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Abstract

We present a framework for grand unification in which the grand unified symmetry is
broken spontaneously by strong gauge dynamics, and yet the physics at the unification
scale is described by (weakly coupled) effective field theory. These theories are formulated,
through the gauge/gravity correspondence, in truncated 5D warped spacetime with the
UV and IR branes setting the Planck and unification scales, respectively. In most of
these theories, the Higgs doublets arise as composite states of strong gauge dynamics,
corresponding to degrees of freedom localized to the IR brane, and the observed hierarchies
of quark and lepton masses and mixings are explained by the wavefunction profiles of these
fields in the extra dimension. We present several realistic models in this framework. We
focus on one in which the doublet-triplet splitting of the Higgs fields is realized within the
dynamical sector by the pseudo-Goldstone mechanism, with the associated global symmetry
corresponding to a bulk gauge symmetry in the 5D theory. Alternatively, the light Higgs
doublets can arise as a result of dynamics on the IR brane, without being accompanied by
their triplet partners. Gauge coupling unification and proton decay can be studied in these
models using higher dimensional effective field theory. The framework also sets a stage for
further studies of, e.g., proton decay, fermion masses, and supersymmetry breaking.
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1 Introduction

Weak scale supersymmetry (SUSY) provides an elegant solution to the naturalness problem of

the standard model, by invoking a cancellation between the standard model and its superpartner

contributions to the Higgs potential. An interesting consequence of this framework is that

the three gauge couplings unify at an extremely high energy of order MU ≈ 1016 GeV, if a

normalization of the U(1)Y gauge coupling is adopted that allows the embedding of the standard

model gauge group into a larger simple symmetry group: SU(5) ⊃ SU(3)C × SU(2)L × U(1)Y .

This suggests the existence of some unified physics above this energy scale, which in some form

utilizes SU(5) or a larger group containing it.

The simplest possibilities for physics above MU are four dimensional (4D) supersymmetric

grand unified theories (GUTs) [1]. In these theories, physics above MU is described by 4D super-

symmetric gauge theories in which the standard model gauge group is embedded into a larger

(simple) gauge group. This, however, leads to the problem of doublet-triplet splitting in the

Higgs sector, and often leads to too rapid proton decay caused by the exchange of colored triplet

Higgsinos [2]. While several solutions to these problems have been proposed within conventional

4D SUSY GUTs [3 – 7], their explicit implementations often require the introduction of a larger

multiplet(s) and/or specifically chosen superpotential interactions, especially when one tries to

make the models fully realistic. This loses a certain beauty the simplest theory had, especially

if one adopts the viewpoint that these theories are “fundamental,” arising directly from physics

at the gravitational scale, e.g. string theory.

An alternative possibility for physics above MU is that the unified gauge symmetry is realized

in higher dimensional (semi-)classical spacetime [8 – 10]. In this case there is no 4D unified gauge

symmetry containing the standard model gauge group as a subgroup — the unified symmetry in

higher dimensions is broken locally and explicitly by a symmetry breaking defect. This structure

allows a natural splitting between the doublet and triplet components for the Higgs fields, while

the successful prediction for gauge coupling unification is recovered by diluting the effects from

the defect due to a moderately large extra dimension(s). Dangerous proton decay is suppressed

by an R symmetry, arising naturally from the higher dimensional structure of the triplet Higgsino

mass matrix. The framework also allows for a simple understanding of the observed structure

of fermion masses and mixings, in terms of wavefunction suppressions of the Yukawa couplings

arising for bulk quarks and leptons [11, 12].

In this paper we study a framework for physics above MU in which the standard model

gauge group is unified into a simple gauge group in precisely the same sense as in conventional

4D SUSY GUTs, and yet mechanisms and intuitions developed in higher dimensions can be used

to address the various issues of unified theories. Let us consider that the standard model gauge

group is embedded into a simple unified gauge group, e.g. SU(5), at energies above MU . We
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assume that the unified gauge symmetry is broken by strong gauge dynamics associated with

another gauge group G, and that this gauge group has a large ’t Hooft coupling g̃2Ñ/16π2 ≫ 1,

where g̃ and Ñ are the gauge coupling and the number of “colors” for the gauge group G.

With these values of the ’t Hooft coupling for G, an appropriate (weakly coupled) description of

physics is given in higher dimensional warped spacetime (for Ñ ≫ 1), due to the gauge/gravity

correspondence [13]. In the simplest setup where g̃ evolves slowly above the dynamical scale,

our theories are formulated in 5D anti-de Sitter (AdS) spacetime truncated by two branes,

where the curvature scales on the ultraviolet (UV) and infrared (IR) branes are chosen to be

k ≈ (1017−1018) GeV and k′ ≈ (1016−1017) GeV, respectively. This allows us to construct simple

“calculable” unified theories in which the unified gauge symmetry is broken dynamically —

physics above MU is determined simply by specifying parameters in higher dimensional effective

field theory.

In this paper we construct realistic unified theories in the framework described above. In

general, there are many ways to address the issues of unified theories in our framework. In one

example, which we discuss in detail, we use the idea that the Higgs doublets of the minimal

supersymmetric standard model (MSSM) are pseudo-Goldstone bosons of a broken global sym-

metry [6, 14]. Specifically, we assume that the G sector possesses a global SU(6) symmetry,

of which an SU(5) (×U(1)) subgroup is gauged. The gauged SU(5) group contains the stan-

dard model gauge group as a subgroup. We assume that the dynamics of G breaks the global

SU(6) symmetry down to SU(4) × SU(2) × U(1) at the scale MU , which leads to the correct

gauge symmetry breaking, SU(5) → SU(3)C × SU(2)L × U(1)Y , and ensures that the Higgs

doublets remain massless after the symmetry breaking, without being accompanied by their

colored triplet partners. The simplest realization of our theory, corresponding to this symme-

try structure, is then obtained in 5D truncated warped space in which the bulk SU(6) gauge

symmetry is broken to SU(5) × U(1) and SU(4) × SU(2) × U(1) on the UV and IR branes, re-

spectively. Realistic unified theories having this symmetry structure were constructed previously

in flat space in Ref. [15], where the symmetry breakings on the two branes are both caused by

boundary conditions, and in Ref. [16], where the breakings are by the Higgs mechanism. In our

context, we find that the simplest theory is obtained if the breakings on the UV and IR branes

are caused by boundary conditions and the Higgs mechanism, respectively. Note that, in the

“4D description” of the theory, the Higgs breaking on the IR brane corresponds to dynamical

GUT breaking, and the low-energy Higgs doublets are interpreted as composite particles of the

dynamical GUT-breaking sector. This theory thus provides a simple explicit realization of the

composite pseudo-Goldstone Higgs doublets, in which the origin of the global SU(6) symmetry

can be understood as the “flavor” symmetry of the dynamical GUT-breaking sector.

Below the GUT-breaking scale MU , our theory is reduced to the MSSM (supplemented by
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small seesaw neutrino masses). The successful unification prediction for the low-energy gauge

couplings is preserved as long as the threshold corrections from the dynamical GUT-breaking

sector are sufficiently small. Our higher dimensional description of the theory allows us to

estimate the size of these corrections, and we find that this can be the case. Dimension five

proton decay does not exclude the theory, because of the existence of these threshold corrections.

Realistic quark and lepton mass matrices can also be reproduced, where the observed hierarchies

in masses and mixings are understood in terms of the wavefunction profiles of the quark and

lepton fields. In the 4D description of the theory, these hierarchies arise through mixings between

elementary states and composite states of G, which are given by powers of MU/M∗, where M∗

is the fundamental scale of the theory, close to the 4D Planck scale. Unwanted unified mass

relations for the first two generation fermions do not arise, because of GUT breaking effects in

the G sector.

We also discuss other possible theories in our framework. We show that it allows for the

construction of large classes of models, including missing partner type and product group type

models. In most of them, the Higgs doublets arise as states localized to the IR brane, corre-

sponding to composite states of the strong G dynamics. A 4D scenario related to these theories

was discussed previously in Ref. [17], based on a supersymmetric conformal field theory (CFT),

where a possible AdS interpretation was also noted. In all of these theories, our higher di-

mensional framework allows a straightforward implementation of the mechanism generating the

hierarchical fermion masses and mixings, in terms of the wavefunction profiles of matter fields

in the extra dimension.

The organization of the paper is as follows. In the next section we describe the basic structure

of our theory using the 4D description. We describe how the MSSM arises naturally at low

energies in this theory. In section 3 we construct an explicit model in truncated 5D warped

space. We show that the model does not suffer from problems of conventional 4D SUSY GUTs,

e.g. the doublet-triplet splitting and dimension five proton decay problems, and also that the

observed hierarchies in the quark and lepton mass matrices can be understood in terms of the

wavefunction profiles of these fields in the extra dimension. In section 4, we discuss other

possible theories in our framework, including missing partner type and product group type

models. Discussion and conclusions are given in section 5, which include a comment on the

possibility of having a theory with g̃2Ñ/16π2 <∼ 1.

