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Health & Ecological Risk Assessment

Remote‐sensing Based Assessment of Long‐term Riparian
VegetationHealth inProximity toAgricultural LandswithHerbicide
Use History
Foad Yousef,*† Mekonnen Gebremichael,† Lula Ghebremichael,‡ and Jeffrey Perine‡

†Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, California, USA
‡Syngenta Crop Protection, Greensboro, North Carolina, USA

ABSTRACT
Riparian ecosystems provide various ecosystem services including habitat for a variety of plant and animal communities,

biofiltering, and stabilizing stream and river systems. Due to their location, riparian zones often share long borders with
agricultural fields where herbicides are commonly applied to eliminate unwanted plants. There is a general concern that
exposure of riparian vegetation to off‐target drifted herbicides may adversely impact their health and diversity. We utilized
the Normalized Difference Vegetation Index (NDVI) to investigate the long‐term (between 1992 and 2011) trend of riparian
vegetation health at 17 locations in the Midwest and Great Plains areas of the United States, where herbicide usage was
likely most intense. Assessment of NDVI data demonstrated that long‐term vegetation health did not decline for the
studied riparian zones located in proximity to croplands during spring months (April and May). During summer (June and
July), while the long‐term vegetation health did not decline for the majority of the sites, there were a few cases in Kansas
and Nebraska with a decline in vegetation health (negative‐trending NDVI). Cluster analysis of the negative‐trending NDVI
pixels showed that the majority of these pixels were randomly distributed throughout these riparian sites, indicating a lack
of shared common causing factors. Similarly, proximity analysis suggested that distance from croplands was not associated
with the decline of vegetation health found in these sites, suggesting that exposure to herbicide drift may not be a
plausible factor because this would have shown higher impact on pixels closer to the cropland. Changes in canopy
coverage and vegetation diversity also did not show any dependence on distance from croplands. Finally, the remote‐
sensing–based NDVI data sets used provide only an indirect way of assessing the impact of herbicide drift, and therefore,
further work based on field survey data is recommended to completely isolate the impacts of herbicides. Integr Environ
Assess Manag 2019;15:528–543. © 2019 The Authors. Integrated Environmental Assessment and Management published
by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC)
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INTRODUCTION
A riparian zone is the land area that occurs along aquatic

systems (stream or river, lakes, and reservoirs) and is located
between the low and high watermark (Gregory et al. 1991;
Martin et al. 1999) where it hosts a variety of vegetation and
animal species. Thus, riparian zones play a key role in de-
fining the ecological functioning of terrestrial and aquatic
environments (Niman et al. 1993). Riparian ecosystems also
define and shape many physical (water clarity, temperature,
erosion, etc.) and hydrological (flood, etc.) characteristics of
the land and water in their proximity (Bowler et al. 2012).

These systems are often in vicinity to urban and agricultural
environments and, therefore, have been subject to various
perturbations since the European settlement (Obedzinski
et al. 2001). Major disturbing factors to riparian ecosystems
are urbanization, invasive species (Howe and Knopf 1991;
Fierke and Kauffman 2006), mining (Andrews et al. 1985),
recreation (Johnson and Carothers 1982), and agriculture
(Nilsson and Berggren 2000; Poff et al. 2011). Although
some of these disruptions have been documented (Nilsson
and Berggren 2000), little is known about the long‐term
vegetation health of riparian zones located in proximity to
agricultural fields with a history of herbicides usage.

In the Midwest and Great Plains region of the United
States, riparian environments often share long borders with
various croplands (e.g., corn, soybean) and due to this
proximity, there is a concern that off‐field herbicide spray
drift could culminate in exposure to plant communities
making up the riparian habitat (Dalton et al. 2015). Many of
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these herbicides are often nonselective (Hartley and Kidd
1983) and, therefore, can potentially harm off‐target vege-
tation outside the farm area. Repeated applications of her-
bicides raise concern about their potential for adverse im-
pacts on riparian ecosystems by potentially decreasing the
general health of vegetation and eliminating the more vul-
nerable species. The most vulnerable riparian zones to
drifted herbicides are expected to be located proximal to
agricultural fields in regions with history of long‐term her-
bicide application and high wind speed.
The objective of the present study is to assess the trend (if

any) in the long‐term vegetation health and diversity of ri-
parian ecosystems in the vicinity of agricultural areas of
Midwest and Great Plains regions where there has been
historically repeated and intensive use of herbicides. We
employed temporal trend analysis based on the long‐term
Normalized Difference Vegetation Index (NDVI) data sets
derived from Landsat satellite imageries in order to detect
any changes in the long‐term vegetation health of riparian
zones. We hypothesized that any negative trend in the
vegetation health would indicate increases in unfavorable
growing conditions (exposure to herbicides, water stress,
etc.) over a long time period. The NDVI is a commonly used
index to monitor ecosystem health (e.g., Prakash et al. 2017;
Bento et al. 2018). In addition, spatial proximity tests were
performed to examine the role of distance (between the
riparian zone and the cropland) on vegetation health, crop

canopy, and diversity of riparian ecosystems. We hypothe-
sized that riparian vegetation located downwind and near
croplands (i.e., herbicide application area) would have the
greatest potential long‐term impact from wind‐displaced
herbicides compared to those located farthest from the
cropland.

DATA AND METHODOLOGY
Our methodology involved 1) selection of riparian zones

potentially vulnerable to herbicide exposures; 2) use of 20 y
(1992–2011) of NDVI data, derived from Landsat satellite
imageries, to assess the trend in greenness (proxy for vege-
tation health); 3) use of canopy coverage (CC) and vegetation
diversity (VD) data derived from Landsat imageries; 4) tem-
poral trend analysis of NDVI at different spatial scales and
distances from cropland; 5) changes in CC between 2 dif-
ferent years (2001 and 2011) as a function of distance from
cropland; and 6) variation in VD as a function of distance from
cropland.

Riparian zone selection

Riparian zone mapping. The boundary of a riparian en-
vironment is defined by the interplay of multiple hydro-
logical, topographic, and biological factors. Delineation of
riparian sites is currently an active area of research, with few
publicly available riparian maps. In the present study,
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Figure 1. Selected study sites which had both “high‐wind” and “heavy‐herbicides use” history. Labels in all caps denote site names. Site names are abbreviated
state names followed by a number (e.g., CO1 = Colorado site 1, etc.).
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riparian zone boundaries (Figure 1) were determined using
preexisting maps and by creating new maps following tra-
ditional on‐screen mapping methods. For the states of Ne-
braska and Colorado, the United States Fish and Wildlife
Services riparian maps were used (2017; https://www.fws.
gov/wetlands/Data/State‐Downloads.html#Riparian). For
those states where riparian maps were not available (In-
diana, Missouri, and Kansas), riparian zone delineation was
performed following the method by Johnson and
Zelt (2005).
Selection of vulnerable riparian sites was based on 3 cri-

teria: herbicide usage, wind speed (average speed for April
and May greater than 9 miles per hour [mph]), and wind
crossing agricultural fields in the direction of the riparian
zone (wind direction).

