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Abstract

In this paper we investigate representational and methodolog-
ical issues in a attractor network model of the mapping from
orthography to semantics based on [Plaut, 1995]. We find that,
contrary to psycholinguistic studies, the response time to con-
crete words (represented by more 1 bits in the output pattern)
is slower than for abstract words. This model also predicts
that response times to words in a dense semantic neighbor-
hood will be faster than words which have few semantically
similar neighbors in the language. This is conceptually consis-
tent with the neighborhood effect seen in the mapping from
orthography to phonology [Seidenberg & McClelland, 1989,
Plaut et al., 1996] in that patterns with many neighbors are
faster in both pathways, but since there is no regularity in the
random mapping used here, it is clear that the cause of this
effect is different than that of previous experiments. We also
report a rather distressing finding. Reaction time in this model
is measured by the time it takes the network to settle after be-
ing presented with a new input. When the criterion used to
determine when the network 1s “settled” is changed to include
testing of the hidden units, each of the results reported above
change the direction of effect — abstract words are now slower,
as are words in dense semantic neighborhoods. Since there
are independent reasons to exclude hidden units from the stop-
ping criterion, and this is what is done in common practice,
we believe this phenomenon to be of interest mostly to neural
network practitioners. However, it does provide some insight
into the interaction between the hidden and output units during
settling.

Introduction

The publication of the Seidenberg and McClelland (1989)
model of naming set into motion an extensive debate on the
nature of the processes used in the recognition and pronunci-
ation of English words. A number of existing models relied
on two separate mechanisms: a rule-following mechanism for
the pronunciation of regular words and novel nonwords, and a
look-up mechanism for the pronunciation of irregular words.
Seidenberg and McClelland claimed that a single mechanism
in the form of a neural network could perform both rule-like
and exception mappings, and account for regularity effects
seen in reaction time studies using the lexical decision and
naming tasks. They showed that their parallel distributed pro-
cessing model demonstrates a so-called neighborhood effect
in which the reaction-time to a word is decreased if it has a
number of neighbors with similar orthographic to phonologi-
cal mappings.

The principal attribute of a neural network which makes it
a good model of regularity effects in reading is that of neigh-
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borhood training. When the input and output representations
are chosen appropriately, training a single input/output pat-
tern improves the performance not only of that pattern, but
of similar patterns also. Thus, a rule-like behavior is induced
which causes novel inputs to be pronounced in a manner simi-
lar to human subjects, and also accounts for the neighborhood
effect.

Since that time, the focus in modeling lexical access effects
has shifted from feed-forward to attractor networks, recurrent
networks which are trained to settle to a stable output. Us-
ing attractor network models, A number of experiments have
been reported which lend credence to the idea that many of
the effects seen during lexical access with human subjects are
naturally modeled using attractor networks.

Plaut et al. (1996) showed that the regularity effect demon-
strated by [Seidenberg & McClelland, 1989] holds for attrac-
tor networks as well as for feed-forward networks. Plaut
(1995) demonstrated semantic and associative priming in an
attractor network model which implemented a random map-
ping whose intent was to simulate the mapping from orthog-
raphy to semantics. Plaut and Shallice (1993) demonstrated
an attractor network model which, when damaged showed a
number of symptoms of deep dyslexia.

The purpose of our research is to look for regularities in
the behavior of attractor networks implementing a mapping
from orthography to semantics. The principle aspect of the
mapping from orthography to phonology, that of regularity, is
lacking in the mapping from orthography to semantics. Even
though two words which are spelled similarly have a good
chance of having similar pronunciations, there is little reason
to believe that they will have similar meanings. In spite of this
lack of regularity in the mapping, we show that regularities
still persist in the behavior of attractor network models of this
mapping.

We present a comprehensive set of network simulations in
which we independently vary several factors:

e the frequency with which an input/output pattern is seen
during training

e the semantic neighborhood density, the proximity and
number of output patterns which are similar to a pattern
of interest,

e the number of bits which are on in an output pattern.



