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Abstract

Air pollution has plagued cities around the world for years. Major metropolitan areas often

install air pollution regulations that vary in stringency over time. Regulations on polluters

are lax on days when the air quality is good. For days with high ambient air pollution, gov-

ernments impose stricter measures to avoid exacerbating the already poor air quality. This

study focuses specifically on the Heavy Air Pollution Emergency Plan (HAPEP) of Chengdu,

China. During the winter months, Chengdu frequently faces periods of sustained, high levels

of ambient particulate matter (PM). Importantly, these high levels of ambient PM are not

ruled by temporary increases in the flow of PM being emitted each day. Instead, it is driven

largely by the weather conditions. For example, during periods of stagnant wind conditions,

the stock of PM grows in the air. This accumulation process continues until the weather

conditions change – i.e., the wind picks up – and the stock of PM in the air is cleared out.

This pollution pattern is representative of the cities which are in a closed basin terrain. The

Chengdu HAPEP requires monitoring short-term PM forecasts. If the predicted PM exceeds

certain concentration and duration thresholds, an air pollution alert is issued. Subsequently,

a set of measures intended to lessen air pollution are imposed, including driving restrictions

and production suspensions.

In the first chapter, I develop a dynamic optimization framework taking into account the

characteristics of PM pollution by directly modeling the stock nature of pollutants and the

cleanup process of pollutants. The model leads to an important conclusion: the optimal

amount of pollution emission should always increase over time if there is no pollutant dis-

persion. Although in reality pollution dissipation is never absolutely zero, this conclusion

indicates an incentive to delay the pollution for social welfare improvement. However, the

variations in expected pollution dissipation should also be incorporated when deciding the

optimal action.
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In the second chapter, I empirically estimate the dynamic process of pollution dissipation by

identifying how daily weather conditions drive the change in ambient PM levels from one day

to the next. I also show that the weather conditions in the near future can be forecasted with

high accuracy. By altering the timing of historical interventions according to both existing

conditions and expected upcoming weather patterns, a 12.1% more PM pollution reduction

and a 25.5% more bronchitis hospital visit reduction can be achieved within a period in 2018.

In the third chapter, I estimate the health effects of PM pollution. I find that pollution

exposures up to six days ago are associated with contemporaneous bronchitis hospitaliza-

tion. I also assess the curvature of the response function of respiratory hospitalization to

PM pollution. I fail to find any convincing evidence that supports the presence of nonlin-

earity. One caveat of this conclusion is that I only consider possible non-linear effects of the

contemporaneous pollution concentration but ignore the possible non-linear effects of the

lagged pollution concentration, due to the complexity of the specification and the difficulty

in identification if both of them are incorporated. Although this simplification might intro-

duce a bias in an unclear way, it is of less concern since prediction instead of specific point

estimates is the focus of this analysis.
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1 Chapter 1: Theoretical Framework

1.1 Introduction

Major metropolitan areas around the world often install air pollution regulations that vary

in stringency over time. Regulations on polluters are lax on days when the air quality is

good. For days with high ambient air pollution, governments impose stricter measures to

avoid exacerbating the already poor air quality. In this chapter, I model the decision of a

planner who aims to maximize the net benefit of pollution. I consider the economic outputs

as the benefit of pollution, and the health hazard as the damage of pollution. I examine how

the stringency of pollution control measures should optimally vary over time. This study

focuses specifically on Chengdu, China. During the winter months, Chengdu frequently faces

periods of sustained, high levels of ambient particulate matter (PM). Importantly, these high

levels of ambient PM are not ruled by temporary increases in the flow of PM being emitted

each day. Instead, it is driven largely by the weather conditions. For example, during periods

of stagnant wind conditions, the stock of PM grows in the air. This accumulation process

continues until the weather conditions change – i.e., the wind picks up – and the stock of

PM in the air is cleared out. This pollution pattern is representative of the cities which are

in a closed basin terrain. I develop a dynamic optimization framework taking into account

the characteristics of PM pollution by directly modeling the stock nature of pollutants and

the cleanup process of pollutants. The model leads to an important conclusion: the opti-

mal amount of pollution emission should always increase over time if there is no pollutant

dispersion. Although in reality pollution dissipation is never absolutely zero, this conclusion

indicates an incentive to delay the pollution for social welfare improvement. However, the

variations in expected pollution dissipation should also be incorporated when deciding the

optimal action.

This chapter makes the following two contributions. First, this study adopts a novel approach
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to model PM as stock pollutants instead of flow pollutants. Traditionally, economists treat

the damage of PM to be instantaneous like other criteria air pollutants such as carbon

monoxide and nitrogen dioxide. Once in the air, these pollutants cause a one-time damage

and then disappear - no further harms are considered. However, due to the basin climate

characteristics of Chengdu, PM can stay in the air for days and cause damages repeatedly.

The novel modeling approach developed in this study is able to better capture the dynam-

ics of formation and dissipation of PM, and thus is a more precise representation of how

nature works. Therefore, my analysis leads to conclusions that challenge the conventional

wisdom and practice of air pollution control. Second, this study contributes to the active

research field of evaluations of urban air pollution regulations. Economists have studied

such policies around the globe, for example, Mexico City (Davis, 2008; Salas, 2010), Beijing

(Viard and Fu, 2015; Zhong et al., 2017; Sun et al., 2014), Delhi (Greenstone et al., 2017),

and Stockholm (Simeonova et al., 2019). These studies mostly seek to establish causal rela-

tionships between specific pollution control measures and ambient air pollution levels with

reduced-form models. However, very little effort has been done to quantitatively examine

the design of urban air pollution management schemes. The dearth of such effort can be

mainly attributed to the challenge of modeling the pollution characteristics of an area. This

study fills in this gap in the literature.

The rest of this chapter proceeds as follows: Section 1.2 provides details on the pollution

regulations and pollution patterns in Chengdu, as well as the data used in this chapter.

Section 1.3 describes the theoretical model and its implications. Section 1.4 summarizes the

findings of this chapter.
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1.2 Background and Data

1.2.1 Air Pollution Regulation in Chengdu

During the past forty years, China has experienced major economic growth. The nominal

per capita GDP skyrocketed from just above $200 to over $10,000. However, air pollution,

a byproduct of economic growth, has become a severe problem in China. National average

air pollution levels are six to eight times higher in China compared to the U.S. (Greenstone

and Hanna, 2014). In 2015, ambient air pollution accounted for approximately 4.2 million

premature deaths globally, almost 40% of which occurred in China (Cohen et al., 2017). The

suspended particulate has an economic cost of about $22.4 billion to China in 2005 (Matus et

al., 2012). Chengdu, the largest city in Western China with a population of over 20 million

and a GDP of more than $300 billion in 2021, has also suffered from excessive air pollu-

tion, especially from particulate matter. According to the Chinese air quality classification,

Chengdu had only 132 days with good air quality in 2013, accounting for merely one-third

of that year. To tackle the problem, the government of Chengdu adopted the Heavy Air

Pollution Emergency Plan (HAPEP) in 2012. There have been three major revisions to

the plan, in 2014, 2017, and 2020. Effective from November 2017 to March 2020, the 2017

HAPEP (referred to as HAPEP hereafter) is the latest version with an extended period of

practice, and is thus the focus of this study. HAPEP targets PM pollution. The local EPA

is required to monitor PM2.5 forecast into future days. Based on the prediction of concen-

tration and duration of PM2.5 pollution, EPA decides whether to issue an emergency alert.

It is worth pointing out that the EPA ignores predictions more than two days ahead. For

example, if on a Monday the forecasted air quality for Tuesday or Wednesday is bad, then

the EPA announces an emergency alert for the corresponding day right away. If, however,

on a Monday the forecasted air quality for Tuesday or Wednesday is good but for Thursday

is bad, the EPA waits until Tuesday to decide the proper action. There are four levels of

emergency alert which are color-coded. The triggering conditions of each level of alert are

3



listed below.

1. If the predicted PM2.5 concentration is higher than 115 micrograms per cubic meter

(µg/m3) for more than 24 hours, a blue alert is issued.

2. If the predicted PM2.5 concentration is higher than 115 µg/m3 for more than 48 hours,

a yellow alert is issued.

3. If the predicted PM2.5 concentration is higher than 115 µg/m3 for more than 72 hours,

and the predicted PM2.5 concentration is higher than 150 µg/m3 for more than 24

hours, an orange alert is issued.

4. If the predicted PM2.5 concentration is higher than 115 µg/m3 for more than 72 hours,

and the predicted PM2.5 concentration is higher than 250 µg/m3 for more than 24

hours; or if the predicted PM2.5 concentration is higher than 350 µg/m3 for more than

6 hours; or if the current PM2.5 concentration is higher than 350 µg/m3 for more than

3 hours, a red alert is issued.

Each level of emergency alert is accompanied by a set of recommended and mandatory mea-

sures to reduce air pollution. Recommended measures are not enforced. As an example,

below is a summary of important mandatory measures of the yellow alert.

• Certain heavy polluting industries are shut down. More firms are subject to mandatory

limited and off-peak production.

• Heavy duty vehicles which produce excessive airborne dust (e.g. refuse trucks for

construction waste) are banned in the central area.

4



• Aged vehicles with lower emission standards are banned in the downtown area from 6

am to 10 pm.

• The standard license plate based driving restriction within the downtown area (7:30

am to 8 pm) is extended to 6 am to 10 pm.

Figure 1 illustrates all the alert events that happened under HAPEP, with colors indicating

the levels of alerts. No alert was ever issued outside the November to February window.

Therefore, I name the period between November of a year and February of the next year a

”pollution season”. We can also see that alerts are always multi-day events. Yellow is the

most common level of alert.

Figure 1: Chengdu HAPEP alert event history from Nov. 2017 to Mar. 2020

1.2.2 Winter Pollution Pattern in Chengdu

It is vital to have a good understanding of the pollution pattern before any modeling effort.

The data shown in this chapter reflect the three pollution seasons from November 2017 to

5



February 2020. Figure 2 shows the daily city-average PM2.5 concentration during three pol-

lution seasons.

Figure 2: Daily city-average PM2.5 concentration (µg/m3) during three pollution seasons

Two characteristics of winter particulate matter pollution in Chengdu are noticed. First,

the level of PM2.5 concentration is rather high. The average PM2.5 concentration during

three pollution seasons is 68.6 µg/m3, corresponding to a US air quality index (AQI) of 157

which falls into the ”unhealthy” category. The worst PM2.5 pollution during three pollution

seasons occurred on January 15, 2018, with a concentration of astonishing 201 µg/m3. This

day had a US AQI reading of 251, accompanied by a ”very unhealthy” air quality category.

Second, the PM2.5 concentration is extremely variable: it can easily double or drop by half

in a few days. For example, the concentration skyrocketed from 38 µg/m3 (January 8, 2018)
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to 94 µg/m3 (January 10, 2018) in two days, while it was able to plummet from 155 µg/m3

(December 20, 2018) to 38 µg/m3 (December 22, 2018) in two days. It is also noted that the

level of PM2.5 pollution in the first pollution season is higher than in the other two. Figure

3 shows the daily station-average PM2.5 concentrations (µg/m3) at individual monitoring

stations during the first pollution season.

In Figure 3, Panel A and B correspond to the daily station-average PM2.5 concentrations

at monitoring stations in downtown and suburban area1, respectively. The symbols on two

sides indicate the relative location of the monitoring stations in the city area2. The red and

blue vertical lines indicate the beginnings and endings of alert events, respectively. Each

time series represents the daily station-average PM2.5 concentration at one monitoring sta-

tion. It is very obvious that no matter where the monitoring stations locate, they have a

very similar level and trend of PM2.5 concentration3. This pattern continues into the next

two pollution seasons, of which the figures can be found in the appendix (Figure 5 and 6 in

Section 1.5.3).

The observed pollution characteristics of Chengdu are well explained by physical science

(Liao et al., 2017; Li et al., 2017; Lv et al., 2015). Chengdu is surrounded by Longmen-

Qionglai Mountains4 and Longquan Mountain on the west and east margin, respectively.

This gives Chengdu a complex and closed basin terrain that generally makes pollutants dif-

ficult to diffuse. The basin climate renders wind and precipitation scarce in winter, slowing

down the cleanup of pollutants. Humidity, which facilitates the formation of certain pol-

1The boundary is defined as the 4th Ring Road.
2The square box represents the city boundary. The dashed and solid circle stand for the 3rd and 4th Ring

Road, respectively. The blue round area represents the downtown area. The red dot shows approximately
where a monitoring station locates.

3As a further confirmation of this observation, Table 2 in the appendix (Section 1.5.2) shows summary
statistics of daily station-average PM2.5 concentration at different monitoring stations during the three
pollution seasons, while Table 3 in the appendix (Section 1.5.2) demonstrates pairwise correlation coefficients
of daily station-average PM2.5 concentration at different monitoring stations during the three pollution
seasons.

