the phonon DoS can easily be recovered from the
normalized DoS by noticing that ∫ g(𝜔)d𝜔 = 3N, where N is the
number of atoms in the unit cell; thus, we ensure that normaliza-
tion of the DoS does not compromise meaningful prediction. The
E(3)NN weights are optimized by minimizing the mean squared
error (MSE) loss function between the DFPT-computed DoS g
and E(3)NN-predicted ĝ. The full network structure is provided
in the Supporting Information.

Adv. Sci. 2021, 8, 2004214 © 2021 The Authors. Advanced Science published by Wiley-VCH GmbH2004214 (2 of 7)



www.advancedsciencenews.com www.advancedscience.com

Figure 2. Performance of the Euclidean neural network-based predictive model. a) Mean squared error versus total number of sites in a unit cell in
training (blue), validation (orange), and test (green) sets. b) Average mean squared error of compounds containing each element. c) Comparison
between E(3)NN-predicted average phonon frequency and ground truth. The inset shows the relative error |𝜔̄ − 𝜔̄∗|∕𝜔̄∗ distribution of the three datasets.
d) Randomly selected examples in the test set within each error quartile. (Left) MSE distribution showing that it is heavily peaked in the 1st and 2nd
quartiles with lower error.

We perform several analyses to evaluate our model given the
limited training data. Figure 2a shows that there is no obvious
correlation between the MSE and the number of basis atoms
within unit cells among training, validation, and test datasets
(additional statistics in are available in the Supporting Informa-
tion). The overall test set error is higher compared to the train-
ing set but similar to that of the validation set, suggesting good
generalizability. We also present the MSE as a function of dif-
ferent elements (Figure 2b) and observe comparable error levels,
indicating balanced prediction. Lastly, we compute the average

phonon frequency 𝜔̄ = ∫ d𝜔 g(𝜔)𝜔

∫ d𝜔 g(𝜔)
for both E(3)NN-predicted and

DFPT ground-truth spectra, which show excellent agreement on
the test set (Figure 2c); specifically, for 70% of the testing sam-
ples, the relative error is below 10%. This strongly suggests the
capability of our model to predict phonon DoS.

To visualize the model performance, we plot seven randomly
selected examples from the test set in each error quartile in Fig-
ure 2d, with rows 1 through 4 corresponding to the 1st quar-
tile with highest agreement through the 4th quartile with lowest

agreement, respectively. Additional examples are plotted in the
Supporting Information. The predicted DoS in the 1st and 2nd
quartiles show excellent agreement with DFPT calculations by
reproducing fine features, while the 3rd and 4th quantiles show
good or acceptable agreement by capturing main features. For in-
stance, the predicted DoS of NaPF6, CdCN2, and NaCNO capture
the energy of acoustic and optical phonon branches well but mis-
predict the relative amplitudes of certain peaks. Nonetheless, the
phonon bandgap, a key quantity to determine phonon-phonon
scattering, can be accurately extracted. Similarly, for KSbO3 and
Li2 GeO3, the predictions exhibit broadband DoS distribution,
agreeing with DFPT calculations. A large discrepancy can be seen
for RuS2, yet the bandwidth agreement is still good although the
0.099 MSE is among the largest errors in the test set (Figure 2a).
The good test set performance and generalizability suggest the
suitability of our model to predict phonon DoS for a broad range
of new materials.

We compare the E(3)NN predictions in six materials with
experimental DoS data available from inelastic scattering (Fig-
ure 3). Given the disorder and anharmonic effects in a measured
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Figure 3. Comparison between E(3)NN model predictions (orange
curves) and inelastic scattering DoS data (blue dots). ZrSiO4 was in the
training set and SrTiO3 in the test set (black dashed lines denote corre-
sponding DFPT results.[42]) The remaining examples were absent in all
datasets used for training, validation, and testing, and contain two un-
seen elements, Nd and U. Reproduced with permission.[44–46,48,49] Copy-
rights 2008, 1991, 1993, 2014, 2016, American Physical Society;[47] Copy-
right 1981, IOP Publishing,[50] Copyright 1997, Elsevier B.V.

sample, disagreement between DFPT calculations and measured
data can happen. As a result, lower agreement is expected be-
tween experimental and E(3)NN-predicted DoS since the ground-
truths are based on DFPT calculations.