Herbicide usage. The US Geological Service (USGS) pro-
vides the most publicly available comprehensive series of
herbicide usage maps for the entire country. The USGS
National Water‐Quality Assessment (NAWQA) program
(https://water.usgs.gov/nawqa/pnsp/usage/maps/compound_
listing.php) has annual agricultural herbicide‐use maps for 480
herbicides and other pesticides for the period 1992 to 2014
(Baker and Stone 2015). A long‐term average distribution map
was constructed for each of the top 10 herbicides (glyphosate,
atrazine, metam‐sodium, S‐metolachlor, acetochlor, di-
chloropropene, 2,4‐D methyl bromide, chloropicrin, and pen-
dimethalin). These top ten represent about 90% of overall
herbicide usage for 2006 and 2007 (Grube et al. 2011). We
employed an additive method to merge the geographical
extent of each of these herbicides and produce a compre-
hensive herbicide coverage map following the method by
Thelin and Stone (2013).

Wind speed. Wind is a critical factor in the physical trans-
port of herbicides away from farmlands. Wind speed and the
spray droplet size distribution are the most important factors
that determine how far herbicides travel before depositing
on a nontarget surface. Farmlands located in regions with
consistently high wind speed could pose greater risks of
herbicide drift into riparian zones. We obtained wind speed
data at 30‐m height from the National Renewable Energy
Laboratory (NREL, http://www.nrel.gov/; Draxl et al. 2015),
and converted it to surface wind speed using a power law
equation relating wind speed to height (Spera and Richards
1979). We considered regions with average annual wind
speeds greater than 9 mph as “high‐wind” areas. Commer-
cial herbicide product labels commonly restrict wind speeds
during application to 10 or 15 mph, so this represents a
high‐end range for potential downwind exposures.

Wind direction. Nontarget areas, including riparian zones,
are potentially exposed to airborne spray drift only when
located downwind from herbicide application. To identify
vulnerable riparian areas, we sought locations where
the wind direction was most consistently from farmland to
the riparian zone. Wind direction data were obtained from

the Automated Surface Observing System (ASOS 1998)
stations (https://mesonet.agron.iastate.edu/).

The intersection of the 3 criteria listed above defined the
location and boundary of the most vulnerable riparian sites.
Because uninterrupted high wind speeds are a common
feature of the Great Plains and many parts of Midwest re-
gion (Klink 1999), wind direction and location of riparian
zones with respect to herbicide use area became mainly the
driving factors in the selection of riparian sites.

Remote sensing data

Vegetation functioning (health, diversity, distribution, etc.)
has been routinely assessed via satellite imagery (Fensholt
et al. 2006; Van Leeuwen et al. 2013; Mazzarino and Finn
2016). Due to the narrow geometry of riparian ecosystems,
high‐resolution satellite imagery (such as Landsat) is ap-
propriate for such regions. In the present study, we used the
following data products obtained from Landsat imageries:
NDVI to assess vegetation health, and CC and VD to assess
any changes in diversity of plant species.

Data acquisition. We used the Landsat 4 and 5 archive to
reduce the variations among satellites and to capture the
longest available time frame (1992–2011). The Landsat visible
and infrared bands have a 30m × 30m pixel size and
the satellite revisits each location on earth every 16 d. The
NDVI data were directly downloaded from the Earth Resources
Observation and Science (EROS) Science Processing Archi-
tecture (ESPA, https://espa.cr.usgs.gov/, Landsat 4‐5 image
courtesy of US Geological Survey). Pixels contaminated with
ice, snow, and clouds were removed using the pixel quality
band (pixel_qa band) provided by ESPA. Tree CC data were
downloaded from the National Land Cover Database (NLCD,
http://www.mrlc.gov/index.php, National Land Cover Database
courtesy of US Geological Survey). Gap Analysis Program
(GAP, http://gapanalysis.usgs.gov/, Gap Analysis Program
Database courtesy of US Geological Survey) was used for de-
tailed vegetation type distribution and change analysis.

Normalized difference vegetation index. The NDVI quanti-
fies vegetation greenness by measuring the normalized differ-
ence between the reflectance in the near‐infrared and red
region. The unique feature of chlorophyll in plants is such that it
has a very low reflectivity in the red region and a very high
reflectivity in the near‐infrared region, resulting in a very high
NDVI value. Thus, higher NDVI values are indicative of greener
and healthier vegetation. On the other hand, lower NDVI values
may indicate weaker photosynthetic activity and overall poorer
vegetation health, due to likely unfavorable growing conditions
(e.g., water stress, exposure to herbicide). The NDVI is typically
used as indicator to monitor ecosystem health (e.g., Bento et al.
2018; Flores‐Cardenas et al. 2018; Mariano et al. 2018) and
crop phenology (e.g., Mashaba et al. 2016; Martin and Latheef
2017; Inurreta‐Aguirre et al. 2018). A number of studies
(e.g., Thelen et al. 2004; Dicke et al. 2012; Lewis et al. 2014;
Prakash et al. 2017) have demonstrated that NDVI is an effective
index in detecting herbicide damage on plants.
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Therefore, in the present study, NDVI was used as an in-
dicator for the vegetation health of riparian ecosystems. Using
archived Landsat 4‐5 imagery courtesy of US Geological Survey,
NDVI values were extracted from the scenes available between
April and July for years from 1992 to 2011. If 2 images were
available for the same month, the average was used to produce
the monthly value. For seasonal analysis, images from the
months of April and May were stacked to construct the spring
data set, and images from June and July were stacked to
construct the summer season data set. As the final step before
data analysis, all of the areas outside of the riparian sites were
masked out.

Canopy coverage. Canopy coverage data represent the
percent tree canopy in each pixel and, therefore, can in-
directly quantify the density of hardwood for a given area
(Homer et al. 2007; Coulston et al. 2012). Canopy coverage
data typically taken during peak growing seasons are pub-
licly available only for 2 y: 2001 and 2011. Because these
data were derived from Landsat imageries, they have pre-
served the 30m × 30m pixel size. We performed change
detection analysis by taking the difference in CC between
the 2 observation years. The resulting map had both ne-
gative and positive pixel values, representing lost and
gained CC between 2001 and 2011, respectively.

