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Abstract:

It is well established that most operational numerical weather prediction (NWP) models consistently
over-predict irradiance. While more accurate than imagery-based or statistical techniques, their
applicability for day-ahead solar forecasting is limited. Overall, error is dependent on the expected
meteorological conditions. For regions with dynamic cloud systems, forecast accuracy is low.
Specifically, the North American Model (NAM) predicts insufficient cloud cover along the California
coast, especially during summer months. Since this region represents significant potential for
distributed photovoltaic generation, accurate solar forecasts are critical.

To improve forecast accuracy, a high-resolution, direct-cloud-assimilating NWP based on the Weather
and Research Forecasting model (WRF-CLDDA) was developed and implemented at the University of
California, San Diego (UCSD). Using satellite imagery, clouds were directly assimilated in the initial
conditions. Furthermore, model resolution and parameters were chosen specifically to facilitate the
formation and persistence of the low-altitude clouds common to the California coast. Compared to the
UCSD pyranometer network, intra-day WRF-CLDDA forecasts were 17.4% less biased than the NAM and
relative mean absolute error (rMAE) was 4.1% lower. For day-ahead forecasts, WRF-CLDDA accuracy did
not diminish; relative mean bias error was only 1.6% and rMAE 18.2% (5.5% smaller than the NAM).
Spatially, the largest improvements occurred for the morning hours along coastal regions when cloud
cover is expected. Additionally, the ability of WRF-CLDDA to resolve intra-hour variability was assessed.
Though the horizontal (1.3 km) and temporal (5 min.) resolutions were fine, ramp rates for time scales
of less than 30 min. were not accurately characterized. Thus, it was concluded that the cloud sizes
resolved by WRF-CLDDA were approximately five times as large as its horizontal discretization.

Keywords: Solar forecasting; High-resolution numerical weather prediction (NWP); Direct cloud
assimilation



1. Introduction

The accurate characterization of cloud fields, their evolution, and their optical properties is critical for
solar irradiance forecasting. For short-term forecasting, imagery based cloud-advection techniques
(Perez et al., 2010 and Chow et al., 2011) provide excellent characterizations of cloud fields and cloud
motion. However, clouds are highly dynamic and cloud properties can change drastically over just a few
hours. As such, the accuracy of frozen-cloud advection techniques diminishes significantly over the first
six hours. For forecast horizons exceeding 5 hours (on average), physics-based weather models
(numerical weather prediction (NWP)) are generally regarded as the most accurate method for
predicting solar irradiance (Fig. 2 of Perez et al., 2010).

Though more accurate than cloud-motion techniques for long forecast horizons, previous studies have
conclusively demonstrated consistent and systematic errors in NWP irradiance forecasts. Remund et al.
(2008) compared several months of irradiance forecasts from three NWP sources: The National Digital
Forecast Database (NDFD), the European Centre for Medium-range Weather Forecasts (ECMWF), and
the Weather and Research Forecasting (WRF) model as initialized by the Global Forecasting System
(GFS). Generally, mean bias errors (MBE) for day-ahead hourly forecasts were positive indicating a
consistent under-prediction of cloud cover and/or cloud optical depth. For the three models, hourly
root-mean square errors (RMSE) ranged from 87 W m™? to 223 W m™. Perez et al. (2010) validated
hourly irradiance forecasts derived from the NDFD against seven ground measurement stations across
the continental US. Over one year, RMSE was at least 150 W m™ and increased for forecast horizons of
greater than one day. Similarly, Lorenz et al. (2009) validated intra-day ECWMF irradiance forecasts for
more than 200 ground measurement locations in Germany over a year. Excluding night-time hours,
relative RMSE (RMSE normalized by the average daily irradiance) was near 40%. Furthermore,
irradiance was consistently over-predicted, particularly for moderately cloudy conditions near mid-day
(MBE = 100 W m™). Lorenz et al. (2009) attributed this to incorrect modeled cloud water content and
deficient cloud optical thickness. Mathiesen and Kleissl (2011) found comparable systematic errors
when comparing the North American Mesoscale (NAM), GFS, and ECMWF models’ irradiance forecasts
to ground measurements in the US over about a year. For all models, MBE exceeded 30 W m™ and
RMSE was larger than 110 W m™. Again, a general under-prediction of cloud cover was observed. Out
of all measured cloudy conditions, 52.4% were forecast incorrectly as clear by the NAM. Additionally,
Mathiesen et al. (2012) related NAM forecast accuracy to location and the likelihood of cloud cover for
hourly data in California. Due to the high probability of cloud cover, summertime coastal forecasts were
strongly biased (MBE > 125 W m™). Inland, where cloudy conditions were less likely, NAM forecasts
were less biased. Pelland et al. (2011) observed similar trends in Environment Canada’s Global
Environmental Multiscale (GEM) model. Relative MBE (MBE normalized by the average observed
irradiance) for hourly data ranged from 0% to 14% and relative RMSE exceeded 16.7%. Lastly, Lara-
Fanego et al. (2011) compared hourly intra-day irradiance forecasts from a 3-km WRF model driven by
the GFS to four ground measurement sites in southern Spain. Here, MBE ranged from 49 to 64 W m™
and RMSE was 136-170 W m™. Regardless of model, irradiance NWP forecasts are generally biased high.
This consistent under-prediction of cloud cover demonstrates the limitations of the current operational
NWP for solar irradiance forecasting.

Coarse model resolutions and inadequate physics parameterizations contribute to NWP cloud cover
error. The operational NWP models generally have spatial resolutions on the order of 10 km or larger.
In this configuration, it is impossible to resolve fine-scale cloud features or even large convective clouds.
Tselioudis and Jakob (2002) compared ECMWF T42 (Ax = 2.5°) and T106 (Ax = 1°) cloud forecasts to
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satellite observations and found that the higher-resolution T106 model generally predicted cloud
coverage and cloud properties more accurately for all meteorological regimes. Similarly, Lin et al. (2009)
compared cloud forecasts of multiple nested WRF simulations that ranged in resolution from 20 to 0.8
km. While large scale features were qualitatively captured by all models, simulations with spatial
resolutions coarser than 4 km tended to under-predict cloud cover. Additionally, the parameterization
of physical processes, specifically the simulation of cloud microphysics and planetary boundary layer
(PBL) mixing, has a large impact on cloud and irradiance forecast accuracy. Otkin and Greenwald (2008)
thoroughly catalogued the effect that different physics parameterizations have on WRF simulated cloud
fields.