Although the E(3)NN-predicted DoS do not match the fine fea-
tures of the experimental spectra, several key features (peak po-
sitions, gaps, and energy bandwidths) are still well-predicted and
can be valuable in guiding experimental planning, which can
serve as useful guidance for planning inelastic neutron and x-
ray scattering measurements, where experimental resources are
largely limited to national laboratory facilities.

One of the most important applications of our prediction
model may lie in the predictive power in alloy systems, partic-
ularly crystalline alloys with substitutional disorders. For exam-
ple, given a binary alloy with composition ApB1−p(0 ≤ p ≤ 1), the
input alloy encoding vector can take the following form

xalloy = [0,… , pmA,… , (1 − p)mB,… , 0] (1)

where the two-hot encoding pmA and (1 − p)mB are located at
the vector indices corresponding the atomic numbers of A and
B, respectively, weighted by composition. With this definition of
Eq. 1, it can be directly reduced to pure phase one-hot encod-
ing A (or B) by simply setting p = 1 (or p = 0), and it can be
generalized to more complicated alloys directly. In fact, Equa-
tion (1) contains the essence of VCA with both mass average
mVCA = pmA + (1 − p)mB and scattering potential average VVCA =
pVA + (1 − p)VB, but combined into one equation: the mass effect
is contained in the numerical values of pmA and (1 − p)mB, and
the potential effect is encoded by turning on the vector indices
that correspond to the atomic species A and B. Since the compu-
tation of pure phase and alloy differs only by atomic embedding
method, the alloy calculation does not generate any additional
computational cost.

We demonstrate the power of this approach with the alloy
Mg3Sb2(1−p)Bi2p with p ∈ [0, 1]. The model evaluation is done by
the aforementioned two-hot encoding for Sb on top of the struc-
ture Mg3Bi2, with simultaneously interpolating the lattice con-

Figure 4. Comparison between E(3)NN model predictions and virtual
crystal approximation (VCA) calculations. E(3)NN model can predict
phonon DoS for the alloy Mg3Sb2(1−p)Bi2p of continuous p with two-
hot weighted encoding. The triangle-marked curves indicate DFPT results
for Mg3Sb2 and Mg3Bi2.Reproduced with permission.[42] Copyright 2018,
Springer Nature;[51] Copyright 2018, Elsevier B.V. The circle-marked curve
represent VCA calculations for Mg3Sb0.5Bi1.5 (p = 0.75). The inset figure
shows the front view for E(3)NN and VCA comparison.

stants in-between values of two limit structures (namely, Mg3Bi2
for p = 1 and Mg3Sb2 for p = 0) according to the composition. In
this case, both input vectors and the structure are recovered to
the pure phase Mg3Sb2 when p = 0 and vice versa. We compute
the phonon DoS in alloy Mg3Sb0.5Bi1.5 and compare it with VCA
calculations, as shown in Figure 4, where the peak positions and
magnitudes are both well predicted. The E(3)NN model used to
evaluate this alloy system is trained with an additional Mg3Bi2
phonon DoS curated from [51] compared with the model used in
the rest of this paper, while Mg3Sb2 has already been included in
the original training set.

We apply the predictive model on 4346 unseen crystal struc-
tures without ground-truth DoS from the Materials Project.[52]

The data consistency check is performed (Supporting Informa-
tion), showing a reasonable trend of an elastic spring model. Fig-
ure 5a illustrates the average phononic specific heat capacity CV
of crystalline solids containing a given element, using the rela-
tion [53]

CV (T) = kB

mtot ∫
∞

0

(
ℏ𝜔

2kBT

)2
csch2

(
ℏ𝜔

2kBT

)
g(𝜔)d𝜔 (2)

