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Abstract

Geometric Constructions of Mapping Cones in the Fukaya Category

by

Kuan-Ying Fang

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Denis Auroux, Chair

We present two geometric constructions of Lagrangian surgeries between two Lagrangian
submanifolds intersecting cleanly along a 1-dimensional submanifold. We show in a concrete
example in 4-dimensions that the two constructions are isomorphic in the Fukaya Category
and represent a mapping cone.
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Chapter 1

Introduction

Exact triangles and mapping cones in the Fukaya Category of a symplectic manifold have
been useful tools to help us understand the Fukaya Category as a whole, and seeking a
geometric understanding of such mapping cones has been helpful in furthering our under-
standing of them. Geometric interpretations of mapping cones have been understood for
a few cases. One such example was presented by Seidel. Seidel showed that in an exact
symplectic manifold, the Dehn twist of a Lagrangian submanifold L about S, a Lagrangian
sphere, is an example of a mapping cone of a certain evaluation map [5].

Another important way to understand mapping cones in the Fukaya Category geometri-
cally is through Lagrangian surgery. The Lagrangian surgery between two Lagrangian sub-
manifolds of a symplectic manifold intersecting transversely in a single point was proposed
by Polterovich [4]. Fukaya-Oh-Ohta-Ono proposed that the Lagrangian surgery between two
Lagrangian submanifolds intersecting transversely in a single point p is quasi-isomorphic to
Cone(p) [3].

In this paper, we study the case when two Lagrangian submanifolds of a symplectic
manifold, instead of intersecting in a single point, intersect cleanly along a 1-dimensional
submanifold. We construct two different surgeries between such Lagrangian submanifolds:
the Morse surgery and the Morse-Bott surgery, and demonstrate in a 4-dimensional example
that they are isomorphic and both represent a mapping cone.

The structure of this paper is as follows: In Section 2, we introduce the setup — the
symplectic manifolds and Lagrangian submanifolds considered, the moduli spaces that will be
counted, and the higher products needed. In Section 3, we define the two different Lagrangian
surgeries. In Section 4, we present the main result, which is a detailed computation in 4-
dimensions.
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Chapter 2

Setup

Consider (M,ω, σ, J), where M is a manifold, ω = dσ a symplectic form, J an ω-compatible
almost complex structure. Let i : L → M be a Lagrangian immersion with only transverse
double points. Assume there exists f : L→ R such that df = i∗σ. Let R = {(p, q) ∈ L×L :
i(p) = i(q), p 6= q} be the self intersections. Let g be a Morse function on L.

Definition 1. The cochain complex is

CF (L,L) = CM(g)⊕ R̄

where CM(g) =
⊕

Z/2 · q generated by q, the critical points of g just like in Morse chain
complex, R̄ =

⊕
(Z/2 · γ−⊕Z/2 · γ+) where γ−, γ+ are two generators corresponding to γ at

each double point.

The immersed Lagrangian may possibly bound holomorphic disks. We first force a con-
dition on the behavior of such disks.

Given a point x ∈ CF (L,L), consider maps u : (D, ∂D)→ (M,L) satisfying

1. u : (D, ∂D) → (M,L) non-constant holomorphic disk. D the closed unit disk in C
with one marked point on the boundary −1 ∈ ∂D

2. If x ∈ CM(g), there exists a −∇g flow line from x to u(−1)

3. If x ∈ R̄, then u(−1)→ x

The moduli space of all such u’s representing a given class A will be denoted by M(x,A).
The moduli space M(x,A) need not be regular, but when it is, it is a smooth manifold of
dimension Ind(A)−2 when x ∈ R̄, where Ind denotes the Fredholm index of the holomorphic
disk, and dimension µ(A) + |x| − 2 when x ∈ CM(g), where µ is the Maslov index and |x|
is the Morse index of x.

Condition 2. For any x ∈ R̄ (resp. x ∈ CM(g) with |x| = 0) and A ∈ H2 with positive
symplectic area we have either
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1. Ind ≥ 3 (resp. µ(A) ≥ 3), or

2. Ind = 2 (resp. µ(A) = 2) but M(x,A) is regular for all such A. We require that the
count of index 2 disks with marked points mapping to x sum to 0 (counting mod 2).
Namely ∑

A

|M(x,A)| = 0

Given x, y ∈ CF (L,L), A ∈ H2(M,L), consider (u1, ..., ul):

1. ui : (D, ∂D)→ (M,L) non-constant holomorphic disk. D the closed unit disk in C

2. If x, y ∈ CM(g), there exists −∇g flow lines from x to u1(−1), from ui(1) to ui+1(−1)
,and from ul(1) to y

3. If x ∈ R̄, then u1(−1)→ x. If y ∈ R̄, then ul(1)→ y

4. [u1] + ...+ [ul] = A

The moduli space of all such sequences will be denoted by M(x, y, A).

Figure 2.1: The pearly configurations in M(x, y, A)

In the special case when L is an embedded monotone Lagrangian with minimal Maslov
number µ ≥ 2, Biran and Cornea showed in [2] the following:

Statement 3. Let g : L → R be a Morse function and ρ a Riemannian metric on L such
that (g, ρ) is Morse-Smale. Then there exists an almost complex structure Jreg such that for
every x, y ∈ Crit(g) with µ(A) + |x| − |y| − 1 ≤ 1:
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1. All the elements (u1, ..., ul) are simple and absolutely distinct. The moduli space M(x, y, A)
is either empty or a smooth manifold of dimension µ(A) + |x| − |y| − 1. In particular,
if µ(A) + |x| − |y| − 1 < 0, then the moduli space is empty.