Additionally, accurate model initialization is critical for NWP forecast accuracy. Often, initial conditions
derived from large-scale models contain the error of the parent model. To minimize inherited error,
observation data can be assimilated into the initial conditions. Data assimilation is the specification of
model initial conditions using the optimal combination of coarse-scale model output and observations.
Typically, temperature, pressure, and velocity initializations are modified to match observation.
However, since most operational data-assimilation techniques omit cloud observations, benefits of data
assimilation for cloud-cover and irradiance forecasting are unknown. Notably, the Rapid Update Cycle
(RUC, Benjamin et al., 2004a) uses a cloud-analysis system to assimilate cloud observations into the
model initial conditions. In this system, satellite imagery, radar data, and local cloud cover reports are
used to construct a three-dimensional observed cloud field matrix. Clouds are built into the initial
conditions by directly modifying the model hydrometeors (cloud and water mixing ratios) and the state
variables which support them (Benjamin et al. 2002, 2004b, Weygandt et al., 2006, and Hu et al., 2007).
Similar systems (Albers et al., 1996) are in use in the Center for Analysis and Prediction of Storms’ (CAPS)
Advanced Regional Prediction System (ARPS, Xue et al., 2003).

In this study, a new, high-resolution, cloud-assimilating NWP model is developed and tested at the
University of California, San Diego (UCSD) for solar irradiance forecasting (WRF-CLDDA). Using fine
spatial resolution, physics parameterizations that promote cloud-cover formation, and a cloud-
assimilation system, this model is specifically designed to minimize the errors typically associated with
NWP irradiance forecasts (Section 2, Section 4). Using WRF-CLDDA, irradiance forecasts are produced
for the summer period (5/1/11 — 6/30/11) and validated against a dense UCSD pyranometer network.
During this time, marine layer stratocumulus clouds (Section 5.1) are common. Optically thick, these
clouds often reduce irradiance by as much as 75%. Additionally, since their evaporation is spatially
correlated, large positive irradiance ramps can occur simultaneously over extensive regions. Since
marine layer clouds are co-located with regions that have high-potential for distributed generation solar
photovoltaic generation (the southern California coast), their accurate prediction is critical. WRF-CLDDA
hourly-average irradiance forecasts are calculated and compared to NAM forecasts and ground
observations (Section 5.2). Finally, the ability of WRF-CLDDA to resolve detailed, high-resolution cloud
fields is tested by comparing forecast irradiance variability, expressed as a ramp-rate distribution, to
observed variability (Section 5.3). Overall, it is shown that clouds are successfully populated into the
initial conditions and that WRF-CLDDA irradiance forecasts are significantly more accurate than the
NAM, especially during marine layer cloud conditions.

2. Numerical Weather Prediction (NWP) Models
2.1 The North American Mesoscale Model (NAM)

One of several operational NWP models for the continental United States, the North American
Mesoscale Model (NAM) is based on the WRF-Non-Hydrostatic Mesoscale Model (WRF-NMM) and is
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maintained by the National Centers for Environmental Prediction (NCEP). The NAM uses 12 km
horizontal resolution and 60 vertical hybrid sigma-level terrain-following coordinates. Temporally, the
time step size is 30s and output is available hourly to a maximum forecast horizon of 36 hours. The
NAM model is initialized by the NAM Data Assimilation System at 00, 06, 12, and 18 UTC daily using
observations and GFS data. Data is assimilated using the three-dimension variational (3DVAR) grid-point
statistical interpolation (GSI) method (Rogers et al., 2009). Assimilated data include temperature,
pressure, relative humidity, and wind magnitudes/directions as determined from radiosonde, satellite,
and other observations (Wu et al., 2002). Initialized shortly before the North American sunrise,
irradiance forecasts from the 12 UTC run are slightly more accurate and were exclusively used in this
study. Full details of the NAM are available in Janjic et al., 2010 and Janjic et al., 2011.

Within the NAM, cloud evolution is primarily dependent on the Ferrier cloud microphysics package
(Rogers et al., 2001). Here, two prognostic water variables are used: water vapor and a total
condensate variable. Cloud water, cloud ice, and other water variables are diagnostically split from the
condensate variable. Additionally, vertical transport has a large impact on cloud formation. To account
for sub-grid scale convection and resolve vertical transport, the Betts-Miller-Janjic (Janjic, 1994, and
Janjic, 2000) cumulus parameterization is used. Finally, irradiance at the surface is calculated using the
Geophysical Fluid Dynamics Laboratory Short Wave (GFDL-SW, Lacis and Hansen, 1974) radiative
transfer model (RTM). In addition to cloud cover, the background absorption from carbon dioxide and
ozone is accounted for. Since the GFDL-SW RTM is called only once per hour, the impact of intra-hour
cloud cover variability on irradiance is unresolved. Lastly, since the GFDL-SW is a columnar RTM
adjacent grid cells have no influence on surface irradiance.

Two other NWP models are commonly used for forecasting in North America but were omitted in this
study: The Global Forecasting System (GFS) and the Rapid Refresh (RAP). Though the GFS was
previously shown to be less biased than the NAM for solar forecasting (Mathiesen and Kleissl, 2011), its
coarse horizontal resolution (0.5°) limits its ability to resolve differences in cloud cover over short
distances which is critical for coastal California solar forecasting. Additionally, despite a sophisticated
initialization scheme, the RAP was excluded due to its short maximum forecast horizon (18 hours) and
lack of full intra-day and day-ahead forecasts.

2.2 The Weather and Research Forecasting Model (WRF)

The Weather and Research Forecasting (WRF, Skamarock et al., 2008) model is a highly customizable
numerical weather prediction model that is maintained by the National Center for Atmospheric
Research (NCAR). In this study, WRF V3.4 is configured with three-nests of horizontal resolutions of 12
km, 4 km, and 1.3 km (Fig. 1, centered at the University of California, San Diego). Boundary conditions
for the outer domain are derived from the NAM. To facilitate low-altitude marine layer stratocumulus
formation, the domain is vertically divided into 75 terrain-following levels, 50 of which are below 3000
m. The model time-step size is defined dynamically according to a Courant-Freidrichs-Lewy (CFL)
criterion of 0.3. This ensures that the distance of horizontal advection occurring in a single time step
does not exceed the discretization size. Downward short-wave irradiance fields are output every 5 min
to a maximum forecast horizon of 36 hours.

