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ABSTRACT: Mass spectrometry imaging (MSI) is a high-throughput imaging technique capable of the qualitative and quantitative
in situ detection of thousands of ions in biological samples. Ion image representation is a technique that produces a low-dimensional
vector embedded with significant spectral and spatial information on an ion image, which further facilitates the distance-based
similarity measurement for the identification of colocalized ions. However, given the low signal-to-noise ratios inherent in MSI data
coupled with the scarcity of annotated data sets, achieving an effective ion image representation for each ion image remains a
challenge. In this study, we propose DeepION, a novel deep learning-based method designed specifically for ion image
representation, which is applied to the identification of colocalized ions and isotope ions. In DeepION, contrastive learning is
introduced to ensure that the model can generate the ion image representation in a self-supervised manner without manual
annotation. Since data augmentation is a crucial step in contrastive learning, a unique data augmentation strategy is designed by
considering the characteristics of MSI data, such as the Poisson distribution of ion abundance and a random pattern of missing
values, to generate plentiful ion image pairs for DeepION model training. Experimental results of rat brain tissue MSI show that
DeepION outperforms other methods for both colocalized ion and isotope ion identification, demonstrating the effectiveness of ion
image representation. The proposed model could serve as a crucial tool in the biomarker discovery and drug development of the
MSI technique.

1. INTRODUCTION
Mass spectrometry imaging (MSI) is a high-throughput
molecular imaging technique that enables the spatial local-
ization of thousands of biomolecules in tissue sections.1 The
capabilities of MSI in biochemical characterization with spatial
information promote its extensive applications in biology,
clinical medicine, pharmaceutical research, and environmental
science.2−5 When MSI acquires a full mass spectrum at each
pixel of a tissue section, it produces thousands of ion images.
Each image depicts the spatial distribution of specific ions or
groups of ions. Co-localization refers to the quantification of
the spatial correlation between ion images. When paired
images from ions show high spatial similarity, they are termed
colocalized ions. Identifying these colocalized ions is vital to
interpreting complex MSI data in a biological context.

The identification of a colocalization ion involves looking up
a similar spatial distribution ion by using distance-based
similarity metrics. Although the high spectral resolution and
rich spatial information in MSI makes them suitable for
determining the subtle metabolic differences between regions
of tissue, their high dimensionality, complex spatial structure,
and low signal-to-noise ratios (SNR) also pose challenges in
data interpretation, including similarity measurements of ion
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images. While image representation has been an important
topic in computer vision and pattern recognition, it conveys
information about the images by mapping raw image data
directly into abstract semantic representations. Therefore, a
“meaningful representation” of an ion image (an ion image
representation) which captures significant spectral and spatial
information to project onto a dense vector would help to reveal
the intrinsic features embedded in the data and simplify the
recognition of colocalized ions.6 Unlike the task of rendering
ion images from MSI data, which is achieved by many
commercial and home-built software packages,7−9 the ion
image representation aims to mine hyperspectral MSI data for
obtaining colocalized or isotope ion images which have similar
spatial distributions.

Several methods have been developed to generate ion image
representations. Supervised methods such as ColocML rely
heavily on high-quality annotated data which makes them
sensitive to the experiment artifacts and noise and reduces
generalization capacities.10 On the contrary, unsupervised
methods that abstract the underlying spatial patterns of
individual 2D ion images without manual annotations are
more practical in learning ion image representation.

Unsupervised methods for ion image representation can be
roughly divided into three categories based on similarity
measurement (SIM),10−13 dimensionality reduction (DR),14,15

and deep learning (DL)16,17 strategies, respectively. The SIM-
based methods utilize vector-based distance calculations to
quantify the spatial similarity of ion images through reshaping
the original size of the image into a vector. DR-based methods
first map the high-dimensional features into a low-dimensional
embedding space and then measure the distance between the
embeddings of ion images. Obviously, either SIM- or DR-
based methods do not take the spatial information on pixels
into account, which might be prone to missing relevant,
localized differences between ions. Recent advances in deep
learning frameworks for image representation in computer

vision have opened up new opportunities for learning effective
ion image representation.18−23 However, these DL-based
methods are designed exclusively to handle the semantic
relevant tasks of natural images, thereby being inadaptable for
extracting image features of MSI data in the presence of plenty
of noise and missing values. In addition, there is a special case
in colocalization ions, i.e., isotope peaks natively from the same
molecule (as shown in Figure S1). The ion images from
isotope ions show not only the similarity in the spatial
distribution but also the correlation of signal intensity.
Therefore, discriminating the isotope ions from other
colocalized ions of different molecules would assist the
accurate and reliable molecular identification in MSI.