2. If µ(A) + |x| − |y| − 1 = 0, then M(x, y, A) is a compact 0-dimensional manifold and
hence consists of finite number of points.

However, the L in our setting is an immersed Lagrangian submanifold so at best the
theorem of Biran-Cornea considers the cases x, y ∈ CM(g) but doesn’t apply to the cases
when x or y ∈ R̄. As it turns out the moduli space when we include the configurations
where x or y ∈ R̄ need not be regular in general. When all the elements (u1, ..., ul) are
simple and absolutely distinct there will not be a problem. However, M(x, y, A) can contain
configurations where u1 and ul are the same exact holomorphic disk passing through x and
y ∈ R̄ the two generators associated to the same double point. In practice, we will address
this issue by choosing our Morse function g so no such configurations can exist. If regularity
holds then M(x, y, A) is a smooth manifold, and its dimension will be µ(A) + |x|− |y|−1 for
x, y ∈ CM(g), µ(A)+Ind(u1)−|y|−1 for x ∈ R̄ and y ∈ CM(g), µ(A)+ |x|+Ind(ul)−n−1
for x ∈ CM(g) and y ∈ R̄, and µ(A) + Ind(u1) + Ind(ul) − n − 1 for x, y ∈ R̄ and l > 1
(where µ(A) is the total Maslov index of the disk components without striplike ends).

We will state the definition of the differential δ assuming transversality (which we will
address in our example later). The differential is given by

δ : CF (L,L)→ CF (L,L) : a 7→
∑
|M(b, a, A)| · b

summing through all M(b, a, A) that have dimension 0 and counting with mod 2 coefficients.

Statement 4. δ2 = 0, assuming L satisfies condition 2 and transversality is achieved.

A proof of the above statement for our specific example will be given explicitly in state-
ment 12. In our case, L is exact, so all disks with boundary on L must involve double
points

The Floer cohomology is

HF (L,L) = H(CF (L,L), δ)

We will also need to define some higher products µ2 for our computations later. As-
sume L1 is another embedded monotone Lagrangian submanifold. In order to define µ2 :
CF (L,L1)⊗CF (L1, L)→ CF (L,L) we consider the moduli space M(L,L1, L, a, b, c) where
a ∈ CF (L1, L), b ∈ CF (L,L1), and c ∈ CF (L,L) consisting of

1. Holomorphic triangles with the vertices mapping to a, b, c and the edges mapping to
L1, L, L.

2. A holomorphic bigon with the boundaries mapping to L1, L and the vertices mapping
to a, b. On the edge of the holomorphic bigon that maps to L is a point y′ where a
pearly trajectory in M(c, y′, A) is attached.
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Figure 2.2: The pearly configurations in M(L,L1, L, a, b, c)

The map µ2 : CF (L,L1)⊗ CF (L1, L)→ CF (L,L) is defined by

µ2(b, a) =
∑
|M(L,L1, L, a, b, c)| · c

summing through all the M(L,L1, L, a, b, c) of dimension 0.
The map µ3 : CF (L,L1)⊗ CF (L1, L2)⊗ CF (L2, L)→ CF (L,L) is defined in the same

manner.
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Chapter 3

Surgery Construction

There are two types of Lagrangian surgery which we will perform in this section. The first
one we refer to as Morse gluing or just regular Lagrangian surgery. The second one we refer
to as Morse-Bott gluing. We will give an overview of the two constructions in this section.

Consider (M,ω) where M is a manifold and ω is a symplectic form on M . L1, L2 are two
Lagrangians in M .

Suppose first that L1 and L2 intersect transversely at some point p. We will describe a
local model for Lagrangian surgery at p, as first introduced by Polterovich [4].

There is always a Darboux chart in a neighborhood U of p and i : U → V ⊂ Cn where

i(L1 ∩ U) = Rn ∩ V, i(L2 ∩ U) =
√
−1Rn ∩ V

Let ε be a sufficiently small real number, and let fε : Rn − {0} → R be

fε = ε log |x|

The graph of dfε(x), which we will call Hε in coordinates zj = xj +
√
−1yj can be described

as

Hε =

{
(z1, ..., zn) : yj =

εxj
|x|2

, j = 1, ..., n

}
Hε is a Lagrangian submanifold of Cn which is asymptotic to Rn as |x| → ∞, and approaches√
−1Rn as |x| → 0.

We will modify the above description a little bit to make sure that the Lagrangian
we construct doesn’t just approach L1, L2 asymptotically. Let τ : Cn → Cn be the map
that reflects along the diagonal ∆ = {(z1, ..., zn) : xi = yi}, sending xi +

√
−1yi 7→ yi +√

−1xi. Note that τ(Hε) = Hε. τ is an anti-symplectomorphism: τ ∗ω0 = −ω0, which maps
Lagrangians to Lagrangians. Instead of log, we consider a slightly different map ρ : R+ → R
by

ρ(r) =

{
log r − |ε| if r ≤

√
|ε|S0

log
√
|ε|S0 if r ≥ 2

√
|ε|S0
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ρ′(r) ≥ 0, ρ′′(r) ≤ 0

here S0 is a fixed sufficiently large number and ε satisfies
√
|ε|S0 is sufficiently small. The

modified function f̄ε : Rn − {0} → R is defined by

f̄ε = ερ(|x|)

Construct a new Lagrangian manifold H̄ε of Cn that satisfies τ(H̄ε) = H̄ε and

{(z1, ..., zn : xi ≥ yi ∀i)} ∩ H̄ε = {(z1, ..., zn : xi ≥ yi ∀i)} ∩ graph df̄ε

Since the graph of df̄ε coincides with that of dfε for |x| ∈ (
√
|ε|,
√
|ε|S0), H̄ε defined in this

manner is smooth and coincides with Hε inside the ball of radius
√
|ε|S0 around 0. Outside

of the ball B2n(2
√
|ε|S0) around 0, H̄ε = Rn ∪

√
−1Rn.