Cloud microphysics is parameterized using the Thompson microphysics package (Thompson et al.,
2004). Previously, Otkin and Greenwald (2008) demonstrated that the Thompson scheme produced
accurate WRF-simulated cloud fields while maintaining efficient computation time. The Thompson
model is a hybrid single/double moment parameterization that explicitly predicts the interaction

4



between six classes of water (water vapor, cloud water, rain, cloud ice, snow, and graupel) in addition to
the cloud ice number concentration. To support marine layer stratocumulus formation, the cloud
condensation nuclei (CCN) concentration for water clouds is fixed at 300 cm™ (Hudson and Frisbie,
1991). Furthermore, planetary boundary layer (PBL) mixing is parameterized using the Mellor-Yamada-
Nakanishi-Niino scheme (MYNN, Nakanishi and Niino, 2006). Like in the NAM, sub-grid scale vertical
mixing is unresolved in the coarse (Ax = 12 km) domain and the Kain-Fritsch (Kain, 2004) cumulus
parameterization is applied. For the inner nests (Ax <4 km) it is assumed that all vertical motion is
explicitly resolved and no cumulus parameterization is used. Finally, irradiance is calculated using the
MMS5 short-wave scheme (Dudhia, 1989) which takes into account cloud reflection, cloud absorption,
water vapor absorption, and clear-sky scattering.

Google eaith

Figure 1: WRF-CLDDA nest configuration (Ax = 12 km, 4 km, 1.3 km) centered at the University of
California, San Diego using Google Earth.

3. Assimilation and Validation Data Sources
3.1 GOES Cloud and SolarAnywhere Irradiance Data

Cloud field information is determined using Geostationary Operational Environmental Satellite (GOES)
imagery. GOES Solar Insolation Project (GSIP) level-2 data provides cloud-top-temperature (CTT) with 4
km x 4 km spatial resolution (Sengupta et al., 2010). To remove noise, CTT data is spatially convolved to
12 km horizontal resolution. Furthermore, clouds spanning less than 3 adjacent pixels ( < 12 km) are
filtered from the data and data that is missing or outside of historical limits is ighored.



Additionally, SolarAnywhere (SolarAnywhere, 2012) provides irradiance data on a 0.01° (= 0.94 km in
southern California) resolution grid. Irradiance data is derived by calculating a cloud index from GOES
imagery (Perez et al., 2002). The cloud index in conjunction with a clear sky model is used to calculate
irradiance. Previously, Perez et al. (2010) has shown that SolarAnywhere data to have RMSE between
77 W m?and 112 W m™ when compared to the nationwide Surface Radiation (SURFRAD) network.

3.2 DEMROES Irradiance Network

Decision Making using Real-time Observations for Environmental Sustainability (DEMROES) is a high-
density network of weather stations located at the University of California, San Diego. In addition to
meteorological data such as wind speed/direction, temperature, and precipitation, global horizontal
solar irradiance at the surface (GHI) is measured at 1 Hz to within 5% (Campbell Scientific, 1996) using
Licor LI-200SZ photodiode pyranometers. To match WRF-CLDDA/NAM GHI output, 1 s irradiance data is
temporally averaged to 5 min or 1 hr. Furthermore, to ensure that similar spatial scales are being
compared between NWP and observed data, DEMROES GHI measurements are averaged across WRF-
simulated grid cells prior to comparison. In this study, only the cell containing six DEMROES stations was
analyzed (Fig. 2, red dots).
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Figure 2: Map of WRF-CLDDA grid cells (Ax = 1.3 km) and DEMROES pyranometer locations (red circles).
Blue circles show DEMROES sites that were not analyzed and the black line demarks the Pacific coast.

4. Methodology
4.1 WRF Cloud Assimilation System (WRF-CLDDA)

In standard data assimilation, observations are used to produce an optimal estimate for the initial
conditions of the state variables (e.g. pressure, temperature, relative humidity, etc.). The cloud
microphysics model in conjunction with the modified state variables is subsequently relied upon to
accurately populate the initial conditions with clouds. As cloud hydrometeors are not directly initialized
into the model, several hours of simulation time (known as ‘spin-up’) are required to develop the initial
cloud field. Since the benefit of data assimilation often disappears over the first few hours
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(Novakovskaia et al., 2011), this ‘indirect’ approach becomes impractical as clouds formed from
assimilated data are nearly always outdated. Alternatively, direct cloud assimilation initializes clouds
nearly instantaneously by raising water vapor mixing ratios to supersaturation, forcing the microphysics
scheme to convert excess water vapor to clouds.

Cloud

Observations Analysis System WRF

Model Initialization
- Pre-processing
- Ingest NAM

Spin-Up Time

Initial
GOES Imagery ]—P[ Direct Comparison Cloud Fields

Cloud
Contingency Table

Cloud
Building/Clearing

\ Updated
Model Fields

= Qvapor

[ Intra-day forecast

Figure 3: WRF-CLDDA direct cloud assimilation system overview.

Figure 3 depicts a general outline of the WRF-CLDDA forecast system. The direct-cloud assimilation is
based on Benjamin et al. (2002, 2004b), Albers et al. (1996) and Hu et al. (2007). First, the WRF model is
initialized with 12 UTC NAM data. For two simulation hours, WRF is spun-up with redundant 12 UTC
NAM boundary conditions. In this way, NAM provided initial conditions such as wind velocity and
pressure are downscaled to match the high-resolution WRF-domain topography. To initialize cloud
cover, GOES satellite imagery is first co-located onto the WRF grid. Horizontally, the convolved CTT field
is matched to WRF coordinates via nearest neighbor interpolation. In coastal California, the dominant
overnight cloud structure consists of stable marine stratocumulus clouds (Sec. 5.1). Assuming this cloud
structure, model cloud-top location is fixed to the base of the columnar temperature inversion. In
general, cloud thickness increases with inversion height (Appendix A). As such, model cloud base is
calculated according to

Zcpase = 045+ Hppyy s Hppy < 750m (Eq. 1)
Zcpase = 0.28 - Hppyy + 127.5; Hppy = 750 m (Eq. 2)

where z. . is the base of the cloud and H;,,. is the altitude of the temperature inversion. If no
temperature inversion is predicted within the column, cloud-top pressure is instead calculated via the
intersection of the WRF-simulated vertical temperature profile and observed CTT. Finally, the 2-D cloud-



top and cloud-base location maps are combined to produce a 3-D binary matrix of cloud location co-
located with the WRF domain. This cloud contingency table determines the action for cloud-building
and -clearing in the domain initial conditions.

