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Abstract 
 

 Tracing the evolutionary history of pathogen outbreaks allows researchers to 

develop appropriate public health interventions. For example, phylogenetic inferences 

have been key data informing the response to the on-going Covid-19 pandemic. I worked 

with researchers at the CDC to develop and test tools to rapidly infer phylogenies for large 

genomic data sets. I applied these new tools to understand the evolution of gonorrhea 

(Neisseria gonorrhoeae), a pathogen of major public health importance, which is 

increasing both in prevalence, and in rate of anti-microbial resistance. I found that our tools 

reduced program runtime and data set fragmentation while producing reliable phylogenetic 

estimates. I also investigated the underlying approach used by our methods to assemble 

genomic sequences. I found that reference choice is an important consideration when 

assembling sequences, as greater evolutionary distance to reference genome leads to an 

increase in errors. However, I found that while errors increase with evolutionary distance 

to reference genome, overall phylogenetic topology is largely unaffected. Finally, having 

shown that my original tools are reliable, I extended the methods and applied them to 

analyzing the evolutionary relationships of over 1,000 N. gonorrhoeae isolates in order to 

map gain and loss of anti-microbial resistant alleles data. Together these results 

demonstrate that the tools I have developed can be used to rapidly and accurately analyze 

genome scale data for thousands of lineages, and link those evolutionary inferences with 

important metadata to better inform public health interventions. 
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Chapter 1 
 

Rapid Alignment Updating with Extensiphy 
 

Published; Field, J. T., Abrams, A. J., Cartee, J. C., & McTavish, E. J. (2022). Rapid 

alignment updating with Extensiphy. Methods in Ecology and Evolution, 13(3), 682-693. 

 

1.1 Abstract 
1. High throughput sequencing has become commonplace in evolutionary studies. 

Large, rapidly collected genomic datasets are used to capture biodiversity and for 

monitoring global and national scale disease transmission patterns, among many 

other applications. Updating homologous sequence datasets with new samples is 

cumbersome, requiring excessive program runtimes and data processing. We 

describe Extensiphy, a bioinformatics tool to efficiently update multiple sequence 

alignments with whole-genome short-read data. Extensiphy performs reference 

based sequence assembly and alignment in one process while maintaining the 

alignment length of the original alignment. Input data-types for Extensiphy are any 

multiple sequence alignment in fasta format and whole-genome, short-read fastq 

sequences.  

2. To validate Extensiphy, we compared its results to those produced by two other 

methods that construct whole-genome scale multiple sequence alignments. We 

measured our comparisons by analyzing program runtimes, base-call accuracy, 

dataset retention in the presence of missing data and phylogenetic accuracy.  

3. We found that Extensiphy rapidly produces high-quality updated sequence 

alignments while preventing alignment shrinkage due to missing data. Phylogenies 

estimated from alignments produced by Extensiphy show similar accuracy to other 

commonly used alignment construction methods.  

4. Extensiphy is suitable for updating large sequence alignments and is ideal for 

studies of biodiversity, ecology and epidemiological monitoring efforts. 

 

Key words: Sequence Alignment, Genomes, Phylogenetics, Evolutionary Biology, 

Software, Monitoring
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1.2 Background 

 

 The development of genomic methods has revolutionized virtually all fields of 

biology and lead to an abundance of DNA sequence data available to researchers (Goodwin 

et al., 2016; Mardis, 2017). This genomic data can be used to estimate phylogenies, which 

describe the evolutionary relationships of multiple lineages (Chan & Ragan, 2013). 

Phylogenies have a wide range of applications across ecology and evolutionary biology 

Recent developments in genome scale phylogenetics have upended long held beliefs about 

deep evolutionary history (Dunn et al., 2008; Dunn et al., 2015). Phylogenetic estimates 

are essential frameworks for comparative genetics and genomics (Soltis & Soltis, 2003; 

Hardison, 2003; Dunn et al., 2018; Smith et al., 2020). Large scale phylogenies have long 

been recognized as a key tool when addressing gaps in knowledge of biodiversity (Drew 

et al., 2013; Hortal et al., 2015; McTavish et al., 2017a, Sánchez-Reyes et al. 2021). 

Accurate trees provide context for ecologists seeking to understand community assembly 

and stability, trophic interactions and ecosystem function (Cavender-Bares et al., 2012). 

From a human health perspective, rapidly updated phylogenies are pivotal to tracing and 

understanding pathogen outbreaks (Hadfield et al., 2018). With sequencing rates producing 

more genomic data than ever before, the barrier for studies of ecology, evolution and 

biodiversity is now the process of organizing and manipulating data prior to estimating 

phylogenies (Hodcroft et al., 2021). 

 Adding new data to a phylogeny first requires that the new data to be incorporated 

into a key underlying data structure, the homologous sequence alignment. Homologous 

sequence alignments, also known as multiple sequence alignments, capture the shared 

evolutionary origin of any number of sequences arranged with pair-wise awareness of 

sequence homology (Swofford et al., 1996; Chenna et al., 2003). Alignment as a procedure 

is the process of finding homology between two or more DNA sequences (Kim et al., 2015; 

Misra et al., 2019). The procedure of multiple sequence alignment is computationally 

challenging, which must be repeated when new data are added to existing alignments 

(Wang & Jiang, 1994; Chenna et al., 2003; Liu et al., 2012; Treangen et al., 2014; Field et 

al., 2018). While recent methods have improved the efficiency of aligning datasets of many 

taxa and long sequences, the continuing expansion of empirical genomic datasets make the 

necessary data processing cumbersome (Eddy, 2009; Liu et al., 2012; Nguyen et al., 2015; 

Grad et al., 2016; Hadfield et al., 2018; Leebens-Mack et al., 2019; NCBI, 2021). The 

National Center for Biotechnology Information (NCBI) pathogen database contains 14,915 

Neisseria gonorrhoeae samples along with other pathogens with more than 340,000 

samples (NCBI, 2021). The task of assembling these genomes, extracting loci-of-interest 

and aligning the updated datasets, while not intractable, will be formidable and highlights 

why novel methods for updating genomic datasets are necessary. 

 An additional problem when updating an existing MSA with large, rapidly growing 

genomic databases is the probability of introducing missing data or incomplete data. 

'Missing data' may be due to biological reality, such as the evolutionary process of 

insertions and deletions, or can be a bioinformatic artifact such as low sequencing coverage 

or read quality in some genomic regions. It has been demonstrated that biological reality 

and bioinformatic artifacts can interact in driving patterns of missing data across the 
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genome, as rapidly evolving regions are more likely to have reads fail to map, resulting in 

the appearance of missing data (Huang & Knowles, 2016). Researchers have studied the 

effect of missing data in evolutionary analyses for decades (Wilkinson, 1995; Driskell et 

al., 2004; Lemmon et al., 2009; Huang & Knowles, 2016; Xi et al., 2016; Molloy & 

Warnow, 2018). As such, the effect of missing data on evolutionary analyses has been hotly 

debated (Castresana, 2000; Talavera & Castresana, 2007; Capella-Gutiérrez et al., 2009; 

Lemmon et al., 2009; Treangen et al., 2014; Huang & Knowles, 2016; Xi et al., 2016; 

Molloy & Warnow, 2018).  Some studies laud the effects of removing alignment regions 

with high proportions of missing data as improving phylogenetic estimations (Castresana, 

2000; Talavera & Castresana, 2007; Capella-Gutiérrez et al., 2009; Criscuolo & Gribaldo, 

2010; Treangen et al., 2014).  Methods of alignment trimming are based on cutoffs of the 

number of taxa which are missing a particular locus, removing the locus for all taxa 

(Castresana, 2000; Capella-Gutiérrez et al., 2009; Criscuolo & Gribaldo, 2010; Treangen 

et al., 2014).  Alignment trimming programs often include strict default settings but allow 

for user specified inputs in order to tailor datasets for the question at hand (Castresana, 

2000; Treangen et al., 2014). In general, missing data tends to be less problematic for 

phylogenetic estimation when it is randomly distributed across the phylogeny, and more 

problematic when there is a correlation between phylogeny and missingness (Lemmon et 

al., 2009; Huang & Knowles, 2016; Streicher et al., 2016).  Wholesale removal of these 

regions from analyses can therefore bias estimates of evolutionary rate, affecting branch 

lengths, topology and bootstrap support (Huang & Knowles, 2016; Streicher et al., 2016). 

This bias can shorten branch lengths if predominantly variable regions are removed (Huang 

& Knowles, 2016), or lengthen branch lengths if invariant characters are dropped from the 

analysis (Felsenstein, 1992; Lewis, 2001; Leaché et al., 2015). Moreover, trimming 

alignment regions with high proportions of missing data can preclude potentially 

informative downstream analyses. Analyses of sequence selection and adaptation, often 

assessed using ratios of synonymous and non-synonymous mutations between taxa, also 

rely on multiple sequence alignments as statements of orthology (Rocha et al., 2006; Briggs 

et al., 2009; Huerta-Cepas et al., 2016). Studies in various biological fields describe 

removing missing data from selection analyses, either by the removal of any missing data 

or by cutoff values for the number of taxa with missing data at a site (Williamson et al., 

2014; Murolo & Romanazzi, 2015; Hodgins et al., 2016). While these methods may be 

appropriate for within-locus missing data, the automated removal of sequences flanking 

missing data sites could bias investigations of adaptation. Simply put, if a locus has been 

removed from an alignment, no further analyses may be performed using it once new data 

is added to the alignment. 

 To address the problem of rapidly updating sequence alignments with unprocessed 

whole-genome sequence data while maintaining input alignment length, we introduce 

Extensiphy. Extensiphy uses efficient reference based sequence assembly to add 

homologous loci to existing multiple sequence alignments. Extensiphy performs sequence 

assembly, locus extraction and alignment of new data to the original dataset in a single 

process. The intended utility of Extensiphy is to incorporate new un-assembled sequence 

(e.g. raw reads) data into existing alignments for phylogenetic analyses. Here we describe 

the Extensiphy method and compare its speed and accuracy to a standard de novo assembly 
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workflow and a commonly used reference alignment method for calling single nucleotide 

polymorphisms (SNPs); Snippy (Seemann, 2021; Bankevich et al., 2021; Treangen et al., 

2014). We investigate Extensiphy's performance compared to these other methods by 

running each workflow on an empirical N. gonorrhoeae dataset as well as a simulated 

sequence dataset. Each method was assessed using metrics of program runtime, dataset 

retention, base-call comparison and phylogenetic distances. 