Thus for the given L1 and L2 intersecting transversely at some point p and the Darboux
chart U in a neighborhood of p, we construct Lagrangian submanifold Lε ⊂M by replacing
U with the local model H̄ε we constructed, i.e.

Lε − U = L1 ∪ L2 − U, i(Lε ∩ U) = H̄ε ∩ V

Definition 5. Given L1, L2, the Lagrangian surgery of L1 and L2 at p ∈ L1 ∩ L2 is the
Lagrangian manifold Lε, denoted as Lε = L1#εL2.

Now suppose the Lagrangian submanifolds L1, L2, instead of intersecting transversely at
a point, now intersect cleanly along a 1 dimensional isotropic submanifold K ⊂ L1 ∩L2. We
will also require L1, L2 to be orientable submanifolds.

Because K = L1 ∩ L2 is a one dimensional submanifold, and since L1 is orientable, the
normal bundle K of inside L1 is trivial. Thus there is a neighborhood of K in L1 that is
diffeomorphic to an open subset of K×Rn−1. Applying the Weinstein neighborhood theorem
on L1, we see that a neighborhood of L1 inside M is symplectomorphic to T ∗L1. Thus locally
we can view a neighborhood of K as K×R×Cn−1 with the standard symplectic form, where
L1 corresponds toK×0×Rn−1. Denote the coordinates of K×R by (s, t), and the coordinates
of Cn−1 by (xi, yi) for i = 1, ..., n− 1. K is the s-axis, L1 is the (s, x1, ..., xn−1)−plane, and
the symplectic form is ds ∧ dt+

∑
dxi ∧ dyi

Since L2 intersects L1 cleanly alongK, locally L2 is a graph in the sense that (t, x1, ..., xn−1)
are functions of (s, y1, ..., yn−1) where the functions vanish on K. Since L2 is a Lagrangian
submanifold and a graph, it is a graph of a closed 1-form over the s, y axes. Since K ⊂ L2,
the integral of this 1-form over K × 0 is 0, the 1-form is exact. Thus there is some function
h(s, y) such that L2 is a graph of dh, given by xi = − dh

dyi
and t = dh

ds
. Moreover, h is constant

along K× 0 and its derivative vanishes on K× 0. So substracting a constant we can assume
that h = O(|y|2).

Consider the Hamiltonian H = h(y, s). Its time 1 flow maps

(s, t, x, y) 7→
(
s, t− dh

ds
, xi +

dh

dyi
, yi

)
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which is identity on L1 and maps the graph of dh to the (s, y) coordinate plane. Using
this modification, we have arranged a neighborhood of K to be K × R × Cn−1 where L1 is
K × 0× Rn−1 (the s, x axes) and L2 is K × 0×

√
−1Rn−1 (the s, y axes).

Under this arrangement of K,L1, L2, we perform regular Lagrangian surgery on the x, y
coordinates. Given a small fixed ε, for every value of the s-coordinate we perform Lagrangian
surgery on s×0×Rn−1 and s×0×

√
−1Rn−1. Since ε is a fixed small constant, the resulting

submanifold is Lagrangian. This Lagrangian submanifold is called the Morse-Bott surgery
or the Morse-Bott gluing in the following sections.

Remark 6. Even though in our definition we only construct the Morse-Bott surgery for two
Lagrangian submanifolds L1, L2 intersecting cleanly along a one dimensional submanifold K,
we only used the fact that K is one dimensional for the argument that the normal bundle
of K inside L1 is topologically trivial. Thus the construction can be applied whenever the
normal bundle to K inside L1 is trivial, and dropping the assumption that dim(K) = 1. In
the case where the normal bundle of K in L1 is not trivial, one can still define Morse-Bott
surgery, but it will not be described here as it is not needed in the following sections.
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Chapter 4

M1 ×M2

Let M1 be a 2-dimensional cylinder and M2 a punctured 2-torus, both with the standard
symplectic form. Here we construct and compute examples of surgeries in M = M1×M2 with
product symplectic form. Denote the S1 in M1 by N , and the longitude and the meridian
of M2 by C1, C2. Let ∗ be the intersection of C1 and C2. Let T1 be the 2-torus N ×C1, and
T2 the 2-torus N × C2. These are two Lagrangian tori intersecting along N × {∗}.

The Morse gluing of T1 and T2 is constructed as follows: Think of M1 like T ∗S1 where
N is the zero section. First choose a Morse function f on N with a max y and a min x. Let
N1 and N2 be graph(df) and graph(−df) respectively. T̄1 = N1 ×C1 and T̄2 = N2 ×C2 now
intersect at the two points (y, ∗), (x, ∗). Doing a regular Lagrangian surgery on (y, ∗) gives
the Morse gluing.

The Morse-Bott gluing, on the other hand, does a regular Lagrangian surgery on the
intersection of C1 and C2 in M2, and products C ′ = C1#C2 with N .

We denote L1(ε) to be the Morse gluing (ε is the gluing parameter) and L2 the Morse-
Bott gluing. L2 is an embedded Lagrangian torus which is N in the first factor and C1#C2

in the second factor, a product of Lagrangian S1’s. L1(ε) is an immersed Lagrangian which
topologically is a genus two surface with one self intersection.