Assimilated cloud water content is determined via WRF-simulated temperature and pressure profiles.
The saturation water vapor mixing ratio (w;) is defined by

W, =g&— (Eq. 3)

where P is pressure, e is the saturation water vapor pressure, and € is the ratio of the gas constants of
moist and dry air. e;, however, depends on temperature and is defined by the Clausius-Clapeyron
Equation (Eq. 4 in hPa):

L({ 1 1
e. =6.11exp| — | —=— =] Eq. 4
: p( RV(277.16 TD (Ea. 4)

Here, L, is the latent heat of vaporization, R, is the gas constant for moist air, and T is air temperature (in
K). For observed cloudy cells, ws is calculated using the WRF-simulated temperature and gyapor is raised
to 110% of saturation using Eq. 5:

Qvapor =1'1Ws . (Eq. 5)

Raising gyapor to 110% of saturation generally produces clouds that are optically similar to the marine
stratocumulus clouds observed in coastal California. Excess water in supersaturated grid cells is
immediately converted from gyapor to cloud water (gqouq) OF cloud ice (gic) via the microphysics
simulation of cloud condensation. During this process, latent heat is released causing an unintended
increase in model air temperature. To avoid this side-effect, microphysics heating in WRF is disabled for
the hour following cloud assimilation. For grid cells without GOES cloud cover, gyapor is reduced to a
maximum of 75% of saturation. Figure 4 shows an example of the cloud assimilation result for Junel3,
2011. For areas observed as cloudy (green in 4a), columnar gy.por (4b) is large. Over the eastern Gulf of

California, higher temperatures result in larger saturation water vapor mixing ratios (w;) and
subsequently higher concentrations of gyapor (EQ. 5).
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Figure 4: a) GOES cloud mask, where green is cloudy and white is clear and b) Agyapor (kg kg™) for
assimilated initial conditions on 6/13/2011.

Several further steps are performed to ensure numerical stability. To avoid disagreement with the
specified boundary conditions, data assimilation is not performed for the outer 5 points on each side of
the domain. Furthermore, numerical instability manifested as unphysical, rapid waves can be triggered
by large gradients. To avoid creating artificial water vapor gradients through data assimilation, the gyapor
field is smoothed horizontally via convolution for all cells within 30 km of cloud-building cells. Vertically,
spline interpolation is used to smooth gyaper Within 7 levels.

4.2 Validation and Error Metrics

WRF-CLDDA irradiance forecasts were created for summer months when marine stratocumulus clouds
are common in coastal California (5/1/11 — 6/30/11). Forecasts were initialized at 12 UTC and simulated
to a maximum forecast horizon of 36 hours. For three days (6/19/11, 6/20/11, and 6/21/11) GSIP cloud
data was unavailable and results from these initializations were omitted in the analysis. Validation was
separated into three distinct categories: Cloud cover comparison, irradiance error metrics, and
variability analysis.

First, a qualitative analysis of a WRF-CLDDA forecast was performed. The formation and dissipation of
marine layer clouds common to the study period was discussed. For each hour, the columnar cloud
mixing ratio (guoud) and GHI from WRF-CLDDA were examined and related to the typical pattern of
marine layer cloud cover. Furthermore, a WRF-CLDDA GHI time-series was qualitatively compared to
observation.

Secondly, irradiance output was validated against DEMROES measurements. Since down-welling
shortwave radiation at the surface (SWDOWN) is a grid-averaged output variable, nearest-neighbor
interpolation of WRF-CLDDA output was used to co-locate forecasts with the spatially averaged
DEMROES observations (red circles, Fig. 2). To compare to the NAM, WRF output was aggregated to



hourly-average irradiance values and spatially averaged over 12 km x 12 km. The primary error metrics
used for irradiance forecasts were relative mean bias error (rMBE, Eq. 6), relative mean-absolute error

(rMAE, Eq. 7), relative root-mean-square error (rRMSE, Eq. 8), and relative standard error (rSTDERR, Eq.
9):

rMBE =%i(ktf —kt,.), (Eq. 6)
1 .
rMAE == |kt —kt,, |, (Eq. 7)
N = '
rRMSE = \/%i(kti* —kt, . f Eq. 8)
i=1
rSTDERR:\/%i(kti*—ktm’i—rMBE)2 : (Eq. 9)
i=1

As opposed to absolute metrics, relative error measures the deviation of

— GH I Observed

Eqg. 10
"~ GHI, (Eq. 10)

’

the clear sky index. kt,, (kt*) is the observed (forecast) irradiance normalized by the expected irradiance
given clear conditions. The relative metrics are expressed as a percentage of maximum total irradiance
and allow for forecast error to be compared independent of changes in maximum irradiance due to the
solar diurnal cycle, geographic position, and time of year. GHl.sx was computed from the Ineichen and
Perez (2002) clear sky model which uses the SoDa climatological database for Linke Turbidity (Wald,
2000).

Additionally, error characteristics were spatially quantified using the SolarAnywhere irradiance dataset.
Using nearest-neighbor interpolation, SolarAnywhere data was co-located with WRF and NAM grid
points. rMAE was then calculated and expressed as a function of time of day. In this way, geographical
differences in error could be analyzed.

Lastly, the ability of WRF-CLDDA to accurately quantify daily variability was assessed. Irradiance
variability is characterized by ramp magnitude, duration, and frequency of occurrence. Defined as the
change in irradiance divided by the time over which it occurs (At, Eq. 11), irradiance ramp rates,

. GHI[HAztj—GHI[t—Ath
RR, (t) = o ~ , (Eq. 11)

At

are expressed in W m™2 min.™. For each day, ramp rates were calculated for WRF-CLDDA, DEMROES
data, and clear sky irradiance for At =5, 10, 30, and 60 min. Daily observed variability statistics were
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derived by comparing the cumulative distribution functions (CDFs) of the observed and clear sky ramp
rates. On highly variable days, observed ramp rate magnitudes are much larger than the reference clear
sky ramp rates (Fig. 5b, inset). Consequently, the observed ramp rate CDF deviates significantly from
the clear-sky ramp rate CDF. This difference is quantified using the Kolmogorov-Smirnov Integral (KSI,
Beyer et al., 2009) as the integrated difference between the CDFs of observed and clear-sky ramp rates
(KSlcsk, Eq. 12):

KSl e = [ (CDF, —CDFeg JARR . (Eq. 12)
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Figure 5: KSlcsx examples for a clear day (5/1/2011, Fig. 5a) and a highly variable day (5/18/2011, Fig.
5b). The main plots compare the CDF of observed (black line) and clear sky (green line) RR with KS/cs
equal to the shaded area. Insets show the instantaneous 5-min. RR.