In this work, we propose DeepION, a new deep learning
approach based on contrastive learning to generate effective
ion image representations in a self-supervised manner without
manual annotation. Two modes of DeepION, denoted as COL
and ISO, are designed for the cases of regular colocalized ions
from different molecules and isotope ions from the same
molecule, respectively. As modality-specific data augmentation
is critical to the performance of models trained by contrastive
learning, we propose two data augmentation strategies
especially for the COL and ISO mods by considering the
characteristics of the Poisson distribution and missing patterns
in MSI.24 The MSI data sets from two sections of rat brain
tissues are used to assess the capability of DeepION on ion
colocalization in comparison with SIM-based methods
including the Euclidean distance, cosine distance, Pearson
correlation coefficient (PCC), structure similarity index
measure (SSIM),25 and determination coefficient R2, DR-
based methods including principal component analysis (PCA),
t-distribution stochastic neighbor embedding (t-SNE), and
uniform manifold approximation and projection (UMAP), and
other DL-based methods including ResNet1826 and Sim-
Siam.23

Figure 1. Schematic overview of DeepION consisting of four modules. (1) Data augmentation module. The original ion image x is first imported
into the data augmentation module T to generate two augmented images x1 and x2, where the TCOL, including color jitter, filtering, Poisson noise,
and a random missing value, is carried in the COL mode, while TISO introduces an additional process for the intensity-dependent missing value in
ISO mode. (2) Encoder module. Two images x1 and x2 are propagated through a pair of ResNet18-based encoders f that share parameters and then
output two 512-dimensional representation vectors r1 and r2, respectively. (3) Projection module g and prediction module q are used to avoid
collapsing solutions during the optimization process of maximizing the similarity between two augmentations from the same image23 and ensure
the learning of the meaningful representation vectors r1 and r2. A contrasting loss is employed to maximize the similarity with a stop-gradient
operation on h2 to prevent the reaction from collapsing during training. (4) Dimensionality reduction module. This module is applied to further
reduce the dimensionality of ion image representation to a 20-dimensional vector O for downstream tasks.
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2. MATERIALS
2.1. Sample Preparation and Data Acquisition. Four-

week-old SD rats are housed in sterile individually ventilated
cages with a 12 h light/dark cycle at 22 °C and 45% relative
humidity. The rats are sacrificed, and brain tissues are dissected
and stored at −80 °C prior to section preparation.
Experimental protocols are approved by the Hong Kong
Baptist University Committee on the Use of Human and
Animal Subjects in Teaching and Research.27

Rat brain tissue is cryosectioned at 10 μm using a CryoStar
Nx70 cryostat (Thermal Fisher Scientific, Walldorf, Germany).
The tissue cryosections are then transferred onto an indium tin
oxide (ITO)-coated glass slide and placed in a vacuum
chamber for half an hour before matrix application. Matrix
solutions including 2,5-dihydroxybenzoic acid (DHB) and N-
(1-naphthyl)ethylenediamine dihydrochloride (NEDC) are
prepared at concentrations of 20 and 5 mg/mL in MeOH,
respectively. A home-built pneumatic-assisted electrospray
deposition system is used for matrix application at a flow
rate of 15 μL/min for 13 cycles. MSI data are acquired at 50
μm spatial resolution using timsTOF fleX MALDI-2 (Bruker
Daltonics, USA). A m/z range of 100 to 2000 was covered in
both positive and negative ion modes. Raw MSI data exported
from the instrument are about 4.4 GB (negative mode) and 4.7
GB (positive mode) in size.
2.2. Data Preprocessing. Data preprocessing, including

peak picking, peak alignment, peak filtering, peak pooling,
hotspot removal, and normalization, is conducted to generate
ion images from raw MSI data. Here, peak picking and peak
alignment are performed using SCiLs Lab software (Bruker
Company, Germany). Peak filtering and peak pooling are
performed using in-house Python scripts (details in our
previous work28,29). After that, the raw MSI data is converted
to a three-dimensional matrix X(M×N×H), where M and N are
the horizontal and vertical numbers of pixels, respectively, and
H represents the dimensionality of ions corresponding to the
m/z bins. For each ion image, those signals with intensities
higher than 99% maximum intensity are termed hotspots and
are truncated to eliminate the influence of extreme high
intensities of ions on spectral normalization and visual
inspection. Then the intensities of signals on an ion image
are normalized to the range of [0, 1]. Taking the ion image x as
an example, normalization is performed as follows:

x
x x

x x
min( )

max( ) min( )norm =
(1)

Finally, two MSI data sets containing 2165 images with a
192 × 425 shape (in negative mode) and 2263 images with a
198 × 422 shape (in positive mode) are obtained.