4They are part of the eastern edge of the Tibet Plateau.
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Figure 3: Daily station-average PM2.5 concentrations (µg/m3) at individual monitoring stations during
the first pollution season

8



lutants, is relatively high in winter. Additionally, temperature inversion, an atmospheric

phenomenon that inhibits the vertical movement of air mass and thus the dispersion of pol-

lutants, is more frequent in winter. These factors combined with the large population and

high vehicle ownership are the main contributors to the high winter PM pollution level in

Chengdu. Also due to these topographic and climatic conditions, Liao et al. (2017) claim

that PMs tend to accumulate without significant wind or precipitation. This explains the

upsurges of daily city-average PM2.5 concentration observed in Figure 2. However, a stretch

of heavy pollution is ended when strong wind or precipitation happens. The pollutants are

removed drastically from the city, resulting in the plunges of PM2.5 concentration observed

in Figure 2. By analyzing the PM2.5 pollution pathways and sources, Lv et al. (2015) ar-

gue that PM2.5 concentration in Chengdu is more sensitive to wind speed rather than wind

direction. This conclusion is consistent with the geographic and climatic characteristics of

Chengdu, and the similar level and trend of PM2.5 concentration at individual monitoring

stations located in different directions relative to the city center observed in Figure 3. To

further examine the importance of wind speed, I look into the correlation between PM2.5

concentration and wind speed (and its lags). Table 1 demonstrates the pairwise correlation

coefficients between daily city-average PM2.5 concentration and average wind speeds.

PM2.5 Wind (contemporaneous) Wind (1-day Lag) Wind (2-day Lag) Wind (3-day Lag)
PM2.5 1
Wind (contemporaneous) -0.29 1
Wind (1-day Lag) -0.43 0.42 1
Wind (2-day Lag) -0.31 0.08 0.42 1
Wind (3-day Lag) -0.22 -0.03 0.08 0.42 1

Table 1: Pairwise correlation coefficients between daily city-average PM2.5 concentration and average wind
speeds

As shown in Table 1, PM2.5 concentration is highly correlated with wind speed. Specifically,

the contemporaneous PM2.5 concentration has the highest correlation with 1-day lagged

wind speed. This is reasonable since the 1-day lagged wind speed has the most influence

on the contemporaneous PM2.5 concentration among the wind speed of different days. In
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Figure 4, I overlap the 1-day lagged wind speed onto the time series shown in Figure 2. The

grey and orange time series represents the daily city-average PM2.5 concentration and 1-day

lagged average wind speed, respectively. The patterns of PM2.5 concentration and 1-day

lagged wind speed align well with each other, which is consistent with the aforementioned

conclusion from physical science that wind speed is the main driver of variation in PM2.5

concentration. Precipitation, however, is very rare during these three pollution seasons -

the average daily precipitation is only 0.01 inches. December 28, 2018 and November 24,

2019 have the most precipitation at 0.22 inches5. This level of rainfall is unlikely to have a

meaningful impact on PM2.5 concentration.

Figure 4: Daily city-average PM2.5 concentration and 1-day lagged average wind speed during three
pollution seasons

5Light rain is conventionally defined as precipitation that is less than 2.4 inch/day
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To sum up, the physical science and evidence from data suggest the following PM pollution

pattern: without significant wind, the PMs accumulate and mix well in the whole city area.

An episode of heavy pollution is interrupted or ended by a ”removal process” caused by wind.

Contrary to the conventional wisdom that the damage of PMs is instantaneous, winter PM

pollution in Chengdu should be treated as a temporary stock. PMs emitted earlier stay in

the atmosphere longer, thus causing more damage compared to the PMs emitted closer to

a ”removal process”. A focus on welfare then dictates that the optimal amount of emission

should account for the time-varying marginal cost of pollution emissions. Moreover, since

the PMs form a temporary pollution stock over days, the optimal action should incorporate

its consequences in the future. Therefore, the static optimization framework will be insuffi-

cient in this context. Modeling the pollution control problem in Chengdu calls for a dynamic

framework.

1.2.3 Data

The time span of the data in this chapter is from November 2017 to February 2020, pollution

seasons only. Historical daily city-average air quality data were retrieved from aqistudy.cn

which include AQI and concentrations of PM2.5. Historical daily station-average PM2.5

concentrations at individual monitoring stations were downloaded from aqicn.org. Official

documentation of historical HAPEP emergency alert events indicating the starting and end-

ing time of each event was acquired from Chengdu EPA.

1.3 Theoretical Framework

In this section, I develop a deterministic theoretical framework to model the decision of the

pollution control planner, who aims to maximize the net benefit of pollution.
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1.3.1 Basic Assumptions

Below are the basic assumptions of the modeling approach.

1. Pollution causes damages and brings benefits (e.g. economic outputs).

2. The planner aims to maximize the net benefit of pollution.

3. The time step is a day and the time horizon is infinity.

4. The planner can perfectly predict future meteorological/weather conditions.

Assumption 4 is not very unrealistic. In Chapter 2, I show empirically that the near fu-

ture weather conditions in Chengdu can be predicted with high accuracy. The rest of the

assumptions are self-explanatory. In this setup, the planner decides the optimal amount of

pollution emission for the future days according to predicted weather conditions.

1.3.2 Functions

I define a social benefit function of pollution B(ct), where ct is the amount of pollution

emitted on day t. I assume B(ct) is non-negative, and strictly increasing in ct. I also define

a social damage function of pollution D(ct + st), where st denotes the pollution stock at the

beginning of day t. I assume D(ct + st) is non-negative, and strictly increasing in (ct + st).

The benefit and damage of pollution are assumed to be additively separable across time.

1.3.3 Optimization Problem

Below is the optimization problem of the planner.
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Max
ct

∞∑
t=0

δt[B(ct)−D(ct + st)] s.t. st+1 = (1− rt)(ct + st)

ct ≥ 0

st ≥ 0

δ, rt ∈ [0, 1]

rt denotes the fraction of pollution that dissipates on day t (referred to as ”dissipation fac-

tor” hereafter), which is exogenously determined by meteorological conditions. δ denotes

the discount factor. For simplicity of derivation, I define f(ct, st) = B(ct) −D(ct + st) and

g(ct, st) = st+1 = (1− rt)(ct + st). Now we can write the sequence problem as below.

Max
ct

∞∑
t=0

δtf(ct, st) s.t. st+1 = g(ct, st)

ct ≥ 0

st ≥ 0

δ, rt ∈ [0, 1]

Then I define a value function V at each t.
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V (st) = Max
ct

∞∑
t=0

δtf(ct, st) s.t. st+1 = g(ct, st)

According to Bellman’s principle of optimality, the solutions to the above sequence problem

correspond to the solutions to the following functional equation.

V (st) = Max
ct

[f(ct, st) + δ · V (g(ct, st))] (1)

1.3.4 Solving the Model

The first order condition of (1) is

∂f(ct, st)

∂ct
+ δ · ∂V (g(ct, st))

∂st+1

· ∂g(ct, st)

∂ct
= 0 (2)

Rearrange Equation (2), we have

∂V (g(ct, st))

∂st+1

= −
∂f(ct,st)
∂ct

δ · ∂g(ct,st)
∂ct

(3)

By envelope theorem, we have
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∂V (st)

∂st
=
∂f(ct, st)

∂st
+ δ · ∂V (g(ct, st))

∂st+1

· ∂g(ct, st)

∂st
(4)

Plug Equation (3) into Equation (4).

∂V (st)

∂st
=
∂f(ct, st)

∂st
− ∂f(ct, st)

∂ct
·
∂g(ct,st)
∂st

∂g(ct,st)
∂ct

(5)

Combine Equation (2) and Equation (5), we have

∂f(ct, st)

∂ct
+ δ · [∂f(ct+1, st+1)

∂st+1

− ∂f(ct+1, st+1)

∂ct+1

·
∂g(ct+1,st+1)

∂st+1

∂g(ct+1,st+1)
∂ct+1

] · ∂g(ct, st)

∂ct
= 0 (6)

Now we substitute in f(ct, st) = B(ct)−D(ct + st) and g(ct, st) = (1− rt)(ct + st).

B′(ct)−
∂D(ct + st)

∂ct
+δ · [−∂D(ct+1 + st+1)

∂st+1

−(B′(ct+1)−
∂D(ct+1 + st+1)

∂ct+1

)] ·(1−rt) = 0 (7)

Rearrange Equation (7), we have

δ(1−rt)B′(ct+1)−B′(ct) = δ(1−rt)(
∂D(ct+1 + st+1)

∂ct+1

− ∂D(ct+1 + st+1)

∂st+1

)− ∂D(ct + st)

∂ct
(8)

I assume δ = 1 hereafter, which means there is no discounting for the future. Note that this

is most likely to be a valid assumption in the context of HAPEP as a pollution season only

lasts four months and there is no particular reason why the planner would put a higher value

on the present than the near future. Then Equation (8) becomes
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(1− rt)B′(ct+1)−B′(ct) = (1− rt)(
∂D(ct+1 + st+1)

∂ct+1

− ∂D(ct+1 + st+1)

∂st+1

)− ∂D(ct + st)

∂ct
(9)

It is impossible to determine if ct+1 or ct is larger according to Equation (9) without further

information. However, we can evaluate several extreme cases.

Case 1: rt = 1 ∀t

According to Equation (9), we have

B′(ct) =
∂D(ct + st)

∂ct

In this case, I assume full dissipation for each period, thus breaking the stock nature of

the pollutant. The dynamic optimization problem boils down to a classic static optimiza-

tion problem where the planner chooses the optimal emission quantity which equates the

marginal benefit and marginal damage of pollution in each period. Since there is no carry-

over of pollution stock, the optimal quantity of emission in each period is the same.

Case 2: rt = 0 ∀t

According to Equation (9), we have

B′(ct+1)−B′(ct) = (
∂D(ct+1 + st+1)

∂ct+1

− ∂D(ct+1 + st+1)

∂st+1

)− ∂D(ct + st)

∂ct

SinceD(ct+st) is strictly increasing in ct, we know−∂D(ct+st)
∂ct

< 0. And because ∂D(ct+1+st+1)
∂ct+1

=

∂D(ct+1+st+1)
∂st+1

, we have
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B′(ct+1) < B′(ct)

Due to the strict concavity of the benefit function, it must be that ct+1 > ct ∀t. In this case,

I assume no dissipation, which gives rise to an increasing pollution stock. The stock nature

leads to a very important conclusion: without pollutant dispersion, the optimal amount of

pollution emission should always increase over time.

In reality, the dissipation factor is never zero. Even without any wind, pollution dispersion

happens to some extent. Therefore, the scenario that the dissipation factor is always zero

in Case 2 is not realistic. However, this case provides an important intuition that pollution

emitted later creates less damage due to its shorter presence in the air. This connects to the

actual setting of this study because days with very high dissipation factors exist during and

after the pollution season when almost all pollutants in the air are removed. In expectation

of these days, there is an incentive to delay pollution closer to the removal process in order

to improve social welfare, although it is unclear how this incentive exactly compares to the

incentive driven by expected increases and decreases in dissipation factors.

1.4 Conclusions

Air pollution has plagued major cities around the world for years. In this chapter, I develop

a dynamic programming framework to model the decision of a planner who aims to maximize

the net benefit of air pollution in Chengdu, China. This framework takes into account the

characteristics of PM pollution by directly modeling the stock nature of pollutants and the

cleanup process of pollutants. The model provides important policy implications. If there

is no pollutant dispersion, the optimal amount of pollution emission should always increase

over time. Although in reality pollution dissipation is never absolutely zero, this conclusion
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indicates an incentive to delay the pollution for social welfare improvement. However, the

variations in expected pollution dissipation should also be incorporated when deciding the

optimal action. When pollutants completely dissipate in each period, i.e. there is no carry-

over of pollution stock, the dynamic framework is equivalent to the classic static optimization

model, matching the conventional wisdom of pollution control.

This theoretical model represents an ideal scenario where the planner can update her knowl-

edge about future weather conditions on a daily basis and the planning horizon is infinite.

In Section 1.5.1, I present an alternative modeling approach where the planner is required

to make weekly planning in advance to ensure the practicability of the regulations. With

similar assumptions, the alternative modeling approach reach the same conclusions.

1.5 Appendix

1.5.1 Alternative Modeling Approach

Basic Assumptions

Below are the basic assumptions of the modeling approach.

1. Pollution causes damages and brings benefits (e.g. economic outputs).

2. The planner aims to maximize the net benefit of pollution over a planning horizon.

3. The time step is a day and the time horizon is a week.

4. The planner can perfectly predict meteorological/weather conditions within a planning

horizon.

5. The planner takes into account the damage of scrap pollution that remains at the

terminal time.
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Assumption 3 ensures the practicality of the optimal policy because the planning horizons

and periods align well with human activity cycles (i.e. weeks and days). Assumption 5

arises from the fact that the planner takes into account the damage of residual pollution

that will realize beyond the current planning horizon. The rest of the assumptions are self-

explanatory. In this setup, the planner decides the optimal amount of pollution emission of

each day in the upcoming week according to predicted weather conditions.

Functions

I define a social benefit function of pollution B(ct), where ct is the amount of pollution emit-

ted on day t. I assume B(ct) is non-negative, twice continuously differentiable, strictly in-

creasing in ct, and strictly concave in ct. The concavity comes from the diminishing marginal

return of pollution. I also define a social damage function of pollution D(ct + st), where st

denotes the pollution stock at the beginning of day t. I assume D(ct + st) is non-negative,

twice continuously differentiable, strictly increasing in (ct+st), and strictly convex in (ct+st).