Vegetation diversity, Gap Analysis Project. The GAP data
set offers enhanced land cover types for the contiguous
United States. These data sets are also derived from Landsat
imagery and have the same spatial resolution (30m × 30m
pixels). The GAP complements the National Vegetation
Classification System (NVC) structure by providing the eco-
logical system data set. Ecological system data set uses the
NatureServe (2017) Ecological System Classification (Comer
et al. 2003) to map vegetation classes. In our study, the
extent and variety of vegetation classes were considered as
indicative of VD in the riparian sites. The GAP data set is
available only for year 2001. Nonvegetation land‐cover
pixels (e.g., urban, agricultural) were removed before further
analysis. Finally, the number of available ecological vege-
tation types was determined for each riparian site.

STATISTICAL ANALYSIS
We performed various statistical analyses on each data set,

as shown in Supplemental Data Figure S1. A brief description
of the statistical methods applied is presented here.

Trend analysis

The purpose of the trend analysis is to detect any systematic
long‐term change in the NDVI, a proxy for vegetation health.
We performed linear temporal trend analysis by fitting a linear
model to the NDVI time series data. Significance testing
(F‐test) was performed on the slope estimate of the linear
model to test significance of the linearity (i.e., trend) and di-
rection. The null hypothesis is that the slope is 0, indicating no
trend. The trend analysis has 3 possible outcomes: no change
in NDVI (slope not significantly different from 0), positive trend

in NDVI (positive slope significantly different from 0), or
negative trend in NDVI (negative slope significantly different
from 0). The trend analysis was done at monthly and seasonal
timescales. The seasonal data were obtained by averaging the
monthly NDVI values within each season (Spring: April and
May; Summer: June and July). We performed the trend
analysis at 2 spatial scales: riparian‐site (areal‐) average, and
pixel (30m × 30m).

Site‐average temporal trend. The site‐average trend analysis
approach informs us whether the overall riparian site
(i.e., average of all the pixels within each riparian site) exhibits
any trend in the NDVI data during the analysis period.

Pixel‐based temporal trend. The pixel‐based analysis en-
abled us to assess whether there was any negative trend for
each pixel (30m × 30m) in the riparian site. This analysis
helped us to examine spatially explicit patterns of NDVI and
the role of spatial proximity to croplands on vegetation
health and diversity.

Cluster analysis

Cluster analysis examines the nature and strength of
spatial relationships between adjacent features in space.
This analysis was performed only for pixels that showed a
negative NDVI trend. The results categorized pixels into 2
broad groups: random pixels and clustered pixels. Ran-
domly distributed pixels lack a strong spatial correlation,
which suggests a lack of common underlying factors re-
sponsible for the vegetation health decline. If there were a
common underlying factor (e.g., exposure to herbicide drift)
responsible for the observed decline, one would typically
expect to find a cluster (or a plume) of negative pixels.
Cluster analysis was performed using Spatial Autocorrela-
tion (Morans I model) and Cluster and Outlier Analysis
(Anselin Local Morans I model; Anselin 1995; Anselin et al.
2006) test available in ArcGIS10.3 (ESRI 2017). Clustered
pixels were subjected to further analysis (proximity analysis,
see Statistical Analysis section).

Proximity analysis

The distance of riparian zones to cropland is one of the
key indicators of potential exposure from herbicide spray
drift. Here, we looked at the distribution of clustered pixels
relative to their distance from croplands.

Downwind distance from croplands. Each riparian site was
divided into 2 sections based on its location relative to the
dominant wind direction and distance from croplands. The
dominant wind direction in the April–May time period was
chosen because herbicide applications in the Midwest and
Great Plains are often made at or near the time of planting
to prevent the spread and dominance of weeds before the
crop has been established in the field (Abendroth et al.
2009). Distance of riparian sites to cropland plays an im-
portant role in potential impacts of herbicides on riparian
zone vegetation, with herbicide drift deposition declining

Integr Environ Assess Manag 2019:528–543 © 2019 The Authors.DOI: 10.1002/ieam.4144
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with increasing downwind distance (Gil et al. 2014; Kasiotis
et al. 2014). If significant decline in riparian vegetation oc-
curs mainly from spray drift, a spatial gradient within a ri-
parian zone is expected to be evident in the NDVI data.
We used 2 distance classes (Figure 2a): 1) the Near‐

DownWind (NDW) class (0–200m from the cropland), and 2)
the Far‐DownWind (FDW) class (200m–400m from the
cropland). Riparian vegetation health and diversity were
compared between these 2 distance classes. It is assumed
that both NDW and FDW sections had similar biological
(vegetation species, crop type, etc.) and climatic (wind
speed, air temperature, precipitation, etc.) characteristics,
such that the FDW riparian zone could effectively be used as
a control. To investigate the sensitivity of our approach to
the distance class definition, we performed the proximity
analysis by varying the distance class definition where NDW
is set to 0 to 50m and FDW is set to 50 to 400m.

Near‐DownWind versus Far‐DownWind comparisons. We
compared NDVI, CC, and VD between the NDW and FDW
sections within each riparian site. We used the following
statistics for comparison: the Welch 2‐sample t‐test (for CC)
and the chi‐square distribution test (for VD).

RESULTS

Riparian site selection

Site selection. A total of 17 riparian sites, which were con-
sidered potentially vulnerable to the effect of long‐term use of
herbicides, were selected in the present study (see Figure 1).

These sites comprise 5 sites in Colorado (CO1–CO5),
4 sites in Nebraska (NE1–NE4), 2 sites in Iowa (IA1–IA2),
2 sites in Missouri (MO1–MO2), and 4 sites in Kansas (KS1–
KS4). These sites cover over a length of 680 km of riparian
zone along major rivers, including the Platte River, Arkansas
River, and Missouri River, and spread over an area of ap-
proximately 190 km2. All the selected sites were located inside
the “high‐wind” regions, areas with high herbicide usage his-
tory, and were in the vicinity of croplands. Table 1 shows the
location, length, and wind properties of these sites in greater
detail. As shown in Table 1, the predominant wind direction
was different across sites. Although some sites had a dominant
northerly wind in April (NE1 and NE4), other sites had a
dominant southerly pattern (KS2–KS4). For demonstration
purposes, Figures 2b through 2e are presented to show the
location of CO5 riparian site (as an example) in relation to
croplands, its CC (%), long‐term average spring NDVI values,
and ecological systems.

General NDVI observations based on site‐average values.
Both spatial and temporal variations were evident in NDVI
values across the selected riparian sites (Table 2). The site‐
average NDVI increased from south to north and from west to
east during both spring and summer seasons (e.g., the average
NDVI increased when moving from Colorado toward Nebraska
and Iowa). The mean NDVI values increased at all sites as the
season progressed toward summer with lowest values during
April and highest values during July. Variation in the early
spring values of NDVI were higher compared to summer
months, with the greatest variation observed during May.