The first factor, training frequency, we equate with the fre-
quency of occurrence of a word in speech or text for human
subjects. Since word frequency is perhaps the most reliable
determiner of reaction time in reading, any study which left
out this factor would be incomplete.

The second factor, semantic neighborhood density, is one
possible source of a neighborhood effect in networks which
are trained without a regular mapping. Evidence for such
an effect without a regular mapping would have interesting
implications for our understanding of the regularity effect in
reading. It would also make a unique prediction of attrac-
tor networks. We are aware of only one paper that looks for
an effect of semantic neighborhood [Buchanan et al., 1996].
This paper reports the results of testing three deep dyslexic
patients in a naming task. Reading errors of one of the pa-
tients showed significant correlation with the density of the
semantic neighborhood of the stimulus words. Though this
study counts errors rather than looking at reaction times as
does our model, by showing some effect of a semantic neigh-
borhood, it does lend credence to the concept.

The third factor, output pattern bit density, has been
used to encode concreteness of word meaning in a
number of connectionist models [Cottrell & Plunkett, 1995,
Plaut & Shallice, 1993]. In this research, patterns which have
more bits on are taken as having more features instantiated,
thus representing more concrete conceplts.

A number of psycholinguistic studies show an effect of
concreteness on reaction time. A significant facilitation in re-
action time for either concrete or highly imageable words has
been reported both for the lexical decision task [James, 1975,
Whaley, 1978, Kroll & Merves, 1986, de Groot, 1989], and
the naming task [de Groot, 1989]. In general, the effect seems
to be stronger in the lexical decision task than in the naming
task.

All of these lexical decision studies which found the main
effect and which included statistics on interactions! reported
a significant interaction between frequency and concrete-
ness or imageability such that the concreteness effect was
stronger for low frequency words. Indeed, two of the stud-
ies [James, 1975] [Kroll & Merves, 1986] report no concrete-
ness effect for high frequency words while reporting a signif-
icant effect for low frequency.

De Groot (1989) does not report a significant interac-
tion between frequency and imageability, but analysis of
[Strain et al., 1995] shows a nonsignificant trend in the same
direction as the lexical decision studies. In their first experi-
ment, which is the only experiment which includes high fre-
quency words, the facilitation for high imageable words over
low imageable words is 24.5 msec. for low frequency words,
but only 6 msec. for high frequency words. Most of this dif-
ference comes from words with exceptional pronunciations.
Their second experiment shows a significant interaction be-
tween the regularity of pronunciations and imageability such

'One study [Whaley, 1978) reported multiple regression statis-
tics and therefore did not report statistics on any interactions.
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that facilitation for highly imageable words is much stronger
for exception words.

Together these results suggest that semantics plays a
role in lexical decision and naming, and also in the pro-
nunciation of exception words, as has been suggested by
[Plaut & Shallice, 1993, Plaut et al., 1996].

Network Simulations

To come to a better understanding of the factors that affect
settling time in an attractor network model which maps from
orthography to semantics, we ran a number of simulations. In
this section, we explain our simulation methods and present
results. These experiments represent a parametric study of
the effects of certain kinds of semantic structure on lexical
access.

Network Architecture

Figure 1 shows the network architecture used in our simula-
tions. There were 20 inputs, 100 hidden units, and 100 out-
puts units with recurrent connections within the output layer
and back to the hidden layer. This architecture and much
of the training method are taken directly from [Plaut, 1995].
Much of the technique is similar to that used in experiment 3
of [Plaut et al., 1996].