The convexity assumes the marginal damage of pollution is increasing in pollution level. The

benefit and damage of pollution are assumed to be additively separable across time. I also

define a scrap damage function of pollution F (sT , T ). I assume F (sT , T ) is non-positive,

twice continuously differentiable, strictly decreasing in sT , and strictly concave in sT .

Optimization Problem

Below is the optimization problem of the planner.
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Max
ct

T−1∑
t=0

B(ct)−D(ct + st) + F (sT , T ) s.t. st+1 = (1− rt)(ct + st)

s0 given

sT free

T fixed

ct ≥ 0

st ≥ 0

rt ∈ [0, 1]

T represents the terminal time of a planning horizon. rt denotes the fraction of pollution

that dissipates on day t (referred to as ”dissipation factor” hereafter), which is exogenously

determined by meteorological conditions. The planner aims to maximize the net benefit of

pollution subject to state transition and a number of constraints: The initial pollution stock

is known to the planner; There is no constraint on the terminal pollution stock; T is fixed

because a planning horizon is a week; The rest of constraints are self-explanatory. Note that

discounting is trivial and thus ignored in this framework because the planning horizon is

only a week.

Necessary Conditions

The Hamiltonian of the optimization problem is:

H(ct, st, πt) = B(ct)−D(ct + st) + πt[ct − rt(ct + st)]

πt is the co-state variable of day t. The optimal solution of this dynamic model must satisfy
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the following conditions.

∂H

∂ct
= B′(ct)−

∂D(ct + st)

∂ct
+ πt(1− rt) = 0 (10)

−∂H
∂st

=
∂D(ct, st)

∂st
+ πtrt = πt − πt−1 (11)

∂H

∂πt
= ct − rt(ct + st) = st+1 − st (12)

πT =
∂F (sT , T )

∂sT
(transversality condition) (13)

We can check the second-order condition. According to my assumptions of benefit and dam-

age functions, we have ∂2H
∂c2t

= B′′(ct)− ∂2D(ct,st)

∂c2t
< 0. Therefore, we do have a maximum. The

transversality condition comes from the fact that sT is free and T is fixed, and the planner

considers the scrap damage of pollution.

Path of Co-state Variable πt

With the above conditions, we can trace out the path of πt. Rearrange Equation (11):

πt−1 = πt(1− rt)−
∂D(ct + st)

∂st
(14)

With Equation (13) and (14), we have
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πT =
∂F (sT , T )

∂sT

πT−1 = (1− rT )
∂F (sT , T )

∂sT
− ∂D(ct + st)

∂st
|t=T

πT−2 = (1− rT )(1− rT−1)
∂F (sT , T )

∂sT
− (1− rT−1)

∂D(ct + st)

∂st
|t=T −

∂D(ct + st)

∂st
|t=T−1

πT−3 = (1− rT )(1− rT−1)(1− rT−2)
∂F (sT , T )

∂sT
− (1− rT−1)(1− rT−2)

∂D(ct + st)

∂st
|t=T −

(1− rT−2)
∂D(ct + st)

∂st
|t=T−1 −

∂D(ct + st)

∂st
|t=T−2

πT−4 = ...

Therefore, we have:

πt =
∂F (sT , T )

∂sT
·

T∏
u=t+1

(1− ru)−
T∑

u=t+1

[
∂D(cu + su)

∂su
·
u−1∏
v=t+1

(1− rv)] (15)

u and v are alternative time subscripts. According to my assumptions, ∂F (sT ,T )
∂sT

< 0,

1 − rt > 0, ∂D(ct+st)
∂st

> 0. Therefore, πt < 0. It means that during a planning horizon

the ”shadow price” of pollution stays negative, or damage of marginal pollution stays posi-

tive. Equation (15) indicates that the current damage of marginal pollution comes from two

sources: ”depreciated” scrap damage of pollution (the first term), and the ”depreciated”

marginal damage of pollution from future periods (the second term). ”Depreciation” refers

to the dissipation of pollution in this context. We can also write Equation (15) in its differ-

ence form:

πt−πt−1 = rt·{
∂F (sT , T )

∂sT
·

T∏
u=t+1

(1−ru)−
T∑

u=t+1

[
∂D(cu + su)

∂su
·
u−1∏
v=t+1

(1−rv)]}+
∂D(ct + st)

∂st
(16)
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It is impossible to determine if πt or πt−1 is larger according to Equation (16) without more

information. Intuitively, as time moves forward in a planning horizon, the scrap damage of

pollution is subject to less ”depreciation”, thus contributing more to the co-state variable.

However, there is also less ”depreciated” marginal damage from the future periods, thus

contributing less to the co-state variable. Therefore, we are not able to sign the left side of

Equation (16) without knowing which effect dominates.

Path of Pollution Emission ct

The optimal path of pollution emission is of the top interest. Rearrange Equation (10) and

(14), we have

B′(ct)−
∂D(ct + st)

∂ct
= −πt(1− rt) (17)

−πt(1− rt) = −πt−1 −
∂D(ct + st)

∂st
(18)

Combine Equation (17) and (18), we have

B′(ct) = −πt−1 (19)

The implication of Equation (19) is clear: the optimal path of pollution requires that in

each period the planner selects the amount of emission (ct) such that the marginal benefit of

pollution equals the damage of marginal pollution in the previous period, which, according

to Equation (15), consists of the ”depreciated” marginal scrap damage, the ”depreciated”

marginal damage of pollution from future periods, and the marginal damage of pollution

from the current period. Next, I investigate how the optimal ct change over time. Let

n ∈ {1, 2, ..., T − 1}. We can write Equation (19) in its difference form:

23



B′(cn+1)−B′(cn) = πn−1 − πn (20)

Plug Equation (16) into Equation (20), we have

B′(cn+1)−B′(cn) = rn·{
T∑

u=n+1

[
∂D(cu + su)

∂su
·
u−1∏

v=n+1

(1−rv)]−
∂F (sT , T )

∂sT
·

T∏
u=n+1

(1−ru)}−
∂D(cn + sn)

∂sn

(21)

It is impossible to determine if cn+1 or cn is larger according to Equation (21) without more

information. However, we can evaluate several extreme cases.

Case 1: rn = 1 ∀n

According to Equation (10), we have

B′(cn) =
∂D(cn + sn)

∂cn

Moreover, according to the state transition equation, we know sn = 0 ∀n. Now Equation

(21) becomes:

B′(cn+1)−B′(cn) =
∂D(cn+1 + sn+1)

∂sn+1

|sn+1=0 −
∂D(cn + sn)

∂sn
|sn=0 = 0

So B′(cn+1) = B′(cn) must always hold. Since B′′(·) < 0, thus cn+1 = cn ∀n.

In this case, I assume full dissipation for each period, thus breaking the stock nature of

the pollutant. The dynamic optimization problem boils down to a classic static optimiza-

tion problem where the planner chooses the optimal emission quantity which equates the

marginal benefit and marginal damage of pollution in each period. Since there is no carry-

over of pollution stock, the optimal quantity of emission in each period is the same.
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Case 2: rn = 0

According to Equation (21), we have

B′(cn+1)−B′(cn) = −∂D(cn + sn)

∂sn

Since the damage function is strictly increasing in its arguments, ∂D(cn+sn)
∂sn

> 0. So we have

B′(cn+1)−B′(cn) < 0, and thus B′(cn+1) < B′(cn). Due to the strict concavity of the benefit

function, it must be cn+1 > cn.

I assume no dissipation for a specific period in this case. The result indicates that if there is

no pollution dispersion in the previous period, the optimal amount of emission of the current

period should be higher than the previous period.

Case 3: rn = 0 ∀n

We can generalize the previous case by assuming rn = 0 ∀n. Then cn+1 > cn must always

hold.

In this case, I assume no dissipation, which gives rise to an increasing pollution stock. The

stock nature leads to a very important conclusion: without pollutant dispersion, the optimal

amount of pollution emission should always increase over time.

Concluding Remarks

In this section, I develop an optimal control framework to model the decision of the pol-

lution control planner. Compared to the dynamic programming framework in Section 1.3,

this approach places greater emphasis on practicality - the planning horizons align well with

human activity cycles (i.e. weeks). Implementation of the suggested policy is relatively

straightforward: the planner makes decisions on ct for the upcoming week according to
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the predicted rt reported by EPA. Depending on the calculated ct, corresponding day-by-

day measures (or no measure) are announced to the public before the beginning of a new

week. The two different approaches reach the same conclusions. Although it is noted that

the optimal control approach requires stronger assumptions of the curvature of the functions.

1.5.2 Tables

For a clear presentation, acronyms instead of full names of monitoring stations are displayed

in the tables of this section.
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Station Obs Mean Std. Dev. Min Max
cd 358 148.9 33.9 61 250
ct 291 143.1 40.3 30 296
cy 210 138.9 32.7 57 212
cz 357 147.6 44.0 40 308
ds 358 141.6 39.8 29 296
hb 118 128.9 34.5 42 195
hy 357 138.9 35.0 31 252
jb 237 131.5 33.8 47 205
jh 268 132.9 40.7 44 275
jp 358 145.6 35.8 42 256
jy 118 126.0 33.8 59 194
jz 357 131.5 39.0 21 283
ld 352 142.2 38.1 42 272
lj 118 135.5 35.8 52 219
lq 358 133.3 36.0 33 243
pp 291 146.7 35.8 42 256
pz 357 141.9 34.7 56 274
qb 357 145.0 39.8 44 265
sl 263 150.1 40.4 57 286
sp 358 141.6 37.9 38 275
sx 169 130.4 32.5 39 202
us 221 144.0 32.3 61 298
wj 356 150.2 41.3 47 326
wr 265 130.4 36.7 33 236
xj 268 140.9 44.4 47 352
xm 150 142.0 31.7 66 216
yl 298 138.1 37.6 23 240
yn 148 139.4 35.1 53 226

Table 2: Summary statistics of daily station-average PM2.5 concentrations at different monitoring stations
during the three pollution seasons
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1.5.3 Figures
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Figure 5: Daily station-average PM2.5 concentrations at individual monitoring stations during the second
pollution season
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Figure 6: Daily station-average PM2.5 concentrations at individual monitoring stations during the third
pollution season
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2 Chapter 2: Empirics

2.1 Introduction

In this chapter, I first test how well the historical air quality data can be fitted to the state

transition equation, detailed in Section 2.2. This exercise helps assess the approach to model-

ing the pollution turnover process presented in Chapter 1. By estimating the state transition

equation, historical dissipation factors can be back-calculated. Next, I empirically estimate

the accuracy of weather forecasts in Chengdu by comparing the predicted and realized me-

teorological conditions from the same weather station. Since I assume the dissipation factor

is a function of weather conditions, the accuracy of forecasted dissipation factors can also

be estimated. If dissipation factors in the near future can be predicted relatively accurately,

then the pollution control strategy based on both existing conditions and expected upcoming

weather patterns is practical. This analysis is documented in Section 2.3. Lastly, I select a

period in history and demonstrate the gains that could have been achieved by altering the

timing of historical interventions, reported in Section 2.4. In Section 2.5, I summarize the

findings of this chapter.

2.2 Estimation of the State Transition Equation

2.2.1 Data

The time span of the data in this section is from November 2017 to February 2020, pol-

lution seasons only. Historical daily city-average PM2.5 concentration was retrieved from

aqistudy.cn, which is the simple average of hourly PM2.5 concentration readings from the

local EPA. Historical meteorological conditions from the Shuangliu and Wenjiang weather

station were obtained from National Oceanic and Atmospheric Administration (NOAA). Ta-
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ble 4 below shows the summary statistics of the data used in this section6.

Variable Obs Mean Std. Dev. Min Max
Daily city-average PM2.5 concentration (µg/m3) 352 68.6 33.6 9 201
Daily average wind speed (knots) 355 2.61 1.19 0.7 12.5
Daily maximum wind gust (knots) 355 5.64 2.01 2.2 16.5
Daily precipitation amount (inches) 346 .0144 .0369 0 0.22
Daily average temperature (Fahrenheit) 355 48.5 6.06 34.4 65.05
Daily high temperature (Fahrenheit) 355 54.9 7.14 37.05 75.4
Daily low temperature (Fahrenheit) 355 41.6 6.87 24.7 59.9
Daily average atmospheric pressure (mb) 355 958 4.69 946.4 971
Daily average dew point (Fahrenheit) 355 41.0 6.92 20.9 58.1

Table 4: Summary statistics of daily city-average PM2.5 concentration and meteorological variables

2.2.2 Non-linear Least Square Estimation

Equation (22) shows the state transition equation again7.

st+1 = (1− rt)(ct + st) (22)

In Equation (22), daily city-average PM2.5 concentration can serve as the proxy for st+1 and

st
8. rt is assumed to be a function of only contemporaneous meteorological conditions. Al-

6There are two weather stations within the city boundary, the Shuangliu station and Wenjiang station.
Whenever possible, I use the average of readings at these two stations to represent the whole city. For wind
direction, hourly wind speed, daily precipitation amount, and daily average atmospheric pressure, however,
the Shuangliu station has either no observation or too many missing values. In these cases, I simply use the
observations at the Wenjiang Station. For this reason, daily average wind speed, which includes information
from the Shuangliu station as well, is not simply a linear combination of hourly wind speed.