 

 

1.3 Methods and Materials 
 

Overview of Extensiphy 

 

A standard run of Extensiphy accepts a multiple sequence alignment (MSA) and 

any number of high-throughput read files for newly sequenced samples. The MSA may 

contain any number of concatenated loci, here referring to genes or lengths of DNA 

sequences appended together. Extensiphy can accept both paired-end and single-end high-

throughput short read files. An arbitrary reference sequence is chosen from the taxa in the 

alignment for read alignment. After a reference is selected, all reads are aligned to the 

concatenated reference sequence. Following read alignment, nucleotides are called to 

create a consensus sequence that is homologous to all the sequences in the original MSA. 

All new consensus sequences are added to the multiple sequence alignment, completing 

assembly and sequence alignment as part of the same process. Finally, if the user opts to 

automate phylogeny estimation, a phylogeny based on the newly created and extended 

sequence alignment is estimated using a maximum-likelihood framework. A default run of 

Extensiphy is visually described in Fig 1.1. Alternative options for Extensiphy parameters 

and functionality are described in the following sections. 

 

 

Figure 1.1: Default workflow of Extensiphy. a) Input an alignment file and new raw 

reads. b) Align reads to reference and call the consensus sequence. c) Output updated 

alignment and tree files. 
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Description of Extensiphy 

File Inputs, Reference Selection and Read Alignment 

 

 Extensiphy takes as input a single, concatenated MSA file or any number of 

unconcatenated single-locus MSA files with identical taxon labels. If multiple single-locus 

files are chosen, sequences corresponding to each taxon are concatenated into a single 

sequence and all sequences are combined into a single multiple sequence alignment 

containing all sequences for all taxa. Reference selection by default selects the first taxon 

in the alignment to use as the reference. The user may also specify the selection of a specific 

reference. Read alignment is performed by BWA-MEM2 (Misra et al., 2019). A reference 

index is constructed for the chosen reference sequence and paired-end or single-end reads 

are aligned. The output of read alignment to the reference sequence is in the sequence-

alignment-mapping (SAM) file format and no un-aligned sequences are output. The 

number of threads specified for each parallel run of Extensiphy are allocated to BWA-

MEM2. All other settings are left as default. 

Variant Calling and Consensus Sequence Construction 

 

 Following read alignment, SAM files are passed to programs for variant calling. 

Reference sequence indexing is performed by Samtools Faidx (Li et al., 2009). SAM files 

are converted to Binary Alignment Mapping (BAM) files by Samtools View (Li et al., 

2009). Once SAM to BAM converstion is complete, BAM file organizing is performed by 

Samtools Index (Li et al., 2009). Variant nucleotide calling is performed by Mpileup from 

the Bcftools suite (Li et al., 2009). Mpileup produces a Variant Call File (VCF) (Danecek 

et al., 2011). Following VCF production, insertions and deletions are removed as these 

events usually prevent shared synteny between aligned sequences. The cleaned VCF is then 

converted to a fastq format file by vcfutils.pl and then to a fasta format file by seqtk 

(Danecek et al., 2011; Gordon & Hannon, 2021; Heng, 2021). Finally, gaps in the original 

reference sequence are added to the new consensus sequence to preserve synteny. The fully 

constructed consensus sequence is then appended to the updated alignment file. 

Phylogenetic Estimation and Output Settings 

 

 If selected, phylogenetic estimations are performed using RAxML with the 

GTRGAMMA model of nucleotide substitution (Stamatakis, 2014). Extensiphy can 

perform a de novo phylogenetic estimation or, when updating a extant phylogeny, 

Extensiphy may use a tree produced by the original MSA as a starting tree to improve the 

search of tree space. The purpose of the starting tree is to build on the evolutionary 

estimations of the original phylogeny. If the input was multiple single-locus alignment 

files, the user may also choose to split the final, updated alignment back into single-locus 

multiple sequence alignment files, e.g. for the estimation of gene trees or a species tree by 

way of summary methods (Yin et al., 2019). RAxML using the GTRGAMMA model is the 

only option for phylogentic estimation currently implemented within Extensiphy However, 
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as a default execution of Extensiphy outputs an updated alignment, users are free to apply 

any available method of phylogenetic estimation, by using the output alignment as the input 

for an alternative method. For example, when updating multiple single locus alignment 

files a more appropriate method of estimation may be available for inferring a species tree 

from single locus alignments. While Extensiphy does not automate running a placement 

algorithm, the updated alignment and original phylogeny can be easily used as inputs 

software to place the new sequences without updating the input relationships (Matsen et 

al., 2010). Due to Extensiphy's focus on adding large amounts of new sequence data to 

existing alignments, users may specify removing intermediate output files used during 

consensus sequence production to reduce unnecessary on-disk storage. Phylogenetic 

inference may be skipped altogether if only an updated sequence alignment is desired. 

 

Program Comparison 
 

Program Comparison Overview 
 

 Extensiphy produces an alignment of homologous sequence data. In order to assess 

Extensiphy's ability to produce useful data, we compared Extensiphy's alignment to similar 

alignments produced by contemporary programs and methodologies. In addition to 

comparing the alignments, we also compared phylogenies produced from alignments, and 

overall program runtimes. Based on previous literature, we identified two dominant 

approaches for constructing alignments with a focus on outputs used for evolutionary 

analyses: de novo sequence assembly followed by core-genome alignment and read 

alignment to reference genome followed by single-nucleotide polymorphism (SNP) calling 

(Seemann, 2021; Castresana, 2000; Treangen et al., 2014; Bush et al., 2020). We chose the 

pipeline Snippy to represent read alignment and variant calling methodologies due to its 

results in program runtime and SNP calling accuracy (Bush et al., 2020). Following light 

quality trimming with BBDUK (Bushnell, 2021), we chose to perform de novo sequence 

assembly with SPAdes and homologous locus selection with ParSNP (Bankevich et al., 

2021; Treangen et al., 2014). SPAdes has been used to assemble genomic sequences in 

numerous studies for a variety of subject organisms. ParSNP is routinely cited in studies 

involving evolutionary analyses with topics on the microbial tree of life, the evolution of 

antibiotic resistance in Staphylococcus aureus and genomic analysis of antibiotic 

susceptibility in N. gonorrhoeae (Chen et al., 2020; Gernert et al., 2020; Shakya et al., 

2020).  

 We ran each of these approaches on a simulated dataset and an empirical dataset 

and assessed the outputs. The simulated dataset was used to test all aspects of interest; 

program runtime, base-call accuracy, dataset retention and phylogenetic accuracy. The 

empirical dataset was used to test program runtime and the resulting alignments and 

phylogenies produced by each method were compared to each other to note discrepancies. 

The comparison software was primarily written in Bash shell scripts and Python, and these 

scripts as well as the configuration files for Tree to Reads are shared on GitHub at  

https://github.com/jtfield/phylo_comparison. There are two versions of the code, one for 



7 

 

analyzing each simulated and empirical sequence data. The empirical data comparison 

software requires whole-genome short-read sequences. The software for analyzing 

simulated data required the same input parameters with the addition of the phylogeny and 

genomes that were used to simulate the raw read sequences. Details on configuring the 

comparison software are available in the manual packaged with the software. 

 

Datasets 
 

 To construct our simulated high-throughput dataset with a known phylogenetic 

topology, we used TreeToReads (McTavish et al., 2017b). TreeToReads takes as input a 

phylogeny, evolutionary model parameters, and a reference sequence that serves as the 

template for simulating all additional sequences. In order to generate an input phylogeny 

for simulation, we obtained 209 N. gonorrhoeae raw read files in fastq format from the 

CDC (Centers for Disease Control and Prevention, U.S.A) used in a 2016 study of the 

evolutionary relationships of antibiotic resistant N. gonorrhoeae (Grad et al. 2016). We 

replaced all isolate names with random identifiers before phylogenetic estimation. The 

resulting phylogeny was used as the input phylogeny for TreeToReads. We used a 51,924bp 

segment of a complete N. gonorrhoeae genome (GenBank: NC_002946.2) as the reference 

sequence. The NC_002946.2 sample was also used as the reference in all instances of 

reference-based read alignment when processing the empirical dataset. To introduce 

sequence variation, 3,000 variant nucleotides were uniformly distributed throughout the 

reference genome and reads of 100 nucleotides were generated at an average of 20 reads 

per site. To simulate sequences and reads, we used the evolutionary rate model estimated 

by RAxML from the 2016 study isolates (Rambaut and Grassly 1997). The nucleotide rate 

matrix of was: 1.039821, 5.116539, 0.339204, 0.910812, 5.291090, 1.000000 with the 

default rate variation of 0.0200. Mutation cluster grouping was enabled with 25% variable 

site clustering. Sequence fragment size was set to 320 nucleotides and given a standard 

deviation of 50 nucleotides. We used the default Illumina sequencing error model packaged 

with ART (Huang et al. 2012). The outputs of TreeToReads include simulated genome 

sequences in fasta format and raw read sequences for each simulated taxon. Our empirical 

data set was comprised of 1,237 N. gonorrhoeae SRA files in fastq format collected from 

GenBank. Samples were chosen semi-randomly as the first 1,237 SRA numbers found on 

NCBI Pathogen Detection database under Neisseria (NCBI, 2021). 14 isolates were 

identified as N. meningitidis and were removed from subsequent analyses. The final 

empirical dataset consisted of 1,223 samples. 