Statement 7. L2 bounds no disc in M1 ×M2.

Proof. L2 is a product Lagrangian. Each factor bounds no disk.
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Figure 4.1: L1(ε), a genus two surface with one transverse self intersection. The grey circle
depicts the neck of the Morse surgery, while the blue and red lines shows the boundary of
the two “teardrop”.

Upon Lagrangian surgery, the two strips bounded by N1 and N2 in M1 give rise to two
teardrop-shaped regions with boundary on L1(ε). The boundary loops of the two teardrops,
shown in red and blue on Figure 4.1, run once through the double point and once through
the neck of the surgery.

Statement 8. Consider L1(ε) ⊂ M , the immersed genus two surface with one self inter-
section (as opposed to the abstract genus 2 surface S that is the domain of this immersion).
H2(M,L1(ε)) is generated by the two teardrops, denoted by A+, A−, and a third generator a,
the class of the small disc bounded by the neck of the surgery at (y, ∗) .

Proof. Consider the following section in the long exact sequence

...→ H2(L1(ε))→ H2(M)→ H2(M,L1(ε))→ H1(L1(ε))→ H1(M)→ ...

In the first map H2(L1(ε)) → H2(M), we have H2(L1(ε)) = Z, H2(M) = H2(M1 ×M2) =
H1(M1) ⊗ H1(M2) = Z2. The map H2(L1(ε)) → H2(M) is injective with cokernel Z.
H1(L1(ε)) = Z5, generated by the 4 generators of H1(S), where S is the abstract genus two
surface, and a loop γ1 that starts and end on the immersed double point (say the red loop in
Figure 4.1). We specify one of the four generators ofH1(S) to be the sum of loop red and blue,
denoted by γ2. H1(M) = H1(M1 ×M2) = (H1(M1)⊗H0(M2))⊕ (H0(M1)⊗H1(M2)) = Z3.
The last map H1(L1(ε))→ H1(M) is onto, and its kernel is generated by γ1 and γ2. We con-
clude that H2(M,L1(ε)) = Z3. Two of the generators of H2(M,L1(ε)), denoted by A+, A−,
are disks with boundaries on γ1 and γ2 − γ1 (the red loop and the blue loop respectively).
The last generator of H2(M,L1(ε)) is a disk bounded by the neck of the surgery at (y, ∗),
depicted as the grey disk in Figure 4.1.
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We will show that only the classes A+, A− (and their multiples) can be represented by
holomorphic disks.

Statement 9. L1(ε) bounds two holomorphic teardrops, and no other somewhere injective
holomorphic disk.

Proof. Let L1 = T̄1∪T̄2 be L1(ε) before gluing. L1 is the union of N1×C1 and N2×C2. In the
M1 factor, the Riemann mapping theorem tells us that N1∪N2 bounds two homotopy classes
of simple holomorphic maps, each with a unique holomorphic disk (mod reparametrization)
and multiplicity 1. In the M2 factor, C1 ∪ C2 bounds no nonconstant holomorphic disk. If
u : (D, ∂D) → (M,L1) is a holomorphic disk that L1 bounds, then π1 ◦ u and π2 ◦ u will
be holomorphic maps in the first and second factor, and so any holomorphic disk that L1

bounds must be constant in the second factor, and one of the two holomorphic disks in the
first factor.

Now we move from disks in L1 to disks with boundary in L1(ε). Away from an arbitrarily
small ε neighborhood of the self intersection y where we perform the gluing, the Lagrangian
stays the same. Consider the local model for the Lagrangian gluing. In coordinates zi =
xi +

√
−1yi, the local gluing model can be written as{

(z1, z2) : yi =
εxi

x21 + x22
, i = 1, 2

}
When projected to either of the two factors, it looks like

(
xi,

εxi
x21+x

2
2

)
, covering all areas

between
(
xi,

ε
xi

)
and the axes.

Figure 4.2: On the left: the local model for Morse surgery. On the right: What it looks like
in the M1 factor. The holomorphic “teardrops” are the regions marked by u1, u2. x is the
self intersection, and y is where Morse surgery is performed.



CHAPTER 4. M1 ×M2 12

In the M1 factor of L1(ε), there are two holomorphic w1, w2 : (D, ∂D) → (M1, L1(ε)).

They pass through the “outermost” part of the projected gluing neck (the
(
x1,

ε
x1

)
part in

the local model). Let ui : (D, ∂D) → (M,L1(ε)) be the holomorphic disks that coincide
with wi in M1 and constant in M2. They are of homotopy class A+, A− respectively. Let
u : (D, ∂D) → (M,L1(ε)) be a holomorphic disk with boundary on L1(ε) with homotopy
class A+. The image of w1 is a subset of the image of π1 ◦ u. Since holomorphic disks are
area-minimizing in their homotopy class, u1 and u have to be the same holomorphic disk.
The same argument can be applied to show that a holomorphic (D, ∂D)→ (M,L1(ε)) with
homotopy class A− will have to be u2.

There are no other simple holomorphic disks with boundary on L1(ε) with other homotopy
classes. To show this, let u be a holomorphic disk in M with boundary on L1(ε). Its image in
the M1 factor, π1 ◦u, has boundary on π1(L1(ε)). Open mapping principle tells us that π1 ◦u
either covers w1 or w2 a certain number of times but not both, or stays in a small region.
Thus the homology class of u in H2(M,L1(ε)) must be either k ·A+ + l · a or k ·A−+ l · a for
k ≥ 0 and l integers. Suppose the homology class is k · A+ + l · a (the case for k · A− + l · a
works the same way). The symplectic area of the disk u is equal to k times the area of u1.
Since the image of π1 ◦ u covers k times the entire image of w1, we see that the disc is a
k-fold cover of u1 in the first factor and constant in the second factor. Thus u represents the
class k · A+, and l = 0.