2 Basic Picture

In this section we describe our theory using the 4D description. Here we focus on the case where

the light Higgs doublets of the MSSM arise as pseudo-Goldstone supermultiplets of the GUT
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scale dynamics. This has the virtue that the success of the theory is essentially guaranteed by

its symmetry structure, without relying on specifically chosen matter content or interactions.

Other possibilities will be discussed in section 4.

We consider that the standard model gauge group is embedded into a simple gauge group

SU(5), which is spontaneously broken at the scale MU ≈ 1016 GeV. What is the underlying

dynamics of this symmetry breaking? A hint will come from considering how the MSSM arises

below the symmetry breaking scale MU . In particular, considering how the MSSM matter

content naturally appears at energies below MU and why interactions among these particles –

the gauge and Yukawa interactions – take the observed form and values will provide a guide to

the physics of this symmetry breaking. The suppression of certain operators allowed by standard

model gauge invariance, e.g. the ones leading to dangerous dimension five proton decay, may

also give hints regarding the structure of this physics.

We focus on the possibility that the unified gauge group, SU(5), is spontaneously broken by

dynamics associated with another gauge group G. In this setup, the G sector is charged under

SU(5), as it breaks SU(5) dynamically. The setup also allows the existence of other fields –

elementary fields – that are singlet under G and charged under SU(5). Suppose now that the

theory has a matter content that satisfies n5∗−n5 = n10−n10∗ = 3 and nr−nr∗ = 0 (r 6= 5, 10),

where nr represents the number of SU(5) multiplets in a complex representation r. The matter

content is arbitrary otherwise. (Note that this is not a very strong requirement on the spectrum

— with nr − nr∗ = 0 for r 6= 5, 10, the condition n5∗ − n5 = n10 − n10∗ arises automatically as

a consequence of anomaly cancellation.) With this assumption, the low energy matter content

is expected to be just the three generations of quarks and leptons, no matter what happens

associated with the dynamics of the GUT-breaking sector G. In general, the gauge dynamics of

G will produce an arbitrary number of split GUT multiplets as composite states, by picking up

the effect of GUT breaking. These states can then mix with the elementary states, so that the

low energy states are in general mixtures of elementary and composite states and thus a collection

of various incomplete SU(5) multiplets. Nevertheless, conservation of chirality guarantees that

we always have three generations of quarks and leptons at low energies, although they may not

arise simply from three copies of (5∗ + 10). Assuming that all the fields vector-like under the

standard model gauge group obtain masses of order MU through nonperturbative effects of G,

the matter content below MU is exactly the three generations of quarks and leptons.

The above argument shows that we can naturally obtain a low-energy chiral matter content

that fills complete SU(5) multiplets for chirality reasons (although each component in a multiplet

may come from several different SU(5) multiplets at high energies). It also implies that any

multiplets that do not fill out a complete SU(5) multiplet must be vector-like. It is interesting

that the MSSM has exactly this structure. Unless there is some special reason, however, the
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vector-like states are all expected to have masses of order MU from nonperturbative effects of

G. What could the special reason be for the Higgs doublets?

The lightness of the Higgs doublets can be understood group theoretically if we identify these

states as pseudo-Goldstone bosons of a broken global symmetry [6]. Suppose that the G sector

possesses a global SU(6) symmetry, of which an SU(5) (×U(1)) subgroup is gauged and identified

as the unified gauge symmetry. We assume that the dynamics of G breaks the global SU(6)

symmetry down to SU(4)× SU(2)× U(1) at the dynamical scale ≈ MU in such a way that the

gauged SU(5) subgroup is broken to the standard model gauge group SU(3)C ×SU(2)L×U(1)Y

(321). This leads to Goldstone chiral supermultiplets, whose quantum numbers under 321 are

given by (3, 2)−5/6+(3∗, 2)5/6+(1, 2)1/2+(1, 2)−1/2. While the first two of these are absorbed by

the broken SU(5) gauge multiplets (the massive XY gauge supermultiplets), the last two are left

in the low energy spectrum. Although the global SU(6) symmetry of the G sector is explicitly

broken by the gauging of the SU(5) (×U(1)) subgroup, the supersymmetric nonrenormalization

theorem guarantees that the mass term for (1, 2)1/2 +(1, 2)−1/2 is not generated without picking

up the effect of supersymmetry breaking, allowing us to identify these states as the two Higgs

doublets of the MSSM: Hu(1, 2)1/2 and Hd(1, 2)−1/2. This provides a complete understanding

of the MSSM field content in our framework. The MSSM states – the gauge, matter and Higgs

fields – are the only states that could not get a mass of order MU from G, because they are

protected by gauge invariance, chirality, and the (pseudo-)Goldstone mechanism.

Since the two Higgs doublets arise from the dynamical breaking of SU(6), they are composite

states of G. Suppose now that the dynamics of G also produces composite states that have

the same 321 quantum numbers as the MSSM quarks and leptons, Q,U ,D,L and E . These

composite states will then have “Yukawa couplings” with the Higgs fields at MU , W ≈ QUHu +

QDHd + LEHd, where the sizes of the couplings are naturally of order 4π. These couplings,

however, disappear at low energies after integrating out all the heavy modes, because the strong

G dynamics respects SU(6) and the Higgs doublets are the Goldstone bosons associated with

the dynamical breaking of SU(6). Now, suppose that the theory also has several elementary

fields that transform as 5∗ and 10 under SU(5). In this case the low-energy quarks and leptons,

Q, U, D, L and E, are in general linear combinations of the elementary and composite states.

The Yukawa couplings for these low-energy fields, W ≈ QUHu + QDHd + LEHd, can then be

nonzero because the elementary states do not respect the full SU(6) symmetry. The sizes of the

Yukawa couplings are determined by the strengths of the mixings between the elementary and

composite states, which are in turn determined by the dimensions of the G-invariant operators

that interpolate the composite states. This situation is analogous to the case where the standard

model Higgs boson is identified as a pseudo-Goldstone boson of strong gauge dynamics at the

TeV scale [18]. By choosing operator dimensions to be larger for lighter generations, we can
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gauged SU(5) ⊂

5∗
1, 5

∗
2, · · ·

101, 102, · · ·

· · · · · ·

global SU(6)

G
SU(6) →

SU(4)×SU(2)×U(1)

n5∗ − n5 = 3
n10 − n10∗ = 3

nr − nr∗ = 0
(r 6= 5,10)

VSU(3)C
, VSU(2)L

, VU(1)Y
3 × (Q, U, D, L, E) Hu, Hd · · · · · · MSSM

Figure 1: The basic picture of the theory in the 4D description.

naturally understand the origin of the hierarchical structure for the quark and lepton masses

and mixings. The unwanted mass relations for the quarks and leptons can be avoided because

low-energy quarks and leptons feel the GUT-breaking effects in the G sector.

Dangerous dimension four and five proton decay can be suppressed if the theory possesses a

continuous or discrete R symmetry, under which the low-energy MSSM fields carry the charges

Q(1), U(1), D(1), L(1), E(1), Hu(0) and Hd(0) (and N(1) if we introduce right-handed neutrino

superfields N). This R symmetry is most likely spontaneously broken by the dynamics of the G

sector (unless there is a low-energy singlet field that transforms nonlinearly under this symmetry;

see discussion in section 4). The R symmetry should also be broken to the Z2 subgroup, the R

parity of the MSSM, in order to give weak scale masses to the gauginos. Supersymmetry breaking

produces supersymmetric and supersymmetry-breaking masses for the Higgs doublets, as well

as masses for the gauginos, squarks and sleptons, ensuring the stability of the desired vacuum.

Successful supersymmetric gauge coupling unification is preserved if the threshold corrections

associated with the G sector are sufficiently small.

We have depicted the basic picture of the theory in Fig. 1. How can we realize this picture

in explicit models? It is not so straightforward to construct such models in the conventional

4D framework. In particular, it is not easy to find explicit gauge group and matter content

for the G sector having all the features described above. (The difficulty increases if some of

the relevant composite states are excited states of the G sector. We then cannot use beautiful

exact results for N = 1 supersymmetric gauge theories [19], which are applicable to lowest-

lying modes.) In our framework, however, this problem is in some sense “bypassed.” Suppose

that the G sector possesses a large ’t Hooft coupling, g̃2Ñ/16π2 ≫ 1. In this case, the theory
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is so strongly coupled that the gauge theory description in terms of “gluons” and “quarks”

does not make much sense. Instead, in this parameter region, the theory is better specified by

composite “hadron” states, which have a tower structure. For Ñ ≫ 1, these “hadronic” tower

states are weakly coupled [20], and under certain circumstances they can be identified as the

Kaluza-Klein (KK) states of a weakly coupled higher dimensional theory. In particular, if the

G sector is quasi-conformal (g̃ evolves very slowly) above its dynamical scale, the corresponding

higher dimensional theory is formulated in warped AdS spacetime truncated by branes [13, 21].

In the next section we construct an explicit unified model in truncated 5D warped spacetime,

which has all the features described in this section. In practice, once we have a theory in higher

dimensions, we can forget about the “original” 4D picture for most purposes — our higher

dimensional theory is an effective field theory with which we can consistently calculate various

physical quantities. The theory does not require any more information than the gauge group,

matter content, boundary conditions, and values of various parameters, to describe physics at

energies below the cutoff scale M∗ (≫ MU).