Fig. 5a depicts a day with little variability. Since the observed irradiance ramp rates match closely with
clear-sky ramp rates, the difference between the CDFs and KS/cs« (shaded area) are small. For a highly
variable day (Fig. 5b), observed and clear sky ramp rates are significantly different and KS/cs is large.
KSlcsk was calculated for each day and At.

At high temporal resolutions it is unlikely that the exact timing of irradiance variability precisely matches
observed. Small spatial offsets or phase errors can drastically affect forecast accuracy as measured by
MAE or RMSE, even if the predicted cloud field characteristics are correct. Thus, directly comparing
forecast to observed ramp rates does not necessarily produce an accurate assessment of model
performance. Instead, the variability ratio (V) was used to quantify the accuracy of predicted variability
statistics.
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V = e WRE (Eq. 13)

2[Ry

is defined as the ratio of the sums of forecast and observed ramp rates. The variability ratio estimates if
the distribution of forecast ramp rates is under- or over-dispersive. In general, highly variable days are
more difficult (and often more important) to predict correctly. To determine how WRF-CLDDA performs
as a function of observed variability, V was plotted against KSlcsx. To directly compare V at different
time-scales, KSlcs¢ is multiplied by ramp duration (At).

5. Results and Discussion
5.1 Marine Layer Stratocumulus Discussion and Example WRF-CLDDA Forecasts

During May and June of 2011 marine layer stratocumulus clouds are the dominant cloud phenomenon
affecting solar irradiance in southern California. Generally, these clouds form when there is sufficient
vertical mixing in the presence of a stable atmospheric layer. Typically, temperature decreases with
altitude. However, atmospheric layers in which temperature increases with altitude are common for
coastal regions of southern California. These layers are stable and suppress vertical motion across their
interface. A temperature inversion is created when a high-pressure center over northern California
creates strong atmospheric subsidence and drives warm air to sea. As the air descends, it compresses
and warms further. Near the surface, the air is significantly cooled by the relatively cold ocean while air
aloft remains warm resulting in a temperature inversion. As the synoptic pressure field changes and
atmospheric subsidence weakens the altitude of the temperature inversion can increase.

Marine layer clouds form when moist air near the ocean surface is mixed vertically (Pilié et al., 1979) to
the temperature inversion. As the air rises, it expands and cools. Consequently, the saturation water
vapor mixing ratio (Eq. 3) is reduced and relative humidity approaches 100%. If the temperature
inversion is above the level at which water vapor condenses (the lifting condensation level) marine layer
clouds will form. Overall, the altitude of the temperature inversion determines the altitude and
thickness of the clouds while suppressing vertical mixing with dry, warm air aloft that would dissipate
marine layer clouds.

Coinciding with low atmospheric temperatures, marine layer clouds have their greatest spatial extent
shortly before sunrise. As the sun rises, temperature and vertical mixing increases, resulting in marine
layer cloud cover dissipation. Occurring near the edges of the clouds first, cloud cover evaporation
usually occurs at UCSD in the late morning hours. In evening, as low-altitude temperature decreases,
marine layer cloud cover may reform.

For 6/13/2011, WRF-CLDDA predicted this general pattern well resulting in an accurate irradiance
forecast (Fig. 7). Figure 6 depicts vertical cross sections through UCSD (black line) for the NAM and
WRF-CLDDA forecasts. On this day, marine layer clouds capped by the temperature inversion (dashed
red line) were predicted by both models. In the NAM, however, the cloud cover retreated to the ocean
(=-117.3°) by 8 PST. WRF-CLDDA predicted thicker clouds that extended inland and persisted until 10
PST and WRF-CLDDA GHIl increased significantly. On this day, the dissipation of the marine layer at
UCSD was accurately predicted to within 10 min. at UCSD (Fig. 7).
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Figure 6: NAM (left) and WRF-CLDDA (right) cross-sections for 6/13/2011 depicting cloud extent (green)
and temperature inversion height (dashed red line). The black vertical line marks the location of UCSD.
For all forecasts, marine layer cloud cover extent is greatest in the early morning (06 PST). As
temperature near the surface increases, the temperature inversion rises and marine layer clouds
dissipate (12 PST).

1200 ‘
—Obs.
—NAM
1000l- —WRF-CLDDA||
800+ B
(I\‘/‘\
1S
5 600 B
T
(O]
4001 B
200 B
L L L L L
%O 03 06 12 5 18 21 00

09 1
6/13/2011 Hour (PST)

Figure 7: Time-series of 5-min. observed (black), hourly NAM-predicted (blue), and 5-min. WRF-CLDDA-
predicted (red line) GHI for 6/13/2011.

13



5.2 Irradiance Error Metrics

Consistent with marine layer cloud cover, observed clear sky indices (Eq. 10) fit an approximate bi-modal
pattern (Fig. 8a) corresponding to clear (kt,, = 1.0) and overcast (kt,, < 0.3) conditions. Specifically,
overcast conditions were common for morning hours (< 09 PST); for over 30% of days marine layer cloud
cover resulting in kt;, < 0.3 was observed. By 10 PST, clear conditions (kt,, > 1.0) were observed most
frequently (> 60% of days) and generally persisted until late afternoon (16 PST). In evening (18 PST)
overcast conditions were found to return for 25% of days. In principle, kt,, should never exceed 1. Thus,
the large frequency of observations with kt,, > 1 indicates a shortcoming in GHIcs« (Eg. 10). However,
since the clear sky model was similarly applied to observation, NAM, and WRF-CLDDA data, the
comparison is valid.

Contrastingly, the NAM (Fig. 8b) intra-day kt* distribution was dominated by clear conditions (kt* > 1.0)
throughout the day. Even for early morning hours, NAM intra-day forecasts rarely predicted overcast
conditions, indicating that marine layer cloud cover is routinely under-predicted. For day-ahead
forecasts, however, cloudy conditions were more common. For morning hours, the NAM predicted
cloudy conditions less frequently (15%) and at a larger kt* (kt* = 0.50) than observation (kt., = 0.25).
Thus, morning cloud cover predicted by the NAM was optically too thin. For mid-day day-ahead
forecasts (12-18 PST), the NAM kt* distribution was inaccurate. Clear conditions were over 20% less
common than observed and partially cloudy conditions (0.50 < kt* < 0.75) were 10%-20% more common
than observed. As such, the kt* distribution appears more random than observed.