In order to approximate continuous time, continuous net-
work units are used. The following formula describes the ac-
tivation behavior of these units. The activation of unit j at
time ¢, sgﬂ. is simply the squashed net input of unit j at that

1]

time. The net input " is a time varying average:

x_[:] =7 Z sit"f]w,-,- +(1- 'r)zg-’"fl

The 7 parameter regulates the granularity of discrete time
used to approximate continuous time by specifying the small-
est tick of time the network operates on. We will refer to these
smallest units of time as ticks, and the actual units of time we
are approximating, t, as simulation time units. In the graphs
below, settling time is in terms of simulation time units.

The recurrence and the use of continuous units may seem
overly complex, since the problem of mapping between our
representations of orthography and semantics can be learned
by a feed-forward network. We chose this methodology be-
cause we are interested in an accurate simulation of the time
it takes the network to settle to the correct output pattern af-
ter the input is changed, as a measure of reaction time to the
stimulus.



Training Patterns

The network was trained to map from “orthography” to “se-
mantics.” We include quotation marks around these two la-
bels because we do not attempt to set up a correspondence
between a word representation and any word of English or
any other natural language. Instead, following (Plaut 1995),
we use random 0/1 bit patterns to represent both the orthog-
raphy and semantics of each word. The input “orthographic”
patterns were uniformly distributed, sparse bit patterns. The
probability of any bit being on is 0.1. We imposed a more
interesting structure on the output “semantic” representation
to capture the concepts of imageability, and semantic neigh-
borhood.

Highly imageable or concrete words are often charac-
terized in the literature as having a richer representation
[Breedin et al., 1994]. This may take the form of more se-
mantic features for concrete words, or more sensory con-
nections for highly imageable words. In the context of our
simulations, we capture this concept by varying a single pa-
rameter, P(ONE), the probability of a bit being a one in
the output representation. Representations with more fea-
tures, or 1 bits, we call concrete. Those with fewer bits,
we call abstract. The P(ONE) parameter is set to 0.5 for
concrete words, and 0.1 for abstract words. Note that sim-
ilar representations are assumed elsewhere in the literature
[Cottrell & Plunkett, 1995, Plaut & Shallice, 1993].

To capture the concept of a semantic neighborhood, in
which a number of words have similar meanings, we want
to generate output patterns such that two patterns from the
same semantic neighborhood have more bits in common than
two patterns from different neighborhoods. We capture this
concept using the P(F LI P) parameter. This parameter is the
probability that any single bit in the semantic representation
will change, or “flip” between two neighbors. This controls
how tightly packed the patterns in a neighborhood will be.
We use the terms “dense” and “sparse” to distinguish low and
high P(F LIP) values respectively.

All patterns in a neighborhood are generated from a sin-
gle prototype pattern which is not included in the final set of
training patterns. The process we use to produce these pat-
terns is designed so that:

¢ the probability that a bit in any pattern is a 1 is independent
of all other bits, and is given by P(ONE),

e the probability that two corresponding bits between a pair
of patterns in a neighborhood are different is independent
of all other bits in the pattern and is given by P(FLIP).

First a prototype pattern is generated where each bit is ran-
domly set to 1 with probability P(ON E). To generate a sin-
gle exemplar pattern from the prototype, we randomly and
independently decide whether or not to flip each bit. This de-
cision is made in two stages. First, with probability p, the bit
is designated to be resampled. Next, each bit so designated
is set to 1 with probability P(ON E) similar to the process
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for the original prototype. The value of any bit which is not
designated to be resampled is left unchanged.

The value of the probability p is chosen so that the proba-
bility of corresponding bits being different between two pat-
terns in the neighborhood will be P(FLIP). The value of
p necessary to achieve a given P(F LIP) varies depending
upon the P(ON E) parameter. That is, with one setting of p
for two different settings of P(ON E), the expected distance
between patterns in a neighborhood would change. Hence
we had to compute the proper value of p for each value of
P(FLIP) so that the expected distance between two patterns
in a neighborhood is independent of our choice of P(ONE).