Integr Environ Assess Manag 2019:528–543 © 2019 The Authors.wileyonlinelibrary.com/journal/ieam

Figure 2. Schematics and actual data describing features of the riparian zone. Schematics of riparian zone where the dominant wind direction and distance
from croplands defines the near‐downwind (NDW) versus far‐downwind (FDW) boundary (a); location of riparian zone and adjacent croplands at an example
site (CO5) (b); canopy coverage (%) at each pixel at CO5 (c); average spring NDVI values at CO5 (d); ecological system present at each pixel at CO5 (e). CO5 =
Colorado site 5).
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Trend analysis

Site‐average temporal trend. The temporal trend (1992–
2011) of the site‐averaged NDVI for all 17 sites was assessed at
2 levels (seasonal and monthly). Results are presented in Table
3 and in Figures 3 and 4. At the seasonal timescale, during the
spring season (April and May), none of the 17 sites exhibited a
negative trend for NDVI, whereas 3 sites (MO1, NE2, and NE3)
showed a positive trend for NDVI (Figure 3). During the
summer season (June and July), only 2 sites (KS2 and KS3)
exhibited a negative trend for NDVI, whereas 3 sites exhibited
a positive trend (KS4, MO1, and MO2; Table 3, Figure 4).
At the monthly timescale, the results are overall compar-

able with those at the seasonal timescale. The monthly re-
sults reveal the following: During April and May, none of the
17 sites showed a negative trend, whereas 1 site in April
(MO1) and 2 sites in May (MO1 and MO2) showed a positive
trend; during June and July, only 2 sites showed a negative
trend (KS2 and KS3).

Pixel‐based temporal trend. Results of pixel‐based trend
analysis of NDVI for spring and summer seasons are pre-

sented in Supplemental Data Figures S2 and S3, respec-
tively. During the spring season, the NDVI did not change
for the vast majority of sites, except at 4 sites (CO1, CO3,
CO5, KS3), which had only 1% to 2% of their pixels showing
a negative trend. In contrast, many sites had a considerable
number of pixels with a positive trend (e.g., NE3 had greater
than 93%, Supplemental Data Figure S2) during the spring
season.
During summer, however, the percentage of pixels

showing both negative and positive trends increased.
Twelve sites (out of 17 total) had significant number of
pixels (i.e., >1% of total number of pixels) showing negative‐
trending NDVI (see Supplemental Data Figure S3). For
these 12 sites, the percent of number of pixels with nega-
tive‐trending NDVI (out of the total number of pixels) is as
follows (in decreasing order): KS1 = 28.7%, KS3 = 23.8%,
KS2 = 18.9%, NE3 = 6.8%, NE1 = 5.3%, CO1 = 4.7%, CO3
= 4.0%, NE2 = 3.8%, IA2 = 3.2%, CO4 = 3.0%, IA1 = 1.1%,
and NE4 = 1.0%. These sites underwent further analysis to
detect whether those pixels were randomly distributed or
clustered in space.

Integr Environ Assess Manag 2019:528–543 © 2019 The Authors.DOI: 10.1002/ieam.4144

Table 1. Riparian site characteristics

Site namea Site length (km)b Area (km2)b River or stream name Avg wind directionc Avg wind velocity (mph)c

CO1 40 7.2 South Platte River N 11.1

CO2 40 5.6 South Platte River N 11.1

CO3 33.6 11.8 South Platte River NW 12.2

CO4 33.6 1.1 South Platte River NW 12.2

CO5 33.6 4.1 South Platte River N 13.5

IA1 25.6 12.3 Big Sioux River N 11.8

IA2 46.4 14.3 Des Moines and East Des Moines
rivers

NW 13.6

KS1 19.2 8 Arkansas River N 12.2

KS2 27.2 5 Arkansas River S 15

KS3 28.8 3 Arkansas River S 15.3

KS4 83.2 4.1 Missouri River SE 9.3

MO1 99.2 20.8 Missouri River SE 9.9

MO2 80 3.4 Grand River S 9.2

NE1 192 46.5 Platte River N 13.5

NE2 192 10.5 Platte River S 14.1

NE3 128 10.9 Platte River S 14.1

NE4 64 8.7 Platte River N 12.9

ASOS = Automated Surface Observing System; mph = miles per hour.
aSite names are the combination of state abbreviation and site number (e.g., NE1 stands for Nebraska site 1).
bSite length describes the length of the riparian zone along the known river or stream in kilometers (km), whereas area (km2) exhibits the total riparian zone area
at each site.
cWind direction and wind velocities are dominant wind directions and average speed values for the month of April and May from the ASOS data set
(1948–2011).
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Cluster analysis

Sites with a significant number of negative‐trending pixels
(i.e., >1% of total number of pixels) underwent rigorous
cluster (or spatial autocorrelation) analysis (see Figures 5 and
6). These sites are 4 sites during spring (CO1, CO3, CO5,
and KS3; Figure 5) and 12 sites during summer season
(CO1, CO3, CO4, IA1, IA2, KS1, KS2, KS3, NE1, NE2, NE3,
and NE4; Figure 6).
During both spring and summer seasons, the vast majority

of the pixels showing negative trends in NDVI were ran-
domly distributed in space. The proportion of analyzed
negative‐trending pixels that were found to be clustered in
spring season were 19% and 14% (CO1, CO3) and 0% (CO5
and KS3), accounting for less than 0.3% of the total pixels in
each riparian site. During summer, the percent of negative‐
trending NDVI pixels that were found clustered was 37%
(CO1), 36% (NE1), 33% (CO3), 23% (NE3), 21% (KS3), 19%
(CO4), 18% (NE4), 16% (NE2), 13% (IA2), 11% (KS1), 8%
(IA1), and 5% (KS2). During summer, the clustered negative‐
trending NDVI pixels accounted for only less than 5% of the
total pixels in each riparian site: 5% for KS3, 3.2% for KS1,
1.9% for NE1, 1.8% for CO1, 1.6% for NE3, 1.3% for CO3,
and less than 1% for the remaining sites analyzed (CO4, IA1,
IA2, KS2, NE2, and NE4).

Proximity analysis

Normalized difference vegetation index. The clustered ne-
gative‐trending NDVI pixels in both spring and summer
seasons were distributed about equally in both NDW and
FDW sections of the riparian site (Figures 5 and 6). Re-
gardless of selected distance for NDW (0–50m or 0–200m),
there was no indication that the NDW riparian pixels had
higher percentages of clustered negative pixels than the
FDW pixels (Supplemental Data Figure S4).