7In reality, the pollution dissipation on day t does not fully operate on ct as it is the pollution emitted
during day t and thus has less than a full day of dissipation. On the other hand, dissipation is not necessarily
constant throughout the day. To account for these two factors, we can add a multiplier γ and the state
transition equation becomes st+1 = (1 − 1

γ rt)ct + (1 − rt)st, where γ ≥ 1. However, the exact value of γ
is unknown. It can be explored but such analysis is beyond the scope of this chapter. We might expect γ
to be different from one, which will bias the coefficients but will not affect the prediction in the empirical
equations I explore in this chapter. Since prediction is the only concern of this chapter, the exact value of
γ has no implications on the conclusions. Therefore, I keep using the original state transition equation (i.e.
γ = 1) as in Equation (22) in the subsequent analysis.

8Note that this is an imperfect measure of the pollution stock at the beginning of a day for two reasons.
First, ct is distributed throughout day t. So the simple average of hourly PM2.5 concentrations only incor-
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though past meteorological conditions might also affect the current pollution stock turnover

process, such effect is already captured by the contemporaneous pollution stock (st). ct,

however, is unobserved. Conceptually, ct should be largely determined by factors related to

human activity. It is convenient to treat ct as a constant if it has little variation so that the

estimation can be greatly simplified. To see if this is feasible, a simple analysis is performed

to assess the variability of ct. In Table 5 below, I present two pairs of comparisons as exam-

ples.

Date Weekday/ Treatment Contemporaneous Contemporaneous 1-day 2-day Contemporaneous 1-day Incremental
Weekend Status Temperature Wind Lagged Wind Lagged Wind Precipitation Lagged Precipitation PM2.5

Dec. 15, 2018 weekend 1 43.0 1.7 1.1 1.5 0 0 -15
Dec. 16, 2018 weekend 1 44.0 1.6 1.7 1.1 0 0 +38
Nov. 22, 2017 weekday 0 50.0 2.9 2.9 2.5 0 0 -14
Nov. 23, 2017 weekday 0 45.1 2.6 2.9 2.9 0 0 +36

Table 5: Comparisons of similar days

Within each pair, I compare the incremental (daily city-average) PM2.5 concentration which

is defined as the difference of the PM2.5 concentration between the next day and the current

day. Note that the incremental PM2.5 concentration is not equivalent to ct because incre-

mental PM2.5 concentration is jointly determined by both ct and pollution dissipation of day

t. Therefore, I compare days with similar important meteorological conditions to somewhat

control for the differences in dissipation. As human activity should be the main driver of

ct, I compare the days of the same month-of-year, in the same pollution season, with the

same weekday/weekend and treatment (HAPEP alert) status of day t (=1 if treated, =0

otherwise). Even conditional on these factors, however, the comparisons of similar days

show dramatically different incremental PM2.5 concentrations, suggesting treating ct as a

constant is inappropriate. I thus treat ct as a function of variables related to human activity.

Below is the econometric model I estimate.

porates part of ct. For example, if we assume ct is uniformly distributed during day t, then only half of ct
is incorporated into this measure. Second, dissipation is not necessarily constant throughout the day, which
also biases this measure.
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st+1 = g(weathert) ∗ [h(activityt) + st] + εt+1 (23)

In Equation (23), (1 − rt) is estimated by g(·) while ct is estimated by h(·). weathert is

a vector of contemporaneous meteorological conditions. activityt is a vector of time fixed

effects and treatment status that are likely to be correlated with daily human activity. Ac-

cording to the definition of rt, we have rt ∈ [0, 1], and thus (1 − rt) ∈ [0, 1]. To confine the

estimated rt to be on the unit interval, it is necessary to choose a specific functional form

for g(·). In Chapter 1, I showed that wind speed is the main driver of pollution dispersion.

The distribution of wind speed which is illustrated in Figure 7.

Figure 7: Distribution of daily city-average wind speed during three pollution seasons

For easier interpretation, I choose a logit functional form instead of the probit function. I

treat h(·) as a linear function for simplicity. Below is the econometric model with explicit

functional forms and variables.
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PM2.5t+1 =
exp(α1 + βrXt)

1 + exp(α1 + βrXt)
∗ [(α2 + βfTt + βs · treatt) + PM2.5t] + εt+1 (24)

In Equation (24), PM2.5t denotes the daily city-average PM2.5 concentration of day t. Xt

stands for a vector of meteorological conditions of day t, including daily average wind direc-

tion dummy variables9, daily average wind speed, daily maximum wind gust, hourly wind

speed, daily precipitation amount, daily average temperature, daily high and low temper-

ature, daily average atmospheric pressure, and daily average dew point. Tt represents a

vector of time fixed effects, including day-of-week dummy variables, workday dummy vari-

able, month-of-year dummy variables, and pollution season dummy variables. treatt denotes

the treatment status of day t. ε is the error term. I use the non-linear least square tech-

nique to estimate Equation (24). The regression returns an R-squared value of 0.964 and an

adjusted R-squared value of 0.956. This suggests an excellent fit of the model and lends sup-

port to the setup of the state transition equation. Table 6 shows part of the regression results.

Variable OLS Estimate

Maximum wind speed
-.10**
(.04)

First pollution season
10.76**
(4.61)

Second pollution season
.52

(3.83)

Table 6: Partial results from OLS estimation of Equation (24)

In Table 6, */**/*** indicates statistical significance at the 10/5/1 percent levels. Standard

errors are shown in parentheses. Despite obvious multicollinearity between weather vari-

ables, the point estimation of daily maximum wind gust is both statistically significant at

level 5 percent and has an expected negative sign. The regression results also show that the

9The detailed method of calculating daily average wind direction is described in the appendix (Section
2.6.1).
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first pollution season dummy variable is significantly different from the third pollution sea-

son dummy variable, while the second pollution season dummy variable is not significantly

different from the third pollution season dummy variable. This is consistent with previous

observations in Chapter 1 that the pollution level in the first pollution season is higher than

in the other two.

It is also important to learn how much variation in the next day’s PM2.5 concentration is

explained by either weather variables or contemporaneous PM2.5 concentration in the con-

text of Equation (24). The central role of rt in the design of the theoretical model will be

challenged if the contemporaneous PM2.5 concentration alone explains most of the varia-

tion in the next day’s PM2.5 concentration. In other words, if Equation (24) is simply an

AR(1) model then the modeling approach in Chapter 1 should be revised. To this end, I

first set βr = 0 in Equation (24) and estimate the restricted model as in Equation (25) with

non-linear least squares. The purpose is to see how much variation in the next day’s PM2.5

concentration can be explained without meteorological conditions.

PM2.5t+1 =
exp(α1)

1 + exp(α1)
∗ [(α2 + βfTt + βs · treatt) + PM2.5t] + εt+1 (25)

The regression of Equation (25) yields an R-squared value of 0.634 and an adjusted R-squared

value of 0.618. Then I regress the residual of the above regression, representing the variation

in the next day’s PM2.5 concentration that is not explained by the right-hand side variables

(i.e. contemporaneous PM2.5 concentration, time fixed effects, and treatment status), on

meteorological variables with OLS, as in Equation (26). The point is to see how much of the

remaining variation from the regression of Equation (25) can be explained by meteorological

conditions.
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Residual 25t+1 = β0 + βrXt + et+1 (26)

Residual 25 denotes the residual of the regression of Equation (25). e denotes the error

term. The regression of Equation (26) returns an R-squared value of 0.294 and an adjusted

R-squared value of 0.260. Next, I replace the PM2.5t of Equation (24) with the mean of

daily city-average PM2.5 concentration and estimate Equation (27) with non-linear least

squares. The purpose is to see how much variation in the next day’s PM2.5 concentration

can be explained without contemporaneous PM2.5 concentration.

PM2.5t+1 =
exp(α1 + βrXt)

1 + exp(α1 + βrXt)
∗ [(α2 + βfTt + βs · treatt) + PM2.5t] + εt+1 (27)

The regression of Equation (27) yields an R-squared value of 0.936 and an adjusted R-squared

value of 0.924. Compared to the R-squared value of 0.634 and adjusted R-squared value of

0.618 of the regression of Equation (25), this is already clear evidence that the dissipation

factor explains more variation in the next day’s PM2.5 concentration than the contempo-

raneous PM2.5 concentration does. To complete this exercise, I regress the residual of the

above regression, representing the variation in the next day’s PM2.5 concentration that is not

explained by the right-hand side variables (i.e. meteorological conditions, time fixed effects,

and treatment status), on contemporaneous PM2.5 concentration with OLS. The point is

to see how much of the remaining variation from the regression of Equation (27) can be

explained by contemporaneous PM2.5 concentration.

Residual 27t+1 = β0 + βp · PM2.5t + dt+1 (28)
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Residual 27 denotes the residual of the regression of Equation (27). d denotes the error

term. The regression of Equation (28) returns an R-squared value of 0.131 and an adjusted

R-squared value of 0.129. Table 7 summarizes the results of this exercise.

Explanatory Variables R2 Adjusted R2

Regression (26) weather variables 0.294 0.260
Regression (28) contemporaneous PM2.5 concentration 0.131 0.129

Table 7: Comparisons of the regression of Equation (26) and (28)

By the fact that the R-squared value and adjusted R-squared value of the regression of

Equation (26) are higher than those of the regression of Equation (28), it is safe to con-

clude that the weather variables explain a significant amount of variation in leading PM2.5

concentration, lending support to the central role of rt in pollution stock turnover. As a

robustness check, I test the hypothesis that βr are jointly zero. I reject this null hypothesis

at the p ≤ 5% level.

2.2.3 Estimated Historical rt

With the estimation of Equation (24), I generate an estimated dissipation factor variable

according to Equation (29) below.

r̂t = 1− exp(α̂1 + β̂rXt)

1 + exp(α̂1 + β̂rXt)
(29)

Figure 8 is a histogram of the estimated dissipation factors with a kernel density estimate.

The estimated dissipation factors are bounded between zero and one by construction. The
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Figure 8: Histogram of estimated dissipation factors with a kernel density estimate

kernel density estimate shows a peak at the lower end and a long tail extending to the higher

end, which is consistent with the pattern of daily average wind speed observed in Figure 7.

I plot the estimated dissipation factors and city-average PM2.5 concentration over time in

Figure 9.

2.2.4 Simplifying the Estimation

In Section 2.2.2, I have shown that Equation (24) does well in explaining the next day’s

PM2.5 concentration. In this section, I assess the performance of parsimonious models with

fewer explanatory weather variables. As we have learned in Chapter 1, wind speed is the

most important driver of the variation in PM2.5 concentration, I first explore a model where

only variables related to wind speed are included in g(·). Next, I investigate an even more

parsimonious model which has daily average wind speed as the only explanatory variable for

rt. Equations (30) and (31) are simplified models.
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Figure 9: Estimated dissipation factors and city-average PM2.5 concentration during three pollution seasons

PM2.5t+1 =
exp(α1 + βwd · wdspt + βmx ·mxspdt + βh · hwdspt)

1 + exp(α1 + βwd · wdspt + βmx ·mxspdt + βh · hwdspt)
∗ (30)

[(α2 + βfTt + βs · treatt) + PM2.5t] + εt+1

PM2.5t+1 =
exp(α1 + βwd · wdspt)

1 + exp(α1 + βwd · wdspt)
∗ [(α2 + βfTt + βs · treatt) + PM2.5t] + εt+1 (31)

In Equation (30) and (31), wdspt denotes daily average wind speed of day t. mxspdt denotes

maximum wind gust of day t. hwdspt denotes hourly wind speeds of day t. I refer to

Equation (24), (30), and (31) as the full, restricted, and simple model, respectively. Table 8

41



demonstrates a comparison of weather variables included in each model.

Full Restricted Simple
Daily average temperature yes no no
Daily high temperature yes no no
Daily low temperature yes no no
Daily average atmospheric pressure yes no no
Daily average dew point yes no no
Daily precipitation amount yes no no
Daily average wind direction yes no no
Hourly wind speed yes yes no
Daily maximum wind gust yes yes no
Daily average wind speed yes yes yes

Table 8: Comparison of weather variables included in the full, restricted, and simple model

I use the non-linear least square technique to estimate the restricted and simple model. Ta-

ble 9 shows a comparison of the goodness of fit of these three models.

Full Restricted Simple
Obs 322 331 343
R2 0.964 0.956 0.944
Adjusted R2 0.956 0.949 0.941

Table 9: Comparison of goodness of fit of the full, restricted, and simple model

The goodness of fit of the model only deteriorates marginally as explanatory weather vari-

ables are removed - even the simple model has a very high R-squared value of 0.944. I then

utilize the restricted and simple model to estimate historical rt in the same way as I did in

Section 2.2.3 with the full model. Figure 10 shows histograms of the estimated dissipation

factors with a kernel density estimate for each model.