Statement 10. The two teardrops are regular with index 2:

Proof. In the previous statement we showed that the holomorphic disks with boundaries on
L1(ε) are “teardrops” in the first M1 factor and constant in the M2 factor. The tangent
planes to the Lagrangian L1(ε) along the boundary of the teardrop are products of lines in
M1 and M2. Away from the point where gluing happens, L1(ε) coincides with L1 = T̄1 ∪ T̄2,
which is a union of two product Lagrangians T̄1 = N1 × C1 and T̄2 = N2 × C2, and thus
locally the tangent planes split as a product of lines. On the part where we glue, we will
take a look at the local model again. On the local model, when passing though the gluing,
the boundary of the teardrop lives in{

(z1, z2) : yi =
εxi

x21 + x22
, i = 1, 2, z2 = 0

}
On z2 = 0 the tangent space is spanned by (1, −ε

x21
, 0, 0), (0, 0, 1, ε

x21
). Thus the tangent planes

to the L1(ε) along the teardrops are indeed product of lines in each M1,M2 factor.
The linearized ∂̄ operator splits into the direct sum of two ∂̄ operators on C-valued

functions with boundary conditions given by a family of real lines: the real lines of the
tangent direction to L.

The Fredholm index of u1 will be computed as follows: We will consider u1 as a holo-
morphic disk with one mark output point on the self intersection x. On the M1 factor, after
closing the family of boundary conditions to a closed loop in the Lagrangian Grassmannian
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by adding a short counterclockwise path at the double point, the Lagrangian tangent line
rotates a full 2π. On the M2 factor, again closing the family of boundary conditions to a
closed loop in the Lagrangian Grassmannian in the same way, the Lagrangian tangent line
ends up not rotating. The Fredholm index of u2 can be computed the same way.

As the computation shows, the Fredholm index of a teardrop for each factor is non-
negative. In the M1 factor, the nonconstant teardrop has Fredholm index 2, while in the M2

factor, the constant map has index 0. Since the linearized ∂̄ operator splits into the direct
sum of two ∂̄ operators on C-valued functions with boundary conditions given by a family of
real lines, we can apply Lemma 11.5 in Seidel’s book [6] for ∂̄ operators on line bundles. The
lemma states that in dimension 1, if the index is less than 0, then ∂̄ is injective. Considering
the adjoint operator which is also a ∂̄ operator (with a different boundary condition), the
lemma then states that if the index is ≥ 0, then the operator is surjective.

Statement 11. L1(ε) satisfies the teardrop cancelling condition (Condition 2):

Proof. Given that there is only one self intersection x, and the previous computation shows
that there are only two index 2 holomorphic teardrops, one in M(x+, A+) and the other in
M(x+, A−). Here x+ is one of the two generators of CF (L1(ε), L1(ε)) that will be assigned
to the self intersection x. Thus counting in Z/2,

∑
A |M(x,A)| = 0

Define the chain complex. Choose a Morse function g on the genus 2 surface S which
is the domain of the Lagrangian immersion i : S → L1(ε). CF (L1(ε), L1(ε)) = CM(g) ⊕ R̄
where CM(g) has the usual 6 generators, and R̄ has 2 generators: x+ and x−. The degree
of the Morse critical points will be the Morse index, while the degrees of x+ and x− are 2
and 0 respectively. Here we choose our Morse function g so that the boundary of the two
teardrops all live in a level set of the Morse function g (note that the boundaries of the two
teardrops taken together form a homologically nontrivial embedded simple closed curve on
S). We want to ensure that there are no Morse trajectories connecting the boundary of a
holomorphic teardrop to itself so the moduli space considered in the proof that δ ◦ δ = 0 is
regular. Consider the 0-dimensional moduli space M(p, q, A), where deg(p) − deg(q) = 1,
consisting of configurations of the form:

1. A teardrop passing through self intersection p with homotopy class A, followed by a
gradient flow line of −∇g that goes from the boundary of the teardrop to a Morse
critical point q.

2. A gradient flow line of −∇g that goes from the Morse critical point p to the boundary
of a teardrop that passes through a self intersection q.

3. A gradient flow line of −∇g that goes from p to q.
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Figure 4.3: The configurations in a 0-dimensional M(p, q, A)

Transversality:
We showed that the two teardrops themselves are both regular. Our choice of g, which

makes the boundary of teardrops live in a level set, ensures that the gradient flow lines will
intersect the boundaries of teardrops transversely.

The differential is given by

δ : CF (L1(ε), L1(ε))→ CF (L1(ε), L1(ε)) : q 7→
∑

dim(M(p,q,A))=0

|M(p, q, A)| · p

Statement 12. δ ◦ δ = 0

Proof. Consider a 1-dimensional moduli space M(p, q, A). The boundary of M(p, q, A) con-
sists of the following configurations:

1. A teardrop passing through self intersection p with homotopy class A, followed by
a broken gradient flow line of −∇g that goes from the boundary of the teardrop to
another Morse critical point q′, and finally to the Morse critical point q.

2. Same as above, except starting with a broken gradient flow line from p to p′, and then
to the boundary of the teardrop passing through self intersection q with homotopy
class A.