Canopy coverage. Changes in CC were assessed by com-
puting the difference map between the 2001 and the 2011
CC maps. In general, the average CC decreased in 2011, for
both NDW and FDW sites. The average CC for NDW de-
creased from 37.1% in 2001 to 32.0% in 2011 (–5.2%). Si-
milarly, the average CC for FDW decreased from 36.1% in
2001 to 31.7% in 2011 (–4.5%). Using the Welch 2‐sample t‐
test, we compared the median CC change between NDW
and FDW sites, and found out that the CC change between
2001 and 2011 was not significantly different (t = 1.77, df =
1581, p = 0.08) for both NDW and FDW sites (Table 4).

Vegetation diversity proximity analysis. Vegetation diversity
represents the number of existing vegetation groups at each

Integr Environ Assess Manag 2019:528–543 © 2019 The Authors.wileyonlinelibrary.com/journal/ieam

Table 2. General NDVI characteristics (mean and SD) at each riparian site for the duration of the study (1992–2011)a

Siteb
Spring Summer April May June July

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

CO1 0.40 0.06 0.53 0.09 0.33 0.05 0.47 0.07 0.53 0.09 0.54 0.09

CO2 0.38 0.05 0.55 0.08 0.29 0.04 0.44 0.06 0.54 0.07 0.56 0.08

CO3 0.37 0.05 0.52 0.07 0.29 0.04 0.44 0.06 0.51 0.07 0.53 0.07

CO4 0.37 0.05 0.54 0.07 0.28 0.04 0.45 0.06 0.53 0.07 0.55 0.07

CO5 0.37 0.04 0.54 0.07 0.29 0.04 0.45 0.06 0.53 0.07 0.55 0.07

IA1 0.48 0.08 0.79 0.07 0.29 0.04 0.62 0.11 0.73 0.10 0.81 0.06

IA2 0.43 0.05 0.79 0.07 0.26 0.04 0.64 0.09 0.77 0.08 0.81 0.05

KS1 0.34 0.04 0.56 0.07 0.23 0.02 0.44 0.06 0.52 0.07 0.58 0.07

KS2 0.35 0.05 0.44 0.08 0.27 0.04 0.44 0.08 0.43 0.07 0.46 0.09

KS3 0.35 0.05 0.46 0.07 0.29 0.04 0.40 0.06 0.46 0.08 0.46 0.07

KS4 0.57 0.10 0.77 0.11 0.44 0.08 0.71 0.13 0.77 0.11 0.78 0.11

MO1 0.51 0.10 0.69 0.10 0.34 0.07 0.62 0.13 0.68 0.11 0.71 0.10

MO2 0.52 0.12 0.70 0.15 0.39 0.08 0.65 0.16 0.69 0.16 0.70 0.15

NE1 0.47 0.06 0.67 0.08 0.30 0.05 0.53 0.07 0.67 0.08 0.68 0.08

NE2 0.48 0.07 0.71 0.07 0.34 0.07 0.60 0.08 0.68 0.08 0.74 0.07

NE3 0.50 0.05 0.76 0.07 0.32 0.05 0.66 0.07 0.74 0.07 0.77 0.06

NE4 0.54 0.04 0.78 0.05 0.34 0.03 0.69 0.06 0.77 0.06 0.79 0.05

NDVI = normalized difference vegetation index.
aResults are presented at both seasonal and monthly levels.
bSite names are the combination of state abbreviation and site number (e.g., NE1 stands for Nebraska site 1).
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riparian site. Vegetation diversity was compared across
NDW and FDW sections. The chi‐square test result suggests
that VD is not significantly different (p = 0.22) between the
NDW and FDW sections. The dominant vegetation forms at
both NDW and FDW sections were from the Southeastern
Great Plains Floodplain Forest ecological group, followed
by Western Great Plains Riparian Woodland and Shrubland
(Table 5).

DISCUSSION
Riparian zones host a variety of plant and animal species.

Although many of these species are temporary residents of
these habitats (e.g., insects, birds), others are year‐round
residents (e.g., plant species, beavers). These ecosystems
may also host some of the endangered plant species
(Nilsson and Berggren 2000). Riparian sites also act as im-
portant biofilters in both stabilizing the river bank against
erosion and reducing the inflow of nutrients into river eco-
systems (Poff et al. 2011). Although a few federal and state
provisions are in place to protect these ecosystems from
destruction, many factors (urban development, mining,
agriculture, etc.) could adversely impact these systems.

Among these factors, little is known about the impacts on
vegetation health and diversity of riparian ecosystems re-
sulting from repeated exposures to off‐target agricultural
herbicide drift.

Chemical herbicides are applied regularly for controlling
the population of harmful weeds in croplands. Riparian
zones in close proximity to agricultural fields are potentially
vulnerable to drift exposures. In the present study, we
evaluated the vegetation health and diversity of riparian
sites near croplands with heavy herbicide usage history
during the time period of 1992 to 2011. The riparian sites
selected in the present study were located in areas of con-
sistent wind speeds of more than 9 mph during the months
of April and May, when herbicide applications are expected
to be most intense (Table 1).

We relied on satellite remote sensing data collected
during a 20‐y period (1992–2011) for the present study.
Application of remote sensing data to assess vegetation
health and diversity is common (Henry et al. 2004; Kogan
et al. 2004; Dicke et al. 2012). We employed NDVI as the
measure of vegetation health in riparian ecosystems. This
simple index quantifies the vegetation greenness, which is

Integr Environ Assess Manag 2019:528–543 © 2019 The Authors.wileyonlinelibrary.com/journal/ieam

Figure 3. Site‐averaged NDVI time‐series for spring (April and May). Significance (p‐value) and the slope of the linear regression model are also presented for
each site. Red asterisks represent sites that NDVI had a positive or negative trend. NDVI exhibited a positive trend at 3 sites (MO1, NE2, and NE3) between
1992 and 2011. Site names are abbreviated state names followed by a number (e.g., NE2 = Nebraska site 2, etc.). NDVI = normalized difference vegetation
index.
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often indicative of vegetation health. The NDVI values range
between –1 and +1, and it is widely accepted that values
between 0 and 0.02 primarily represent bare soil, whereas
values greater than 0.2 are indicative of higher vegetation
density. The NDVI values between 0.5 and 0.7 depict dense
photosynthetically active vegetation (Holben 1986).
Judging from the average NDVI values, vegetation den-

sity was moderate (NDVI = 0.4–0.5) to high (NDVI = 0.6–0.8)
at the 17 selected riparian sites. The average NDVI values
increased from spring to summer at all of these sites, as
expected. This is attributed to availability of favorable
growth conditions (increases in ambient temperature, solar
radiation, nutrient availability, etc.) and vegetation phe-
nology. Sites at higher latitudes (IA1 and IA2 in Iowa)
showed higher greenness values than did the southern sites
(e.g., KS1) during both seasons. The dominant vegetation
type varies between sites from hardwood woodland
and shrubland species to shortgrass prairie species. Hard-
wood species tend to have a longer growing season than
shortgrass prairie species. Therefore, some of the variability
of NDVI values among sites could be attributed to differ-
ences in vegetation type and local climate. Nonetheless,

long‐term trend in vegetation health at each site could po-
tentially point at the role of external stressors in these
systems.