The distribution of estimated dissipation factors appears similar among the three mod-

els. Noticeably, as fewer weather variables are included, the distribution shifts to the right

slightly. I then plot the estimated dissipation factors by these three models over time, shown
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Figure 10: Histograms of estimated dissipation factors with a kernel density estimate for the full, restricted,
and simple model

in Figure 11.

The vertical solid and dashed lines in Figure 11 represent the time when alert events began

and ended, respectively. The red, blue, and green time series stand for the estimated dissi-

pation factors by the full, restricted, and simple model, respectively. The three time series

overlap relatively well except at the lower and higher ends. Figure 12 shows comparisons

of dissipation factors estimated by the Full model and the alternative models in scatter plots.

In Figure 12, I plot the estimated dissipation factors by alternative models (vertical axis)

against the estimated dissipation factors by the full model (horizontal axis). I add a fitted

line of data points (blue), and a 45-degree line (red) in each graph. Consistent with the
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Figure 11: Estimated dissipation factors by the full, restricted, and simple model during three pollution
seasons

observation in Figure 11, the estimated dissipation factors by alternative models are biased

in the lower and higher ends: they are biased up in the lower end while biased down in the

higher end. The biases are more pronounced for the simple model than for the restricted

model. In conclusion, the restricted and simple models do a comparably good job of esti-

mating dissipation factors at the middle range but predict less extreme values at both ends.
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Figure 12: Comparisons of dissipation factors estimated by the full model and the alternative models in
scatter plots

2.3 Forecastability of Dissipation Factors

2.3.1 Data

To assess the forecastability of dissipation factors, first I need to estimate the accuracy of

predicted weather conditions in Chengdu. To this end, I obtained forecasted and observed

weather data from the Wenjiang weather station of Chengdu. The data set includes wind

speed, wind direction, and atmospheric pressure observed at 8pm local time. It also includes

daily high and low temperature, and cumulative precipitation by 8pm local time. The predic-

tion data consist of up to 7-day ahead forecasts of the same set of variables from November

1, 2021 to March 21, 2022. The time span of the observed weather data is from November

2, 2021 to March 28, 2022. Table 10 below shows the summary statistics of the data used in

this section. Wind direction is reported by the direction from which the wind blows in the

standard 16-direction format.
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Variable Obs Mean Std. Dev. Min Max
Predicted wind speed (m/s) 987 1.88 1.32 0.15 7.25
Observed wind speed (m/s) 147 1.33 0.50 0.70 3.15
Predicted atmospheric pressure (hPa) 987 956.5 6.0 934.7 970.4
Observed atmospheric pressure (hPa) 147 956.3 6.5 937.0 969.7
Predicted high temperature (Celsius) 987 13.5 5.3 3.9 29.8
Observed high temperature (Celsius) 147 13.6 5.5 3.9 29.4
Predicted low temperature (Celsius) 987 6.5 3.6 -1 19.1
Observed low temperature (Celsius) 147 6.5 4.0 -3.3 19.5
Predicted precipitation (mm) 987 0.61 1.08 0 7.9
Observed precipitation (mm) 147 0.46 1.25 0 9.5

Table 10: Summary statistics of predicted and observed weather conditions

2.3.2 Comparisons of Predicted and Observed Weather Conditions

I directly compare the predicted weather conditions to the corresponding observed weather

conditions. High temperature, low temperature, and atmospheric pressure forecasts are ac-

curate. As an example, Figure 13 illustrates the comparisons of the up to 7-day ahead

predicted and observed high temperature.

Figure 13: Comparison of the predicted and observed high temperature

In each graph of Figure 13, I plot the observed high temperature (vertical axis) against the
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predicted high temperature (horizontal axis). I add a fitted line of data points (blue), and a

45-degree line (red) in each graph. These two lines overlap very well in all graphs in Figure

13, suggesting the bias of prediction is minimal. Table 11 shows a quantitative assessment

of the accuracy of the high temperature prediction.

Day 1 2 3 4 5 6 7
ρ .97 .97 .96 .96 .94 .92 .92
P .50 .48 .45 .47 .50 .45 .46

Table 11: Quantitative assessment of the accuracy of high temperature prediction

ρ denotes the correlation coefficient between the predicted and observed high temperature,

P denotes the probability of the predicted high temperature being higher than the observed

high temperature. As can be seen in Table 11, the correlation coefficient is close to one and

the probability of over prediction is close to one-half, again indicating accurate predictions of

the high temperature. Similar comparisons of the predicted and observed low temperature

and atmospheric pressure can be found in the appendix (Section 2.6.2).

The prediction of wind speed and precipitation, however, is inaccurate. Figure 14 illustrates

the comparisons of the up to 7-day ahead predicted and observed wind speed.

In each graph of Figure 14, I plot the observed wind speed (vertical axis) against the pre-

dicted wind speed (horizontal axis). I add a fitted line of data points (blue), and a 45-degree

line (red) in each graph. It is very obvious that the predicted wind speed is systematically

larger than the observed wind speed. Table 12 shows a quantitative assessment of the accu-

racy of the wind speed prediction.

ρ denotes the correlation coefficient between the predicted and observed wind speed, P de-

notes the probability of the predicted wind speed being higher than the observed wind speed.
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Figure 14: Comparison of the predicted and observed wind speed

Day 1 2 3 4 5 6 7
ρ .72 .72 .72 .72 .67 .65 .60
P .67 .67 .64 .63 .65 .62 .55

Table 12: Quantitative assessment of the accuracy of wind speed prediction

As expected, the correlation coefficient is lower than one. The probability of over prediction

is also much higher than one-half, consistent with my observation from Figure 14.

Figure 15 illustrates the comparisons of the up to 7-day ahead predicted and observed pre-

cipitation.

In each graph of Figure 15, I plot the observed precipitation (vertical axis) against the

predicted precipitation (horizontal axis). I add a fitted line of data points (blue), and a

45-degree line (red) in each graph. These two lines diverge from each other markedly. Table

13 shows a quantitative assessment of the accuracy of the precipitation prediction.

ρ denotes the correlation coefficient between the predicted and observed precipitation, P
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Figure 15: Comparison of the predicted and observed precipitation

Day 1 2 3 4 5 6 7
ρ .58 .51 .50 .49 .49 .48 .60
P .43 .38 .41 .35 .40 .43 .41

Table 13: Quantitative assessment of the accuracy of precipitation prediction

denotes the probability of the predicted precipitation being larger than the observed precip-

itation. As expected, the correlation coefficient is significantly lower than one. There is also

a tendency to underestimate precipitation.

Although the wind speed prediction is biased, in Figure 14 the data points are tightly dis-

tributed along the fitted line. Once the bias is corrected, the predicted wind speed will

be relatively reliable. Therefore, I attempt to correct the bias of wind speed prediction by

making my own prediction.
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2.3.3 Prediction of Wind Speed

In this section, I aim to use the available predicted weather conditions (i.e. wind speed, wind

direction, atmospheric pressure, high temperature, low temperature, and precipitation) to

forecast actual wind speed. First, I use a 5-fold cross validation approach for model selec-

tion. Table 14 lists the ten linear specifications with the lowest average mean squared error

and two reference specifications. These models have a constant term unless stated otherwise.

Variables Average MSE Std. Dev.
wdsp (no constant) .392 .047
wdsp .152 .022
wdsp, stp .144 .024
wdsp, stp, high .144 .024
wdsp, stp, low .144 .024
wdsp, stp, prcp .144 .023
wdsp, stp, high, low .144 .023
wdsp, stp, high, prcp .143 .023
wdsp, stp, low, prcp .144 .023
wdsp, stp, high, low, prcp .143 .022
wdsp, stp, high, prcp, direction .145 .023
wdsp, stp, high, low, prcp, direction .145 .021

Table 14: Linear prediction models of wind speed with the lowest average mean squared error and two
reference models

In Table 14, wdsp, stp, high, low, prcp, direction represent wind speed, atmospheric pres-

sure, high temperature, low temperature, precipitation, and wind direction, respectively.

The first two specifications have significantly larger average mean squared errors than the

rest of the specifications. The others return very similar average mean squared errors so I

decide to choose the simplest one with only wdsp and stp. The selection is consistent with

physical science as to what determines wind speed. I also try adding higher orders of these

two variables into the model. The results are shown in Table 15. All these models have a

constant term.
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Variables Average MSE Std. Dev.
wdsp, stp .144 .024
wdsp, wdsp2, stp .143 .024
wdsp, wdsp2, wdsp3, stp .142 .023
wdsp, wdsp2, wdsp3, wdsp4, stp .142 .022
wdsp, wdsp2, wdsp3, wdsp4, wdsp5, stp .143 .022
wdsp, stp, stp2 .143 .023
wdsp, stp, stp2, stp3 .143 .023
wdsp, stp, stp2, stp3, stp4 .142 .023
wdsp, stp, stp2, stp3, stp4, stp5 .142 .023

Table 15: Prediction models of wind speed with higher orders

According to Table 15, the addition of higher orders only marginally improves the average

mean squared error. Therefore, I choose the linear specification. Next, I assess the per-

formance of my prediction model, again with a 5-fold cross validation approach. Figure 16

illustrates a comparison of the predicted (by my prediction model) and observed wind speed.

Figure 16: Comparison of predicted (by my prediction model) and observed wind speed
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In each graph of Figure 16, I plot the observed wind speed (vertical axis) against the pre-

dicted wind speed (horizontal axis). I add a fitted line of data points (blue), and a 45-degree

line (red) in each graph. These two lines overlap very well in all graphs in Figure 16, sug-

gesting that the bias of prediction is minimal. This prediction model provides much better

wind speed forecasts than those from the weather station. Table 16 presents a quantitative

assessment of the accuracy of the wind speed prediction (by my prediction model).

Model 1 2 3 4 5
ρ .70 .70 .70 .70 .70
P .55 .55 .55 .55 .55

Table 16: Quantitative assessment of the accuracy of wind speed prediction (by my prediction model)

ρ denotes the correlation coefficient between the predicted and observed wind speed, P de-

notes the probability of the predicted wind speed being higher than the observed wind speed.

As can be seen in Table 16, although the correlation coefficient is only 0.7, the probability

of over prediction is close to one-half, indicating that my prediction model is able to mostly

correct the systematic error of the wind speed forecasts from the weather station. This

is important for the forecasts of dissipation factors due to the crucial role of wind speed.

Alternatively, I use a Lasso approach for model selection and prediction. The results are

consistent with the above analysis.

2.3.4 Prediction of Dissipation Factors

In this section, I predict dissipation factors with the predicted weather conditions. Then

I make a comparison of the predicted dissipation factors with realized dissipation factors

to infer the forecastability of dissipation factors. To this end, I first estimate the following

model.
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PM2.5t+1 =
exp(α1 + βrXt)

1 + exp(α1 + βrXt)
∗ [(α2 + βfTt + βs · treatt) + PM2.5t] + ηt+1 (32)

In Equation (32), PM2.5t denotes the daily city-average PM2.5 concentration of day t. Xt

stands for a vector of meteorological conditions of day t, including daily average wind di-

rection dummy variables, daily average wind speed, daily precipitation amount, daily high

and low temperature, daily average atmospheric pressure, and daily average dew point. Tt

represents a vector of time fixed effects, including day-of-week dummy variables, workday

dummy variable, and month-of-year dummy variables. treatt denotes the treatment status

of day t. η is the error term. I use non-linear least squares to estimate Equation (32). The

regression returns an R-squared value of 0.938 and an adjusted R-squared value of 0.935.

With the estimates of Equation (32), I calculate predicted dissipation factors with predicted

weather conditions, and calculate realized dissipation factors with observed weather condi-

tions according to Equation (33).

r̂t = 1− exp(α̂1 + β̂rXt)

1 + exp(α̂1 + β̂rXt)
(33)

Figure 17 illustrates the comparisons of the up to 7-day ahead predicted and realized dissi-

pation factors.

In each graph of Figure 17, I plot the realized dissipation factor (vertical axis) against the

predicted dissipation factor (horizontal axis). I add a fitted line of data points (blue), and

a 45-degree line (red) in each graph. These two lines overlap well in all graphs, suggesting

the bias of prediction is minimal. Table 17 shows a quantitative assessment of the accuracy

of the dissipation factor prediction.
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Figure 17: Comparison of predicted and realized dissipation factors

Day 1 2 3 4 5 6 7
ρ .85 .84 .84 .83 .78 .72 .72
P .57 .55 .59 .61 .56 .56 .55

MAE .054 .055 .056 .058 .063 .067 .069

Table 17: Quantitative assessment of the accuracy of dissipation factor prediction

ρ denotes the correlation coefficient between the predicted and observed dissipation factor,

P denotes the probability of the predicted dissipation factor being larger than the observed

dissipation factor, MAE represents mean absolute error. As can be seen in Table 17, the

correlation coefficient is relatively close to one and the probability of over prediction is close

to one-half. The mean absolute error of prediction is on the level of 0.05 to 0.07. These

results suggest that dissipation factors in the near future can be predicted with high accuracy.
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2.4 Simulation

In this section, I estimate the gains that can be achieved by altering the timing of historical

interventions according to both existing conditions and expected upcoming weather patterns.