A third parameter, NN BORS, is the total number of pat-
terns in the neighborhood. Note that NNBORS is inde-
pendent of P(FLIP). For instance, it is possible to have
a tightly packed neighborhood containing only a few patterns
(small P(FLIP), small NNBORS), or a loosely packed
neighborhood containing many patterns (large P(FLIP),
large NNBORS). Despite the two parameters being inde-
pendently controlled, we do expect these two parameters to
have similar effects on the simulation, so we will call a neigh-
borhood containing many patterns “dense” and one with few
“sparse”.

So far we have mentioned three parameters used to gen-
erate our random semantic representations: The P(ONE)
parameter determines the concreteness or imageability of a
word, while NN BORS and P(F L1 P) determine how many
semantic neighbors a word has and how close together they
are. There is a fourth and final parameter attached to each
word, the F RE(Q parameter. This determines the relative fre-
quency of the word, or how often it is seen during training.

Table 1 records the various levels used for each of the four
parameters. Our base simulation wasa 2 x 2 x 2 x 2 exper-
iment with 6 patterns in each cell for each network resulting
in 96 word patterns for each network.

Table 1: Summary of Simulation Parameters,

P(ONE) Probablity that a bit in 0.1 = abstract
the pattern is a one 0.5 = concrete
P(FLIP) | Prob. that bit flips be- 0.05 = dense
tween 2 patterns in n"hood | 0.15 = sparse
NNBORS | Number of patterns in 6 = dense
the neighborhood 2 = sparse
FREQ Relative number of 1 =low
presentations in training 4 = high
Training Method

We trained and tested ten separate networks, each with dif-
ferent initial weight values, and different sets of patterns gen-
erated using the parameters described above. Our networks
were trained using Pearlmutter’s method for continuous, re-
current back-propagation through time [Pearlmutter, 1989].



During training, before the presentation of a new input pat-
tern, the activation of each unit (s?l) was set to 0.3, and the

time-averaged net input (J:?J) was set to —0.8473, which is
the inverse-sigmoid of the initial activation of 0.3. This ini-
tial activation value was chosen as it is the average value of
all output pattern bits in the training set.

On each presentation, mean 0 Gaussian noise with standard
deviation 0.05 was used to corrupt the input portion of the
training pattern. The activation values of the input layer were
set at time ¢ = 0 to this corrupted pattern, and activation was
propagated forward using the formula of the previous page,
until simulation time ¢ = 4. During this time the input layer
activations were clamped to their noise-corrupted values so
they did not change between time 0 and 4.

During the back propagation phase, cross entropy error
[Hinton, 1989] between the activation of the output layer and
the output training pattern was injected between time t = 2
and 4. The error accumulated during this period was back-
propagated to time 0, but no farther.

Gradient descent with momentum was used to calculate
new weights, and the weight changes were applied before the
next pattern was presented. The learning rate was 0.005, with
momentum 0.8. Each network was trained for 1000 epochs
at 7 = 0.2. This was followed by “annealing training” con-
sisting of 60 epochs at 7 = 0.05, and 40 more epochs at
=0.01.

Simulation 1 - Results & Discussion

After training, we assessed the settling times for each of the
96 patterns for each of the ten networks. Each network unit
was initialized to its starting activation of 0.3, and allowed to
settle. In this simulation, the network was considered settled
when no output unit changed by more than 0.001 in a single
time tick. This is the method used in [Plaut, 1995], and is
similar to that of [Plaut et al., 1996].

At this point, for every training pattern, the sum squared
error on the final activation of the network is within v/0.5 of
the training pattern, which is adequate to assure us that no bit
is off by more than 0.5.

Figure 2 plots the main effects on settling time for the four
parameters. In these graphs, the dependent axis plots the av-
erage amount of simulation time the network took to settle to
a stable semantic output. The error bars plot one standard er-
ror on each side of the mean. Mean settling times are plotted
after various amounts of training ranging from 200 to 1000
epochs. The weights used in these graphs were derived by
doing annealing training starting from the weights produced
on the same set of 10 networks after 200, 400, 600, 800, and
1000 epochs of training.