Vegetation health

Normalized difference vegetation index trend during the
spring season. Over the study period, riparian vegetation
health in the spring season remained unchanged in the
majority of our study sites (14 sites out of 17), with 3 sites
showing a positive trend in NDVI. The spring season is
generally when most agricultural activities are resumed. This
is also the season for heavy application of herbicides be-
cause many farmers prefer to control and enable their crops
to outcompete weeds and unwanted shrubs early in the
season (Abendroth et al. 2009). Although application dates
vary between sites and years depending on local tempera-
ture and weather forecast, most herbicides are applied in
the study region from mid and late April to early May
(Abendroth et al. 2009). However, despite coinciding with
the time frame in which potential off‐field herbicide drift is
greatest, the overall spring trend of riparian vegetation

Integr Environ Assess Manag 2019:528–543 © 2019 The Authors.DOI: 10.1002/ieam.4144

Figure 4. Site‐averaged NDVI time‐series for summer (June and July). Significance (p‐value) and the slope of the linear regression model is also presented for
each site. Red asterisks represent sites that NDVI had a positive or negative trend. KS2 and KS3 both had negative NDVI trend, whereas KS4, MO1, and MO2
exhibited a positive trend. Site names are abbreviated state names followed by a number (e.g., KS2 = Kansas site 2, etc.). NDVI = normalized difference
vegetation index.
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health at these sites failed to show a statistically significant
decline. Similar to patterns from the site‐average analysis,
the majority of pixels at all sites had no remarkable trend
during the spring season. The similarity between the 2 ap-
proaches (pixel‐level and site‐averaged analysis) confirms
that the intrasite variability was not significant at these sites,
and the site‐average–based analyses were able to capture
the trends observed at smaller pixel‐by‐pixel scales.

Normalized difference vegetation index trend during the
summer season. In order to track any potential decline of
riparian vegetation health due to delayed responses and/or
late applications of herbicides, we also explored the trend of
NDVI during the summer season. With the exception of 2
sites (KS2 and KS3), site‐averaged NDVI remained

unchanged at the majority of our study sites (12 sites) and
even increased at 3 sites (KS4, MO1, and MO2). The site‐
averaged NDVI at KS2 decreased by 0.05 over the 20‐y
period (was 0.4 in 1993 and 0.35 in 2011). A similar trend
was observed at KS3 as well. We also carried out trend
analysis at a pixel level (30 m × 30m) in order to discern any
spatially explicit patterns of long‐term trends. The pixel‐
based analysis shows that 12 sites (out of 17) had significant
number of pixels (>1% of the total number of pixels at each
site) with negative‐trending NDVI. The large number of
pixels with negative‐trending NDVI (>10% of total number
of pixels) were observed for all the Kansas sites. The spatially
explicit pixel‐by‐pixel analysis was found to be more robust
than the site average for assessing spatial trends of riparian
zone vegetation during the summer season.

Spatial patterns of NDVI trends. In order to detect any lo-
calized impacts due to common underlying factors, such as
drifted herbicides, we analyzed the spatial patterns of those
pixels with negative‐trending NDVI. The spatial patterns
examined are cluster analysis (whether the pixels were
clustered around each other or randomly distributed in
space) and proximity analysis (distance between the pixel
and the cropland). The majority of these pixels were found
to be randomly distributed in the space (i.e., unclustered)
during both spring and summer seasons, indicating a low
likelihood that the negative trends are in response to a
common stressor. For example, for the 5 sites in Nebraska
and Kansas (NE1, NE3, KS1, KS2, and KS3) that had 5% to
29% negative‐trending pixels during summer season, the
negative‐trending pixels that were determined to be clus-
tered ranged from about 0.1% (NE4) to 5% (at KS3) of the
total number of pixels constituting riparian zone. For spring
months, the proportion of negative‐trending pixels that
were clustered (out of about 1% to 2% total negative‐
trending pixels) also accounted for less than 0.3% of the
total pixels.

At almost all sites, proportions of clustered negative
pixels were similar between NDW (near) and FDW (far) sites
(Figures 5 and 6). In other words, these clusters were “uni-
formly” distributed with respect to distance from croplands.
It is assumed that both sections have similar biological (ve-
getation species, crop type, etc.) and climatic (wind speed,
air temperature, precipitation, etc.) characteristics, such that
the FDW riparian zone could effectively be used as a con-
trol. The available literature generally demonstrates a lack of
statistically significant effects to in‐situ plant communities
and individual plants at distances beyond the 6‐ to
10‐m range, even under worst‐case exposure paradigms
(Marrs et al. 1989, 1991; Marrs and Frost 1997; Brain
et al. 2017).

The negative‐trending NDVI pixels found in the present
study for the 5 riparian sites in Nebraska and Kansas (NE1,
NE3, KS1, KS2, and KS3) during summer season were in-
triguing; however, we could not find any significant asso-
ciation between the declining NDVI and distance to crop
lands, suggesting that most of the negative trends were not

Integr Environ Assess Manag 2019:528–543 © 2019 The Authors.wileyonlinelibrary.com/journal/ieam

Figure 5. Cluster‐analysis results for the negative trending NDVI pixels during
spring season. For each panel, the top titles exhibit the type of negative cluster
whereas the vertical headings (right side) display the site name. Bars show the
distribution (%) of clusters in various distance (N = 0–200m, F = 200–400m)
from the croplands; n represents the total number of negative pixels carried
over from pixel‐based trend analysis; Tot% presents the proportion of pixels in
each category relative to n. This analysis was performed for 4 sites with
greater than 1% negative pixels (CO1, CO3, CO5, and KS3). Site names are
abbreviated state names followed by a number (e.g., CO1 = Colorado site 1,
etc.). NDVI = normalized difference vegetation index.
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likely caused by herbicide drifts. However, we must point
out a caveat here regarding the limitation of our approach.
The NDVI and remote sensing observations used in the
present study did not allow us to exclusively isolate the
impacts of herbicides from other potential factors that may
affect the health of riparian vegetation. In addition, pixel‐
based trend analysis of NDVI was limited to the available 30
m × 30m scale, which may be insufficient to detect subpixel
vegetation trends, structure, and diversity. Hence, addi-
tional work involving ecologically meaningful interpretation
of negative trends and associated hydrological and man-
agement information is needed in order to gain a more
complete picture of the conditions surrounding these eco-
systems.
For instance, a regional shift in the hydrology of the Great