 

 

De novo Sequence Assembly and Selection of Loci 

 

 During the de novo assembly and automated locus selection pipeline, for both the 

empirical and simulated datasets, bases were trimmed from the raw reads with a quality 

score of 10 or below. We also removed any sequencing adapters included in the BBDUK 

default adapters file (Bushnell, 2021). De novo sequence assembly was performed on the 

trimmed read files to construct contigs for all taxa in the dataset. De novo sequence 
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assembly was performed by SPAdes using default parameters with the exception of 

additional computing cores (Bankevich et al., 2021). Following assembly, the core genome 

for all assembled sequences was selected using ParSNP (Treangen et al., 2014). Core 

genomes are defined as sets of orthologous sequences that are conserved in all included 

taxa (Hodgins et al., 2016). ParSNP identifies core genomes using a used maximal unique 

matches between sequences to capture conserved blocks of sequences in highly similar sets 

of genomes. Regions with missing data are not included in the final core genome, resulting 

in separate locus alignments. The selected loci were concatenated into a single alignment 

while the separate locus alignments were retained for downstream base-call analyses. 

While ParSNP includes options to alter the sequence distance between acceptable matches 

used for identifying core genome sequences, all options were left as defaults for our 

analyses. 

 

Read Alignment and SNP Calling with Snippy 
 

 For both the empirical and simulated datasets, Snippy was run using the chosen 

reference sequence and the raw reads as inputs. Snippy aligned reads to the reference and 

replaced reference nucleotides with taxon-specific variants where appropriate. The output 

of the Snippy runs were alignments with sequence lengths matching the reference 

sequence. The empirical dataset used a contiguous N. gonorrhoeae genome sequence as a 

reference while the simulated dataset used the sequence input into TreeToReads for 

sequence simulation.  

 

Read Alignment and SNP Calling with Extensiphy 
 

 In order to create an input alignment for use with Extensiphy, we took the 

assembled genomes for four random taxa and assembled them in the same manner as the 

de novo assembly stage described above. We created a core genome alignment for these 

four taxa and the selected reference sequence using ParSNP (Treangen et al., 2014). This 

small set of taxa produced a set of loci that were influenced by the missing data found in 

the five included taxa. The homologous loci of this smaller dataset were concatenated and 

used as the input alignment for Extensiphy, along with raw read sequences corresponding 

to the rest of the taxa. Extensiphy processed the concatenated alignment, raw read input 

files and produced an updated multiple sequence alignment and phylogeny based on the 

alignment. Once phylogenetic estimation was complete, the concatenated sequence 

alignment was split into individual locus alignments in preparation for base-call 

comparisons.  

 

Phylogenetic analysis 

 

 For all datasets, phylogenetic estimation was performed on the concatenated 

alignment using RAxML to produce a maximum likelihood topology and a consensus 

topology based on 100 bootstrap replicates (Stamatakis, 2014). We used the GTRGAMMA 

model for all estimations as this model is the most flexible maximum-likelihood model, 

and the only one available in RAxML.  
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Program Output Comparisons 
 

Program Output Comparisons Overview 

 

 We assessed each methodology using three metrics: program runtime, base-call 

accuracy and phylogenetic accuracy. The methods of measuring program runtime were 

identical regardless of the dataset. We assessed individual time to assemble each single 

sequence and the total time for a program to assemble a complete alignment. The time 

required for phylogenetic estimation was not included for any program. Base-call 

comparisons, when using the simulated dataset, benefit from comparing each programs 

outputs to the original TreeToReads sequences used to simulate the input data for each 

program. By using the original TreeToReads sequences, we collected an accurate 

description of which nucleotides were correctly and incorrectly called. The true base-calls 

of any empirical sequence are unknown. With this limitation in mind, we compared the 

sequence outputs of each program to their counterparts from each other program when 

assessing sequences produced from the empirical dataset. We assessed base-calls pairwise 

from any locus present in the output of any two programs. This conservative comparison 

was necessary due to the variation in the length of the sequences output by each program. 

Consequently, each sequence comparison was limited to the length of the shortest 

sequence. Phylogenies produced from the simulated dataset were compared to the original 

topology used by TreeToReads for sequence simulation. For the empirical dataset, the 

phylogeny produced by each program was compared to each other program's phylogeny. 

We compared majority-rule consensus phylogenies on bootstrapped data for all 

comparisons to account for stochastic variation in inferences of very short branches.  

 

Program Runtime Comparisons 

 

 We defined program runtime as two values: the time taken to assemble and output 

the sequence associated with a single taxon and the total program runtime for assembling 

all taxon sequences and outputting a complete sequence alignment. All three programs 

reported the time required for individual sequence alignment and assembly. The total 

program runtimes to produce a complete alignment were recorded.  

 

Program base-call Comparisons 

 

 For simulated dataset base-call comparisons, each taxon's sequences were aligned 

to the original genomes produced by TreeToReads. Extensiphy and de novo assembled 

sequences which were separate loci for each taxon. Snippy sequences, being duplicates of 

the reference sequence with variant nucleotides inserted, were the same length as the 

reference sequence. A base-call comparison was made once two sequences were aligned 

by noting which nucleotides in one sequence were identical to the paired sequence 

produced from the other program. Identical nucleotides, non-identical nucleotides, non-

identical degenerate nucleotides, and gaps within the sequences were counted and summed 
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for each locus. The lengths of all loci were also recorded for Extensiphy and the de novo 

pipeline. Additional metrics collected from the simulated data analyses were the total 

number of bases analyzed, the per-base miscall and missing data rate for each program and, 

when comparing Extensiphy and de novo assembled sequences, the discrepancy in the 

length between the sequences output each program and the sequences produced by 

TreeToReads. For empirical dataset base-call comparisons, each taxon's sequences were 

aligned to the sequences produced by both other programs. Additional metrics collected 

from the empirical data analyses were the total number of bases analyzed, the per-base 

disagreement between each sequence and, when comparing Extensiphy and de novo 

assembled sequences, the discrepancy in the length of the compared loci. 

 

Phylogenetic Comparisons 

 

 Phylogenies estimated from each program’s alignment were compared using the 

Robinson-Foulds (RF) distance calculations, the symmetric distance of partitions between 

two phylogenies, using the Dendropy Python library (Robinson & Foulds, 1981; 

Sukumaran & Holder, 2010). All RF distances were calculated as unweighted, expressing 

only the symmetric differences in branches between topologies. 

 

 

1.4 Results 
 

Simulated Dataset Results 
 

Runtime 

 

Using Extensiphy, individual sequences were assembled at a mean rate of four seconds per 

sequence and the overall program runtime was completed in 6 minutes and 45 seconds 

(Table 1.1). De novo pipeline runtimes were a mean of eight seconds per individual 

sequence and a complete program runtime of 21 minutes. Snippy's mean individual 

sequence assembly time was three seconds per sequence and a complete program runtime 

of 10 minutes and 28 seconds. 
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Table 1.1: Simulated Data Comparison Statistics. Results of comparison pipeline output 

after processing 209 taxa sequences. m = minutes, s = seconds. 

Comparison Metrics Extensiphy De novo assembly Snippy 

Total Program Runtime 6m 45s 21m 10m 28s 

Individual sequence runtime 4s 8s 4s 

Total miscalled bases 15 21 359 

Total bases per taxon 51157 50245 51191 

Total bases analyzed 10691913 10500766 10698919 

RF distance to true tree 56 55 98 

 

 

Alignment length 

 

 Extensiphy returned 209 sequences at 51,157 nucleotides each for a total of 

10,691,913 nucleotides in the final alignment, including the reference sequence (Table 1.1). 

The de novo pipeline returned 209 sequences at 50,245 nucleotides for a total of 10,500,766 

nucleotides. Snippy returned 209 full-length sequences at the same 51,191 nucleotide 

length as the simulated reference sequences as well as a "core sites" alignment with 1,030 

nucleotides-per-taxon. The full length alignment included 10,698,919 nucleotides 

excluding the reference sequence.  

 

Alignment accuracy 

 

 Extensiphy's sequences produced the lowest miscall rate at 15 nucleotides while 

the de novo pipeline's alignment contained 21 miscalled nucleotides (Table 1.1). Snippy 

produced an alignment with 359 miscalled nucleotides. Supplementary Table 1 contains 

more descriptive statistics from the simulated dataset base-call comparison of the three 

programs.   

 

Missing data 

 

 Extensiphy returned 1,001 total gaps or degenerate nucleotides in the final 

alignment based on simulated data. Snippy Returned 163,545 gaps or degenerate 

nucleotides. The de novo pipeline's alignment contained no gaps or degenerate nucleotides. 
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Phylogenetic accuracy 

 

 Extensiphy produced a phylogeny with an RF distance to the true topology of 56 

while the de novo pipeline's phylogeny received an RF distance of 55 and Snippy produced 

a phylogeny with an RF distance of 98 (Table 1.1). 
 

Empirical Dataset Results 
 

Runtime 

 

 When processing and analyzing data from the empirical dataset, Extensiphy 

produced consensus sequences in a mean time of slightly over 6 minutes and produced a 

complete alignment in 38 hours (Fig 1.2, Table 1.2). The de novo pipeline assembled 

sequences in a mean time of 41 minutes and produced a complete alignment in 236 hours. 

Snippy produced individual sequences in a mean time of 41 seconds and produced a 

complete alignment in 18 hours. 
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Figure 1.2: The time required by each method to assemble all sequences associated with 

each taxon in the empirical dataset. 
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Table 1.2: Empirical Data Runtime Statistics. Results of program runtimes after 

processing 1,223 taxa sequences. h = hours, m = minutes, s = seconds. 

 

Comparison Metrics Extensiphy De novo assembly Snippy 

Total program runtime 38h 236h 18h 

Average individual sequence runtime 6m 21s 41m 41s 

 

 

Alignment length 

 

 Individual sequences produced by Extensiphy were all of 1,859,910 nucleotides in 

length for a total of 2.293x109 nucleotides in the final alignment (Table 1.3). The 

Extensiphy alignment was composed of 317 loci with a mean length of 5,868 nucleotides 

and a range of lengths between 682 and 40,798 nucleotides (Figure 1.3). The de novo 

pipeline returned individual sequences of 751,033 nucleotides and a total of 9.215x108 

nucleotides in the final alignment. The de novo pipeline alignment was composed of 522 

loci with a mean length of 1,465 and a range of lengths between 688 and 5,913 nucleotides. 

Individual sequences produced by Snippy were 2,180,847 nucleotides in length for a total 

of 2.732x109 nucleotides in the final alignment. Locus values were not reported for Snippy 

as Snippy operates using whole-genome inputs and outputs. 