We performed 2 x 2 x 2 x 2 repeated measures ANOVAs
on the settling times at 1000 epochs. Each of the 10 networks
was treated as a separate subject, and all 4 factors were treated
as within subject sources of variance. The results show that
all the main effects, except for NN BORS, are significant.
Frequent words settle faster than infrequent (Frreg(1,9)
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Figure 2: Main Effect for Simulation 1

=897.7, p < 0.001). Abstract words are faste_r than con-
crete (F'p(oNE)(1=9] = 1.2.1, p = 0.007). '-['he influence of
the P(FLIP) parameter Is to make words in dense seman-
tic neighborhoods faster (Fp(rLrp)(1,9) = 6.90, p = 0.027).
The direction of influence for NN BORS is consistent with
P(FLIP), but the result is not significant (FyvBors(1,9)
=4.92,p=0.054).

The same pattern of significance is obtained when the anal-
ysis is performed at 200, 400, 600, and 800 epochs. We have
also performed preliminary trials using a number of other
manipulations: changing the magnitude of the stopping cri-
terion, the range of the P(ONE) parameter, and the range
of FREQ. With the exception of the FREQ experiment,
none of these manipulations had any noticeable effect on the
result. In the FREQ manipulation, frequencies of 1 and 8
were used. All significant effects were the same as reported
above except for P(FLIP) which showed a non-significant
trend consistent with our reported results. Informal analysis
suggests that much of the effect of P(F LIP) is lost at high
frequencies.

The fact that abstract words are faster than concrete words
is inconsistent with the findings of a number of psycholin-
guistic studies which report that reaction times to abstract
words in the naming and lexical decision tasks are slower
than to concrete words. These findings were summarized in
the introduction to this paper. This is a problem for those who
believe that attractor networks make good models of lexical
access phenomena, while at the same time hold that the pri-
mary distinction between abstract and concrete words is that
concrete words have denser semantic bit representations, Our
finding suggests that a difference in the density of the bit rep-
resentation is inadequate to explain reaction time differences
of human subjects.

The simulation shows that being in a dense semantic neigh-
borhood results in decreased settling times. This is consis-
tent with the regularity effect in reading. There, according
to [Seidenberg & McClelland, 1989] and [Plaut et al., 1996]



the effect is a result of neighborhood training. Training on
one pattern has the effect of reducing reaction times on sim-
ilar patterns. In our simulation, the mapping between inputs
and outputs is random. Knowing the correct output for some
input can give no information about what is the correct out-
put for any other input. Therefore, the result reported in this
paper cannot be caused by the same kind of neighborhood
training. We suggest rather that training on a pattern may
have the effect of decreasing settling time of patterns which
are nearby in output space. This within-domain neighbor-
hood effect is distinct from the neighborhood training ob-
served by [Seidenberg & McClelland, 1989] which we will
call a berween-domain neighborhood effect, although it may
have significant influence on settling times even in problems
which feature a regular mapping. Further study to determine
the relative size of these two effects is required.

For problems without a regular mapping, this within-
domain neighborhood effect may serve as a distinctive pre-
diction of attractor network models. As such, it is a candidate
for distinguishing between such models and alternative hy-
potheses.

Simulation 2 - Results & Discussion

We reran the testing phase of the previous section, using
the same set of ten networks, and the same final weights.
The only difference between this run and the earlier one is
that in this second run hidden units as well as output units
were included in the test for settling. Under this new stop-
ping criterion, each of the main effects is significant at p <
0.05. Unfortunately, the direction of all of the effects ex-
cept frequency are reversed. Frequent words are still facili-
tated (Frreq(1,9) =247.1, p < 0.001). However, now con-
crete words are faster than abstract (Fpiong)(1,9) = 208.5,
p < 0.001). Also, each of the factors controlling the den-
sity of a semantic neighborhood now interferes with settling
(FP(FLIP)(]--Q) = 52.5,p < 0.001; FNNBORS(I,Q) =13.1,
p = 0.006). Figure 3 plots the results.