I select the period of November 23, 2018 to December 28, 2018 which ends with a very high

dissipation factor (0.99) so that any scrap pollutant can be ignored. During this period,

yellow alerts were issued from November 25 to 29, and December 15 to 19. I keep the total

number of alert days the same and reassign them to days with the highest marginal health

damage of pollution. In Equation (34) I define the marginal damage of emitting pollution

on day t (t < T ), assuming all pollution clears up on day T .

Marginal Damage = (IDt+

t+6∑
n=t+1

DDn)+(1−rt)(IDt+1+

t+7∑
n=t+2

DDn)+...+

T−1∏
s=t

(1−rs)(IDT +

T+6∑
n=T+1

DDn)

(34)

In Equation (34), IDt denotes the instantaneous damage on day t, DDn represents the

delayed damage on day n. In Chapter 3, I empirically examine the relationship between

bronchitis hospital visits and (contemporaneous and up to the 7th lagging) PM2.5 pollution

levels. This analysis is explained in detail in Section 3.3. Briefly, I find PM2.5 pollution lev-

els up to 6 days ago have an effect on contemporaneous hospitalization that is statistically

significant at level 5 percent. The estimated coefficients on the contemporaneous and lagging

PM2.5 pollution levels are used to specify the instantaneous damage (ID) and delayed dam-

ages (DD) in Equation (34), respectively. I assume both instantaneous damage and delayed

damages are constant over time - delayed damages only depend on the length of the delay.

Therefore, one unit of PM2.5 pollution emitted on day t causes instantaneous damage on

day t and delayed damages on day t + 1 to t + 6. Then, after dissipation, (1 − rt) unit of

PM2.5 pollution transitions into day t+ 1, again causing instantaneous damage on day t+ 1

and delayed damages on day t + 2 to t + 7. The process goes on until day T . According to
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Equation (34) and the estimated dissipation factors in Section 2.2.3, I calculate the marginal

damage of emitting pollution for each day during this period. Figure 18 demonstrates the

dissipation factors (in red), marginal damage (in blue), and PM2.5 concentration (in grey)

during this period with yellow arrows indicating the days with alert events. When an alert

is issued, a set of measures to reduce pollution emissions are implemented including driving

restrictions for vehicles and production suspension for firms.

Figure 18: Dissipation factor, marginal damage, and PM2.5 concentration with actual alert events

In Figure 18, the left vertical axis of both graphs is for dissipation factor. The right ver-

tical axis of the upper and lower graph is for marginal damage and PM2.5 concentration,

respectively. From Figure 18 we can see the actual alert events happened generally, although

not strictly, on days with the highest PM2.5 concentration instead of the highest marginal
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damage. Below I reassign the alert events to days with the highest marginal damage, shown

in Figure 19.

Figure 19: Dissipation factor, marginal damage, and PM2.5 concentration with alternative alert events

Next, I calculate the PM2.5 concentration path under the alternative alert events. I arbi-

trarily assume an alert event reduces the daily emission amount by a units. Therefore, if

a day is actually untreated but alternatively treated, the daily emission amount is reduced

by a units in the alternative world. If a day is actually treated but alternatively untreated,

the daily emission amount is increased by a units in the alternative world. If a day is both

actually and alternatively treated or untreated, the daily emission amount remains the same

in the alternative world. Assuming a = 10, according to this rule and the estimated state

transition equations in Section 2.2.3, I am able to calculate the PM2.5 concentration path
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under alternative treatments as well as if no interventions happened at all, shown in Figure

20.

Figure 20: PM2.5 concentration path under actual treatments, alternative treatments, and with no inter-
vention, assuming a = 10

Although there are ups and downs, generally the average PM2.5 concentration is the highest

without interventions, second highest under actual treatments, and lowest under alternative

treatments. Compared to no interventions, the average PM2.5 concentration during this

period under alternative and actual treatments are 13.0 and 11.6 units (µg/m3) lower, re-

spectively. I thus conclude that the alternative interventions are able to reduce 12.1% more

PM2.5 concentration compared to actual interventions during this period. Next, I multiply

the differences in daily PM2.5 concentration under alternative interventions and no inter-

ventions by the marginal damage day by day. Compared to no interventions, the average

number of daily Bronchitis visits during this period under alternative and actual treatments

are 6.8 and 5.4 lower, respectively. I thus conclude that the alternative interventions are

able to reduce 25.5% more bronchitis hospital visits compared to actual interventions during

this period. Lastly, I vary the assumption of a (from 1 to 50) and repeat the above calcula-

tions. The results show that the percentage reduction of PM2.5 concentration and bronchitis

hospital visits is invariant to the exact value of a. It means, regardless of the assumption
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of pollution emission reduction effect of an alert event, alternative interventions on average

always reduce 12.1% more PM2.5 concentration and 25.5% more bronchitis hospital visits

compared to actual interventions during this period.

2.5 Conclusions

In this chapter, I first empirically estimate the dynamic process of pollution dissipation by

identifying how daily weather conditions drive the change in ambient PM levels from one day

to the next. The estimation returns an excellent fit, substantiating the assumptions on the

dissipation factor as well as the setup of the theoretical model. I also find that the weather

variables explain a significant amount of variation in the next day’s PM2.5 concentration,

which again corroborates the key role of the dissipation factor in pollution stock turnover.

With the estimated state transition equation, I back-calculate the historical dissipation fac-

tors. Then I empirically estimate the accuracy of weather forecasts in Chengdu by comparing

the predicted and observed meteorological conditions from the Wenjiang weather station. I

correct the bias of wind speed prediction by making my own forecast. With the forecasted

weather conditions, I am able to predict dissipation factors in the near future accurately,

with mean absolute errors under 0.07. Lastly, I show by altering the timing of interventions,

a 12.1% more PM2.5 concentration reduction and a 25.5% more bronchitis hospital visit

reduction can be achieved within a period in 2018.

2.6 Appendix

2.6.1 Daily Average Wind Direction

To generate daily average wind direction dummy variables, I use the hourly wind angle ob-

servations at the Wenjiang station from NOAA. The Shuangliu station has too many missing
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observations and thus is not included. The raw data are the clockwise angles between the

true north and the direction that the wind blows from. I use a standardized approach to

calculate the average wind angle: First, I convert the hourly angles into coordinates. Sec-

ondly, I calculate weighted average coordinates for each day. The weights are determined by

corresponding hourly wind speed observations. Then I convert average coordinates back to

average angles. Next, I divide the 360 degrees of a circle into eight equal portions and gener-

ate eight corresponding dummy variables. Each portion then has a range of 45 degrees. The

dummy variable of a specific portion equals one if an average angle falls into that portion,

and equals zero otherwise. For example, if the average angle is 80 degrees, then the second

wind direction dummy variable equals one, and all others equal zero.

2.6.2 Comparisons of Predicted and Observed Low Temperature and Atmo-

spheric Pressure

Figure 21 illustrates the comparisons of the up to 7-day ahead predicted and observed low

temperature.

In each graph of Figure 21, I plot the observed low temperature (vertical axis) against the

predicted low temperature (horizontal axis). I add a fitted line of data points (blue), and a

45-degree line (red) in each graph. These two lines overlap well in all graphs in Figure 21,

suggesting the bias of prediction is minimal. Table 18 shows a quantitative assessment of

the accuracy of the low temperature prediction.

Day 1 2 3 4 5 6 7
ρ .89 .89 .89 .89 .87 .86 .85
P .46 .52 .50 .49 .49 .47 .48

Table 18: Quantitative assessment of the accuracy of low temperature prediction
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Figure 21: Comparison of the predicted and observed low temperature

ρ denotes the correlation coefficient between the predicted and observed low temperature,

P denotes the probability of the predicted low temperature being higher than the observed

high temperature. As can be seen in Table 18, the correlation coefficient is high and the

probability of over prediction is close to one-half, again indicating accurate predictions of

the high temperature.

Figure 22 illustrates the comparisons of the up to 7-day ahead predicted and observed at-

mospheric pressure.

In each graph of Figure 22, I plot the observed atmospheric pressure (vertical axis) against

the predicted atmospheric pressure (horizontal axis). I add a fitted line of data points (blue),

and a 45-degree line (red) in each graph. These two lines overlap well in all graphs in Figure

22, suggesting the bias of prediction is minimal. Table 19 shows a quantitative assessment

of the accuracy of atmospheric pressure prediction.

ρ denotes the correlation coefficient between the predicted and observed atmospheric pres-
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Figure 22: Comparison of the predicted and observed atmospheric pressure

Day 1 2 3 4 5 6 7
ρ .99 .99 .99 .98 .96 .94 .91
P .55 .48 .49 .45 .50 .48 .46

Table 19: Quantitative assessment of the accuracy of atmospheric pressure prediction

sure, P denotes the probability of the predicted atmospheric pressure being higher than the

observed atmospheric pressure. As can be seen in Table 19, the correlation coefficient is

very close to one and the probability of over prediction is close to one-half, again indicating

highly accurate predictions of atmospheric pressure.
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3 Chapter 3: Hospitalization

3.1 Introduction

PM pollution is known to induce a myriad of serious health problems. PM2.5, the PMs with

a diameter less than 2.5 micrometers, pose the greatest health hazard (Brown et al., 2013).

Due to their small size, PM2.5 are able to reach and deposit on the respiratory tract (Londahl

et al., 2007), and even get into the bloodstream (Fu et al., 2011). Common health effects

of PM pollution include respiratory diseases, cardiovascular diseases, and even premature

death (Anderson et al., 2012). The adverse health effect is the damage of pollution in my

theoretical model. In this chapter, I perform a series of analyses on the health effects of PM

pollution, which provides important policy implications. I first describe the hospitalization

data I obtained in Section 3.2. Then, I seek to estimate the effects of PM pollution on

contemporaneous and delayed hospital visits in Chengdu, presented in Section 3.3. Next,

I investigate the possible non-linear effects of PM pollution on hospitalization, reported in

Section 3.4. I also assess the existence and extent of autocorrelation in the hospitalization

data, shown in Section 3.5. Finally, Section 3.6 summarizes the findings of this chapter.

3.2 Data

I requested and received hospital visit data from the No.2 People’s Hospital, one of the largest

hospitals in Chengdu. The data consist of the counts of daily outpatient department visits by

condition from March 2017 to December 2019. The dataset includes three acute respiratory

conditions, namely, bronchitis, pneumonia, and asthma. Broken bone visits, which should

have no correlations with PM pollution, are also included as a control. For the same period,

I also obtained daily city-average PM2.5 concentration from aqistudy.cn, and meteorologi-

cal conditions from National Oceanic and Atmospheric Administration (NOAA)10. However,

10There are two weather stations within the city boundary, the Shuangliu station and Wenjiang station.
Whenever possible, I use the average of readings at these two stations to represent the whole city. For wind
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there are missing values in city-average PM2.5 concentration and atmospheric pressure dur-

ing this period. For some analysis in this chapter, no gaps in time series data are allowed.

Therefore, I describe how these gaps are filled in by imputation in the appendix (Section

3.7.1). Next, I plot the daily number of visits by condition from March 2017 to December

2019, shown in Figure 23.

Figure 23: Daily counts of respiratory outpatient visit by condition, Mar. 2017 to Dec. 2019

In Figure 23, the red, blue, and grey time series represents bronchitis, pneumonia, and

asthma, respectively. There is a clear seasonal and monthly pattern of hospital visits for

bronchitis and pneumonia. Pollution seasons generally experience much more visits than

other months, with November and December having the most visits. Figure 24 illustrates

the daily number of visits by condition from November 2017 to February 2018 as a zoomed-in

view.

direction, hourly wind speed, daily precipitation amount, and daily average atmospheric pressure, however,
the Shuangliu station has either no observation or too many missing values. In these cases, I simply use the
observations at the Wenjiang Station. For this reason, daily average wind speed, which includes information
from the Shuangliu station as well, is not simply a linear combination of hourly wind speed.
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Figure 24: Daily counts of respiratory outpatient visit by condition, Nov. 2017 to Feb. 2018

In Figure 24, each vertical dashed line denotes the beginning of a week. There is a clear

weekly pattern of hospital visits for bronchitis and pneumonia: the number of visits is

higher during weekdays, especially the first several days, than during weekends. This pat-

tern is mainly driven by the number of doctors serving the outpatient department. It is

also noted that there is a significant drop in visit counts in mid-February 2018 during the

Chinese New Year vacation when the hospital operated at a limited capacity. As an example

of non-respiratory conditions, the number of daily broken bone visits from March 2017 to

December 2019, and from November 2017 to February 2018 is shown in Figure 25 and Figure

26, respectively.

Each vertical dashed line in Figure 26 denotes the beginning of a week. According to Fig-

ure 25 and Figure 26, there is no clear seasonal or monthly pattern for broken bone visits.