3. Broken Morse trajectory.

4. A teardrop passing through self intersection p with homotopy class A, with a Morse
trajectory from one of the two preimages in S of the double point p to a Morse critical
point q.
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Of these four types of configurations, only the first three contribute to δ ◦ δ. Moreover,
δ ◦ δ also counts two other types of broken configurations:

(5) A Morse trajectory from p to the boundary of a teardrop passing through double point
x, followed by another teardrop passing through x, followed by a Morse trajectory that
goes from the boundary of the teardrop to a Morse critical point q.

(6) A teardrop passing through self intersection p, followed by a Morse trajectory that
goes from the boundary of the teardrop to a Morse critical point r, followed by an-
other Morse trajectory from r to the boundary of a teardrop that passes through self
intersection q.

Figure 4.4: The boundary of a 1-dimensional M(p, q, A)

The configurations in (4) contribute 0 to the count because the condition that forces
teardrops count to sum to 0 will also force this count to 0. This is because for each preimage
of the double point, the number of such configurations in (4) has the same count as teardrops
that pass through the double point p, and hence Condition 2 forces that count to be zero.

Configurations (5), (6) do not occur in our case. Configuration (5) does not occur because
the output point of a teardrop is x+, but the input point of a teardrop is x−. On the other
hand, configuration (6) also does not occur because we chose our Morse function g so that
the boundary of the teardrops live in a level set of g, so there cannot be any configurations
in (6) as no such critical point r can exist.

Since configurations (5) and (6) do not occur, the remaining configurations (those in
(1), (2), (3)) count the coefficient of p that comes from δ ◦ δ(q). Because the signed count
of the boundary of a compact smooth 1-dimensional manifold with boundary is 0 and the
configurations in (4) cancel out, we see that δ ◦ δ = 0.

Let HF (L1(ε), L1(ε)) = H(CF (L1(ε), L1(ε)), δ) be the cohomology of this chain complex.
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Statement 13. HF (L1(ε), L1(ε)) has the cohomology of a torus.

Proof. Denote the index 2 and index 0 Morse critical points as p, q respectively, the index
1 critical points as γ1, ..., γ4, and the two generators from the self intersection as x+, x−.
The boundary of the two teardrops together form a simple closed curve η on the genus two
surface S (recall S is the domain of the immersion. i(S) = L1(ε)). Moreover, that simple
closed curve lives in a level of our Morse function g. For the purpose of this proof, let’s
arrange the Morse function g as depicted in Figure 4.5. The boundary of the two teardrops
intersects the ascending manifolds of γ1, γ2, γ3 each at one point, while it intersects the
descending manifolds of another γ, say γ4, at another point. So δ(γ1) = x+ (and also
δ(γ2) = x+, δ(γ3) = x+), δ(x−) = γ4, while all other δ are 0.

The differential δ : CF 0(L1(ε), L1(ε))→ CF 1(L1(ε), L1(ε)) thus has rank 1, and similarly
δ : CF 1(L1(ε), L1(ε)) → CF 2(L1(ε), L1(ε)) also has rank 1. CF 0 has rank 2, CF 1 has rank
4, and CF 2 has rank 2. Thus in cohomology, HF (L1(ε), L1(ε)) now has HF 0 rank 1, HF 1

rank 2, and HF 2 rank 1. So cohomologically, HF (L1(ε), L1(ε)) looks like that of a 2-torus.
There is another way to compute the differential δ without arranging the Morse function

g in a specific way like we did above. The simple closed curve η, formed by the boundaries
of the two teardrops, is not 0 in homology H1(S). Since the ascending manifolds of the
γi’s form a basis for H1(S), at least one will have nonzero intersection number with η, say
γ1. Then δ(γ1) = x+. On the other hand, the descending manifolds of the γi’s also form
a basis for H1(S), thus at least one of them will have nonzero intersection number with η.
Therefore, δ(x−) will be a nonzero linear combination of the γi’s. An analogous argument
to the previous paragraph shows that HF is that of a 2-torus.

Figure 4.5: The genus two surface. The simple closed curve is the union of the boundaries
of the two teardrops. γ1, ..., γ4 are the critical points of the Morse function.

The following computations build towards establishing the relation between L1(ε) and
L2, the Morse and Morse-Bott gluing. To accomplish that, we will first work with L1, the
union of N1 × C1 and N2 × C2, which is L1(ε) before gluing.
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Let p ∈ (N2 × C2) ∩ L2, q ∈ L2 ∩ (N1 × C1), y ∈ (N1 × C1) ∩ (N2 × C2) be the self
intersection in L1 that we eventually perform the Lagrangian surgery (Morse surgery), and
x ∈ (N1×C1)∩(N2×C2) the immersed double point. q, p, x, and y are depicted in Figure 4.6
below. We start by counting holomorphic triangles with boundaries on (N2×C2), L2, (N1×
C1) with the vertices going to (q, p, y) or (q, p, x).

In the M2 factor, there are two simple triangles (depicted on the right of Figure 4.6). On
the other hand, in the M1 factor, a few cases can happen:

1. Concave triangles with vertices going to (q, p, y), each in a one-parameter family. There
are three possible such triangles, depicted as the shaded grey area on the left of Fig-
ure 4.6. The one-parameter family comes from forming slits along the “red” and “blue”
direction, with the parameter governing how big the slit is.

2. Convex simple triangles with vertices going to (q,p,x). There is one isolated such
triangle in the M1 factor.

Denote ∆(q, p, y) and ∆(q, p, x) to be the set of all such triangles with vertices going to
(q, p, y) and (q, p, x) respectively.