 

Table 1.3: Empirical Data Alignment Statistics. Nucleotide and locus metrics for the 

alignments containing 1,223 sequences produced by each program. A “-” symbol indicates 

the value is not applicable. 

 

Comparison Metrics Extensiphy De novo assembly Snippy 

Total bases per alignment 2293269030 921517491 2732911282 

Total gaps or degenerate bases 4891739 3469861 224835516 

Average locus length 5868 1465 - 

Loci output per program 317 522 - 
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Figure 1.3: Empirical dataset locus lengths returned by Extensiphy and the de novo 

assembly pipeline. 

 

 

Alignment accuracy 

 

 We assessed empirical basecalls for the outputs of all three programs against each 

other as true basecalls cannot be described with certainty for empirical sequence data. The 

Extensiphy-de novo pipeline comparison contained 490 differing nucleotides from 

31,909,017 analyzed sites between both alignments. The Extensiphy-Snippy comparison 

produced 27,778 differing nucleotides from 338,286,158 analyzed sites between both 

alignments. The comparison of Snippy and the de novo pipeline alignments contained 142 

differing nucleotides from 31,974,892 sites analyzed between both alignments. 



16 

 

Missing data 

 

 We assessed empirical missing data in the same manner as empirical basecalls, that 

is, by comparing the outputs of each program against each other. The Extensiphy-de novo 

pipeline comparison contained 81,035 differing gaps or degenerate nucleotides from 

31,909,017 analyzed sites between both alignments. The Extensiphy-Snippy comparison 

produced 1,857,035 differing gaps or degenerate nucleotides from 338,286,158 analyzed 

sites between both alignments. The comparison of Snippy and the de novo pipeline 

alignments contained 105,875 differing gaps or degenerate nucleotides from 31,974,892 

sites analyzed between both alignments. When analyzing the complete alignment for each 

program, the alignment produced by Extensiphy contained 4,891,739 gaps and degenerate 

nucleotides (Table 1.3). The de novo pipeline alignment contained 3,469,861 gaps and 

degenerate nucleotides and the Snippy alignment contained 224,835,516 gaps and 

degenerate nucleotides. 

 

Phylogenetic accuracy 

 

 When analyzing the RF distances between the phylogenies produced by each 

program, the Extensiphy-de novo pipeline comparison produced an RF distance of 687 and 

the Extensiphy-Snippy comparison produced an RF distance of 749 (Table 1.4). The de 

novo pipeline-Snippy comparison produced an RF distance of 676. 

 

 

Table 1.4: Empirical Data Phylogeny RF Distances. Unweighted Robinson Foulds 

distances between phylogenies produced by each program. A “-” symbol indicates the 

value is not applicable. 

 

Comparison Metrics Extensiphy De novo assembly Snippy 

Extensiphy - 687 749 

De novo assembly 687 - 676 

Snippy 749 676 - 

 

 

1.5 Discussion 

  

 Sequencing efforts are expanding for the collection of genomic data (Goodwin et 

al., 2016; Mardis, 2017; Hodcroft et al., 2021). Current methods for incorporating new data 

into sequence alignments exist but are inadequate for whole-genome datasets with 

thousands of taxa (Eddy, 2009; Nguyen et al., 2015). While combining new and previously 

analyzed data during de novo alignment construction is a routinely performed workflow, 
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this process can result in alignment trimming that can remove potentially useful data from 

a dataset (Huang & Knowles, 2016). To address issues of expanding existing sequence 

alignments, we introduced the Extensiphy program and assessed its outputs to two 

workflows with comparable outputs. Our results show that Extensiphy balances between 

data retention, runtime efficiency and applicability to genomic datasets. Extensiphy 

returned alignments with sequence lengths matching those of the input alignment and 

containing a lower proportion of degenerate or gap sites than other methods. Extensiphy 

accommodated and returned an alignment with sequences of lengths comprising over 90% 

of the N. gonorrhoeae genome. All sequences were assembled in competitive times 

compared to other analyzed methodologies. If the starting point of a study is an existing 

concatenated alignment or set of alignments for the same taxa and a set of whole-genome 

short read data and the goal is to rapidly add the new data to the alignment, Extensiphy will 

produce the desired results. Additionally, we argue that the analyses of both the simulated 

and empirical datasets demonstrate that Extensiphy performs equally well when updating 

alignments with any number of loci and inputs of either separate alignments or a single, 

pre-concatenated alignment. While these two features are simple in terms of modern 

bioinformatics tools, their presence expands the scope of studies for which Extensiphy may 

be appropriate. By accommodating any number of loci, Extensiphy is applicable to any 

scale of project, from inquiries with a single or a few loci to full-scale epidemiological 

monitoring efforts (Grad et al., 2016; Hadfield et al., 2018; Hodcroft et al., 2021). By 

accepting either individual locus alignments or a concatenated alignment, Extensiphy 

doesn't constrain the user to a specific method of phylogenetic estimation. 

 Extensiphy is designed to integrate new genomic data with existing data sets.  The 

approach targets computational effort to regions which are homologous to existing data. 

This removes the computationally taxing requirement of a downstream multiple sequence 

alignment step, as the new reads are aligned to a sequence already included in the 

alignment. Extensiphy also packages a maximum-likelihood phylogenetic estimation 

method for streamlined results. While Extensiphy and Snippy share similar approaches to 

sequence construction, Extensiphy produces a homologous sequence alignment as opposed 

to genome-length sequences which require additional processing to identify and isolate 

loci-of-interest. Extensiphy assembles new loci directly aligned to existing loci, as opposed 

to a reference genome. Extenisphy does not require a full reference genome and can be 

applied to integrating sequences form whole genome data into even single locus data sets. 

These few or single locus data sets form the phylogenetic backbone of our understanding 

of many taxa.   

 As part of this framework, Extensiphy also allows for the selection of a reference 

sequence already found in an existing alignment. This provides an opportunity to assess 

the role of choice of reference sequence in consensus sequence inference. While reference-

based read alignment is an excellent flexible method for many studies, the choice of 

reference sequence can inherently bias downstream analyses (Brandt et al., 2015; Günther 

& Nettelblad, 2019). Reference bias is a well-known potential influence on sequence 

structure during read alignment based on the structure of the reference (Ros-Freixedes et 

al., 2018; Günther & Nettelblad, 2019). The extent to which reference bias affects 

phylogenetic estimation is still ambiguous. Extensiphy paired with the methodologies of 
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sequence and phylogenetic comparison we describe in this study offer an excellent 

opportunity to repeatedly measure the effects of constructing alignments based on diverse 

reference sequences. By running the same analyses using different references with known 

phylogenetic relationships to each other, it is straightforward to use Extensiphy to assess if 

this bias is playing a role in one’s own dataset.  

 Acknowledging and addressing missing data are key issues in modern 

phylogenomics. Current research argues for a case-by-case strategy on including or 

excluding missing data (Huang & Knowles, 2016; Streicher et al., 2016). The distribution 

of missing data throughout an alignment influences such decisions (Lemmon et al., 2009). 

Assuming a relatively even distribution of missing data, alignment trimming may not be 

necessary and such trimming could remove valuable variant nucleotides from future 

analyses. In the presence of an uneven distribution of missing data, perhaps due to 

sequencing bias, a study could benefit from judicious locus removal (Streicher et al., 2016). 

Extensiphy finds an ‘middle ground' in respect to retaining full loci-of-interest while 

introducing a minimum of missing data. Using Extensiphy, all input loci are maintained 

while updating an alignment, preventing loci from fragmenting into smaller sequence 

segments as seen when using ParSNP in the de novo pipeline. Moreover, a smaller 

percentage of missing data was found in the Extensiphy alignment compared to the 

alignment produced by Snippy. While the Snippy alignment did contain more sites, 

expressed as the full length of the reference sequence for each taxon, the difference in size 

between the Snippy alignment and the Extensiphy alignment is modest compared to the 

amount of missing data found in the Snippy alignment. Such a percentage of missing data 

could affect inferred phylogenies by biasing branch lengths, potentially misleading 

conclusions based on those phylogenies. Extensiphy rapidly returns an updated alignment 

while minimizing missing data and enabling researchers to make decisions on the inclusion 

or excision of loci.  Ultimately, all three methods tested here produced accurate estimates 

and useful alignments and the choice of application of any of the approaches described 

here depends on the researcher’s goal.  

 

 

1.6 Conclusion 

 

 Updating a multiple sequence alignment previously required trade-offs of program 

runtime, reference sequence availability and dataset trimming and fragmentation. We have 

introduced Extensiphy, a program that updates alignments of loci with new data, and 

compared it to two popular alternative methods. Extensiphy is applicable to any project 

with a starting alignment and new whole-genome short read data. Alignments may be 

concatenated or separate single locus alignments. Extensiphy offers an efficient and 

flexible solution to any study producing high volumes of whole-genome data, particularly 

for disease monitoring purposes. Projects where maintaining locus length and preventing 

alignment trimming due to missing data are important will find Extensiphy particularly 

useful. Extensiphy produces updated alignments suitable for multiple methods of 

phylogenetic estimation and basecall accuracy comparable to standard methods in the field 

of bioinformatics. Updating sequence alignments with Extensiphy removes the burden of 
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data processing from the researcher and enables them to focus on purpose and applications 

of their research. 
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Chapter 2 

 

An Exploration of the Effects of Reference Choice on 

Phylogenomics 

 
Field, J. T. & McTavish, E. J. 