3 Model

3.1 Basic symmetry structure

Following the general picture presented in the previous section, we consider 5D warped spacetime

truncated by two branes: the UV and IR branes. The spacetime metric is given by

ds2 = e−2kyηµνdxµdxν + dy2, (1)

where y is the coordinate for the extra dimension and k denotes the inverse curvature radius of

the warped AdS spacetime. The two branes are located at y = 0 (the UV brane) and y = πR

(the IR brane). This is the spacetime considered in Ref. [22], in which the AdS warp factor

is used to generate the large hierarchy between the weak and the Planck scales by choosing

the scales on the UV and IR branes to be the Planck and TeV scales, respectively (kR ∼ 10).

Here we choose instead the UV-brane and IR-brane scales to be k ≈ (1017 − 1018) GeV and

k′ ≡ k e−πkR ≈ (1016 − 1017) GeV, respectively, so that the IR brane serves the role of breaking

the unified symmetry. (A more detailed discussion on the determination of the scales is provided

in later subsections.) In this sense, we may loosely call the UV and IR branes the Planck and

GUT branes, respectively.

We consider supersymmetric unified gauge theory on this gravitational background. We

choose the gauge symmetry in the bulk to be SU(6), corresponding to the global symmetry that

the dynamical GUT-breaking sector possesses in the 4D description of the model. The bulk

SU(6) gauge symmetry is broken to SU(5) × U(1) and SU(4) × SU(2) × U(1) on the UV and
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UV (y = 0)

k ≈ (1017 − 1018) GeV

IR (y = πR)

k′ ≈ (1016 − 1017) GeV

SU(5) × U(1) 〈Σ〉 : SU(6) →
SU(4) × SU(2) × U(1)SU(6)

Q3

Q2

Q1

Hu, Hd

UV (y = 0)

k ≈ (1017 − 1018) GeV

IR (y = πR)

k′ ≈ (1016 − 1017) GeV

SU(5) × U(1) 〈Σ〉 : SU(6) →
SU(4) × SU(2) × U(1)SU(6)

Q3

Q2

Q1

Hu, Hd

Figure 2: A schematic picture of the model in 5D.

IR branes, respectively, leaving an unbroken SU(3) × SU(2) × U(1) × U(1) gauge symmetry

at low energies. There are two ways to break a gauge symmetry on a brane: by boundary

conditions and by the Higgs mechanism. Let us first consider SU(6) → SU(5) × U(1) on the

UV brane. If this breaking is caused by the Higgs mechanism, then in the corresponding 4D

description the fundamental gauge symmetry of the theory is SU(6), which is spontaneously

broken to SU(5)×U(1) at a very high energy E ≫ MU . In this case, we must introduce matter

fields in representations of SU(6), so that the standard SU(5) embedding of matter fields [23]

should be modified/extended. On the other hand, if SU(6) → SU(5)×U(1) on the UV brane is

caused by boundary conditions, then in the corresponding 4D description only the SU(5)×U(1)

subgroup of the global SU(6) symmetry is explicitly gauged (see Fig. 1), so that we can employ

the standard SU(5) embedding for matter fields. We thus adopt the latter option to construct

our minimal model here, although models based on the former option can also be accommodated

in our framework.

What about the symmetry breaking SU(6) → SU(4)×SU(2)×U(1) on the IR brane? If we

break SU(6) to SU(4)×SU(2)×U(1) by boundary conditions on the IR brane, the two massless

Higgs doublets, whose existence is guaranteed by the general symmetry argument presented in

the previous section, arise from extra-dimensional components of the bulk SU(6) gauge fields.

This setup, however, leads to extra states lighter than k′ ≈ (1016 − 1017) GeV once matter fields

are introduced in the bulk with the zero modes localized towards the UV brane (such matter
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fields are used to naturally explain the observed hierarchies in the fermion masses and mixings;

see subsection 3.3). These extra states generically do not fill complete SU(5) representations and

thus induce large threshold corrections for the standard model gauge couplings. Large threshold

corrections can be avoided if we judiciously choose boundary conditions for matter fields, but

bulk SU(6) gauge invariance then still requires complicated structure for the matter sector to

reproduce the observed fermion masses and mixings. These issues do not arise if the breaking

SU(6) → SU(4)× SU(2) × U(1) is caused by the Higgs mechanism on the IR brane, as we will

see later. We therefore adopt the Higgs breaking of SU(6) on the IR brane. This completely

determines the basic symmetry structure of our model, which is depicted in Fig. 2.

3.2 Gauge-Higgs sector and scales of the system

Let us start by describing the gauge-Higgs sector of the model. Using 4D N = 1 superfield

language, in which the gauge degrees of freedom are contained in V (Aµ, λ) and Φ(φ + iA5, λ
′),

the boundary conditions for the 5D SU(6) gauge supermultiplet are given by

V :





















(+, +) (+, +) (+, +) (+, +) (+, +) (−, +)
(+, +) (+, +) (+, +) (+, +) (+, +) (−, +)
(+, +) (+, +) (+, +) (+, +) (+, +) (−, +)
(+, +) (+, +) (+, +) (+, +) (+, +) (−, +)
(+, +) (+, +) (+, +) (+, +) (+, +) (−, +)
(−, +) (−, +) (−, +) (−, +) (−, +) (+, +)





















, (2)

Φ :





















(−,−) (−,−) (−,−) (−,−) (−,−) (+,−)
(−,−) (−,−) (−,−) (−,−) (−,−) (+,−)
(−,−) (−,−) (−,−) (−,−) (−,−) (+,−)
(−,−) (−,−) (−,−) (−,−) (−,−) (+,−)
(−,−) (−,−) (−,−) (−,−) (−,−) (+,−)
(+,−) (+,−) (+,−) (+,−) (+,−) (−,−)





















, (3)

where + and − represent Neumann and Dirichlet boundary conditions, respectively, and the first

and second signs in parentheses represent boundary conditions at y = 0 and y = πR, respectively.

These boundary conditions lead to SU(6) → SU(5)×U(1) on the UV brane. Since only (+, +)

components have zero modes, we obtain 4D N = 1 SU(5) × U(1) gauge supermultiplets as

massless fields at this point (coming from the upper left 5× 5 block and the lower right element

in V ). All the other KK modes have masses of order πk′ or larger.

The symmetry breaking SU(6) → SU(4) × SU(2) × U(1) on the IR brane is caused by the

vacuum expectation value (VEV) of a field Σ(35) localized to the IR brane, where the number

in the parenthesis represents the transformation property under SU(6). We here consider that
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the Σ field is strictly localized on the IR brane and has the following superpotential:

LΣ = δ(y − πR)
[∫

d2θ
(M

2
Tr(Σ2) +

λ

3
Tr(Σ3)

)

+ h.c.
]

, (4)

where the metric factor is absorbed into the normalization of the Σ field. (We will always absorb

the metric factor into the normalizations of fields in similar expressions below, denoted by L.)

The field Σ is canonically normalized in 4D, so that natural values of the parameters M and λ

are of order M ′
∗ = M∗e

−πkR and 4π, respectively. Here, M∗ is the cutoff scale of the 5D theory.

In general, the IR-brane potential for Σ also has higher dimension terms suppressed by M ′
∗,

in addition to Eq. (4). The presence of these terms, however, does not affect the qualitative

conclusions of our paper. Below, we assume that the parameter M is a factor of a few smaller

than its naive size, e.g. M ∼ k′, to make our analysis better controlled. In this case, the effect

of higher dimension terms are expected to be suppressed even quantitatively.

The superpotential of Eq. (4) has the following vacuum:

〈Σ〉 = diag
(

−
2M

λ
,−

2M

λ
,
M

λ
,
M

λ
,
M

λ
,
M

λ

)

, (5)

where we have chosen λ, M > 0 without loss of generality. The VEV of Eq. (5) leads to

SU(6) → SU(4) × SU(2) × U(1) on the IR brane, making a part of the SU(5) × U(1) gauge

multiplet V massive. The remaining massless 4D N = 1 gauge multiplet is that of SU(3) ×

SU(2)×U(1)×U(1), which we identify as the standard model gauge group with an extra U(1)X :

SU(3)C × SU(2)L × U(1)Y × U(1)X .