The WRF-CLDDA intra-day and day-ahead kt* distributions (Fig. 8), however, matched the bi-modal
observation pattern well. The frequency of morning marine layer cloud cover was captured accurately
for both intra-day and day-ahead forecasts indicating that WRF-CLDDA correctly predicts the extent and
thickness of overnight marine layer reformation.
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Figure 8: Joint clear sky index (kt/kt*) and time of day (hr PST) histogram for observations (a), NAM (b)
and WRF-CLDDA (c) intra-day and day-ahead forecasts for UCSD in May and June 2011.
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Table 1: Summary of hourly-average error metrics for persistence, NAM, and WRF-CLDDA irradiance
forecasts at UC San Diego. A summary of errors divided by month is provided in Table B1.

Error Intra-Day Day Ahead
WRF- WRF-

(o)
(% GHlcsk) Pers. NAM CLDDA Pers. NAM CLDDA

rMBE 33 17.8 0.4 2.7 14.3 1.6

rMAE 22.4 25.4 21.3 28.3 23.8 18.2

Overall

rRMSE 30.4 33.8 31.1 36.7 32.8 27.5

rSTDERR 30.2 28.7 31.1 36.6 29.5 27.5

Quantitatively, irradiance error is summarized in Table 1. Here, intra-day (day-ahead) persistence
forecasts are calculated by multiplying the hourly-average kt,, from 24 (48) hours prior with clear sky
irradiance. As expected, WRF-CLDDA is more accurate than the persistence models; day-ahead rMAE is
11.1% smaller. However, WRF-CLDDA only improves over the 24 hr persistence model by 1.1%. Since
the presence of marine layer stratocumulus is dependent on slowly changing, large scale meteorological
conditions (e.g. the general circulation pattern and marine temperature inversion characteristics),
coastal cloud cover patterns are often similar on consecutive days. Under these conditions, the 24 hr
persistence model generally captures the irradiance signal well.

Consistent with previous studies (Mathiesen and Kleissl, 2011), NAM intra-day forecasts are positively
biased (rMBE = 17.8%) indicating an under-prediction of coastal cloud cover. Comparatively, WRF-
CLDDA irradiance forecasts are only slightly positively biased (rMBE = 0.4%), representing a large
improvement in accuracy. Furthermore, improvements are observed in both intra-day rMAE (4.1%) and
rRMSE (2.7%). In terms of rSTDERR, however, WRF-CLDDA is 2.3% less accurate. Since relative standard
error is the bias-corrected rRMSE it represents the random component of forecast error and can be
interpreted as the ‘spread’ of the forecast error distribution. Thus, though WRF-CLDDA is much less
biased, intra-day forecast errors are similarly as random as the NAM.

In general, NWP rMAE and rRMSE increase by 1%-3% between intra-day and day-ahead forecasts (Perez
et al., 2011). Here, however, NAM rRMSE decreases by 1% and rMBE decreases by 3.5%. Despite the
slight improvement in rRMSE, NAM rSTDERR increases by 0.8% since less of the forecast error can be
attributed to systematic bias. This confirms that the day-ahead NAM kt* is more random (Fig. 8b).

Additionally, WRF-CLDDA day-ahead forecasts are slightly more accurate than intra-day. WRF-CLDDA
day-ahead rSTDERR is 27.5% (an improvement of 2% over the NAM). As discussed previously, the day-
ahead kt* distribution indicates that WRF-CLDDA accurately predicts the overnight reformation of
marine layer cloud cover. Furthermore, clouds assimilated within the large outer WRF-CLDDA domain
likely increase day-ahead accuracy. Since the outer domain of WRF-CLDDA is very large (1500 km x 1500
km), clouds (especially frontal systems) can be assimilated and advected for 24 hours or more before
impacting the region of interest and improving the day-ahead irradiance forecast.

Previously, Lara-Fanego et al. (2011) found WRF rMBE of 62% - 75% (Table B2) for observed overcast
conditions (kt, < 0.4). Overall, it was concluded that WRF predicted clear skies too frequently and that
WREF accuracy decreases as observed cloud fraction increases. Here, considering only observed overcast
conditions WRF-CLDDA intra-day rMBE was 16.3% (Table B2). While still over-predicting irradiance, this
demonstrates that the combination of model configuration and data assimilation increases the
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likelihood that cloudy conditions will be forecast correctly. Furthermore, WRF-CLDDA improved most
over the NAM for overcast (ArRMSE = 10.7%) and cloudy (0.4 < kt,, < 0.65, ArRMSE = 10.5%) conditions
indicating that WRF-CLDDA performs best when clouds are present. Clear conditions (kt,, > 0.65),
however, were negatively impacted; NAM rRMSE was 5.3% lower than WRF-CLDDA. Furthermore, Lara-
Fanego found rMBE between 2% and 4%, while WRF-CLDDA rMBE was -4.8%. Thus, for some clear
observations, clouds incorrectly were assimilated or failed to evaporate in WRF-CLDDA.

NAM WRF-CLDDA

7PST

8 PST

9 PST

10 PST

12 PST

0

Figure 9: rMAE (% GHlIcsc) of NAM (left) and WRF-CLDDA (right) forecasts compared to SolarAnywhere
data at several times of day. In early morning hours, NAM forecasts are much less accurate, especially
over oceanic and coastal regions, indicating a deficiency in predicting marine layer cloud cover.

Figure 9 shows the spatial rMAE of NAM (left) and WRF-CLDDA (right) irradiance forecasts as a function
of time of day. At 7 PST, NAM forecast rMAE is approximately 27% over the ocean. For land areas
within 30 km of the coast, rMAE is much higher, exceeding 35% in some regions. Comparatively,
oceanic WRF-CLDDA forecasts have rMAE from 17% to 23% and coastal rMAE of 23% to 33%. The
improvement over the NAM is largest within 10 km of the coast. These results indicate that for early
morning hours, WRF-CLDDA more accurately predicts marine layer cloud cover especially in coastal
regions. Later in the day, as marine layer clouds become less frequent, the difference in accuracy
decreases. Notably, WRF-CLDDA forecasts greater than 30 km inland are very accurate (rMAE < 5%)
regardless of time of day. This is due to infrequent cloud cover in inland regions.