3. METHODS
The workflow of DeepION is shown in Figure 1. Two modes
of DeepION, i.e., the COL and ISO modes, are designed for
ordinary colocalized ions from different molecules and isotope
ions from the same molecule, respectively.
3.1. Data Augmentation Based on MSI Prior Knowl-

edge. Data augmentation, which involves applying different
transformations to original images to produce new training
data for the DeepION model, is crucial for contrastive
learning.18 It is recognized that when the training data closely
mirrors the distribution of the test data for a task, the model
performs better. To ensure that the learned ion image

representations are capable of abstracting high-level features
of MSI, a modality-specific data augmentation strategy is
designed by incorporating the characteristics of MSI data
(detailed descriptions seen in Material S1), including color
jitter, filtering, Poisson noise, random missing value, and
intensity-dependent missing value (Figure 2). Here, color jitter

and filtering are commonly used in natural images to make the
model insensitive to the brightness of images and concentrate
on the critical features. The operations of Poisson noise and
random missing value are carried out in the COL mode of
DeepION, which aims to simulate the data distributions within
MSI, whereas the intensity-dependent missing value operation
is conducted additively in ISO mode by setting the missing
ratio of ions proportional to their intensities.

In practical applications, the COL mode and ISO mode of
DeepION whose differences lay in the augmentation strategy
are flexibly used for the identification of colocalized ions and
isotope ions, respectively.
3.2. Architecture of the DeepION Model. The proposed

DeepION model is constructed based on the SimSiam
model,18 which aims to extract high-level spatial features
from the ion image to obtain a meaningful ion image
representation for each ion image in a self-supervised manner.
DeepION is composed with the data augmentation module,
encoder module, projection module, prediction module, and
dimensionality reduction module.

The data augmentation module on the DeepION
architecture is applied to create modified copies of the existing
ion images with some minor changes, facilitating self-
supervised training of the DeepION model.

The encoder module is used to learn an ion image
representation function f(•|θf) to extract the high-level features
from ion images for downstream tasks. It consists of twin
networks that share identical parameters and adopt the
pretrained Resnet18 as the backbone network (Figure S2A).
Taking the ion image x as an example, the encoder takes two
augmented views x1 and x2 from ion image x as inputs. Then,
two ion image representations r1 (d = 512) and r2 (d = 512)
corresponding to the same image x are obtained as follows:

r f x( )f1
1= | (2)

r f x( )f2
2= | (3)

The target of projection is to learn a multilayer perceptron
(MLP) function g(•|θg) to ensure that the econder module

Figure 2. Designed data augmentation strategy.
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outputs a meaningful ion image representation. Here, the
projection module consists of three fully connected (FC)
layers (as shown in Figure S2B). Then, two outputs h1 and h2
are obtained as follows:

h g r( )g1 1= | (4)

h g r( )g2 2= | (5)

The target of prediction is to learn an MLP function to avoid
the model producing the collapse results. It consists of two FC
layers (as shown in Figure S2C). Then, outputs p1 and p2 are
obtained as follows:

p q h( )q1 1= | (6)

p q h( )q2 2= | (7)

The target of dimensionality reduction is to generate a dense
vector for similarity measurement and alleviate the adverse
impact of the “curse of dimensionality” when the high-
dimensional ion image representation r (d = 512) from the
encoder is directly applied to the calculation. Since the UMAP
algorithm has been demonstrated to perform better than other
dimensionality reduction methods in many fields, we adopt it
to obtain the denser ion image representation O as follows

O f rUMAP( ( ))f= | (8)

where the reduced dimension is set to 20 by a trade-off
between space−time complexity and information utilization.
Then, to facilitate the calculation of similarity, a min−max
scaler is adopted to adjust the range of features to [0, 1], as
follows:

O O
O O

output
min( )

max( ) min( )
=

(9)