An important aspect of the model is that the vacuum of Eq. (5) is a part of a continuum

of vacua, which can easily be seen by studying the excitations. Under the unbroken SU(3)C ×

SU(2)L × U(1)Y × U(1)X gauge symmetry, the Σ field decomposes as

Σ = ΣG(8, 1)(0,0) + ΣW (1, 3)(0,0) + ΣB(1, 1)(0,0)

+ ΣD(3∗, 1)(1/3,2) + ΣD̄(3, 1)(−1/3,−2) + ΣL(1, 2)(−1/2,2) + ΣL̄(1, 2)(1/2,−2)

+ ΣX(3, 2)(−5/6,0) + ΣX̄(3∗, 2)(5/6,0) + ΣS(1, 1)(0,0), (6)

where the numbers in parentheses represent the quantum numbers under SU(3)C × SU(2)L ×

U(1)Y × U(1)X . The normalization of U(1)Y is chosen to match the conventional definition

of hypercharge, while that of U(1)X is chosen, when matter fields are introduced, to match

the conventional definition for the “U(1)χ” symmetry arising from SO(10)/SU(5). Expanding

the superpotential of Eq. (4) around the vacuum, we find that all the components of Σ obtain

masses of order M except for ΣX , ΣX̄ , ΣL and ΣL̄. Among these four, the first two are absorbed

into the massive SU(5)/321 gauge fields, but the last two remain as massless chiral superfields,

which parameterize the continuous degeneracy of vacua. This degeneracy is a consequence of
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the spontaneously broken SU(6) symmetry, and the massless fields have the quantum numbers

of a pair of Higgs doublets. We thus identify these fields as the two Higgs doublets of the MSSM:

Hu and Hd.

We have found that the gauge-Higgs sector of our model gives only the 4D N = 1 gauge

supermultiplet for SU(3)C × SU(2)L × U(1)Y × U(1)X and the two Higgs doublets Hu and Hd

below the scale of order M ∼ k′. The U(1)X gauge symmetry can be broken at a scale somewhat

below k′ by the Higgs mechanism. For example, we can introduce the superpotential on the UV

brane

LX = δ(y)
[∫

d2θ Y (XX̄ − Λ2) + h.c.
]

, (7)

where Y , X and X̄ are UV-brane localized chiral superfields that are singlet under SU(5) and

have charges of 0, 10 and −10 under U(1)X , respectively. The scale Λ is that for U(1)X breaking,

which may be generated by some other dynamics. The superpotential of Eq. (7) produces the

VEVs 〈X〉 = 〈X̄〉 = Λ, leading to U(1)X breaking at the scale Λ. The nonvanishing VEV for X̄

can also be used to generate small neutrino masses through the conventional seesaw mechanism,

as we will see later. This motivates the values of the X and X̄ charges.

Various scales of our system – the AdS inverse curvature radius k, the size of the extra

dimension R, and the cutoff scale of the effective 5D theory M∗ – are constrained by the scale

of gauge coupling unification, the size of the unified gauge coupling gU ≃ 0.7, and the value of

the 4D (reduced) Planck scale MPl ≃ 2.4 × 1018 GeV. In our warped 5D theory, it is natural

to consider that parameters in the bulk and on the IR brane obey naive dimensional analysis

(at least roughly) while those on the UV brane do not, because the former represent strongly

coupled G dynamics while the latter represent the weakly coupled elementary sector. Using

naive dimensional analysis in higher dimensions [24], we obtain the following Lagrangian for the

graviton and the gauge fields:

L ≈ δ(y)

[

M̃2

2
R(4) −

1

4g̃2
F µνFµν

]

+

[

1

2

M3
∗

16π3
R(5) −

1

4

CM∗

16π3
F MNFMN

]

(8)

where R(4) and R(5) are the 4D and 5D Ricci curvatures, respectively, M, N = 0, 1, 2, 3, 5, and

C is a group theoretical factor, C ≃ 6. This leads to the following relations:

1

g2
U

≃
1

g̃2
+

C

16π2

(

M∗

πk

)

πkR, (9)

M2
Pl ≃ M̃2 +

k2

16

(

M∗

πk

)3

. (10)

Now, gauge coupling unification at MU ≈ 1016 GeV implies that we should choose M to be

around this scale, and thus k′ = k e−πkR ≈ (1016 − 1017) GeV. Then, choosing M∗/πk to be a

factor of a few, e.g. M∗/πk ≃ (2 ∼ 3), to make the higher dimensional description trustable,

11



we obtain k <∼ 1018 GeV from Eq. (10) (and M̃2 > 0). We thus find that the scales of our 5D

theory should be chosen as k ≈ (1017 − 1018) GeV and k′ ≈ (1016 − 1017) GeV, which implies

kR ∼ 1, with the cutoff scale M∗ a factor of a few larger than πk. The UV-brane gauge coupling

g̃ is then likely to be nonzero, implying that the elementary SU(5) gauge field has nonvanishing

tree-level kinetic terms in the 4D description. In particular, this implies that elementary SU(5)

gauge interactions are likely to be weakly coupled at energies E ≫ MU .

3.3 Matter sector and quark and lepton masses and mixings

Let us now include matter fields in the model. In the 4D description of the theory, low-energy

quark and lepton fields arise from mixtures of elementary states, which transform as 10’s and

5∗’s under the gauged SU(5), and composite states of G, which form multiplets of the global

SU(6). In the 5D theory, this situation is realized by introducing matter hypermultiplets in the

bulk, which are representations of SU(6), and by imposing SU(6)-violating boundary conditions

on the UV brane. We here present an explicit realization of this picture, leading to realistic

phenomenology at low energies.

We begin by considering the structure of the matter sector for a single generation. For quarks

and leptons that are incorporated into the 10 representation of SU(5), {Q, U, E}, we introduce

a bulk hypermultiplet {T , T c} transforming as 20 under SU(6):

T (20) = 10
(+,+)
1 ⊕ 10

∗(−,+)
−1 , (11)

T c(20) = 10
∗(−,−)
−1 ⊕ 10

(+,−)
1 , (12)

where T and T c represent 4D N = 1 chiral superfields that form a hypermultiplet in 5D. (Our

notation is such that “non-conjugated” and “conjugated” chiral superfields have the opposite

gauge quantum numbers; see e.g. [25]. They have the same quantum numbers for 20 of SU(6)

because 20 is a (pseudo-)real representation.) The right-hand-side of Eqs. (11, 12) shows the

decomposition of T and T c into representations of SU(5) × U(1)X (in an obvious notation), as

well as the boundary conditions imposed on each component (in the same notation as that in

Eqs. (2, 3)). With these boundary conditions, the only massless state arising from {T , T c} is

101 of SU(5)×U(1)X from T , which we identify as the low-energy quarks and leptons Q, U and

E.

A bulk hypermultiplet {H,Hc} can generically have a mass term in the bulk, which is written

as

S =
∫

d4x
∫ πR

0
dy

[

e−3k|y|
∫

d2θ cH kHHc + h.c.
]

, (13)

in the basis where the kinetic term is given by Skin =
∫

d4x
∫

dy [e−2k|y|
∫

d4θ (H†H + HcHc†) +

{e−3k|y|
∫

d2θ (Hc∂yH − H∂yHc)/2 + h.c.}] [26]. The parameter cH controls the wavefunction
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profile of the zero mode. For cH > 1/2 (< 1/2) the wavefunction of a zero mode arising from H

is localized to the UV (IR) brane; for cH = 1/2 it is conformally flat. (If a zero mode arises from

Hc, its wavefunction is localized to the IR (UV) brane for cH > −1/2 (< −1/2) and conformally

flat for cH = −1/2.) We choose these c parameters to take values larger than about 1/2 for

matter fields. For these values of c parameters, all the KK excited states of {T , T c} have masses

of order πk′ or larger, so that the {T , T c} multiplet gives only the massless 101 state below the

energy scale of k′.

For quarks and leptons incorporated into the 5∗ representation of SU(5), {D, L}, we intro-

duce a bulk hypermultiplet {F ,F c} transforming as 70∗ under SU(6):

F(70∗) = 5
∗(+,+)
−3 ⊕ 10

∗(−,+)
−1 ⊕ 15

∗(−,+)
−1 ⊕ 40

∗(−,+)
1 , (14)

F c(70) = 5
(−,−)
3 ⊕ 10

(+,−)
1 ⊕ 15

(+,−)
1 ⊕ 40

(+,−)
−1 , (15)

where the right-hand-side again shows the decomposition into representations of SU(5)×U(1)X ,

together with the boundary conditions imposed on each component.1 With these boundary

conditions, the only massless state arising from {F ,F c} is 5∗
−3 of SU(5)×U(1)X from F , which

we identify as the low-energy quarks and leptons D and L. All the KK excited states have

masses of order πk′ or larger for cF >∼ 1/2.

The right-handed neutrino N arises from a bulk hypermultiplet {N ,N c} transforming as 56

of SU(6):

N (56) = 1
(+,+)
5 ⊕ 5

(−,+)
3 ⊕ 15

(−,+)
1 ⊕ 35

(−,+)
−1 , (16)

N c(56∗) = 1
(−,−)
−5 ⊕ 5

∗(+,−)
−3 ⊕ 15

∗(+,−)
−1 ⊕ 35

∗(+,−)
1 . (17)

The zero mode arises only from 15 in N , which is identified as the right-handed neutrino super-

multiplet N . The other KK states are all heavier than of order πk′ for cN >∼ 1/2.