5.3 Variability Analysis
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Figure 10: Variability ratio (V, Eq. 13, y-axis) as a function of the daily variability statistic (KS/cs¢-At) for
NAM and WRF-CLDDA 60 min. ramp rates. Each dot represents a single day. Lines and bars indicate the
mean and standard deviation of V in bins of 20 W m™ on the x-axis.

Due to its hourly output, the NAM cannot resolve irradiance variability for At < 60 min. Even for hourly
ramp rates, though, the NAM is slightly under-dispersive (Fig. 10) with average variability ratios of about
0.9. Only for days with little observed variability (KSlcsc-At < 10 W m™) does the NAM accurately
characterize hourly ramp rates. Additionally, for large KSicsi, the spread of Vincreases, indicating that
for any particular day the variability could be over-predicted by up to 25% or under-predicted by 40%.
Since spatial resolution determines the size of resolvable cloud features, this implies that the NAM
spatial resolution is too coarse to accurately resolve the cloud features that influence hourly irradiance
ramp rates. Essentially, the spatial averaging that occurs over a single grid cell smoothes the variability
characteristics of the predicted hourly irradiance time-series. Conversely, the 1.3 km horizontal
resolution of WRF-CLDDA is fine enough to capture hourly variability characteristics. However, WRF-
CLDDA is more likely to be over-dispersive (predicting too much hourly variability).

At finer time scales (At = 5 min.), however, WRF-CLDDA is consistently under-dispersive, especially for
highly variable days (Fig. 11a). For KSlcs-At > 20 W m™, WRF-CLDDA predicts less than half of the
observed variability for At =5 min (V < 0.5). For At =10 min., WRF-CLDDA is again under-dispersive (Fig.
11b). However, days for which KSlcs-At < 15 W m™ are characterized accurately. Only for At > 30 min.
(Fig. 11c) does WRF-CLDDA accurately characterize variability for all observed days. Physically, a ramp
rate is dependent both on cloud speed and the time over which the ramp occurs. Generally, this can be
related to the scale of cloud features that contribute to variability by Ax = Ugouq-At. For WRF-CLDDA, Ax
= 1.3 km if clouds are being resolved with sizes on the order of the horizontal discretization. Assuming a
typical cloud speed of 12.5 km hr! implies that WRF-CLDDA should resolve ramp rates with At as fine as
6.5 min. However, Fig. 11 suggests that the minimum resolvable At is 30 min. As such, using Uciouq =
12.5 km hr'tand At = 30 min., the actual resolved cloud features have a scale of 6.25 km, nearly 5 times
larger than the model resolution of 1.3 km. Thus, to resolve irradiance ramp rates accurately at time
scales of 5 min., a discretization size smaller than 1.3 km, possibly as small as 250 m, would be required.
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Figure 11: Variability ratio as a function of the daily variability statistic (KS/csx-At) for WRF-CLDDA ramp
rates of At =5 min. (a), At = 10 min. (b), and At = 30 min. (c). Dots represent single days.

6. Summary and Conclusions

Previous studies have shown that most operational NWP models (e.g. the NAM) are inaccurate for solar
irradiance forecasting, typically over-predicting GHI and under-predicting cloud cover. Specifically, these
errors are exacerbated for summer-time coastal California, when marine layer stratocumulus conditions
are common. The source of this error can be traced to three primary sources: Spatial resolution,
inaccurate physics parameterizations, and poor model initializations.

To address these sources of error, a high-resolution, cloud-assimilating NWP based on the Weather and
Research Forecasting (WRF) model was implemented at the University of California, San Diego for solar
irradiance forecasting. Fine horizontal (Ax = 1.3 km) and vertical resolutions were used to promote low-
altitude cloud formation. Cloud microphysics, solved by a 2-class scheme in the NAM, was
parameterized by the more complex 6-class Thompson model. Additionally, a direct-cloud assimilation
system was employed to populate the model initial conditions with cloud cover. To match GOES
imagery, clouds were systematically added or subtracted from the model initial conditions by directly
modifying the water vapor mixing ratio (qvapor). Using this system, intra-day and day-ahead irradiance
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forecasts were created for 5/1/2011 and 6/30/2011 and validated against the dense UCSD pyranometer
network.

First, a WRF-CLDDA example forecast was created for a typical marine layer day (6/13/2011).
Qualitatively, the WRF-CLDDA simulated cloud field was accurate. In the morning, thick cloud cover
penetrated inland nearly 25 km. As the day progressed, cloud dissipation occurred, beginning near the
edge of the cloud and progressing westward to the coast. By 12 PST, clouds over land had mostly
evaporated and clear skies persisted until evening. In terms of irradiance, this example forecast was
very accurate (Fig. 7) and correctly predicted the positive ramp due to cloud cover evaporation to within
10 minutes.

Next, the distribution of forecast clear sky indices was compared against observation. Generally, the
distribution of observed clear sky indices fell into a bi-modal pattern (Fig. 8a). Mornings frequently
consisted of overcast conditions (kt,, < 0.3) while mid-day to evenings were observed as clear (kt,, = 1.0).
For about 25% of days, late-evening overcast conditions were recorded as marine layer cloud cover
reformed. Overall, WRF-CLDDA intra-day and day forecasts matched this pattern well (Fig. 8c),
indicating that data assimilation correctly populated clouds in the initial conditions and that the model
configuration accurately predicted the evening reformation of marine layer cloud cover, even though
data assimilation had taken place more than 12 hours prior. NAM forecasts, however, did not match
well. In general, the intra-day NAM kt* distribution was dominated by clear conditions (kt* > 1.0, Fig.
8b). Morning overcast conditions were predicted for less than 15% of days indicating that marine layer
cloud cover was under-predicted. Cloudy conditions were more common for day-ahead NAM forecasts.
Here, however, the kt* distribution appeared more random, indicating a degradation in forecast skill.