 

2.1 Abstract 

 

 Modern genomic studies often involve detailed analyses of single nucleotide 

polymorphisms (SNPs) or broader investigations of evolutionary history through 

phylogenetic estimation. The results of approaches can be influenced by dataset curation 

and sequence assembly. While de novo assembly is regarded as the gold standard of 

sequence assembly methods, the processing time and resources required to generate 

contiguous sequences can be prohibitive. Reference-guided sequence assembly offers an 

efficient alternative with the caveat that a reference taxon must be chosen before assembly 

can be performed. Previous work has shown that reference choice can introduce bias and 

that in certain contexts, the effects of reference choice are evident in both SNP and 

phylogenetic results. While recent studies have described many factors affecting reference 

bias, quantitative measures of sequence and phylogenetic variation due to reference bias 

have not been adequately pursued. We use an empirical dataset to investigate the effects of 

reference choice at varying levels of evolutionary distance on read coverage and error rates 

in multiple sequences alignments. Our study culminates with the assessment of topological 

and tree length changes based on reference choice. We find that evolutionary distance to 

the reference taxon has a significant effect on the number of errors in assembled sequences 

and that an overwhelming proportion of these errors are biased to the bases in the reference 

sequence. We demonstrate that read coverage is only weakly driven by distance to the 

reference taxon and that error rates quickly diminish at 20-25x coverage and above. Finally, 

we find that topological accuracy is largely resilient to reference choice but tree length 

variation does occur. Our findings suggest that reference choice is less important if the goal 

of the study is motivated by an assessment of evolutionary relationships but plays a larger 

role in sequence composition, potentially affecting SNP studies. 
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2.2 Introduction 

 
 All fields of biology are directly or indirectly influenced by the process of 

evolution. A critical data structure for studying evolutionary biology is the phylogeny, a 

tree-like graph describing the evolution of various selected organisms (O’hara. 1997). 

While phylogenies have been present in biology since the birth of evolutionary theory, the 

application of phylogenetic systematics to genetic information has broadened the field’s 

influence dramatically and publications expanding these methods have become some of 

the most influential in the field of biology (Felsenstein. 1981; Felsenstein. 1985; Saitou & 

Nei. 1987; Swofford et al., 1996; Van Noorden et al., 2014). Accurate phylogenetic 

estimates are of great importance in varied fields such as vaccine development and 

understanding human evolution (Ovchinnikov et al., 2000; Rolland et al., 2011). However, 

choices made during data processing prior to phylogenetic estimation can affect valuable 

results. 

 Phylogenetic estimates can be influenced by many factors, including missing data, 

taxon sampling and the method used during estimation (Zwickl & Hillis. 2002; Leaché et 

al., 2015; Huang & Knowles. 2016). Previous research has shown that increased taxon 

sampling can improve phylogenetic accuracy (Zwickl & Hillis. 2002). Incomplete or non-

random taxon sampling can affect the topology of your estimates, almost irrespective of 

sequence sizes (Zwickl & Hillis 2002; Heath 2008). While these statements about taxon 

sampling support broad inclusion of taxa, such expansive inclusion can lead to the second 

factor highlighted as affecting sequence dataset composition: missing data (Eaton et al., 

2017). Succinctly, the amount of missing data is expected to increase as the evolutionary 

distance between taxa increases (Huang & Knowles. 2016; Eaton et al., 2017; Molloy & 

Warnow. 2018). Early approaches to missing data involved filtering loci containing missing 

data using varying degrees of strictness, resulting in truncated datasets that would 

frequently influence branch lengths (Huang & Knowles. 2016; Molloy & Warnow. 2018). 

 While addressing taxon sampling relies on researcher decisions prior to sample 

collection and well before computational data processing, concerns around missing data 

indicate that consideration of bioinformatic processing practices is warranted. Ignoring the 

sample collection and wet lab practices that may affect data quality, one aspect of missing 

data is rooted in a project upstream bioinformatics decisions on how to assemble 

sequences, specifically in cases when assembling with a reference sequence. Reference 

guided sequence assembly is a commonly performed assembly approach involving 

aligning reads to a trusted, high quality sequence to efficiently output relevant data. Greater 

evolutionary distance between reference and query can decrease the likelihood of 

successful read alignment (Bertels et al., 2014). Such mis-alignments can result in missing 

data or, perhaps more influentially, successfully aligned reads carrying the reference allele 

more often than alternatives, leading to biased basecalls (Gunter & Nettleblad. 2019). 

Therefore, the choice of reference sequence can greatly affect downstream analyses, 

including phylogenetic estimation.  

 Recent studies have investigated the specific effects of reference choice on a variety 

of datasets (Degner et al., 2009; Günther & Nettleblad. 2019; Prasad et al., 2021; Rick et 

al., 2022). Additionally, the effect on phylogenetic topology and branch length has also 
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been demonstrated. Work by Bertels et al., (2014) investigated the effects of reference 

choice on simulated and empirical bacterial sequence data. Bertels et al., (2014) found that 

by varying distance to the reference in four-taxon phylogenies caused attempts to align 

reads to more divergent genome regions to fail, leading to incorrectly estimated branch 

lengths and topologies (Bertels et al., 2014). In an investigation of the impact of reference 

choice on the historically convoluted topic of domestication, Gopalakrishnan et al., (2017) 

de novo assembled a wolf genome for use as a reference when assembling sequences from 

several published canine datasets. Gopalakrishnan et al., contrasted the topology based on 

these wolf-guided sequences with a topology based on sequences assembled using a boxer 

genome. This comparison of topologies highlighted the change of several monophyletic 

clades throughout the phylogeny (Gopalakrishnan et al., 2017). Supporting the established 

theory of reference bias as a broad effector of the results of read alignment, previous 

research has shown reference bias is not limited to one clade of the evolutionary tree of 

life. Many studies on the effects of reference choice use human datasets. Work by Degner 

et al., (2009), one of the earliest studies of short read alignment on reference sequences, 

used empirical and simulated samples from the Yorba peoples of Nigeria. Degner et al., 

(2009) found and subsequently verified that sequencing errors increased mapping 

preference for the reference allele. More recently, a 2021 study by Li et al (2021) noted 

discrepancies of variant calling when using previous and current versions of the human 

genome as a reference. Li et al., (2021) found that a small but significant number of variant 

basecalls had a noticeable effect on disease associated loci and genes, highlighting the 

effects of region-specific reference bias even at very low evolutionary distances. An 

investigation of multiple archaic human datasets by Gunther & Nettleblad (2019) found 

the effects of reference bias are particularly pronounced in conditions common to 

paleogenomic studies, including low sequencing coverage and shorter sequence fragment 

size. The results of Gunther & Nettleblad (2019) also supported the hypothesis that strict 

quality filters increase reference allele preference by reducing initial acceptable variant 

matches during read alignment. Taken together, this body of work describes the broad and 

continuing importance reference bias has on biological studies. 

 Biological studies would clearly benefit from quantitative information on how 

reference choice could potentially affect their dataset. Here we describe our investigation 

into the effects of how this choice may bias inferences at several stages of bioinformatics 

workflow. Using an empirical dataset of Procellariiform ultra conserved element (UCE) 

sequence data from Estandia et al., (2021), we investigated how reference choice at varying 

evolutionary distances alters sequence structure and to what extent bases in sequences 

assembled using a reference were biased towards the reference sequence. We also describe 

the downstream effect these bases have on phylogenetic topology by comparing our 

estimated phylogenies to the original phylogeny published by Estandia et al., (2021). Our 

goal with this work is to elucidate the potential effects a choice of reference could have on 

downstream analyses in order to improve inferences and methodological decisions. 
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2.3 Methods 

 
Datasets 

 

 We used data published by Estandia et al., (2021) on Procellariiform seabirds. The 

focus of the Estandia dataset were ultra conserved elements from 54 species comprised of 

51 species of Procellariiform and 3 outgroup species. We downloaded the data from the 

DataDryad repository which contained, among other study data, the homologous sequence 

alignments and associated phylogenies produced using those alignments (Estandia et al., 

2021). We downloaded the original raw read files associated with each sample in the 

Estandia dataset from the National Center for Biotechnology Information Short Read 

Archive (NCBI SRA). To construct the sequence dataset for all subsequent analyses, we 

used each sequence in the Estandia alignment as a reference sequence to assemble all 54 

sequences. The result of this reference guided sequence assembly process was 54 

alignments, each containing with 54 sequences. Alignments were produced using the 

Extensiphy bioinformatics pipeline (Field et al., 2022). 

 Extensiphy builds or updates sequence alignments with new, whole-genome 

sequencing data. Extensiphy aligns a sample’s raw reads to a reference sequence and calls 

a consensus sequence. The output consensus sequence is the same length and has the same 

gap positions as the reference sequence, ensuring synteny. Once all samples have been 

assembled in this manner, the sequences are combined with the original alignment or 

reference sequence to form a new, extended alignment. In this version of Extensiphy, read 

alignment is performed by BWA-MEM2 (Vasimuddin et al., 2019), the aligned read files 

are indexed by Faidx (Li et al., 2009) and sequence alignment files are converted to binary 

alignment files by Samtools View (Li et al., 2009). Variant nucleotide calling is performed 

by the Bcftools Mpileup (Li et al., 2009), which outputs a Variant Call File (VCF) (Danecek 

et al., 2011). Vcfutils.pl (Gordon & Hannon. 2021) then converts the VCF to a fastq 

format file and seqtk converts the fastq file to a fasta (Heng. 2021). A more in depth 

description of Extensiphy and the utility of the program are discussed in Field et al., (2022). 

 

Phylogenetic Distance 

 

 Using the primary phylogeny published by Estandia, we calculated the 

phylogenetic distance of every taxon pair in the phylogeny using the Dendropy Python 

library (Sukumaran & Holder. 2016; Estandia et al., 2021). In summary, our dataset was 

comprised of 2,916 sequences in 54 separate alignments and the phylogenetic distance 

between the query taxon and the reference taxon that was used to assemble the query 

sequences. 

 

Effect of Phylogenetic Distance on Basecall Errors 

 

 We compared each new Extensiphy-produced, reference-based sequence to the 

published sequence of the query taxon and counted the number of bases not matching the 

published, de novo assembled query taxon sequence, hereafter referred to as errors. We 
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also compared our basecalls to the reference sequence used for each assembly. We 

distinguished between two error types: errors of unambiguous bases and total errors. 

Unambiguous errors are a difference where both sequences have a basecall of one of the 

four DNA nucleotides: A, C, G or T that differ from the published sequence. Total errors 

include all of the unambiguous errors but also include differences where one or both 

sequences have a degenerate base or a gap, the most common of which is N.  