The Yukawa couplings for the quarks and leptons arise from IR-brane localized terms

LYukawa = δ(y − πR)
[∫

d2θ
(

yT T T Σ + yFT FΣ + yNFNΣ
)

+ h.c.
]

. (18)

1Note that the signs ± for the boundary conditions in Eqs. (14, 15) represent the Neumann/Dirichlet boundary
conditions in the interval y : [0, πR]. In the orbifold picture, the boundary conditions of Eqs. (14, 15) can be

obtained effectively as follows. We prepare a hypermultiplet obeying the boundary conditions F(70
∗) = 5

∗(+,+)
−3 ⊕

10
∗(−,+)
−1 ⊕15

∗(−,+)
−1 ⊕40

∗(+,+)
1 and Fc(70) = 5

(−,−)
3 ⊕10

(+,−)
1 ⊕15

(+,−)
1 ⊕40

(−,−)
−1 , where the first and second signs

in the parentheses represent transformation properties under the reflection y ↔ −y and (y − πR) ↔ −(y − πR),
respectively. We then introduce a UV-brane localized chiral superfield transforming as 40−1 under SU(5)×U(1)X ,

and couple it to the 40
∗(+,+)
1 state from F(70

∗). This reproduces the boundary conditions of Eqs. (14, 15) in
the limit that this coupling (brane mass term) becomes large. (For the relation between a large brane mass
term and the Dirichlet boundary condition, see e.g. [27].) The fact that the boundary conditions of Eqs. (14, 15)
can be reproduced in the orbifold picture by taking a consistent limit guarantees their consistency. In the 4D
description, this corresponds to introducing only a 5

∗
−3 elementary state, which couples to a component of a

G-invariant operator transforming as 70 under the global SU(6). Similar remarks also apply to other fields, e.g.
the {N ,N c} hypermultiplet in Eqs. (16, 17).
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(The Yukawa couplings also receive contributions from higher dimension terms as will be seen

later in this subsection.) Note that these interactions, as well as those in Eq. (4), respect the

usual R parity of the MSSM, with Σ even.

The interactions of Eq. (18) give the Yukawa couplings of the quark and lepton chiral super-

fields, Q, U, D, L, E and N , with the Higgs doublets, Hu and Hd, at low energies (W = QUHu,

QDHd +LEHd and LNHu from the first, second and third terms, respectively). Recall that the

two Higgs doublets of the MSSM, Hu and Hd, arise from Σ as pseudo-Goldstone chiral superfields

of the broken SU(6) symmetry. For matter fields with |c| > 1/2, the Yukawa couplings receive

suppressions due to the fact that the fields effectively feel only the IR brane (strong dynamics) or

the UV brane (explicit breaking of SU(6)), both of which are needed to generate nonvanishing

Yukawa couplings at low energies [18]. Then, considering that yT ∼ yF ∼ yN = O(4π2/M ′
∗)

from naive dimensional analysis, we find that the low-energy Yukawa coupling y arising from

the IR-brane term
∫

d2θM1M2Σ (M1,M2 = T ,F ,N ) takes a value

y ≈ 4πf1f2

(

πk

M∗

)

, (19)

where fi ≃ (k′/k)|cMi
|−1/2 for |cMi

| > 1/2 and fi ≃ 1 for |cMi
| < 1/2 (i = 1, 2); for |cMi

| ≃ 1/2, fi

receives a logarithmic suppression, fi ≃ 1/(ln(k/k′))1/2. This allows us to explain the observed

hierarchies of fermion masses and mixings by powers of k′/k = e−πkR = O(0.1), by choosing

different values of cT , cF and cN for different generations. This is similar to the situation where

the hierarchies are explained by overlaps of matter and Higgs wavefunctions [28, 12], although in

the present setup the low-energy Yukawa couplings are also suppressed for cMi
< −1/2, where

apparent overlaps between matter and Higgs fields are large, due to the pseudo-Goldstone boson

nature of the Higgs doublets. This opens the possibility of localizing the first two generations

to the IR brane, rather than to the UV brane as we will do shortly, to generate the observed

hierarchies of fermion masses and mixings.

The right-handed neutrino superfield N can obtain a large mass term through the UV-brane

operator

LN = δ(y)
[∫

d2θ
η

2
X̄N2 + h.c.

]

, (20)

where X̄ is a U(1)X -breaking field, having the VEV 〈X̄〉 = Λ (see Eq. (7)). This gives a small

mass for the observed left-handed neutrino through the conventional seesaw mechanism [29].2

It is rather straightforward to generalize the analysis so far to the case of three generations.

We simply introduce a set of bulk hypermultiplets {T , T c}, {F ,F c} and {N ,N c} for each

generation. The couplings yT , yF and yN in Eq. (18) and η in Eq. (20) then become 3 × 3

2An alternative possibility to generate a small neutrino mass is to strongly localize the N field to the IR brane
by taking cN ≪ −1/2, in which case the neutrino Yukawa coupling is strongly suppressed and we can obtain a
small Dirac neutrino mass. The scale of the neutrino mass, however, is unexplained in this case.
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matrices. We assume that there is no special structure in these matrices, so that all the elements

in yT , yF and yN are of order 4π2/M ′
∗, suggested by naive dimensional analysis. The observed

fermion masses and mixings, however, can still be reproduced through the dependence of the

low-energy Yukawa couplings on the values of bulk hypermultiplet masses cT , cF and cN . Let us

take, for example, the bulk masses to be

cT1 ≃
5

2
, cT2 ≃

3

2
, cT3 ≃

1

2
, cF1 ≃ cF2 ≃ cF3 ≃

3

2
, cN1 ≃ cN2 ≃ cN3 ≃

1

2
. (21)

Then, taking M∗/πk to be a factor of a few, e.g. 2 ∼ 3, we obtain the following low-energy

Yukawa matrices from Eq. (19):

yu ≈







ǫ4 ǫ3 ǫ2

ǫ3 ǫ2 ǫ
ǫ2 ǫ 1





 , yd ≈ yT
e ≈ ǫ







ǫ2 ǫ2 ǫ2

ǫ ǫ ǫ
1 1 1





 , yν ≈ ǫ







1 1 1
1 1 1
1 1 1





 , (22)

where yu, yd, ye and yν are defined in the low-energy superpotential by

W = (yu)ijQiUjHu + (yd)ijQiDjHd + (ye)ijLiEjHd + (yν)ijLiNjHu, (23)

with i, j, = 1, 2, 3, and

ǫ ≡
k′

k
≃

1

20
for kR ≃ 1. (24)

Together with a structureless Majorana mass matrix for the right-handed neutrinos, MN = η〈X̄〉,

the Yukawa matrices of Eq. (22) well reproduces gross features of the observed quark and lepton

masses and mixings [30]. It is straightforward to make further refinements on this basic picture;

for example, we can make cF1 somewhat larger than 3/2 to better reproduce down-type quark

and charged lepton masses, as well as the neutrino mixing angles θ12 and θ13. A schematic

picture for the zero-mode wavefunctions (for the {T , T c} multiplets) is depicted in Fig. 2.

Unwanted SU(5) mass relations for the first two generation fermions can be avoided by using

higher dimension operators, e.g. of the form L ∼ δ(y − πR)
∫

d2θ T FΣ2. (Violation of SU(5)

relations may also come from SU(5)-violating mixings between the matter zero modes and the

corresponding KK excited states, arising from the IR-brane terms of Eq. (18) through the Σ

VEV.) Since the effects are higher order in 〈Σ〉/M ′
∗, which we assume somewhat small, O(1)

violation in the Yukawa coupling requires a somewhat suppressed coefficient for the leading

SU(5)-invariant piece coming from Eq. (18). A realistic pattern for the fermion masses and

mixings can be obtained if (only) the 22 element of the yF matrix is somewhat suppressed [31].

The three generation model allows IR-brane operators of the form L ∼ δ(y−πR)
∫

d2θ ǫijTiTj,

where the antisymmetry in the generation indices i, j arises from the pseudo-real nature of

the 20 representation. The existence of these operators, however, does not significantly affect

predictions of the model.
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To summarize, we have obtained an SU(3)C ×SU(2)L ×U(1)Y ×U(1)X gauge theory below

the scale of M ∼ k′, with three generations of matter, Q, U, D, L, E and N , and two Higgs

doublets, Hu and Hd. The Yukawa couplings of Eq. (23) are obtained with realistic patterns for

quark and lepton masses and mixings. The U(1)X gauge symmetry is spontaneously broken at

the scale Λ, somewhat below k′, giving masses to the right-handed neutrino superfields of order

Λ. We thus have the complete MSSM, supplemented by seesaw neutrino masses, below the

unification scale ∼ k′. We emphasize that the successes of our model depend only on its basic

features, such as the symmetry structure and locations of fields. They are thus quite robust.

For example, the existence of higher dimension operators in the IR-brane potential, e.g. terms

of the form Tr(Σn) (n: integers > 3) added to Eq. (4), does not destroy these successes.

3.4 Gauge coupling unification and proton decay

In this subsection, we present a study on proton decay and gauge coupling unification in our

model, to demonstrate that it can accommodate realistic phenomenology at low energies. In

this subsection we consider matter configurations such that lighter generations are localized

more towards the UV brane, as in the example of Eq. (21).

We first note that the terms in Eqs. (18) introduce, through the VEV of Σ, SU(5)-violating

mass splittings into the KK towers for the matter fields: {T , T c}, {F ,F c} and {N ,N c}. These

splittings, in turn, give threshold corrections to gauge coupling unification. Similar corrections

also arise from the gauge KK towers. We expect, however, that these corrections are not large.