WRF-CLDDA irradiance forecasts were also validated against spatio-temporal averages of six
pyranometer measurements. Overall, WRF-CLDDA intra-day forecasts had rMBE of 0.4% compared to
17.8% for the NAM. Furthermore, rMAE was 21.3%, 4.1% smaller than the NAM. rSTDERR, a measure
of error randomness, was 2.4% larger than the NAM as a large portion of NAM error was attributed to
systematic bias. For day-ahead forecasts (> 24 hours), WRF-CLDDA accuracy did not degrade; rMAE was
18.2% and rSTDERR 27.5%. NAM accuracy, however, deteriorated slightly as rSTDERR increased by 0.8%
to 29.5%, confirming that the day-ahead NAM kt* distribution was more random. In general, NWP
rMAE and rRMSE increase by 1%-3% between intra-day and day-ahead forecasts (Perez et al., 2011).
Here, however, it was found that NAM and WRF-CLDDA accuracy remained constant. Furthermore,
WRF-CLDDA accuracy was established as a function of sky condition (Table B2). The largest
improvements over the NAM occurred for overcast (ArRMSE = 10.7%) and cloudy (ArRMSE = 10.5%)
conditions. However, for clear conditions, WRF-CLDDA was less accurate than the NAM (ArRMSE = -
5.3%) and negatively biased, indicating that for some forecasts clouds were incorrectly assimilated or
failed to dissipate in the model. In general, WRF-CLDDA performed best when clouds were observed.

Spatially, NAM and WRF-CLDDA forecasts were validated against SolarAnywhere irradiance data. WRF-
CLDDA forecasts were much more accurate than the NAM in the morning (< 9 PST) for oceanic and
coastal regions. Especially within 10 km of the coast, WRF-CLDDA rMAE was approximately 10% smaller
than the NAM. For later hours (> 10 PST) when marine layer cloud cover was less common, WRF-CLDDA
and NAM accuracy was similar. Overall, WRF-CLDDA was demonstrably better when marine
stratocumulus conditions were expected. However, when clear conditions occurred, WRF-CLDDA was
slightly less accurate than the NAM.

19



Finally, the ability of WRF-CLDDA and the NAM to characterize irradiance variability was quantified.
Using the variability ratio (Eq. 13) and KS/csc-At statistic (Eq. 12), the irradiance variability of each day
was characterized. For one-hour ramp rates, it was found that the NAM is about 10% under-dispersive
for all days, regardless of observed variability. In general, the NAM predicts 1 hr ramp rates with less
frequency and smaller magnitude than observed. Likely, this is because of the coarse discretization size
of the NAM, where clouds of a small enough scale to affect the irradiance signal on 1 hr are not fully
resolved. Conversely, WRF-CLDDA accurately predicted variability at At = 60 min. The ability of WRF-
CLDDA to characterize variability at finer scales was also evaluated. For ramp rates with At < 30 min.,
WRF-CLDDA was under-dispersive, especially for highly variable days. Based on a typical cloud speed of
12.5 km hr'! and a minimum resolvable ramp rate At of 30 min. it was determined that the model-
resolved cloud length scale was approximately 6.25 km, nearly 5 times the horizontal discretization size.
Thus, in order to accurately resolve ramp rates with At =5 min., a model resolution of much finer than
1.3 km is required. Previous studies, however, have demonstrated that increasing model resolution
generally reduces model accuracy (Zack, 2012). As spatial averaging increases, the random component
of error is minimized and accuracy improved. The ability to accurately characterize variability, though,
will also be diminished.

While high-resolution NWP forecasting with data assimilation was demonstrated for conditions typical
of southern California, it is applicable with minor modifications to other regions and meteorological
conditions. Changes in the cloud data assimilation procedure may be required, such as in the expected
water content (factor 1.1 in Eq. 5) and cloud altitude. For instance, over other regions, the temperature
inversion that is characteristic to marine layer stratocumulus clouds is not present. As such, satellite
cloud height retrievals must be instead used to place the vertical location of the cloud. Cloud vertical
extent can subsequently be derived from the expected cloud type; cumulus clouds can be built between
the lifting condensation level and the reported cloud top and cirrus clouds can be assimilated by raising
the water vapor content for a thin layer high in the atmosphere. By considering the local meteorology,
the method of direct cloud assimilation presented here can be extended to many areas in order to
improve solar irradiance forecasting.
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Appendix A. Relationship of Marine Layer Cloud Thickness and Temperature Inversion

Marine stratocumulus cloud location is dependent on the vertical location of the temperature inversion.
To quantify this, temperature and relative humidity profiles as measured by 12 UTC Miramar
radiosondes were compared for summer months between 2008 and 2011. The location of the
temperature inversion was defined as the first atmospheric layer within which the temperature
increases with altitude. Cloud location was determined from relative humidity. Atmospheric layers
within which relative humidity exceed 95% were considered cloudy. Cloud-top and cloud-base altitude
was then calculated and related to inversion height (Fig. Al).
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Figure Al: Cloud top (a) and cloud base (b) location as a function of the temperature inversion height.

Data was taken from 12 UTC Miramar radiosonde profiles for summer months between 2008 and 2011.
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Fig. Alb represents the linear fit to the data as expressed in Equations 1 and 2.

Appendix B. Detailed AMAE Tables and Figures

Table B1: Error summary (% GHlcs) as divided by month.

Error Intra-Day Day Ahead
(% GHlcs) | Pers.  NAM CVLV;;;A Pers. NAM CVC/SS'A
May rMBE 2.0 14.7 -2.8 2.1 134 2.2
rMAE 22.0 22.3 20.4 30.6 24.3 17.5
rRMSE 31.0 30.0 29.9 39.3 34.6 27.0
rSTDERR 30.9 26.1 29.8 39.2 31.7 26.9
June rMBE 4.8 21.1 3.8 3.2 15.0 1.0
rMAE 22.8 28.7 22.2 27.0 24.0 194
rRMSE 29.7 37.4 32.2 34.8 31.6 28.7
rSTDERR 29.3 30.8 31.9 34.7 27.8 28.7

Table B2: rMBE and rRMSE error summary (% GHicsc) as divided by clear sky index. Lara-Fanego et al.,

2011 values are reported as the range of annual error between observation sites.
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rMBE (%) rRMSE (%)
Lara- Lara-
kt,range Fanego et NAM WRF-CLDDA Fanego et NAM WRF-CLDDA
al., 2011 al., 2011
kt,<0.4 [62, 75] 43.1 16.3 [116, 149] 52.0 41.3
0.4 < kt,, < 0.65 [13, 20] 34.8 0.9 [35, 45] 47.2 36.7
kt., > 0.65 [2, 4] 6.1 -4.8 [9, 14] 20.0 25.3
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