 

Distance Correlation Analysis 

 

 First, we examined the correlation between the phylogenetic distance to the 

reference and the number of unambiguous errors for all sequence comparisons. Second, we 

examined the correlation between phylogenetic distance to the reference and the number 

of total errors for all sequence comparisons. The third and fourth analyses used the same 

predictor (distance to reference) and response (unambiguous errors) variables for testing 

unambiguous errors as the first analysis but were performed on data associated with each 

individual taxon rather than the entire dataset. These individual taxon datasets are inferred 

sequences or a single query that used each taxon as a reference. We performed simple linear 

regression (Freedman. 2009) in base R (R Core Team. 2022) to investigate the relationship 

between phylogenetic distance to the reference and the number of erroneous bases in each 

dataset with phylogenetic distance to the reference as the explanatory variable and the 

number of errors as the response variable. 

 

Basecall Error Bias to the Reference 

 

 We used our sequence comparison data to investigate if unambiguous errors, sites 

that did not receive the same nucleotide as the Estandia nucleotide for that taxon, were 

identical to the reference nucleotide at an unexpected rate. During sequence comparison, 

we collected information on unambiguous errors that matched the reference sequence. We 

subtracted the number of unambiguous errors matching the reference from the total number 

of unambiguous errors to calculate the number of unambiguous errors not matching the 

reference sequence. We estimated that errors matching the reference sequence should occur 

at a rate of roughly 25% of the total number of errors if errors are random across all four 

possible bases. To compare the observed proportion of errors matching the reference to our 

expected proportion of errors matching the reference, we used a two-sided one proportion 

z-test (Sprinthall. 2003). We also performed a Pearson chi-squared test to examine the 

independence of individual comparison’s errors matching and not matching the reference 

sequence (Balakrishnan et al., 2013).   

 

The Effect of Coverage on Errors 

 

 We used data from our basecall analyses to investigate the relationship between 

read coverage and error rate. To assess the read coverage at each unambiguous error, we 

assessed the individual base coverage values in the variant call files (VCF) produced by 

the consensus calling portion of Extensiphy. We separated every unambiguous error into a 
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bin based on the integer level of read coverage of that base. Error rate was calculated by 

dividing the number of errors at each level of coverage by the total number of unambiguous 

identical (i.e. correct) bases at the same coverage level. To statistically investigate the 

relationship between coverage and error rate, we used coverage as the predictor variable 

and error rate as the response variable in a simple linear regression analysis. 

 

Phylogenetic Analyses 

 

 To assess the effect of reference choice on phylognetic inference, we estimated 

phylogenies for every reference assembled alignment produced during our Extensiphy 

runs. Here reference assembled alignment indicates an alignment produced by Extensiphy 

using one of the sequences published by Estandia et al., (2021) as a reference sequence. 

We used the program RaxML for phylogenetic estimation using the GTRGAMMA model 

of nucleotide substitution (Stamatakis. 2014). We performed 100 bootstrap replicates and 

computed a majority rule consensus phylogeny. Our final phylogenetic estimation outputs 

were the best tree of each estimation run and the majority rule consensus tree produced by 

the bootstrap replicates. We used Dendropy (Sukumaran & Holder. 2010) to calculate the 

unweighted Robinson Foulds distance (Robinson & Foulds. 1981) for each phylogeny in 

the majority rule consensus dataset by comparing the phylogenies we produced to the 

original phylogeny published by Estandia et al., (2021). We also computed the weighted 

Robinson Foulds distance for phylogenies in the best tree dataset by comparing the 

phylogenies we estimated to the original phylogeny produced by Estandia et al., (2021). 

To explore the changes to overall tree lengths based on reference choice, we calculated the 

total tree length of each reference based phylogeny as the summed length of each branch 

in the phylogeny using Dendropy. We subtracted the total tree length of the Estandia 

phylogeny from the total tree length of each reference-based phylogeny, noting whether 

the value was positive or negative. 

 

 

2.4 Results 

 

Effect of Phylogenetic Distance to Reference on Basecall Errors 

 

 In our comparisons of reference-based sequences to sequences produced by 

Estandia et al., (2021), we separated errors into two groups: unambiguous errors and total 

errors. The range of unambiguous errors was between 4 and 4,037 bases in each 

comparison of 2,328,289 bases, resulting in a range of unambiguous error rates between 

1.7e-06 and 0.0017 errors per base. The range of total errors recorded during sequence 

comparisons, including ambiguities, was between 878 and 1,101,714 bases per 

comparison, leading to a range of total error rates between 0.0003 and 0.473 errors per 

base. To investigate the effect of phylogenetic distance to the reference taxon on errors, we 

partitioned our error data using four schemes. The first two analyses used a dataset 

incorporating every sequence produced using every reference, leading to 2,916 

comparisons to the published sequences in total. The results of simple linear regression on 



31 

 

phylogenetic distance to the reference as the predictor variable and unambiguous errors as 

the response variable produced a p-value of 2.2e-16, an r-squared value of 0.918 and an 

adjusted r-squared value of 0.918 (Figure 2.1). Simple linear regression using phylogenetic 

distance to the reference taxon as predictor variable and total errors as the response variable 

returned a p-value of 0.018, an r-squared of 0.001 and an adjusted r-squared of 0.001 

(Figure 2.2). 

 

Figure 2.1: Distance to the reference has a significant relationship to the quantity of 

unambiguous errors. Phylogenetic distance to the reference is based on pairwise distance 

measurements collected from the Estandia et al (2021) phylogeny. Unambiguous errors 

only include the four primary nucleotides. The phylogenetic distance to the reference also 

explains a significant portion of the variation in error rates (R^2 = 0.92). 
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Figure 2.2: Distance to the reference shows no significant effect on ambiguous errors. 

Phylogenetic distance to the reference is based on pairwise distance measurements 

collected from the Estandia et al (2021) phylogeny. Ambiguous errors include gaps and 

ambiguous characters as well as the four nucleotides. Ambiguous errors are not correlated 

with distance (R^2 = 0.0019, p-value = 0.019) 

 

 The third data partition examined the sequence comparisons made by all query taxa 

assembled using one individual reference taxon. This partition lead to 54 sub-datasets of 

54 sequence comparisons, each with a single reference taxon. The individual reference 

taxon regression analyses used the same predictor variable (phylogenetic distance to the 

reference taxon) and response variable (unambiguous and total errors) as the whole-dataset 

analyses. When examining unambiguous errors, the minimum p-value was 1.941e-42 and 

the maximum p-value was 6.714e-12, with an average of 1.832e-13. The r-squared values 
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of the reference taxon regression analyses describe that a majority of the variation in 

unambiguous errors can be explained by examining the phylogenetic distance to the 

reference. The minimum r-squared value was 0.599 and the maximum r-squared value was 

0.971, with an average of 0.897. Of the 54 reference taxon regression analyses, all 54 

displayed a positive correlation between distance to the reference genome and errors. The 

fourth data partition examined the individual taxon comparison values but incorporated 

sequences belonging to each query taxon regardless of reference choice. This partition lead 

to 54 sub-datasets of 54 sequence comparisons, each for a single query taxon. The 

minimum p-value was 1.081e-53 and the maximum p-value was 1.711e-18, with an 

average of 4.802e-20 The r-squared values for unambiguous error regressions again 

described that most of the variation in errors can be explained by examining the 

phylogenetic distance to the reference taxon. The r-squared values for query taxa regression 

analyses ranged from a minimum of 0.775 to a maximum of 0.990, with an average of 

0.954. Of the 54 query taxon regression analyses, 54 showed a positive correlation between 

distance to the reference genome and unambiguous errors. 

 

Bias to the Reference Base 

 

 Across all of our sequence comparisons, we found a total of 4,533,610 

unambiguous errors. Of the total unambiguous errors, 4,402,487 matched the reference 

sequence and 131,123 did not match the reference sequence (Figure 2.3). The one 

proportion z-test examining the proportion of unambiguous errors matching the reference 

compared to the expected proportion of errors matching the reference produced a p-value 

of 2.2e-16. The observed proportion of errors matching the reference was 0.971 compared 

to our expected value of 0.25. Our test of the independence of individual comparisons 

separated into values of matching the reference and not matching the reference using a 

Pearsons chi-squared test returned an identical p-value of 2.2e-16. Both statistical tests 

reflect a high degree of preference for the reference base in unambiguous errors to the 

Estandia sequences. 

 

The Effect of Coverage on Errors 

 

 When investigating the relationship between sequence coverage and unambiguous 

errors, we found a range of coverage values at individual unambiguous basecalls from 0x 

to 315x (Figure 2.4). Error rate was highest at the lowest levels of coverage and displayed 

an exponential decrease as coverage increased, shown in Figure 2.5. The results of the 

simple linear regression produced a p-value of 0.006 indicating a significant relationship 

between coverage and error rate. The R-squared value produced by this analysis was 0.023 

and the adjusted R-squared values was 0.019, indicating that only a portion of the variance 

in error rate could be explained by coverage level. While the fitted linear regression was 

statistically significant, the distribution is clearly non-linear and bi-modal so we focus on 

the characteristics of the distribution instead. 
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Figure 2.3: The number of unambiguous errors matching the reference genome. Errors 

match the reference genome more often than any other base.  

 

 

 
 

Figure 2.4: The total counts of unambiguous basecalls, both identical and nonidentical, to 

the sequences in Estandia et al (2021) at each level of coverage.  
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Figure 2.5: The relationship between read coverage at every unambiguous error and the 

rate of unambiguous errors in all unambiguous sequence comparisons at specified coverage 

levels. The plateau of error rates at ~25x coverage is in line with previous findings on error 

rate and coverage. While read coverage and unambiguous error rate are correlated (p-value 

= 1.3e-06), the coverage level explains relatively little variation in unambiguous error rate 

(R^2 = 0.073). 

 

 

Phylogenetic Analyses 

 

 We estimated phylogenies using 54 alignments, one for each reference, separated 

into two datasets: For each data set we estimated the best maximum likelihood tree and the 

majority rule consensus across 100 bootstrap replicates. We compared these results to the 

phylogeny published by Estandia et al., (2021) and calculated the Robinson Foulds (RF) 

distance. The RF distances between the majority rule consensus phylogenies and the 

Estandia phylogeny were all 0 except for the phylogeny that used one of the outgroups, 

Spheniscus demersus, as a reference sequence, which received an RF distance of 2. The 

topological difference between the S. demersus phylogeny and the Estandia phylogeny 

involved the rearrangement of the branch leading to S. demersus itself to a different 

position relative to the other two outgroup taxa, specifically sister to Sula leucaogaster. 