Using the AdS/CFT correspondence, we estimate the size of the corrections to be of order

(C/16π2)(M∗/πk) for 1/g2
a, where ga are the 4D gauge couplings. Moreover, if the value of 〈Σ〉

(and thus M) is somewhat suppressed compared with its naive size of M ′
∗/4π, as we assume here,

the threshold corrections receive additional suppressions of O(4π〈Σ〉/M ′
∗) because the spectrum

of the KK towers becomes SU(5) symmetric for 4π〈Σ〉/M ′
∗ ≪ 1. The contributions from tree-

level IR-brane operators, such as
∫

d2θ ΣWαWα, are also sufficiently small, of order C/16π2 for

1/g2
a with an additional suppression of O(4π〈Σ〉/M ′

∗) for small 〈Σ〉.

Another important issue in supersymmetric unified theories is dimension five proton decay

caused by low-energy operators of the form W ∼ QQQL, UUDE. There are two independent

sources for these operators: tree-level operators existing at the gravitational scale and operators

generated by the GUT (breaking) dynamics. In our theory, the former correspond to tree-level

operators 1011011015
∗
−3 ⊃ QQQL, UUDE located on the UV brane, where the subscripts on

101 ⊂ T and 5∗
−3 ⊂ F denote the U(1)X charges. While the coefficients of these operators

are suppressed by the fundamental scale M∗, which is larger than the unification scale, it is

still problematic, especially because we do not have any Yukawa suppressions in the coefficients.

Therefore, to suppress these contributions, we impose a discrete Z4,R symmetry on the theory,
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V Φ Σ T T c F F c N N c Y X X̄
Z4,R 0 0 0 1 1 1 1 1 1 2 0 0

Table 1: Z4,R charges for fields.

whose charge assignment is given in Table 1 (in the normalization that the R charge of the

superpotential is 2). As is clear from the terms in Eq. (4), this symmetry should be broken

on the IR brane, i.e. broken by the dynamics of the GUT breaking sector G. This can be

incorporated by introducing a spurion chiral superfield φ with 〈φ〉 ∼ M ′
∗/4π on the IR brane,

whose Z4,R charge is +2, or equivalently introducing fields φ and φ̄ of Z4,R charges +2 and −2

with the superpotential giving the VEVs for these fields. This introduces “O(1)” breaking of

Z4,R on the IR brane, keeping Z4,R invariance for the UV-brane terms.3

After killing the UV-brane operators, the low-energy dimension five proton decay operators

can still be generated through strong G dynamics, since the Z4,R symmetry is spontaneously

broken by this dynamics. One source is tree-level dimension five operators on the IR brane.

These operators, however, receive suppressions of order the Yukawa couplings in 4D, because

the wavefunctions for light generation matter are suppressed on the IR brane due to the bulk

hypermultiplet masses, and so are not particularly dangerous. (In the 4D picture, these sup-

pressions arise from small mixings between the elementary and composite matter states for light

generations.) The only potentially dangerous contribution to dimension five proton decay in

our model then comes from the exchange of the colored triplet Higgsinos – composite states of

G arising as components of Σ – because the mass of these states can be smaller than M ′
∗. To

suppress this contribution, we can simply raise the mass of the colored triplet Higgsino states

compared with the unification scale; in fact, the mass is expected to be larger than the GUT

breaking VEV because the coupling λ in Eq. (4) is naturally of order 4π. Note that because of

the existence of threshold corrections from KK towers to gauge coupling unification, there is no

tight relation between the mass of the triplet Higgsinos and the low-energy values of the gauge

couplings, which excluded the minimal SUSY SU(5) GUT in 4D [2].

3The Z4,R symmetry can be gauged in 5D if we cancel the discrete Z4,R-SU(5)2 anomaly by the Green-Schwarz
mechanism [32], by introducing a singlet field S that transforms nonlinearly under Z4,R and couples to the SU(5)
gauge kinetic term on the UV brane. We consider that the S field appears only in front of the kinetic term of
the SU(5) gauge superfields, and not in UV-brane superpotential terms. Such terms would potentially induce
dimension five proton decay, although they are suppressed in a certain (broad) region for the S VEV.
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3.5 Supersymmetry breaking

Our model can be combined with almost any supersymmetry breaking scenario. If the mediation

scale of supersymmetry breaking is lower than the unification scale, there are essentially no

particular implications from our theory on the pattern of supersymmetry breaking. On the

other hand, if the mediation scale is higher, there can be interesting implications, e.g., on the

flavor structure of supersymmetry breaking masses. For example, if the supersymmetry breaking

sector is localized on the IR brane, i.e. arises as a result of the dynamics of G, the third generation

superparticles (presumably only the ones coming from the 10 representation of SU(5)) can have

different masses than the lighter generation superparticles, which receive universal masses from

the gauginos through loop corrections [33].4 These are consequences of our way of generating

hierarchies in fermion masses and mixings.

The supersymmetric mass (the µ term) and supersymmetry-breaking masses (the µB term

and non-holomorphic scalar squared masses) for the Higgs doublets are both generated through

supersymmetry breaking. In the case that the supersymmetry breaking sector is localized on or

directly communicates with the IR brane, these masses are generated through IR-brane operators

of the form, L ∼ δ(y − πR)
∫

d2θ {ZMΣ2/M ′
∗ + ZΣ3/M ′

∗} + h.c. and δ(y − πR)
∫

d4θ {(Z +

Z†)Σ†Σ/M ′
∗ +Z†Z(Σ2 +Σ†2)/M ′2

∗ +Z†ZΣ†Σ/M ′2
∗ }, where Z is a chiral superfield responsible for

supersymmetry breaking, 〈Z〉 = θ2FZ , and we have omitted O(1) coefficients. These operators

produce supersymmetry breaking terms in the Σ potential, which lead to a slight shift of the

vacuum from Eq. (5) and consequently generate weak scale masses for components of Hu and

Hd. The generated masses respect the relation

µB =
∣

∣

∣|µ|2 + m2
Hu

∣

∣

∣ , m2
Hu

= m2
Hd

, (25)

reflecting the fact that the scalar potential for Σ still has a global SU(6) symmetry, where m2
Hu

and m2
Hd

are non-holomorphic supersymmetry breaking squared masses for Hu and Hd, and we

have taken the phase convention that µB > 0. Note that, unlike the case where the Higgs fields

are non pseudo-Goldstone fields [34], the Kähler potential terms of the form δ(y − πR)
∫

d4θ Σ2,

δ(y−πR)
∫

d4θ {Z†Σ2/M ′
∗+h.c.} and δ(y−πR)

∫

d4θ {Z†ZΣ2/M ′2
∗ +h.c.} do not produce a weak

scale µ term; we need supersymmetry breaking interactions for Σ, generated by superpotential

terms or δ(y − πR)
∫

d4θ (Z + Z†)Σ†Σ/M ′
∗.

An interesting case arises if supersymmetry is broken in a hidden sector that does not have

direct interactions with the GUT breaking sector. In this case, the Higgs sector supersymmetry

breaking parameters arise through gravitational effects and obey the tighter relation

µB = |µ|2, m2
Hu

= m2
Hd

= 0. (26)

4We thank R. Kitano for discussions on this issue.
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In the language of the compensator formalism (see e.g. [35]), these terms arise from L ∼ δ(y −

πR)
∫

d2θ φ(M/2)Σ2+h.c., where φ = 1+θ2m3/2 is the compensator field with m3/2 the gravitino

mass. (Here, we have assumed that supersymmetry breaking in the compensator field is not

canceled by the conformal dynamics of the GUT breaking sector.) The relations of Eqs. (25, 26)

hold at the unification scale of O(k′), so that their connections to low energy parameters must

involve renormalization group effects between the unification and the weak scales. It is also

possible that there are additional contributions to supersymmetry breaking parameters, e.g.

m2
Hu

and m2
Hd

, in addition to the ones in Eqs. (25, 26)

Alternatively, the µ and µB terms may be generated below the unification scale. For example,

they may be generated associated with the dynamics of U(1)X breaking [36]. In this case there

is no trace in the Higgs sector parameters that the Higgs fields are pseudo-Goldstone fields of

the GUT breaking dynamics.

4 Other Theories: GUT Engineering on the IR Brane

So far, we have considered a theory in which the lightness of the two Higgs doublets is understood

by the pseudo-Goldstone mechanism associated with the dynamics of GUT breaking. As we have

seen, this can be elegantly implemented in our framework by considering the bulk SU(6) gauge

symmetry, broken to SU(5) × U(1) and SU(4) × SU(2) × U(1) on the UV and IR branes,

respectively. The mass of the light Higgs doublets is protected from the existence of explicit

breaking by localizing these fields (⊂ Σ) on the IR brane, which is geometrically separated from

the UV brane where explicit breaking of SU(6) resides. In the 4D description of the model, the

global SU(6) symmetry of the GUT breaking sector is understood as a “flavor” symmetry of

this sector, and the extreme suppression of explicit symmetry breaking effects in the Σ potential

comes from the fact that Σ is a composite field, with the corresponding operator having a (very)

large canonical mass dimension. An interesting thing about our construction is that it allows us

to implement these mechanisms in simple and controllable ways in effective field theory, giving

a simple and calculable unified theory above MU in which the lightness of the Higgs doublets is

understood by a symmetry principle.