where mtot is the total mass of all N atoms in the unit cell, and the
phonon DoS is normalized such that ∫ g(𝜔)d𝜔 = 3N. Materials
containing light elements tend to have high heat capacity, which
is reasonable. The distribution of CV evaluated from Equation
(2) is shown in Figure 5b, where ≈2% of materials show a CV
greater than 1000 J(kgK)−1. The inset shows the average phonon
DoS of highest-CV materials. Materials with higher CV appear to
have high spectral weight at higher energies, consistent with ex-
pectation. This trend is also noticed by inspecting the scatter plot
of phonon DoS along the first two principal components (Fig-
ure 5c), where high heat capacity materials appear clustered with
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Figure 5. The search for high specific heat capacity (CV ) materials. a) Periodic table colored by average CV of materials containing each element. b)
Histogram showing distribution of CV evaluated from E(3)NN-predicted phonon DoS. The inset illustrates average phonon DoS of materials with highest
CV . c) Distribution of predicted phonon DoS along the first two principal components, colored by the E(3)NN-predicted CV magnitudes. The inset shows
first two principal axes in the original frequency basis. d) Comparison between E(3)NN-predicted and DFPT-computed phonon DoS, the dashed black
curves represent DFPT results. e) 2D histogram comparing specific heat capacities evaluated from E(3)NN-predicted and DFPT-calculated phonon DoS.

respect to the first principal axis. The first principal axis has a
broad negative peak extending to high energies; thus, the cluster-
ing of high CV materials in the negative first principal direction
parallels the shift of their phonon DoS toward higher energies.

To validate our model’s predictions of high CV materials, we
select 12 materials with ultrahigh predicted CV and carry out in-
dependent DFPT calculations. Since the maximum frequency of
the training data was set to 1000 cm−1, which is sufficient for
the majority of materials, the CV evaluated by DFPT was also cut
off at 1000 cm−1 for fair comparison. The DoS comparisons be-
tween E(3)NN and DFPT in these high-CV materials are shown
in 5d, where satisfactory agreements are achieved in most exam-
ples except for H4NF and HCN. The CV at room temperature
T = 293.15 K evaluated from E(3)NN predictions and DFPT cal-
culations are plotted in Figure 5e, showing excellent agreement
for most materials. Values of the plotted CV are presented in Table
S2, Supporting Information, together with CV computed from
full energy ranges for comparison. We attribute the large discrep-
ancy in hydrogen- and lithium-rich materials to the electrostatic
effect of hydrogen and lithium bondings beyond mass effect,[54]

while the current model mainly considers the mass effect.
In this work, we present a machine learning-based predictive

model to directly acquire the high-dimensional material prop-
erty of phonon DoS, using only “first-principles” inputs, namely
atomic species and positions. Due to their equivariance, Eu-
clidean neural networks are able to capture the symmetries of the
input crystal, making them data-efficient. A small training set of
only 1200 examples is sufficient to generate meaningful predic-

tions, outperforming a well-trained convolutional neural network
even with data augmentation (Supporting Information). One lim-
itation of the current model is identified as samples with elastic
strain, potentially related to the fact that we confined output en-
ergy range to positive values (Supporting Information, which also
includes Refs [56–58]). Even so, Euclidean neural networks can
be applied to predicting broader properties in crystalline solids,
where there are often issues of data scarcity. Most importantly,
our atomic embedding approach offers an extremely efficient way
to compute phonon DoS in alloys, where the alloy prediction has
the same computational cost as pure phase by simply changing
the 1-hot embedding to a weighted multi-hot embedding.

In contrast to ab initio calculations and inelastic scattering that
acquire phonon DoS deterministically, a ML model is data-driven
and probabilistic in nature. It is thus impractical to fully rely on a
ML-based predictive model to acquire materials properties with-
out further validation. However, the power of the ML approach
goes far beyond obtaining property magnitudes at the individual
material level. From a materials design perspective, ML demon-
strates extremely high efficiency in rapidly screening candidates
with a target property. In our case, the prediction of phonon DoS
on the 4346 unseen materials can be done in less than 30 minutes
on a single entry-level GPU. From a property optimization per-
spective, instead of measuring an individual material with high
precision, the ML approach searches outputs high-performance
candidates in a batch, offering more choices. From an experi-
mental perspective, the ML model can be valuable in guiding the
experimental planning with limited national facility resources.

Adv. Sci. 2021, 8, 2004214 © 2021 The Authors. Advanced Science published by Wiley-VCH GmbH2004214 (5 of 7)
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From an application point-of-view, the Dulong-Petit law poses a
grand challenge in searching for promising materials for ther-
mal storage,[55] and a highly efficient approach can further sup-
port an inverse design from property to desirable structures. In
sum, our model provides a promising framework to enable high-
throughput screening and guide experimental planning for ma-
terials with exceptional thermal properties. It further sheds light
on elucidating the fundamental links between symmetry, struc-
ture, and elementary excitations in condensed matter.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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