Rather, the daily number of visits is mostly driven by weekly patterns. Observations from

these figures contribute greatly to the determination of the specifications in subsequent re-

gression analysis. Table 20 below shows the summary statistics of the hospitalization dataset
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Figure 25: Daily counts of broken bone outpatient visit, Mar. 2017 to Dec. 2019

Figure 26: Daily counts of broken bone outpatient visit, Nov. 2017 to Feb. 2018

from March 2017 to December 2019. The daily average atmospheric pressure is represented

by the sea level pressure.
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Variable Obs Mean Std. Dev. Min Max
Bronchitis 1,036 182.2 69.3 67 422
Pneumonia 1,036 58.1 28.7 11 189
Asthma 1,036 9.0 4.5 0 28
Broken bone 1,029 22.2 11.9 2 60
Daily city-average PM2.5 concentration (µg/m3) 1,036 44.8 29.9 4 201
Daily average wind speed (knots) 1,036 2.93 1.11 0.7 12.5
Daily maximum wind gust (knots) 1,036 6.37 2.30 2.2 19.5
Daily precipitation amount (inches) 1,036 .14 .43 0 5.51
Daily average temperature (Fahrenheit) 1,036 64.3 13.1 34.4 87.6
Daily high temperature (Fahrenheit) 1,036 71.3 14.3 37.1 98.8
Daily low temperature (Fahrenheit) 1,036 57.4 13.1 24.7 78.9
Daily average atmospheric pressure (mb) 1,036 1014.1 9.3 995.1 1038.7
Daily average dew point (Fahrenheit) 1,036 41.0 6.92 20.9 58.1

Table 20: Summary statistics of the hospitalization dataset

3.3 Effect of PM2.5 Concentrations on Hospital Visits

To estimate the effect of PM2.5 concentration on hospitalization, I have to control for con-

founding factors that are correlated to PM2.5 concentration. According to the observed

patterns in Section 3.2, including time fixed effects in the regression analysis is important.

There is also a clear connection between respiratory diseases and weather conditions. For

example, it is well known that breathing cold, dry air exacerbates asthma. Therefore, I also

control for meteorological conditions when estimating the effect of PM2.5 concentration on

hospital visits. Equation (35) shows the baseline specification of the model I estimate.

V isitt = β0 + β1 · PM2.5t + βfTt + βrXt + ηt (35)

In Equation (35), V isitt denotes the number of hospital visits of one condition on day t. I

use the number of bronchitis, pneumonia, asthma, and broken bone visits as the outcome

variable, respectively. I perform the regression of broken bone visits as a comparison. Tt

represents a series of time fixed effects, including day-of-week dummy variables, year-month

dummy variables, workday dummy variables, and holiday dummy variables. Xt denotes a
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vector of meteorological conditions of day t, including daily average wind speed, daily maxi-

mum wind gust, daily precipitation amount, daily average temperature, daily maximum and

minimum temperature, daily average atmospheric pressure, and daily average dew point. ηt

is the error term. Table 21 summarizes the results of OLS estimations of Equation (35).

(1) (2) (3) (4)
Bronchitis Pneumonia Asthma Broken Bone

PM2.5t
.243*** .047*** .007 -.004
(.041) (.017) (.006) (.010)

Observations 1,036 1,036 1,036 1,029
R-squared 0.870 0.862 0.371 0.711

Table 21: Regression results from OLS estimations of Equation (35)

In Table 21, */**/*** indicates statistical significance at the 10/5/1 percent levels. Standard

errors are shown in parentheses. The contemporaneous PM2.5 concentration is statistically

significant at level 1 percent in the bronchitis and pneumonia regression. The contempora-

neous PM2.5 concentration in the asthma regression, however, is not statistically significant

even at level 10 percent. At 0.371, the R-squared value is also much lower than the other re-

gressions. The signs of estimated coefficients of the contemporaneous PM2.5 concentration in

these three regressions are all positive, indicating the visits of respiratory conditions increase

with the pollution level, matching our intuition. The contemporaneous PM2.5 concentration

in the broken bone regression is not statistically significant even at level 10 percent which is

expected. The R-squared value is higher than that of the asthma regression, probably due

to the explanatory power of time fixed effects. The sign of the estimated coefficient of the

contemporaneous PM2.5 concentration is negative. A possible explanation of the negative

sign is that people perform fewer outdoor activities, and thus fewer broken bone incidents

when the ambient pollution level is high. In the subsequent analysis, I use the number of

bronchitis visits as the respiratory hospitalization outcome.
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Next, I attempt to quantify the contemporaneous and delayed effects of PM2.5 exposure on

bronchitis hospitalization. First, I use a simple linear specification similar to Equation (35),

as shown in Equation (36).

Brt = β0 +
7∑

τ=0

β1,τ · PM2.5t−τ + βrXt + βfTt + ηt (36)

In Equation (36), Brt denotes the number of bronchitis visits on day t. Tt and Xt are the

same as in Equation (35). With 1,036 observations, the OLS estimation of Equation (36)

returns an R-squared value of 0.876. The OLS estimation results are shown in Table 22.

Variable OLS Estimate

PM2.5t
.168***
(.054)

PM2.5t−1
.060

(.062)

PM2.5t−2
.117*
(.061)

PM2.5t−3
.016

(.061)

PM2.5t−4
.048

(.061)

PM2.5t−5
.088

(.061)

PM2.5t−6
.045

(.061)

PM2.5t−7
.033

(.049))

Table 22: The effects of PM2.5 concentrations on bronchitis hospitalization from OLS estimation of Equa-
tion (36)

In Table 22, */**/*** indicates statistical significance at the 10/5/1 percent levels. Standard

errors are shown in parentheses. According to Table 22, only the contemporaneous PM2.5

concentration is statistically significant at level 5 percent. This is likely a result of the high

correlation between PM2.5 concentrations of adjacent days.
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To better pin down the effects of each PM2.5 concentration, I introduce a new approach

where β1,τ ’s in Equation (36) are modeled as cubic B-spline functions of time (Barwick et

al., 2018). This approach is based on the Weierstrass Approximation Theorem that any

continuous function defined on a closed interval can be uniformly approximated closely by a

polynomial function. Equation (37) demonstrates the specification for β1,τ ’s.

β1,τ = γ0 + γ1τ + γ2τ
2 + γ3τ

3 (37)

Then, by plugging Equation (37) into Equation (36), we have

Brt = β0 + γ0 · PM2.5t + (γ0 + γ1 + γ2 + γ3) · PM2.5t−1 + ...

+ (γ0 + γ17 + γ27
2 + γ37

3) · PM2.5t−7 + βrXt + βfTt + ηt

(38)

Rearrange Equation (38), we have
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Brt = β0 + γ0 · (PM2.5t + PM2.5t−1 + ...+ PM2.5t−7)

+ γ1 · (PM2.5t−1 + 21 · PM2.5t−2 + ...+ 71 · PM2.5t−7)

+ γ2 · (PM2.5t−1 + 22 · PM2.5t−2 + ...+ 72 · PM2.5t−7)

+ γ3 · (PM2.5t−1 + 23 · PM2.5t−2 + ...+ 73 · PM2.5t−7)

+ βrXt + βfTt + ηt

Let v1t = PM2.5t + PM2.5t−1 + ... + PM2.5t−7, v2t = PM2.5t−1 + 21 · PM2.5t−2 +

... + 71 · PM2.5t−7, v3t = PM2.5t−1 + 22 · PM2.5t−2 + ... + 72 · PM2.5t−7, and v4t =

PM2.5t−1 + 23 · PM2.5t−2 + ...+ 73 · PM2.5t−7. The above equation becomes

Brt = β0 + γ0 · v1t + γ1 · v2t + γ2 · v3t + γ3 · v4t + βrXt + βfTt + ηt (39)

Equation (39) represents the contemporaneous and lagging PM2.5 concentrations with only

four variables as opposed to eight variables in Equation (36), thus alleviating some of the

concern for multicollinearity.

From Equation (38), we can derive the marginal effects of PM2.5 concentration variables in

this new specification by taking partial derivative with respect to each PM2.5 concentration

variable. The marginal effects are listed in Table 23.

I then perform an OLS estimation of Equation (39). With 1,036 observations, the R-squared

value is 0.876. Table 24 below lists the OLS estimates of the marginal effect of each PM2.5

concentration variable.
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Variable Marginal Effect
PM2.5t γ0
PM2.5t−1 γ0 + 11 · γ1 + 12 · γ2 + 13 · γ3
PM2.5t−2 γ0 + 21 · γ1 + 22 · γ2 + 23 · γ3
PM2.5t−3 γ0 + 31 · γ1 + 32 · γ2 + 33 · γ3
PM2.5t−4 γ0 + 41 · γ1 + 42 · γ2 + 43 · γ3
PM2.5t−5 γ0 + 51 · γ1 + 52 · γ2 + 53 · γ3
PM2.5t−6 γ0 + 61 · γ1 + 62 · γ2 + 63 · γ3
PM2.5t−7 γ0 + 71 · γ1 + 72 · γ2 + 73 · γ3

Table 23: The marginal effects of PM2.5 concentration variables on bronchitis hospitalization in Equation
(39)

Variable OLS Estimate

PM2.5t
.158***
(.039)

PM2.5t−1
.094***
(.017)

PM2.5t−2
.062***
(.021)

PM2.5t−3
.054***
(.016)

PM2.5t−4
.057***
(.015)

PM2.5t−5
.061***
(.021)

PM2.5t−6
.057***
(.017)

PM2.5t−7
.032

(.036))

Table 24: The effects of PM2.5 concentration variables on bronchitis hospitalization from OLS estimation
of Equation (39)

In Table 24, */**/*** indicates statistical significance at the 10/5/1 percent levels. Stan-

dard errors are shown in parentheses, which are calculated by the square root of the variance

of the linear combinations of coefficients as shown in Table 23. According to the results

shown in Table 24, PM2.5 exposure up to 6 days ago has an effect on contemporaneous

bronchitis hospitalization that is statistically significant at level 1 percent. The statistical
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significance of lagging PM2.5 concentrations is probably a result of the delayed health effects

of PM2.5 exposure. These results are consistent with our intuition as well as literature that

find delayed health hazard of PM exposure (Pope et al., 1992; Schwartz, 2000; Kim et al.,

2003; Min et al., 2008). These estimates also serve as the basis of the simulation analysis in

Chapter 2. In the appendix (Section 3.7.2), I test the effect of future PM2.5 concentration

on contemporaneous hospital visits for this new approach.

3.4 Non-linear Effect of PM2.5

In this section, I search for evidence that the effect of PM2.5 on hospitalization is non-linear.

First, I perform a kernel-weighted local-mean smoothing of hospital visits on contempo-

raneous PM2.5 concentration. This method is selected because it allows an assessment of

potential non-linear effects in a non-parametric way. It generates a graph of smoothed values

as a visual depiction of the relationship between hospital visits and contemporaneous PM2.5

concentration. I use the Epanechnikov kernel and set the kernel bandwidth to 20, as shown

in Figure 27.

As can be seen in Figure 27, it is clear that the smoothed values in (A) and (B) are upward-

sloping, while (C) displays an almost flat line, illustrating the responsiveness of respiratory

conditions and the unresponsiveness of broken bone to PM2.5 concentration, respectively.

However, in (A) and (B), we do not observe any obvious curvature of the smoothed values

which are almost linear. Next, I attempt to quantitatively determine if any non-linear effect

of PM2.5 on hospitalization exists in a few ways. First, I use a quadratic specification to test

for the non-linear effect, shown in Equation (40)11.

11In the specifications of this section, I only include the non-linear terms of the contemporaneous PM2.5

concentration by assuming the lagged effects are linear. Admittedly, the non-linear effects of lagging PM2.5

concentrations might also exist. However, incorporating both contemporaneous and lagged non-linear effects
will lead to a convoluted specification. Because the PM2.5 concentration is highly correlated over time, it
is difficult to individually identify the contemporaneous and lagged non-linear effects by estimating such a
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Figure 27: Kernel-weighted local-mean smoothing of bronchitis (A), pneumonia (B), and broken bone (C)
visits on contemporaneous PM2.5 concentration

V isitt = β0 + β1 · PM2.5t + β2 · PM2.52
t +

7∑
τ=1

β3,τ · PM2.5t−τ + βrXt + βfTt + ηt (40)

In Equation (40), V isitt is the number of hospital visits for one disease on day t. Tt and Xt

are the same as in Equation (35). I use the number of bronchitis, pneumonia, and broken

bone visits as the dependent variable, respectively. I perform the regression of broken bone

visits as a comparison. I control for the seven lagging PM2.5 concentrations. Table 25 sum-

specification. It is unclear how this assumption will bias the estimates if both contemporaneous and lagged
non-linear effects exist. Since I am interested in prediction rather than the exact point estimates in this
analysis, the presence of any potential bias is of less concern.
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marizes the results of an OLS estimation of Equation (40).