The weighted RF distances between the best trees and the Estandia phylogeny were slightly 

more diverse. We obtained a range of RF distances with a minimum of 0.011, a maximum 

of 0.048 and an average of 0.013. These values indicate that there are branch length 



36 

 

differences between the reference assembled phylogenies but the topologies remained 

identical to the Estandia topology. Figure 2.6 displays the original phylogeny produced by 

Estandia et al., and the most disparate reference-based best tree phylogeny with lines 

connecting tip positions between the two phylogenies. Our exploration of branch length 

changes by subtracting the total tree length of the published Estandia et al., phylogeny from 

each of our reference-based phylogenies indicated a general reduction of branch lengths. 

However, the tree lengths of trees based on the out-group reference taxa (S. leucaogaster, 

S. demersus and Ciconia Maguari) were slightly increased over the tree length of the 

Estandia phylogeny. Other than the three outgroup-based reference phylogenies producing 

slightly longer phylogenies than the Estandia phylogeny, no meaningful taxonomic pattern 

is identifiable in the changes to the remaining tree lengths. Figure 2.7 describes these 

changes to tree length based on reference choice. Notably, the reference-based phylogeny 

with the largest tree length change was not based on S. demersus, the reference taxon that 

produced the only tree with topological variation but on Pachyptila desolata. The P. 

desolata sequence and sequences assembled using taxon as a reference contained the most 

missing data of any alignment. 
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Figure 2.6: Comparison of the topologies of the Estandia published phylogeny and the 

only reference-based phylogeny with topological differences (based on reference taxon  S. 

demersus). The Robinson Foulds distance between these two topologies is 2, reflected by 

the rearrangement of the branches leading to the outgroup taxa S. demersus and  C. 

Maguari. The phylogenies estimated from the alignment using  S. demersus were the only 

phylogenies to display topological differences to the published Estandia phylogeny. 
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Figure 2.7: Variation in tree lengths of the reference-based phylogenies compared to the 

Estandia published phylogeny. All three phylogenies estimated using outgroup species as 

references resulted in a positive change in tree length, along with the tree estimated using 

Pelagodroma marina as the reference. No taxonomic pattern is visible in the negative 

change in tree lengths. 

 

 

2.5 Discussion 

 

 Genome sequencing and particularly high throughput sequencing have greatly 

expanded our ability to investigate many topics in biology (Degner et al., 2009; Bertels et 

al., 2014). The variety of bioinformatics methods involved in processing high-throughput 
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sequencing data is extensive. Acknowledging and addressing the caveats of these 

bioinformatics methods can ensure the reliability of continuing research in biology. Our 

results quantify the effects of reference bias by focusing on metrics that are directly 

applicable to any genomic study in the form of basecall errors in relation to several 

motivating factors. We found that aligning reads to a more phylogenetically distant 

reference sequence will increase the number of erroneously called bases, with distance to 

reference as the strongest influence on basecalls. We also found that erroneous bases were 

highly biased towards the reference bases, regardless of distance to the reference. We 

demonstrated the relationship between coverage and error rates and while this relationship 

is less a direct predictor than distance to reference, the result agrees with previously 

established guidelines. Perhaps soothingly to researchers focusing on phylogenetic 

estimation as the final stage of evolutionary analyses, we found that despite increased 

errors at greater distances to the reference, phylogenetic topologies are largely resilient 

within the distances we investigated. Reference choice had more significant effect on 

sequence composition and branch lengths rather than affecting the topology itself. Taken 

together, these results support the previous findings and expectations of previous 

investigations into the influence of reference choice. 

 Genomic studies often rely on nuanced analyses of SNP data to investigate a variety 

of questions, whether focusing on taxon evolution or the effects of individual alleles 

(Brandt et al., 2015; Rick et al., 2022). Regardless of the application, the accuracy of SNP 

calls is an important aspect that can be affected by data processing choices prior to final 

basecalls. Our findings of a linear relationship between errors and distance to the reference 

support previous research on this subject, indicating that caution must be exercised when 

choosing reference taxa for sequence alignment. Moreover, as ultra conserved elements are 

expected to exhibit relatively little variation compared to other regions of an organism’s 

genome, It’s probable that a dataset with increased variety of genetic elements would 

likewise produce more errors when aligned to more distant references. In other studies, 

basecall errors have been discussed in terms of fluctuations in heterozygosity, with the 

expectation that as distance to the reference increases, heterozygosity will decrease (Ros-

Freixedes et al., 2018; Gunther & Nettleblad. 2019; Prasad et al., 2021; Rick et al., 2022). 

This skewing of heterozygous sites has been described as less deleterious in cases of large 

population studies but potentially misleading when the study examines subtle variation, 

such as investigations of fewer loci (Gunther & Nettleblad. 2019; Prasad et al., 2021; Rick 

et al., 2022). Interestingly, Prasad et al., (2021) found that heterozygosity can increase as 

distance to the reference increases, although the proposed explanation is that 

misalignments are leading to erroneous bases not matching the reference, producing false 

estimates of diversity at these sites. The results of our investigation of error bias to the 

reference does not support this supposition as we found a significant majority of erroneous 

bases matching the reference rather than another possible base. Our results of errors biased 

to the reference base far exceed expected proportions of 50% found in other studies 

(Degner et al., 2009; Ros-Freixedes et al., 2018; Gunther & Nettleblad. 2019; Prasad et al., 

2021) As we did not find a strong relationship between distance to the reference and 

coverage, the bias towards the reference bases may explain much of the strong relationship 

between unambiguous error rate and distance to the reference. When using a closely related 
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reference sequence, there are fewer differences between the query and the reference. 

Therefore the reference base is more likely to be the correct base, and that basecall is less 

likely to appear as an error. 

 The results of our investigation of the relationship between read coverage and error 

rates display a significant relationship between coverage and error rate. This finding is in 

line with expectations set by other studies, as sequence coverage is associated with error 

rate but is unlikely to be the primary cause of erroneously called bases (Brandt et al., 2015). 

Our coverage analyses state that while error rates are relatively low regardless of coverage, 

error rates begin to plateau around coverage values of 20x-25x, which is in line with 

assessments of the coverage-error relationship in earlier studies (Dohm et al., 2008; Luo et 

al., 2012; Bertels et al., 2014). Rigorous filtering based on coverage is advisable for studies 

that require high confidence in individual basecalls. While our results indicate that this 

issue is a minor influence on error rates in general, the cumulative effect could help explain 

bias to the reference base. The curious second peak in both unambiguous errors and 

unambiguous bases in both coverage figures (Figure 2.4, Figure 2.5) are most likely the 

result of read aggregation from paralogs. Reads from multiple regions in the genome align 

to the only available locus (Wu et al., 2017). 

 Ultimately, for all of our findings quantifying the relationships between distance to 

the reference taxon and coverage to basecall errors, these influences have little effect on 

the overall topology of our estimated phylogenies. The presence of only one reference 

based phylogeny with one topological change is encouraging in the case of studies on non-

model organisms that do not readily have a reference genome for their taxon. The stability 

of our estimations could be due in part to the inclusion of non-polymorphic sites as 

supported by previous findings by Bertels et al., (2014) and ultra conserved elements as 

the chosen dataset. These results do not indicate, however, that phylogenetic estimation is 

unaffected by reference choice. The weighted RF distances described minor but 

informative changes to branch lengths depending on reference choice, connecting the effect 

of our previous analyses on topological accuracy. Notably, while we cannot definitively 

state that missing data drives branch length changes, the effect of a reference taxon with a 

high proportion of missing data provided a strong enough outlier influence to skew the 

regression analysis of missing data to reference-based tree length change (Figure 2.8). 

While these changes to branch lengths may be a secondary consideration in an evolutionary 

study focusing on topological accuracy, the underlying cause of such branch length changes 

could be critical to a study involving targeted SNP analyses. Anecdotally, we combined 

sequences from the same taxon but assembled using every sequence in the dataset as a 

reference and inferred a phylogeny from this “one taxon” dataset. We found that the 

sequences of the single taxon reconstructed the published topology of the references used 

to assemble them. This unorthodox analysis underscores the importance of the results of 

our investigation on errors biased to the reference base and the effect of read coverage on 

error rates. Taken together, our results show the importance of reference choice on read 

alignment and sequence composition while also emphasizing the resilience of the correct 

topology. 
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Figure 2.8: The amount of missing data is loosely correlated with total tree length change. 

The significant correlation is primarily driven by the tree based on the reference taxon with 

the most negative tree length change as seen in Figure 2.6. The tree with the most negative 

length change is based on the reference sequence with the most missing data. 

 

 While we have confidence in value of our findings, additional work is needed to 

explore the consistency of our findings in an expanded context. Our dataset consists of only 

ultra conserved elements from 54 bird species, representing a relatively invariant section 

of possible genomic regions. As reference-based sequence assembly sees broad use, we 

expect that future work on the effects of reference choice will need to expand to examine 

datasets exemplifying the diversity found in the tree of life. Additionally, the use of 

simulated sequences could add valuable context to our more unexpected results, such as 

the overwhelming bias towards the reference base in unambiguous errors. Moreover, an 

incorporation of multiple programs and methods at each stage of data processing 

workflows coupld help elucidate bias introduced by a single program. Ultimately, while 

the work we present here is a valuable addition to our understanding of genomic methods, 

more work would expand context of these results and increase our understanding of 

downstream results of reference choice. 
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2.6 Conclusion 

 

 Our results offer several quantitative measurements of the effect of reference choice 

on assembled sequences and phylogenetic estimations. While the choice of a UCE dataset 

is more conservative than compared to the variation we expect in a whole genome analysis, 

these findings offer a starting guide of what to expect when aligning short read, high 

throughput data to a reference sequence. In the context of evolutionary analyses, our more 

significant finding is that while distance to reference drives errors and ultimately error bias 

to the reference, phylogenetic estimation is generally resilient to the influence of distant 

but reasonable reference choices. However, reference choices made during SNP analyses 

should be considered more carefully as the small but highly biased errors could lead to 

incorrect assumptions. To summarize, a wider diversity of references is acceptable for 

phylogenetic estimation while SNP analyses should choose less distant references. 