We have recently successfully reproduced the results of
[Plaut, 1995], which demonstrates possible mechanisms be-
hind associative and semantic priming in an attractor network
model. In [Plaut, 1995], associative priming is shown to have
a much stronger influence on reaction times than does seman-
tic priming. We have found that in our replication including
hidden units in the stopping criterion has the effect of revers-
ing this result. With hidden units in the stopping criterion,
semantic priming has a stronger influence than does associa-
tive priming. For details see [Clouse, 1998].

Note that in both sets of simulations, the only change in
methodology was the introduction of hidden units into the
stopping criterion. How could such a small change have such
a large impact on the results?

Given some input pattern and some set of weights, the tra-
jectory followed through activation space for the two tests
must necessarily be identical up to the point where the output-
only criterion is met. After this point, the output units change
very little, but the hidden units continue to change until the
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settling criterion is met. The time during which the hidden
units change by themselves is approximately half the length
of time required for the output units to reach criterion. This
is long enough to reverse much if not all of the difference in
settling times of the output units. See figure 4.

For the case of the P(ON E) effect, we have some under-
standing of why the settling time reverses when hidden units
are included in the stopping criterion. The settling behavior
can be characterized by a number of stages. In the earliest
stage little influence from the input pattern has yet “leaked
through” to the output layer. The observed behavior, which
we believe is based mainly on the bias weights of the out-
put units, is to turn all outputs off. This is followed by a
second stage in which selected bits corresponding to ones in
the target pattern are turned on in the output. The distance
traveled from all zeros to the correct number of output ones
is much greater for patterns with P(ONE) = 0.5 than for
those with P(ON E) = 0.1. This may account for the longer
settling times for concrete patterns when only the output units
are tested for settling. In the final stage, after the output units
have settled, the output units change very little, therefore the
hidden units are settling under constant input. The formulas
governing activation under these conditions dictate that units
with more extreme inputs will tend to reach settling criterion
faster than those with inputs near zero. We have observed
that the inputs to hidden units are generally more extreme for
patterns with P(ON E) = 0.5, which accounts for the faster
settling of hidden units for these patterns. That the inputs
to P(ONE) = 0.5 patterns are more extreme is reasonable



considering that these inputs consist of more non-zero terms,
due to the greater number of ones in the output. We have yet
to work out a satisfying explanation for the semantic neigh-
borhood effect.

Since changing the stopping criterion has such a profound
influence on the simulation results, a principled choice of
stopping criterion is very important. Common practice is to
exclude hidden units from the stopping criterion. This, we
believe, is based on the reasonable assumption that the ac-
tivation of the hidden units is, by definition, not visible to
other networks, and therefore has no influence their behavior,
including any network whose task requires deciding if this
network has settled.

Conclusion

In this paper we have reported the results of a simulation of
the effects of a number of different variables on an existing
attractor network model of the mapping from orthography to
semantics. We find significant effects of frequency, the num-
ber of ones in the output pattern, and two measures of neigh-
borhood density.

We find that more ones in the output pattern tends to slow
settling. One possible representation of concrete words used
by connectionists includes more one bits. Since the psy-
cholinguistic literature suggests that reaction times to con-
crete words are faster than to abstract, our result suggests that
this representation causes a conflict with human behavior. A
more radical conclusion, not shared by both authors, is that
concrete words should be represented by patterns with few
bits on, suggesting a more “focal” pattern of activity. We also
find a semantic neighborhood effect in which words which
have many semantically similar words in the language tend
to settle faster.

In a second set of simulations, we show that both of these
effects reverse when hidden units are included in the stop-
ping criterion. This we interpret as an effect which is of inter-
est principally to neural network researchers, rather than as a
prediction of human behavior.
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