Let us now consider if we can construct simpler theories in our warped space framework.

Suppose we consider a supersymmetric SU(5) gauge theory in the 5D warped spacetime of

Eq. (1), and suppose that the bulk SU(5) gauge symmetry is broken to the SU(3)C ×SU(2)L ×

U(1)Y subgroup on the IR brane by boundary conditions. In this case, the doublet Higgs

fields may be light without being accompanied by their triplet partners if they propagate in

the bulk with appropriate boundary conditions imposed at the GUT breaking brane [8, 9], or

if they are simply located on that brane [37]. In the 4D description, however, this seems to be
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simply “postulating” particular dynamics of the GUT breaking sector that splits the mass of the

doublet components from that of the triplet partners, and it is not clear if this can be regarded

as a “solution” to the doublet-triplet splitting problem. For example, we have a continuous

parameter, the tree-level mass of the Higgs doublets on the IR brane, that has to be chosen to

be very small to achieve the splitting. The situation may be better if this parameter is forbidden

by a symmetry, e.g. an R symmetry [9]. This symmetry may be imposed as a global symmetry

in 5D, but in that case it is not entirely clear if such a symmetry is preserved by strong G

dynamics (5D quantum gravity effects). To avoid this and to give a non-trivial meaning to

the symmetry in the context of gauge/gravity duality, we can gauge the symmetry in higher

dimensions (although it can still be broken on the UV brane, eliminating the existence of the

corresponding gauge field in 4D). In this case, anomaly cancellation conditions become an issue,

and we find that for a continuous U(1)R or a discrete Z4,R symmetry (with the charge assignment

given by VSU(5)(0), T10(1), F5∗(1), N1(1), H5(0), H̄5∗(0), assuming the MSSM matter content at

low energies) we need to cancel the low energy anomalies via the Green-Schwarz mechanism [32].

This requires the introduction of a singlet field S on the IR brane which transforms nonlinearly

under the R symmetry and couples to the SU(3)C , SU(2)L and U(1)Y gauge kinetic terms with

appropriate coefficients. (Anomaly transmission across the bulk [38] may also be necessary to

make the full 5D theory anomaly free, depending on the symmetry and matter content.) We

assume that the S field appears only in front of the gauge kinetic terms, and not in IR-brane

superpotential terms, so that a large mass term for the Higgs doublets is not regenerated. (This

may naturally occur in a UV theory in the absence of other gauge groups.) Note that, in the

4D description, this setup corresponds to the situation where the R-SU(5)2 anomaly is canceled

between the elementary-field and G-sector contributions.5 In this setup, doublet-triplet splitting

seems “natural,” at least in the higher dimensional picture. Thus, while the theory with the R

symmetry still seems to correspond to a particular choice of GUT breaking dynamics in the 4D

description, we may say that the theory does not have the problem of doublet-triplet splitting.6

After all, the “formulation” of the doublet-triplet splitting problem may have to be changed in

5We can show that this construction is not available in a 4D SUSY GUT theory where the GUT-breaking
(Higgs) sector does not give tree-level contributions to the low energy anomalies. Assuming the MSSM matter
content below the unification scale, with the U(1)R charges given by V321(0), Q(1), U(1), D(1), L(1), E(1), Hu(0)
and Hd(0), we find the low-energy U(1)R-SU(3)2C , U(1)R-SU(2)2L and U(1)R-U(1)2Y anomalies to be 3, 1 and
−3/5, respectively, which cannot be matched to high energy theories, where these anomalies arise as a U(1)R-
SU(5)2 anomaly and are thus universal. (Here, the SU(5) normalization is employed for the U(1)Y charges.)
This implies that U(1)R should either be spontaneously broken, or there is explicit SU(5)-violating physics in the
effective field theory. In our case, this conclusion can be avoided because the (dynamical) GUT-breaking sector
carries the U(1)R-SU(5)2 anomaly, a part of which can be manifested as Green-Schwarz terms at low energies.

6An interesting feature of this class of theories is that the low energy theory contains an axion field S that
couples to the QCD gauge fields with the decay constant of order the unification scale. This can be used to
solve the strong CP problem [39], although the initial amplitude of this field in the early universe must be
(accidentally) small to avoid the cosmological difficulty of overclosing the universe.
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the large ’t Hooft coupling regime, where physics is specified by the “hadronic” quantities, i.e.

matter content, location, and boundary conditions in higher dimensions.7

In these respects, our framework offers many possible ways to address the problems of con-

ventional 4D SUSY GUTs. For example, we can again consider a 5D SU(5) gauge theory in the

warped spacetime of Eq. (1), but then break the bulk SU(5) by the VEV of a chiral superfield

located on the IR brane, generated by an appropriate IR-brane superpotential. Then, if this

superpotential does not have the problem of doublet-triplet splitting, e.g. by having the form

of missing partner type models [4], then we may say that the problem has been solved. (As

discussed before, it is better if the IR-brane superpotential is protected by a (discrete) symme-

try; otherwise, it would correspond to “artificially” choosing the dynamics of the GUT breaking

sector. In practice, this may be difficult, since we cannot use the non-universal Green-Schwarz

terms on the IR brane because the GUT breaking there is due to the Higgs mechanism. We do

not pursue this issue further here.) An advantage of this approach over conventional 4D model

building is that we need not care about physics above the unification scale when engineering

GUT breaking physics, i.e. the GUT-breaking Higgs content and superpotential. In the con-

ventional 4D SUSY GUT framework, theories solving the doublet-triplet and/or dimension five

proton decay problems often have too large matter content, leading to the problem of the unified

gauge coupling hitting a Landau pole (well) below the gravitational/Planck scale. In our case,

all (possibly large) multiplets located on the IR brane correspond to composite fields of the GUT

breaking dynamics in the 4D description, and do not contribute to the running of the unified

gauge coupling above the unification scale, MU ∼ k′ (see e.g. [40]). Potential complication of

this sector may also not bother us, because it is the result of “dynamics” of the GUT breaking

sector. We note that this makes the extension to SO(10) unified theories trivial — we can break

SO(10) on the IR brane by arbitrary combinations of boundary condition and Higgs breakings

with an arbitrary field content.

There are many applications of the ideas described above. For instance, we can apply it to

product-group theories [7, 41, 42]. Let us once again consider a supersymmetric SU(5) gauge

theory in the 5D warped spacetime of Eq. (1). We then introduce an additional gauge group

SU(3)×SU(2)×U(1) on the IR brane, with the Higgs doublets charged under this IR-brane gauge

group (and thus without being accompanied by any partner). Now, we can consider that our

7If we break the bulk SU(5) gauge symmetry by boundary conditions at the UV brane, it leads to a theory
which is interpreted as an SU(3)C × SU(2)L × U(1)Y gauge theory in the 4D description. The doublet-triplet
splitting problem does not arise as the theory is not unified, and yet the successful unification of gauge couplings
arises at the leading-log level in the limit that the tree-level gauge kinetic terms on the UV brane are small.
This corresponds in the 4D description that the 321 gauge couplings at the unification scale are dominated by
the asymptotically non-free contribution from a strong sector that has a global SU(5) symmetry, of which the
SU(3) × SU(2) × U(1) subgroup is gauged and identified as the low-energy 321 gauge group. While this theory
is somewhat outside the framework described in this paper, it is interesting on its own.
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low-energy SU(3)C ×SU(2)L×U(1)Y gauge group is a diagonal subgroup of the bulk SU(5) and

the IR-brane SU(3)×SU(2)×U(1). (This breaking can be caused by the VEV of an appropriate

IR-brane localized field). Then, if the gauge couplings, g̃a of the original SU(3), SU(2) and U(1)

are large, g̃a ≈ 4π (a = 1, 2, 3), the low-energy MSSM gauge couplings are effectively unified at

the scale where SU(5)×SU(3)×SU(2)×U(1) → SU(3)C ×SU(2)L ×U(1)Y occurs ∼ k′, since

the gauge couplings of SU(3)C , SU(2)L and U(1)Y , ga, are given by 1/g2
a = 1/g2

5 + 1/g̃2
a ≈ 1/g2

5

at that scale. Here, g5 (= O(1)) is the coupling of the zero mode of the bulk SU(5) gauge

field. A problem of the corresponding scenario in 4D [42] is that, since the original U(1) gauge

coupling is strong at the unification scale, it hits the Landau pole immediately above that scale.

There, it is also not clear why the three independent gauge couplings of SU(3), SU(2) and U(1)

become strong at a single scale, which must also coincide with the scale of diagonal breaking

to avoid large threshold corrections. Our theory addresses all of these issues naturally — since

the SU(3), SU(2) and U(1) gauge fields are composite states of the GUT breaking dynamics,

they all have strong couplings, g̃a ≈ 4π, at the scale where breaking to the diagonal subgroup

occurs, and there is no issue of a Landau pole above this scale. A potentially large mass for the

Higgs doublets can be avoided by introducing a (discrete) gauge symmetry with the anomalies

canceled by the Green-Schwarz terms on the IR brane.8 (To do all of these completely within

the regime of effective field theory, the scale of diagonal breaking should be somewhat below the

IR-brane cutoff, and the SU(3), SU(2) and U(1) gauge couplings should be asymptotically non-

free. These can be arranged with an appropriate introduction of massive fields on the IR brane.