The output of the dimensionality reduction module is the
low-dimensional ion image representation of an ion image that
can be applied to downstream tasks.
3.3. Model Training. The Adam optimizer is adopted to

train the encoder and prediction module, where the learning
rate is set to 0.0003 and the momentum parameters β1 and β2
are set to 0.5 and 0.99, respectively. The initialization

parameters of the DeepION model are set to follow the
normal distribution N(0,0.02). Contrastive learning-based
models often benefit from a large batch size so that the
batch size is determined by the size allowed by the capacity of
the GPU memory. The number of iterations is set to 100.
Furthermore, to prevent the DeepION model from collapsing,
we use the stop gradient operation during the model training.
Specifically, the loss function of the DeepION model is as
follows

N
D p h

D p h

1 1
2

( , stopgrad( ))

1
2

( , stopgrad( ))

n

N

n n

n n

1

1 2

2 1

=

+

=

(10)

where the encoder on x2 receives no gradient from h2 in the
first term but receives gradients from h2 in the second term
(and vice versa for x1).
3.4. Model Implementation. After model training, the

output of the encoder is directly input into the dimensionality
reduction module, and the output of the dimensionality
reduction module is taken as the final output of the DeepION
model. The DeepMSI model is implemented in Python using
the PyTorch library, and the model is trained on a workstation
equipped with a GPU Nvidia GTX 2080Ti graphics card.

4. RESULTS AND DISCUSSION
The proposed DeepION is compared with SIM-based, DR-
based, and the other DL-based methods for the task of
identifying colocalized ions and isotope ions, respectively. The
Euclidean distance is used to quantify the similarity between
ion image representations generated by DR-based and DL-
based methods. The performance of the algorithms is assessed
by visual inspection and quantitative evaluations.
4.1. Colocalization Ion Searching. Two data sets of MSI

ion images are employed to investigate the capabilities of
DeepION on colocalized ions. Here, we select five
representative ions to be query ions to obtain the most similar
ion images via calculating the distance between ion image
representations (Figure 3, Figure S3). For negative ion mode,
the high expression of query ion m/z 213.902 is observed on
the locations of the cortex and cerebellum, while query ion m/

Figure 3. Identification of a colocalized ion for a representative query ion in negative mode. (a) m/z 213.902, (b) m/z 214.047, (c) m/z 701.509,
and (d) m/z 772.634. A shorter distance indicates greater similar between the query ion and colocalized ion candidate.
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z 214.047 is highly expressed in the olfactory bulb. Intuitively,
the colocalization of ion pairs should preserve the structural
similarities on tissue between their ion images. By using the
DeepION model, the target ions m/z 215.900, m/z 251.877,
m/z 253.875, and m/z 249.878 are recognized to be
colocalized with m/z 213.902 (Figure 3a), while the target
ions m/z 338.912, m/z 340.910, m/z 303.943, and m/z
302.935 are colocalized with m/z 214.047 (Figure 3b). The
colocalization ions of query ion m/z 213.902 from R2, SSIM,
PCA and UMAP (Figure S4) show partial consistency with
DeepION by a visual inspection of the morphological structure
of ion images. That is not the case for query ion m/z 214.047
(Figure S5), where misrecognized colocalized ions occurred
with other methods. It is demonstrated that DeepION
performs best in the task of discovering regular colocalized
ions.

Then, a benchmark data set of ion images, which were
manually annotated by experienced MSI technicians, is
introduced for quantitative evaluation. Here, 98 ion images
are manually divided into 17 colocalized ion categories within
this data set, and details of the data distribution are shown in
Figure S6. The performance of ion image representation is
quantified by constructing a linear classifier to predict the label
of each image in which leave-one-out validation is conducted
to obtain the classification accuracy, similar to previous
work.18−20,23 As shown in Table 1, ResNet18, SimSiam, and

DeepION methods have higher accuracy than the other
methods, which are attributed to the benefits of ion image
representations from the inclusion of spatial information. In
addition, the COL mode of the DeepION model achieves
86.73%, which outperforms the second-best SimSiam model by
about 25%. The main difference between the DeepION model
and SimSiam model lies in their data augmentation strategies.
The SimSiam model uses a standard data augmentation
designed for a natural image, while DeepION utilizes an MSI-
specific scheme based on prior knowledge. These results
demonstrate that the development of modality-specific data
augmentation is critical to the performance of DeepION in the
task of discovering colocalized ions.
4.2. Isotope Ion Identification. The ISO mode of the