(1) (2) (3)
Bronchitis Pneumonia Broken Bone

PM2.5
.1690* .0153 -.0407
(.1006) (.0435) (.0263)

PM2
2.5

-7.95e-06 .0002 .0003
(.0006) (.0003) (.0002)

Observations 1,036 1,036 1,036
R-squared 0.876 0.865 0.713

Table 25: Regression results from OLS estimation of Equation (40)

In Table 25, */**/*** indicates statistical significance at the 10/5/1 percent levels. Stan-

dard errors are shown in parentheses. For bronchitis visits, the estimated coefficient of the

quadratic term is negative while that of the linear term is positive, corresponding to an

inverted U-shaped parabola with the vertex at 10,628.9. However, the estimated coefficient

of the quadratic term is very small and not statistically significant even at level 10 percent,

suggesting the curvature is at best trivial. For pneumonia visits, the estimated coefficients

of the quadratic and linear terms are both positive, corresponding to a U-shaped parabola

with the vertex at -32.5. The estimated coefficient of the quadratic term is also very small

and not statistically significant even at level 10 percent. I fail to find any evidence of non-

linearity for bronchitis and pneumonia visits in this exercise. For broken bone visits, as

a comparison, the estimated coefficient of the quadratic term is positive while that of the

linear term is negative, corresponding to a U-shaped parabola with the vertex at 68.1. The

estimated coefficient of the quadratic term is also very small and not statistically significant

even at level 10 percent. As a control, the results of broken bone visits match our expectation.

Next, I investigate the existence of non-linearity following the approach of Reyes (2007). I

create four variables containing a linear spline of PM2.5 concentration. These variables are

constructed such that their coefficients represent the slopes for the corresponding interval.
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The knots are at the borders of Chinese air quality classification, namely, 35, 75, 115. Equa-

tion (41) shows the specification.

V isitt = β0 +
4∑

n=1

β1,n · s nt +
7∑

τ=1

β3,τ · PM2.5t−τ + βrXt + βfTt + ηt (41)

In Equation (41), V isitt is the number of hospital visits of one condition on day t. s 1t,

s 2t, s 3t, and s 4t denote the variables containing a linear spline of PM2.5 concentration.

β1,n are the slopes of the different segments of the linear spline. Tt and Xt are the same

as in Equation (35). I use the number of bronchitis, pneumonia, and broken bone visits

as the dependent variable, respectively. I perform the regression of broken bone visits as a

comparison. I control for the seven lagging PM2.5 concentrations. Table 26 summarizes the

results.

(1) (2) (3)
Bronchitis Pneumonia Broken Bone

s 1t
.27** .11* -.01
(.13) (.06) (.04)

s 2t
.17* .02 -.03
(.10) (.04) (.02)

s 3t
-.04 -.04 .06
(.14) (.06) (.04)

s 4t
.41** .22*** .02
(.16) (.07) (.04)

Observations 1,036 1,036 1,029
R-squared 0.877 0.867 0.714

Table 26: Regression results from OLS estimation of Equation (41). Knots for linear splines are at borders
of Chinese air quality classification.

In Table 26, */**/*** indicates statistical significance at the 10/5/1 percent levels. Stan-

dard errors are shown in parentheses. For bronchitis visits, a marginal increase in PM2.5

concentration is statistically significant at level 5 percent in the first and fourth intervals.

The point estimation of the coefficient on s 4t is also the largest. This seems to suggest
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that there is a non-linear response of bronchitis visits once the air quality becomes moder-

ately polluted. The results of pneumonia visits are similar. A marginal increase in PM2.5

concentration is statistically significant at level 5 percent only in the fourth interval. The

point estimation of the coefficient on s 4t is also the largest. This seems to suggest that

there is a non-linear response of pneumonia visits once the air quality becomes moderately

polluted. For broken bone visits, as a comparison, none of the variables containing a linear

spline is statistically significant even at level 10 percent, consistent with the expectation. I

then repeat this exercise but let the knots be at the quartiles of PM2.5 concentration instead

of the borders of the Chinese air quality classification, namely, 23, 38, and 59. With the new

set of variables containing a linear spline, I perform an OLS estimation of Equation (41)

again. Table 27 summarizes the results.

(1) (2) (3)
Bronchitis Pneumonia Broken Bone

s 1t
.08 .13 .08

(.29) (.13) (.08)

s 2t
.39* .11 -.07
(.21) (.09) (.06)

s 3t
.08 -.04 -.03

(.16) (.07) (.04)

s 4t
.15** .06* .03
(.07) (.03) (.02)

Observations 1,036 1,036 1,029
R-squared 0.877 0.866 0.714

Table 27: Regression results from OLS estimation of Equation (41). Knots for linear splines are at the
quartiles of PM2.5 concentration.

In Table 27, */**/*** indicates statistical significance at the 10/5/1 percent levels. Stan-

dard errors are shown in parentheses. For bronchitis visits, a marginal increase in PM2.5

concentration is statistically significant at level 5 percent only in the fourth interval. How-

ever, the point estimation of the coefficient on s 4t is not the largest. For pneumonia visits a

marginal increase in PM2.5 concentration is not statistically significant at level 5 percent in
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any interval. The point estimation of the coefficient on s 4t is also not the largest. Therefore,

I fail to find any evidence of non-linearity for bronchitis and pneumonia visits. For broken

bone visits, as a comparison, none of the variables containing a linear spline is statistically

significant even at level 10 percent, consistent with the expectation. Therefore, the evidence

of non-linear effects from this approach is also unconvincing as it is sensitive to the choice

of knots.

3.5 Autocorrelation

In the regression analyses I perform so far in this chapter, I have assumed that the error

terms are independent and identically distributed. However, due to the time series nature of

the hospitalization data, the error terms may be autocorrelated. If this is true, there might

be a serious downward bias of the estimated standard errors, which can invalidate statistical

inferences. For the test of autocorrelation, I focus on the regression of Equation (39) as it

provides the key outputs of this chapter. I first plot the residuals of the OLS estimation of

Equation (39) against its first lagging residuals, illustrated in Figure 28.

In Figure 28, the data points appear random without any particular patterns, suggesting

autocorrelation is minor. To investigate how the autocorrelation affects the estimated effects

in Table 24, I rerun the regression of Equation (39) with Newey-West standard errors. I set

the maximum lag order of correlation to 7. Table 28 summarizes the results.

In Table 28, */**/*** indicates statistical significance at the 10/5/1 percent levels. Standard

errors are shown in parentheses. Compared to the results in Table 24, the standard errors are

marginally larger indicating very little positive autocorrelation. Assuming the error terms

to be autocorrelated does not change the statistical significance of PM2.5 concentration vari-

ables at level 5 percent. Therefore, the conclusions from this regression remain unchanged
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Figure 28: The residuals and the first lagging residuals of the OLS estimation of Equation (39)

Variable OLS Estimate

PM2.5t
.158***
(.044)

PM2.5t−1
.094***
(.025)

PM2.5t−2
.062**
(.027)

PM2.5t−3
.054***
(.020)

PM2.5t−4
.057***
(.020)

PM2.5t−5
.061**
(.025)

PM2.5t−6
.057***
(.021)

PM2.5t−7
.032

(.046))

Table 28: The effects of PM2.5 concentrations on bronchitis hospitalization from OLS estimation of Equa-
tion (39), with Newey-West standard errors

even allowing the error terms to be serially correlated.
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3.6 Conclusions

In this chapter, I first estimate the health effects of PM pollution. I find that exposures to

PM2.5 up to six days ago are associated with contemporaneous bronchitis hospitalization.

These results are in accordance with the literature that concludes delayed health effects of

PM exposure. The estimates from this analysis provide very important policy implications

by enabling the simulation in Chapter 2 which demonstrates the gains that could have been

achieved by altering the timing of historical interventions according to both existing condi-

tions and expected upcoming weather patterns. Then, I assess the curvature of the response

function of respiratory hospitalization to PM pollution. I fail to find any convincing evidence

that supports the presence of nonlinearity. One caveat of this conclusion is that I only con-

sider possible non-linear effects of the contemporaneous pollution concentration but ignore

the possible non-linear effects of the lagged pollution concentration, due to the complex-

ity of the specification and the difficulty in identification if both of them are incorporated.

Although this simplification might introduce a bias in an unclear way, it is of less concern

since prediction instead of specific point estimates is the focus of this analysis. The lack

of non-linear responses can be a result of people exercising avoidance behaviors when the

ambient pollution level is high. However, I do not have access to data that can help to verify

this hypothesis. Finally, I investigate the existence and extent of autocorrelation in bron-

chitis hospitalization data. The analysis shows evidence of minor positive autocorrelation,

although it does not alter the conclusions of the effects of PM2.5 exposures on bronchitis

hospitalization.
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3.7 Appendix

3.7.1 Imputation of Missing Values

In this section, I show how missing values in daily city-average PM2.5 concentrations and

atmospheric pressure are imputed. From March 2017 to December 2019, there are four short

periods without daily city-average PM2.5 concentration observations: December 30, 2017 to

January 1, 2018; February 10, 2018 to February 13, 2018; May 29, 2018 to May 30, 2018;

and December 5, 2018 to December 6, 2018. To fill in these gaps, I calculate the mean of

daily station-average PM2.5 concentrations from 24 monitoring stations in Chengdu. These

monitoring stations are scattered all over the city area of Chengdu. Therefore, they are

representative of the whole city. Figure 29 shows a comparison of the calculated mean of

daily station-average PM2.5 concentrations and daily city-average PM2.5 concentration.

Figure 29: Comparison of the calculated mean of daily station-average PM2.5 concentrations and daily
city-average PM2.5 concentration

In Figure 29, the blue and red time series represent the calculated mean of daily station-
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average PM2.5 concentrations and daily city-average PM2.5 concentration, respectively. In

all four graphs, I include seven days before and after the periods when daily city-average

PM2.5 concentrations are missing. It is clear that both the trend and level of the two time

series before and after these periods are very similar. Therefore, I use the calculated mean of

daily station-average PM2.5 concentrations when daily station-average PM2.5 concentration

is missing.

From November 17, 2018 to November 22, 2018, the daily average atmospheric pressure is

missing. To fill in this gap, I use the daily atmospheric pressure of a nearby city, Ya’an.

Ya’an is located in the same basin area and is only less than 100 miles away from Chengdu.

The two cities also share similar elevations (1,900 vs 1,240 ft). Figure 30 shows a comparison

of the daily average atmospheric pressure in Ya’an and Chengdu.

Figure 30: Comparison of the daily average atmospheric pressure in Ya’an and Chengdu

In Figure 30, the blue and red time series represent the daily average atmospheric pressure

in Ya’an and Chengdu, respectively. I also include seven days before and after the periods

when the daily average atmospheric pressure in Chengdu is missing. It is clear that both

the trend and level of the two time series before and after these periods are very similar.
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Therefore, I use the daily average atmospheric pressure in Ya’an when the daily average

atmospheric pressure in Chengdu is missing.

3.7.2 A Test of the Effect of Future PM2.5 Concentration on Contemporaneous

Hospitalization

In this section, I test the effect of future PM2.5 concentration on contemporaneous hospital

visits when β1,τ ’s are modeled as cubic B-spline functions of time. Future PM2.5 exposures

should not affect contemporaneous hospitalization. Therefore, I expect the estimated effect

to be indistinguishable from zero. First, I include the first leading PM2.5 concentration into

Equation (36), as shown in Equation (42).

Brt = β0 +
7∑

τ=−1

β1,τ · PM2.5t−τ + βrXt + βfTt + ηt (42)

Then, by plugging Equation (37) into Equation (42), we have

Brt = β0 + (γ0 − γ1 + γ2 − γ3) · PM2.5t+1

+ γ0 · PM2.5t + (γ0 + γ1 + γ2 + γ3) · PM2.5t−1 + ...

+ (γ0 + γ17 + γ27
2 + γ37

3) · PM2.5t−7 + βrXt + βfTt + ηt

(43)

Rearrange Equation (43), we have
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Brt = β0 + γ0 · (PM2.5t+1 + PM2.5t + PM2.5t−1 + ...+ PM2.5t−7)

+ γ1 · (−PM2.5t+1 + PM2.5t−1 + 21 · PM2.5t−2 + ...+ 71 · PM2.5t−7)

+ γ2 · (PM2.5t+1 + PM2.5t−1 + 22 · PM2.5t−2 + ...+ 72 · PM2.5t−7)

+ γ3 · (−PM2.5t+1 + PM2.5t−1 + 23 · PM2.5t−2 + ...+ 73 · PM2.5t−7)

+ βrXt + βfTt + ηt

Let w1t = PM2.5t+1+PM2.5t+PM2.5t−1+...+PM2.5t−7, w2t = −PM2.5t+1+PM2.5t−1+

21 ·PM2.5t−2 + ...+ 71 ·PM2.5t−7, w3t = PM2.5t+1 +PM2.5t−1 + 22 ·PM2.5t−2 + ...+ 72 ·

PM2.5t−7, and w4t = −PM2.5t+1 + PM2.5t−1 + 23 · PM2.5t−2 + ... + 73 · PM2.5t−7. The

above equation becomes

Brt = β0 + γ0 · w1t + γ1 · w2t + γ2 · w3t + γ3 · w4t + βrXt + βfTt + ηt (44)

In this specification, the marginal effect of PM2.5t+1 is represented by γ0 − γ1 + γ2 − γ3

according to Equation (43). With 1,036 observations, the OLS estimation of Equation (44)

returns an R-squared value of 0.876. OLS estimate of the marginal effect of PM2.5t+1 is

.077 with a standard error of .039, not statistically significant at level 5 percent. This result

is consistent with the fact that future PM2.5 concentration does not affect contemporaneous

hospitalization.
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