In the limit that the scale of diagonal breaking approaches the IR-brane cutoff, this theory is

reduced to one of the theories discussed in the second paragraph of this subsection, where the

Higgs doublets are located on the GUT-breaking IR brane.) Note that since the quarks and

leptons are introduced in the bulk in representations of the bulk SU(5), we are still considering

a unified theory of quarks and leptons (although it is possible to introduce them on the IR brane

in representations of SU(3) × SU(2) × U(1)). In particular, proton decay from unified gauge

boson exchange still exists. The Yukawa couplings of matter to the Higgs fields arise through

the IR-brane VEV, breaking SU(5)×SU(3)×SU(2)×U(1) down to SU(3)C ×SU(2)L×U(1)Y .

In most of the theories described above, the Higgs fields are localized to the IR brane, so

that they are composite fields of the dynamical GUT breaking sector in the 4D description.

(This need not be the case. One of the theories described in the second paragraph of this

subsection contains Higgs fields that propagate in the bulk, with appropriate boundary conditions

imposed at the IR brane. We can, however, always localize them to the IR brane by introducing

appropriate hypermultiplet masses.) The observed hierarchies of quark and lepton masses and

8Another possibility for canceling anomalies is to add extra matter fields (in complete SU(5) multiplets) that
obtain masses from supersymmetry breaking [43]. We thank N. Maru for pointing out this work to us.
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mixings can then always be explained by wavefunction overlaps between the matter and Higgs

fields, by appropriately choosing the bulk hypermultiplet masses for the matter fields such that

lighter generations are localized more towards the UV brane, as e.g. in Eq. (21). (The option

of localizing lighter generations towards the IR brane is not available unless the Higgs fields

are pseudo-Goldstone boson multiplets.) We find it very interesting that our framework of

“holographic grand unification” accommodates many different ideas of solving the problems of

conventional SUSY GUTs, developed mainly in the 4D context, with the automatic bonus of

explaining the observed hierarchies of fermion masses and mixings through the wavefunction

profiles of matter fields in the extra dimension.

5 Discussion and Conclusions

In this paper we have studied a framework in which grand unification is realized in truncated

warped higher dimensional spacetime, where the UV and IR branes set the Planck and unifi-

cation scales, respectively. In the 4D description, this corresponds to theories in which the the

grand unified gauge symmetry is spontaneously broken by strong gauge dynamics having a large

’t Hooft coupling, g̃2Ñ/16π2 ≫ 1 (and a large number of “colors”, Ñ ≫ 1). In this parameter

region, an appropriate (weakly coupled) description of physics is obtained in higher dimensions,

and physics above the unification scale is determined by higher dimensional field theories, e.g.

by specifying the spacetime metric, gauge group, matter content, boundary conditions, and

Lagrangian parameters. This allows us to control certain dynamical properties of the GUT

breaking sector in the regime where effective field theory applies. For example, we can make

the size of threshold corrections small by making the symmetry breaking VEV on the IR brane

(slightly) smaller than its naive value. Moreover, the framework allows us to straightforwardly

adopt intuitions and mechanisms arising from the higher dimensional picture. In particular,

we can explain the observed hierarchies in quark and lepton masses and mixings in terms of

the wavefunction profiles of matter fields in higher dimensions. The generated hierarchies are

naturally of the right size, of order MU/M∗ ≃ 1/20.

We have presented several realistic models within this framework. In one model, on which we

have focused the most, the lightness of the Higgs doublets is explained by the pseudo-Goldstone

mechanism. The strong gauge dynamics sector possesses a global SU(6) symmetry as a “flavor”

symmetry, of which the SU(5) (×U(1)) subgroup is gauged and identified as the unified gauge

group. When the global symmetry is broken dynamically to SU(4)× SU(2)×U(1), the unified

gauge symmetry is broken to the standard model gauge group, and the two MSSM Higgs dou-

blets arise as massless pseudo-Goldstone supermultiplets. In our framework, this is realized by

postulating a bulk SU(6) gauge symmetry, broken to SU(5)×U(1) and SU(4)× SU(2)×U(1)
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on the UV and IR branes, respectively. One of the difficulties in implementing this mechanism

in the conventional 4D framework is to find a way to suppress effects of explicit breaking in the

potential generating the spontaneous SU(6) breaking, since such effects would reintroduce an

unacceptably large mass for the Higgs doublets. In our case, these effects are (exponentially)

suppressed by a large mass dimension for the operator generating the spontaneous SU(6) break-

ing. Such an assumption is easy to implement in higher dimensions – simply assume that the

Higgs field breaking SU(6) is localized to the IR brane. This provides another example of the

“controllability” of strong gauge dynamics in the large ’t Hooft coupling regime.

We have also demonstrated that many ideas for solving the problems of conventional 4D

SUSY GUTs can be naturally implemented on the IR brane. We have presented several realistic

models of this kind, for example, ones based on missing partner type or product group type

scenarios. These models have the interesting feature that the GUT scale physics on the IR

brane does not affect physics at higher energies, since the relevant physics arises as a result of

the strong GUT breaking dynamics (as composite states) in the 4D description. For example,

large GUT multiplets, often needed to solve the problems of SUSY GUTs, do not contribute to

the evolution of the unified gauge coupling at higher energies, and gauge fields having very large

gauge couplings can naturally arise at the GUT scale without having the problem of a Landau

pole. These features open up new possibilities for GUT model building.

One can view the “success” of the present framework in several different ways. For one who is

interested in addressing the phenomenology of unified theories, such as gauge coupling unification

and proton decay, models in our framework can be used to give predictions of observable quan-

tities. For example, we can explore relations between the branching ratios of proton decay and

matter configurations in the extra dimension, as in the case of unified theories in flat space [44].

Models of fermion masses and mixings, as well as models of supersymmetry breaking, can also

be developed within the framework.9 On the other hand, one may be interested in exploring

possible “UV completions” of models formulated in warped spacetime. It is possible, after all,

that there may be some nontrivial consistency conditions in higher dimensional field theories,

9For example, we can take one of the supersymmetry breaking models in [47], with the boundary conditions
at the UV brane changed to be trivial, and glue that spacetime (the 5D warped spacetime with the scales at the
UV and IR branes taken to be the Planck and TeV scales, respectively) to one of our holographic warped GUT
spacetimes discussed in section 4, at the UV branes of both spacetimes. (The consistency of such constructions
in effective field theory has been discussed recently in [48].) In the 4D description, this corresponds to the
situation where both the unified gauge symmetry and supersymmetry are broken by strong gauge dynamics, at
the unification scale and the TeV scale, respectively. In practice, this system is analyzed most efficiently by first
integrating out the GUT scale physics. Then the low energy effective theory is simply reduced to one of the
models in [47], but now we have an understanding of the hierarchical structure of the Yukawa couplings, located
on the UV brane of the effective theory. While this effective field theory may be at the border of the weak and
strong coupling regimes in 5D, it may still reproduce gross features of physical quantities, e.g. the superparticle
spectrum, as is the case in higher dimensional formulations of QCD.
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which are difficult (though not impossible) to catch in effective theory, and one way of ensuring

the consistency of such theories is to “derive” them from complete UV theories. Such “UV

completions” may be achieved, for example, by embedding models into string theory, identifying

a “dual” 4D theory, or by finding a 4D theory whose infrared fixed point has similar features as

the original models in warped space [45]. From this perspective, our framework offers a guide on

which models “UV theorists” should aim to reproduce; for example, string theorists may want

to reproduce unified theories in 5D warped spacetime, with the unified gauge symmetry broken

at an IR throat, rather than 4D unified theories directly from compactification.

We finally comment on the possibility that the unified gauge symmetry is broken by strong

gauge dynamics whose ’t Hooft coupling is large but not extremely large, i.e. g̃2Ñ/16π2 ∼ 1. In

this case, the picture based on higher dimensional spacetime is not fully justified, but even then

some properties of theories, especially properties associated with the IR brane physics (GUT

breaking dynamics), may be effectively described by our higher dimensional warped unified

theories. In fact, such an approach had a certain level of successes in describing physics of lowest-

lying excitations in QCD [46]. In this sense, our framework may have a larger applicability than

what is naively expected.

In summary, we have presented a framework in which dynamical GUT breaking models are

realized in a regime that has a weakly coupled “dual” picture. Grand unified theories are realized

in warped higher dimensional spacetime, with the UV and IR spacetime cutoffs providing the

Planck and the unification scales, respectively. Several types of realistic models are discussed,

with interesting implications for quark and lepton masses and mixings. It would be interesting to

study further implications of these models, such as those on proton decay, precise gauge coupling

unification, supersymmetry breaking, and flavor physics.
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