DeepION model is compared with two SIM-based methods,
PCC and R2, which are used to identify isotope ions in
MATASPACE30 and the rMSI package31 (details shown in
Material S2). Figure 4 shows the colocalization results of
monoisotopes (white node) and isotopes (black node) in
which the edges represent the pair of colocalized mono-
isotope−isotope ions. Observing the results in the negative

mode(Figure 4a), the relevant isotopes are accurately
discovered for query monoisotpes m/z 302.935, m/z
699.493, m/z 718.534, and m/z 1544.847 using DeepION.
Figure S7 and Table S1 show the colocalization isotope ions by
PCC and R2. Although PCC and R2 could recognize the
isotope for monisotopes with high SNR, they are both
incapable of discovering the isotope m/z 1547.8702 for m/z
1544.8471 (PCC < 0.5, R2 < 0), where their proportions of
missing values are 88.62 and 70.96%. Other results of isotope
discovery are displayed in Figures S8 and S9. DeepION with
ISO mode attains better performance for isotope discovery
during visual inspection, which still detects the isotopes with
low SNR.

In addition to visual inspection, we also conduct the
quantitative evaluation for the ISO mode of DeepION. Here,
monoisotope−isotopes are manually picked out and annotated
one by one. The proposed DeepION model obtains 249
monoisotope−isotope pairs with 75.90% accuracy in negative
mode and obtains 442 pairs with 92.76% accuracy in positive
mode. The isotope ions identified by the ISO mode of
DeepION are listed in Tables S2 and S3, where the rows
colored in white and red indicate true and false discovery,
respectively. The colocalized ions that are identified to have
similar spatial distributions but do not belong to the isotope
are colored in blue, for example, m/z 245.882 and m/z
247.879, or m/z 362.642 and m/z 364.639 (as see Figure S10).
These probably happen when potential isotopic ions overlap
with ions from the matrix or ions with similar m/z values that
share identical spatial distributions.32 Additional chemical
knowledge of molecules as a constraint of the model may
further improve the performance of DeepION and facilitate
more reasonable results. The proposed DeepION model
introduces MSI domain knowledge to data augmentation to
learn the characteristics of MSI data, which further improves
the performance of DL-based methods in the task of
discovering isotope ions.

5. CONCLUSIONS
Effective ion image representation means that ions with similar
spatial distributions are close together in the embedded space,
whereas ions with different spatial distributions are far away. It
can facilitate the identification of colocalized ions and isotope
ions. In this study, we present DeepION, a new DL-based
method for ion image representation. The current results show
that the DeepION model outperforms other previous methods
in tasks of identifying colocalized ions and isotope ions.

The benefits of DeepION can be attributed to the following
factor: (1) By introducing contrastive learning, the DeepION
model targets the extraction of high-level spatial features from
ion images to obtain a concise image representation in a self-
supervised manner without manual annotation. The training
objective of the model is to aggregate the augmented
embeddings of the same sample and push away the
embeddings from different samples. Figures 3 and 4
demonstrate the excellent abilities of DeepION in discovering
colocalized ions and isotope ions, respectively. (2) By
designing a novel data augmentation based on MSI domain
knowledge, the DeepION model can further improve the
image representational ability on the embedding space. The
comparisons between SimSiam and DeepION prove the key
roles of designed data augmentation in learning image
representations of high-level molecular distribution features.
(3) DeepION can be flexibly applied in the discovery of

Table 1. Comparison Results among Different Methods

Categories Metric ACC (%)

SIM-based method Euclidean 12.24
Cosine 31.63
PCC 37.76
R2 30.61
SSIM 23.47

DR-based method PCA 42.86
t-SNE 14.29
UMAP 40.82

DL-based method ResNet18 52.04
SimSiam 62.24
DeepION 86.73
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colocalized ions and isotope ions by implementing the COL
mode and ISO mode, respectively. Figure S1 indicates the fine
difference between colocalized ions and isotope ions so that it
is necessary to design specific modes for two tasks. The
proposed DeepION with COL mode outputs a similarity score
for both colocalized ions and isotope ions, while the ISO mode
gets only a similarity score on isotope ions.

In summary, the present results show the great potential of
DeepION in ion image representation. The proposed method
can not only be used to identify the colocalized ions but also
can be applicable to isotope ions. Furthermore, the DeepION
model is expected to be extended to multiple hyperspectral
chemical imaging modalities, such as Raman and infrared
microscopy. DeepION would be a promising tool for
metabolite identification, biomarker discovery, and even
metabolic flux analysis in spatially resolved metabolomics.
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