Plains could offer some explanation for the observed ne-
gative trends. It is known that the riparian vegetation com-
munity composition will change in response to local and
regional changes in hydrological conditions. River flow re-
gimes and groundwater levels are among the 2 most im-
portant hydrological characteristics that are directly related
to health and functioning of riparian ecosystems (Poff et al.
2011). For example, the multidecade‐long drought re-
corded from the early 1950s to the late 2000s and the
consequent change in the river flow regime at the Arkansas
River Basin (Eng and Brutsaert 1999; Putnam et al. 2008),
where KS1, KS2, and KS3 sites are located, may be

significant. In addition, the majority of sites in Nebraska
(NE1, NE2, and NE3) and Kansas (KS1, KS2, and KS3) are
located on the High Plains (HP) aquifer. A recent study has
documented moderate to severe negative groundwater
recharge (groundwater depletion) in central and southern
parts of the HP aquifer, areas surrounding the Platte and
Arkansas rivers where NE1, NE3, KS1, KS2, and KS3 sites are
located (Scanlon et al. 2012). The lower groundwater re-
charge is directly translated to lower stream or river dis-
charge (Scanlon et al. 2012), which could result in hydrologic
stress on riparian vegetation in these regions (Lytle and
Merritt 2004; Merritt et al. 2010).

Vegetation structure and diversity

Spatiotemporal analysis of CC revealed valuable in-
formation regarding the structure of vegetation at riparian
sites between 2001 and 2011. On average, CC decreased in
2011 at almost all riparian sites. Based on the proximity test
results, the average decrease in CC between NDW and
FDW sections was not significantly different; that is, changes
in percentage CC were equally distributed between both
portions of each riparian site, and the patterns of CC loss
appear to be independent of distance to upwind croplands.
Another striking result from the CC analysis is the positive

increase of canopy in KS2 and KS3, in contrast to the de-
crease in general vegetation health during summer at these
2 sites. This divergence of results might arise from the fact

Integr Environ Assess Manag 2019:528–543 © 2019 The Authors.DOI: 10.1002/ieam.4144

Figure 6. Cluster‐analysis results for the negative trending NDVI pixels during summer season. For each panel, the top titles exhibit the type of negative cluster
whereas the vertical headings (right side) display the site name. Bars show the distribution (%) of clusters in various distance (N = 0–200m, F = 200–400m) from
the croplands; n represents the total number of negative pixels carried over from pixel‐based trend analysis; Tot% presents the proportion of pixels in each
category relative to n. This analysis was performed for 12 sites that had greater than 1% negative pixels (CO1, CO3, CO4, KS1–KS3, IA1–IA2, and NE1–NE4).
Site names are abbreviated state names followed by a number (e.g., CO1 = Colorado site 1, etc.). NDVI = normalized difference vegetation index.
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that the NDVI does not distinguish between hardwood and
shrubs. It is possible that the increase in CC is associated
with an increase in the biomass of hardwood plants, whereas
the NDVI is primarily influenced by the shrubs that dominate
these 2 sites. Similar results have been reported in other
studies (Serrat‐Capdevila et al. 2007; Seavy et al. 2009), in
which slight climatic or hydrological variability reduced the
population of shrubs in riparian ecosystems.
Looking at the composition of vegetation ecological

groups at these riparian sites (GAP data set), the number of
ecological groups was not significantly different between
NDW and FDW sections. The dominant vegetation type,
Southeastern Great Plains Floodplain Forest, was similar for
both NDW and FDW sections of the sites. These riparian
systems are floodplain forests that occupy relatively broad
flats at low topographic locations, along large streams or
rivers where alluvial deposition exists. Dominant commu-
nities in this system range from floodplain forests to wet
meadows and gravel and sand flats. The second most
dominant ecological group at these sites is the Western
Great Plains Floodplain Systems. This group is found in the

floodplains of medium to large rivers of the western Great
Plains, where alluvial soils and periodic, intermediate
flooding (every 5–25 y) is typical. The VD (GAP) data set was
available only for the year 2001, so we could not examine
the temporal variation of ecological groups within these
sites. However, similarities in the type of dominant ecolo-
gical group between the NDW and FDW sections of the
riparian sites suggest relative stability in the vegetation
community, with no remarkable difference in community
structure of the riparian ecosystems with respect to their
proximity to croplands.

SUMMARY AND CONCLUSIONS
We assessed the long‐term vegetation health and di-

versity of various riparian ecosystems in the vicinity of agri-
cultural areas of the Midwest and Great Plains regions where
there has been historically repeated and intensive use of
herbicides. First, we identified the riparian sites that were
potentially most vulnerable to drift of herbicides applied in
agricultural areas. Our study sites (covering a total length of
more than 680 km and an area of 190 km2) are comprised of
5 sites in Colorado, 4 sites in Nebraska, 2 sites in Iowa, 2
sites in Missouri, and 4 sites in Kansas. We used the NDVI,
derived from Landsat satellite imageries, as indicator for
vegetation health. Our methodology involved 1) trend
analysis of NDVI using 20 y of monthly data; 2) spatial pat-
tern (randomly distributed vs clustered) of NDVI trends; 3)
variation of NDVI trend as a function of distance from
cropland; 4) change in CC (derived from Landsat) between
2002 and 2011, and its dependence on distance from
cropland; and 5) dependence of VD (derived from Landsat)
on distance from cropland. We performed the analysis
during both the spring season (when heavy application of
herbicides takes places) and the summer season (to track
delayed response or late application of herbicides). Our
results can be summarized as follows:

1) During the spring season, the vegetation health status
did not show any systematic change during the study
period (1992–2011) at all the riparian sites.

2) During the summer season, the vegetation health did not
show any systematic change during the study period for
the vast majority of the riparian sites. However, a few
exceptions were located within sites in Kansas and Ne-
braska.