Figure 4.6: The holomorphic triangles in ∆(q, p, y)

We will use the above counts of triangles to show:

Statement 14. Given any point β on L2, it lies on the boundary of some triangle in
∆(q, p, y). Moreover, for generic β the count of such triangles is equal to 1.
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Proof. Given any point β on L2, since L2 is a product Lagrangian, we write β = (β1, β2).
We want to find a holomorphic triangle T in ∆(q, p, y) with an extra marked point ξ on the
L2 boundary edge such that the holomorphic triangle T maps ξ to β. Asking that the extra
marked point ξ on T maps, in the M2 factor, to β2 fixes the position of ξ on the boundary
of T as the holomorphic triangles in the M2 factor are rigid. In the M1 factor, it will hit a
point ξ1, which we claim that we can make it equal to β1.

In the M1 factor, as we have listed above, the triangles ∆(q, p, y) come in three one-
parameter families. As we let the parameter vary, the extra marked point ξ1 will trace out
a 1 dimensional path in N . Consider the top family of concave triangles. On the one end,
as the red slit gets closer towards (N2 × C2), the concave holomorphic triangle breaks into
a convex holomorphic triangle with vertices on (q, p, x) (a holomorphic triangle as described
in (2) previously) and a holomorphic bigon with vertices to (x, y). Denote the position of ξ1
at this configuration to be p0 ∈ N . On the other end, as the blue slit gets closer towards
(N1×C1), the concave holomorphic triangle breaks into a convex holomorphic triangle with
vertices on (q, q′, y) and a holomorphic bigon with vertices to (q′, p). Denote the position of
ξ1 at this configuration to be p1 ∈ N . The point ξ1 sweeps all the points in N from point p0
to p1.

In the middle family of concave triangles, on the one end as the red slit gets closer towards
N , the concave holomorphic triangle breaks into a convex holomorphic triangle with vertices
on (q, q′, y), and a holomorphic bigon with vertices on (q′, p). The convex holomorphic
triangle with vertices on (q, q′, y) coincides exactly with the convex holomorphic triangle
described in the previous paragraph, and hence ξ1 is again at p1 ∈ N . On the other end of
this family, as the blue slit approaches N , the concave triangle splits into a convex triangle
with vertices on (p′, p, y), and a holomorphic bigon with vertices on (p′, q). Denote the
position of ξ1 on N to be p2. In the second family of concave holomorphic triangles, ξ1 traces
all points in N from p1 to p2.

Applying a similar argument as before, following the third family of concave holomorphic
disks ξ1 now goes from p2 back to p0, concluding the proof of the statement that any point
on L2 lies on the boundary of some triangle in ∆(q, p, y), and that the count of such triangles
is 1 (mod 2).

Repeating the proof of the previous statement with an extra fourth marked point ξ on
the N1 × C1 boundary edge (or N2 × C2) shows the following statements:

Statement 15. Given any point β on N1×C1 (or N2×C2), it lies on the boundary of some
triangle in ∆(q, p, y). For generic β the count of such triangles is equal to 1.

The µ2 that we will be using below are between three distinct embedded Lagrangians,
which will count the usual rigid (index 0) holomorphic triangles with edges going to the three
distinct Lagrangians.

Statement 16. µ2(y, q) = µ2(p, y) = µ2(q, p) = 0
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Proof. Let’s compute µ2(y, q). There is a single convex triangle with vertices on (q′, y, q)
in the M1 factor. In the M2 factor there are two simple triangles. Counting mod 2 the
corresponding triangles in M1×M2 contribute 0 to the coefficient in front of q′ ∈ CF (L2, N2×
C2). A similar argument applies to µ2(p, y) and µ2(q, p) as well.

The µ3 considered below will be a specific case of µ3 described in section 2 where the
first and the last Lagrangian are identical. Since L2, N1 × C1, and N2 × C2 are embedded,
the only contributions are from holomorphic triangles with an extra marked point attached
to a Morse flow line (left side of Figure 4.7).

Figure 4.7: Configurations considered in µ3

Statement 17. µ3(q, p, y) = min(N2×C2), µ
3(p, y, q) = min(L2), µ

3(y, q, p) = min(N1×C1)
where min is the generator corresponding to the minimum of the Morse function chosen to
define the Morse complex.

Proof. Let’s compute µ3(p, y, q) = min(L2). Statement 14 shows that any point β on L2 lies
on the boundary of some triangle in ∆(p, y, q). In particular, min(L2) lies on the boundary of
some triangle in ∆(p, y, q) and the count of such triangles is equal to one. This contributes a
count of one to the coefficient of min(L2) when computing µ3(p, y, q), and for dimension rea-
sons there are no other contributions to µ3(p, y, q). A similar argument applies to µ3(q, p, y)
and µ3(y, q, p) as well.

Recalling that the minima correspond to the identity endomorphisms, using the charac-
terization of exact triangles ([6] Section 3) the last two statements imply:

Statement 18.
N2 × C2

q−→ L2
p−→ N1 × C1

y−→ N2 × C2

forms an exact triangle.
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To move from L1 to L1(ε), we appeal to a result from Fukaya, Oh, Ohta, Ono ([3] Theorem
55.7):

Theorem 19 (FOOO). Let K be a compact subset of M(L0, L1, L2, u01, u12, u20) and U be
a relatively compact open neighborhood of K inside M(L0, L1, L2, u01, u12, u20). Let
M(Lε, L0, u01, u20, K, ε2) be the set of elements in M(Lε, L0, u01, u20) represented by a J-
holomorphic map w satisfying

maxz∈D2dist(w(z), wtri(x)) ≤ ε2

for some wtri ∈ K.
Assume moreover that every wtri ∈ U has multiplicity one at u12 and is Fredholm regular.