3) For the few exceptional sites in Kansas and Nebraska,
where NDVI shows a negative trend over time, we per-
formed 2 additional analyses (cluster analysis and proxi-
mity analysis) to examine the nature of the factors and
processes that may have caused the negative trend in
NDVI and found the following:

• The vast majority of these NDVI pixels were randomly
distributed through the riparian sites, suggesting the lack
of localized underlying factor (such as drifted herbicide).
The percentage of the pixels that were spatially clustered
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Table 4. Mean percent canopy coverage (%) change from 2001 to
2011 in the FDW and NDW sections at each riparian site

Sitea FDWbce NDWbde p–value

CO1 –1.49 (±11.4) –3.3 (±11.2) 0

CO2 –2.56 (±10.4) –0.82 (±10) 0.240

CO3 –3.28 (±10.7) –3.92 (±10.4) 0.005

CO4 –0.04 (±8.3) –3.59 (±11) 0.009

CO5 –1.33 (±9.3) –2.44 (±10.7) 0.001

IA1 4.91 (±10.4) 6.59 (±10) 0.386

IA2 –6.74 (±15.4) –8.76 (±14.8) 0.019

KS1 –5.75 (±20) –8.7 (±17.5) 0

KS2 5.22 (±9.9) 4.23 (±9.4) 0.008

KS3 7.07 (±9.2) 5.52 (±7.1) 0

KS4 –5.39 (±19.5) –2.9 (±16.6) 0.097

MO1 –4.41 (±18.6) –5.44 (±20.4) 0.007

MO2 –6.79 (±20.9) –3.43 (±21.1) 0.197

NE1 –6.8 (±13.2) –9.04 (±15.1) 0

NE2 –17.15 (±12.6) –10.81 (±14.8) 0.568

NE3 –15.05 (±14.6) –18.87 (±13.9) 0.021

NE4 –16.39 (±15.9) –22 (±17.8) 0

aSite names are the combination of state abbreviation and site number (e.g.,
NE1 stands for Nebraska site 1).
bStandard deviations are reported in parenthesis.
cFDW represents the Far‐DownWind section (200–400m from the cropland).
dNDW represents Near‐DownWind section (0–200m from the cropland)
taking dominant wind direction as a reference.
eNegative percent canopy coverage change values represent decreased ca-
nopy coverage between 2001 and 2011, whereas positive values exhibit in-
crease in canopy coverage for the same period.
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was small and ranged from 0.1% (a site in Nebraska) to
5% (a site in Kansas) of the total number of pixels con-
stituting the riparian zones.

• The proximity analysis revealed that there was no asso-
ciation between the negative NDVI trend and distance of
those pixels from croplands, suggesting that exposure to
herbicide drift may not be a plausible factor because this
would have shown higher impact on pixels closer to the
cropland.

• The proximity analysis using additional data (CC and VD)
also reported the lack of association between these ve-
getation characteristics and distance of pixels from
cropland, again suggesting lack of evidence for the im-
pact of herbicide exposure.

Based on our findings, we conclude the following:

1) The vast majority of the riparian ecosystem did not show
any long‐term trend in their vegetation health, despite
their potential exposure to historically repeated and in-
tensive use of herbicides.

2) There are a few cases within the Kansas and Nebraska
sites that showed a decline in vegetation health, parti-
cularly during the summer season; however, the spatial

pattern of the trends is such that the exposure to herbi-
cide use may not be a plausible cause.

Finally, we point out a caveat regarding the limitation of
the present study. The NDVI index shows the combined
impacts of all external stressors (e.g., herbicide, pests, water
stress, erosion, deforestation) and does not isolate the im-
pacts of herbicide use. Although we have looked at spatial
pattern in an attempt to isolate the impacts of herbicide,
further work is recommended to conduct field survey and
isolate the impacts of herbicides at finer spatial resolution in
order to corroborate the findings of the present study.
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Table 5. Ecological groups present at each riparian region

Sitea Dominant ecosystem typeb Diversityc Site Dominant ecosystem typeb Diversityc

CO1 F WGPRWS 5 KS2 N WGPFS 8

CO1 N WGPRWS 4 KS3 F WGPFS 7

CO2 F WGPF 5 KS3 N WGPSP 7

CO2 N WGPF 4 KS4 F SGPFF 7

CO3 F WGPRWS 6 KS4 N SGPFF 8

CO3 N WGPRWS 6 MO1 F SGPFF 8

CO4 F WGPF 7 MO1 N SGPFF 9

CO4 N WGPRWS 6 MO2 F SGPFF 7

CO5 F WGPRWS 3 MO2 N SGPFF 6

CO5 N WGPF 3 NE1 F WGPFS 7

IA1 F NCIMBF 11 NE1 N WGPFS 8

IA1 N SGPFF 11 NE2 F WGPFS 8

IA2 F SGPFF 10 NE2 N WGPFS 7

IA2 N SGPFF 6 NE3 F SGPFF 7

KS1 F WGPFS 8 NE3 N SGPFF 7

KS1 N WGPFS 9 NE4 F SGPFF 3

KS2 F WGPFS 8 NE4 N SGPFF 4

F = Far; N = Near; NCIMBF = North‐Central Interior Maple‐Basswood Forest; SGPFF = Southeastern Great Plains Floodplain Forest; WGPF = Western Great
Plains Floodplain; WGPFS = Western Great Plains Floodplains Systems; WGPRWS = Western Great Plains Riparian Woodland and Shrubland; WGPSP =
Western Great Plains Shortgrass Prairie.
aSite names are the combination of state abbreviation and site number (e.g., CO1 stands for Colorado site 1).
bDominant ecosystem type represents the most abundant ecological group at each site.
cDiversity represents the number of ecological groups present at each riparian site.
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Data Accessibility—We used available preprocessed data
for this article. Surface wind speed data were collected from
National Renewable Energy Laboratory (NREL, http://www.
nrel.gov/), whereas monthly wind speed and direction was
downloaded from Automated Surface Observing System
(ASOS) stations (https://mesonet.agron.iastate.edu/).
Landsat NDVI data were acquired from the EROS (Earth
Resources Observation and Science) Science Processing
Architecture (ESPA, https://espa.cr.usgs.gov/) repository.
Tree canopy coverage data were downloaded from the
National Land Cover Database (NLCD, http://www.mrlc.
gov/index.php), and the Gap Analysis Program (GAP, http://
gapanalysis.usgs.gov/) was used for detailed vegetation
type distribution and change analysis.

SUPPLEMENTAL DATA
Figure S1. Flowchart summarizing methods and proce-

dures followed in this study.
Figure S2. Pixel‐based trend analysis of NDVI index for

spring (April and May). NDVI = normalized difference ve-
getation index.
Figure S3. Pixel‐based trend analysis of NDVI index for

summer (June and July). NDVI = normalized difference ve-
getation index.
Figure S4. Sensitivity analysis of cluster‐analysis for

summer NDVI at different selected distances to croplands.
NDVI = normalized difference vegetation index.
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