For each sufficiently small ε2 and ε1, there exists an open neighborhood M(Lε1 , L0, u01, u20, K, ε2)
+

of M(Lε, L0, u01, u20, K, ε2) inside M(Lε, L0, u01, u20) and a map

π : M(Lε1 , L0, u01, u20, K, ε2)
+ → U

such that:

1. Every element of M(Lε1 , L0, u01, u20, K, ε2)
+ is Fredholm regular.

2. If [w] ∈M(Lε1 , L0, u01, u20, K, ε2)
+ and π([w]) = [wtri] then we have

dist(w(z), wtri(z)) ≤ Cε2

by re-choosing the representative w in the class [w] if necessary.

3. If ε1 < 0 then the restriction π−1(K)→ K of π is a diffeomorphism.

When we apply this theorem, L0 will be L2, L1 and L2 will be N1 × C1 and N2 × C2

respectively.
The previous list of holomorphic triangles involving the generators q and p, after La-

grangian surgery, becomes:

1. One-parameter families of concave holomorphic bigons, roughly looking like the concave
triangles before, but with one corner rounded.

2. The smaller triangle in M1 times one of the triangles in M2. (Unchanged as it does
not pass trough the self intersection y to begin with.)

To define
µ2 : CF (L2, L1(ε))⊗ CF (L1(ε), L2)→ CF (L1(ε), L1(ε))

we look at M((L1(ε), L2, L1(ε)), a, b, c), where a ∈ CF (L1(ε), L2), b ∈ CF (L2, L1(ε)), c ∈
CF (L1(ε), L1(ε)), consisting of:
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1. If c ∈ CM(g), holomorphic bigons with boundary on L1(ε), L2 and vertices mapping
to a, b, followed by a Morse flow trajectory of g on L1(ε) from the L1(ε) boundary of
the bigon to c. (The left picture in Figure 4.8).

2. If c ∈ R̄, there are two cases: a holomorphic triangle with boundary in L1(ε), L2, L1(ε)
and vertices mapping to a, b, c; or a holomorphic bigon with boundary on L1(ε), L2 and
vertices to a, b, followed by a Morse flow trajectory from the L1(ε) boundary of the
bigon to the boundary of a teardrop that passes through the self-intersection c. (The
other two pictures in Figure 4.8).

µ2(b, a) =
∑
|M((L1(ε), L2, L1(ε)), a, b, c)| · c

Similarly, we can define µ2 : CF (L1(ε), L2) ⊗ CF (L2, L1(ε)) → CF (L2, L2) by counting
points in the 0-dimensional moduli space M((L2, L1(ε), L2), a, b, c) consisting of holomorphic
bigons with boundary on L2, L1(ε) and vertices at a, b, followed by a Morse flow trajectory
of h on L2 from the L2 boundary of the bigon to c.

Figure 4.8: Configurations considered in µ2(b, a)

Statement 20. L1(ε) and L2 are isomorphic

Proof. We will proceed by showing that µ2(q, p) ∈ CF (L2, L2) is the minimum of h in CM(h)
and µ2(p, q) ∈ CF (L1(ε), L1(ε)) is the minimum of g in CM(g).

Since L2 has no self intersections, µ2(q, p) will only involve holomorphic bigon with
boundary on L2, L1(ε) and vertices to p, q and Morse gradient flow lines in L2. Consider
K ⊂M(L2, N1×C1, N2×C2, p, y, q) consisting of configurations considered in statement 14
where the triangle is not too close to a degenerate one and the extra marked point ξ is not
too close to the vertices of the holomorphic triangles.

Let U be a relatively compact open neighborhood of K in M(L2, N1×C1, N2×C2, p, y, q).
The theorem of FOOO tells us that there exists M(L1(ε), L2, p, q,K, ε2)

+ and a map π :
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M(L1(ε), L2, p, q,K, ε2)
+ → U that is a diffeomorphism on π−1(K) → K. This means that

we can find a one dimensional family of holomorphic bigons in M(L1(ε), L2, p, q,K, ε2)
+ that

is diffeomorphic to K. Furthermore, each holomorphic bigon is ε2 close to the corresponding
holomorphic triangle in K. Note also that the limit as ε → 0 of any bigon with boundary
on L1(ε) and L2 is a triangle with boundary on L1 and L2, so for ε small enough, all bigons
of interest are covered.

We’ve shown in statements 14 and 17 that any point (in particular the minimum
of h on L2) lies on the boundary of a unique (mod 2) triangle in M(L2, N1 × C1, N2 ×
C2, p, y, q). Restricting to the subset K only restricts us to be outside of an arbitrarily small
neighborhood of the vertices p, y, q and of the boundaries of the configuration when the
domain degenerates. Thus the minimum of h can always be arranged to lie on the boundary
of some holomorphic triangle in K and of no triangle outside of K. Applying the FOOO
theorem now tells us that the minimum of h also lies on the boundary of some holomorphic
bigon in M(L1(ε), L2, p, q,K, ε2)

+ and no other bigon. Thus in the count of µ2(q, p), the
coefficient of min(h) will be 1. Thus µ2(q, p) = min(h). An identical argument shows that
the coefficient of min(g) in µ2(p, q) is 1. On the other hand, the two convex triangles with
vertices mapping to (q, p, x) contribute 0 mod 2 to the coefficient of x− in µ2(p, q), as shown
in Statement 16. Hence µ2(p, q) = min(g). Again since the minima correspond to the
identity endomorphisms, we see that µ2(q, p) = Id and µ2(p, q) = Id, proving that q, p are
the desired isomorphisms between L1(ε) and L2.
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