Rigorous coverage cutoffs will decrease errors but will also decrease available data. 
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Chapter 3 

 

Elucidating the Evolutionary Relationships of Anti-Microbial 

Resistant Neisseria gonorrhoeae with Phylogeny-Aware 

Database Filtering 

 

Field, J. T. & McTavish, E. J. 

 

3.1 Abstract 

 

 Monitoring efforts focusing on anti-microbial resistant Neisseria gonorrhoeae are 

crucial for making informed policy decisions and alleviating community burden. 

Phylogenetic methods are a key aspect of exploring the evolutionary relationships of anti-

microbial resistant pathogens. Methods of phylogenetic estimation must contend with large 

amounts of sequencing data produced by contemporary monitoring efforts. One such 

monitoring program is the NCBI? Pathogen Detection database. The Pathogen Detection 

database utilizes a data processing pipeline that applies kmer matching, sequence-sequence 

similarity approaches and maximum compatibility methods of phylogenetic estimation. 

While these methods are established and generally reliable, alternative methods may offer 

some benefits. Here, we describe an alternative approach that employs efficient and flexible 

reference guided sequence assembly and full maximum likelihood phylogenetic estimation 

methods to update a clade-of-interest from a previous study with new data. We further 

explore our dataset by examining the topologies of lineage clusters found throughout our 

chosen clade. We complete our investigation by inferring dated phylogenies for sub-clades 

of our dataset and overlaying anti-microbial resistance profiles that would be standard 

inclusions in any effort monitoring pathogen evolution.
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3.2 Introduction 

 

 Anti-microbial resistant bacteria are an increasing threat to contemporary human 

society. Anti-microbial resistant gonorrhea, caused by the bacterium Neisseria 

gonorrhoeae, is a pathogen of highest concern to monitoring organizations (CDC. 2019). 

N. gonorrhoeae infections have been connected to increased infertility, ectopic pregnancy 

and play a facilitative roll in the transmission of human immunodeficiency virus (St. Cyr 

et al., 2020). Regarding treatment, the recommended dose of some antibiotics by the United 

States Centers for Disease Control and Prevention (CDC) has doubled since 2010 (St. Cyr 

et al., 2020). The number of anti-microbial resistant lineage transmissions were estimated 

to be 550,000 each year in 2019 (CDC. 2019). Efforts to monitor anti-microbial resistant 

N. gonorrhoeae lineages have been successful in guiding internationally collaborative 

policy, as evidenced by a number of international health organizations adopting similar 

policies (Unemo et al., 2019). Despite successful efforts to trace infections and set policies, 

pathogen evolutionary dynamics combined with growing populations ensure transmissions 

will continue. Monitoring efforts have increasingly turned to genomic data to investigate 

the life histories of collected N. gonorrhoeae and contemporary efforts produce prodigious 

quantities of raw data. Taken together, these data indicate a continued need for extensive 

pathogen surveillance efforts aimed at N. gonorrhoeae. 

 Phylogenetic analyses have played an increasingly important role in monitoring N. 

gonorrhoeae, primarily due to the field’s utility in assessing patterns of antibiotic resistance 

through a shared life history (Grad et al., 2014; Grad et al., 2016; Harris et al., 2018). 

phylogenetic analyses are sensitive to emerging lineage’s methods of anti-microbial 

resistance mechanisms such as horizontal gene transfer or clonal expansion through 

examinations of presence and absence of associated genes (Grad et al., 2016). More 

broadly, the identification of anti-microbial isolates in phylogenomic studies can elucidate 

transmission and distribution information, indicating potential driving forces in at-risk 

groups (Harris et al., 2018). Platforms such as Nextstrain have highlighted the importance 

of large data driven efforts in tracking the evolution of pathogens with its coverage of 

multiple viral pathogens including Covid-19 (Hadfield et al., 2018; Hodcroft et al., 2021). 

However, Nextstrain does not currently monitor N. gonorrhoeae evolution, a task generally 

performed by individual research groups in conjunction with government-backed 

monitoring programs (Grad et al., 2014; Grad et al., 2016; Harris et al., 2017; Papp et al., 

2017). Recent studies have investigated the evolution of the penA gene, a gene associated 

with resistance to cephalosporin anti-microbials, over a specified time period and often in 

a specific geographic region (Whiley et al., 2018; Yahara et al., 2021). While studies almost 

always include penA as a gene-of-interest, other anti-microbial resistance genes are often 

investigated, displaying an awareness of historical treatment methods when examining the 

evolutionary history and origins of modern lineages (Unemo & Shafer. 2011; Yahara et al., 

2021). Extensive historical research on anti-microbial resistance lineages of N. 

gonorrhoeae were ultimately successful in suggesting plausible entrance paths into the 

United States (Unemo & Shafer. 2011). 

 Efforts to investigate N. gonorrhoeae evolution in the context of anti-microbial 

resistance emergence and exchange are a continuing effort. Our recent work on the 
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software package Extensiphy produced a genome scale multi-locus phylogeny for 1,237 

anti-microbial lineages (Field et al., 2022). Our data from this project was a semi-random 

selection of samples from the N. gonorrhoeae repository of the NCBI Pathogen Detection 

database (NCBI. 2022a). While no anti-microbial genes were specifically incorporated into 

our original dataset, the detailed metadata on the Pathogen Detection website describes a 

variety of pertinent information on the presence of particular anti-microbial genes. Beyond 

the metadata for the 1,237 samples we have already analyzed, the Pathogen Detection 

database contains sample information for more than 24,000 additional Neisseria isolates. 

Such large datasets present a challenge for contemporary phylogenetic analysis methods, 

particularly if the studies goal is to incorporate all samples in the dataset into a single, 

resolved phylogenetic estimation. The Pathogen Detection project addresses the issue of 

efficient data processing with a four stage pipeline of sequence assembly, sequence 

clustering, phylogenetic estimation and sequence annotation (NCBI. 2022). While the 

Pathogen Detection pipeline is ideal for adding new samples of high similarity to the extant 

database and identifying anti-microbial resistance alleles, phylogenetic inference is made 

using maximum compatibility (Cherry. 2017; NCBI. 2022). The maximum compatibility 

algorithm used by Pathogen Detection supports the rapid calculation of relationships 

between clustered sequences but intentionally avoids analyzing relevant biological data 

such as sites with more than two nucleotide variants and time reversibility (Cherry. 2017). 

With these limitations in mind, we decided to evaluate the similarity between the maximum 

compatibility trees produced by Pathogen Detection and trees estimated using full 

maximum likelihood methods. To make this comparison, we investigated the evolutionary 

relationships of a single clade selected from our Extensiphy phylogeny and expanded with 

all applicable samples from Pathogen Detection using full maximum likelihood 

methodologies. Samples were automatically downloaded, assembled and stored in a 

database over several weeks using a new software package, Intensiphy. Following clade 

updating, we investigated the relationships of the clade in a temporal context by building a 

dated phylogeny. Finally, we examined the distribution of anti-microbial resistance genes 

throughout the clade. 

 

 

3.3 Methods 

 

2.1 Software Overview 

 

 Intensiphy is a software package for automatically downloading datasets from 

NCBI and incorporating them into a database with a focus on continuous updating. 

Intensiphy accepts a CSV formatted file of NCBI short read archive (SRA) numbers, a 

concatenated starting alignment and a phylogeny based on the concatenated alignment. 

Intensiphy automatically detects if the current run is a continuation of a previous run or the 

start of a new run of the program. If the current mode is a new run, Intensiphy separates 

the input alignment into individual sequence files, constructing the beginning of the 

sequence database. A reference sample is chosen at random or by user selection. Intensiphy 

then reads the input CSV file and identifies any samples not already in the sample database. 
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The stages of downloading data and assembling the sequences are intertwined, with 

Intensiphy downloading data for a subset of the complete sample set and using Extensiphy 

to align the newly downloaded data to the reference sample. The resulting consensus 

sequences are added to the database, the intermediate files are removed and the system 

downloads the next batch of samples data. Once all samples listed in the CSV have been 

assembled and added to the sequence database, the new samples are placed into the starting 

phylogeny. Once placement tree inference is complete, the Intensiphy run is complete and 

the database is ready for the next run. The user may construct an alignment of all samples 

in the database using included script options at any time. 

 

Clade Selection 

 

 The starting point for our analyses was the phylogeny produced in our manuscript 

describing the Extensiphy software package (Field et al., 2022). This phylogeny described 

the relationships of 1,237 N. gonorrhoeae isolates collected from the Pathogen Detection 

database. Using the python phylogenetic manipulation library Dendropy (Sukumaran & 

Holder. 2010), we selected a clade from the Extensiphy phylogeny where the number of 

tips is between 50 and 150, the highest average number of anti-microbial resistance genes 

between all tips in the clade, the fewest tips with missing location data and the fewest tips 

missing from the Pathogen Detection database. Once the clade best fitting these criteria 

was identified, we pruned this clade sub-tree from the Extensiphy manuscript tree and 

isolated the sequences associated with the clade from the alignment used to infer the 

Extensiphy manuscript tree.  

 

Expanded Dataset 

 

 We obtained the complete metadata of all Neisseria samples in the Pathogen 

Detection database, which on the date of March 29th 2022 contained 24,571 isolates. All 

Neisseria samples included in the Pathogen Detection database were sequenced across the 

whole-genome, making every sample suitable for Extensiphy and Intensiphy use. 

Following metadata collection, we filtered the dataset by removing samples that lacked 

associated NCBI Short Read Archive (SRA) numbers and location metadata. Once filtered 

on these criteria, the dataset included 16,110 isolates. The format of Pathogen Detection 

metadata tables are acceptable by Intensiphy by default. The reference sequence used for 

read alignment and sequence assembly was the same reference sequence used for our work 

on Extensiphy. This sequence contains concatenated loci found in the NCBI reference N. 

gonorrhoeae sequence (NCBI Genome ID: 864). More details on the selection of this 

sequence are available in the Extensiphy manuscript (Field et al., 2022). 

 

Read Collection and Sequence Assembly 

 

 Intensiphy uses fasterq-dump from the NCBI SRA toolkit collection of programs 

to download raw read files directly from the NCBI short read archive (SRA) (NCBI. 

2022b). Intensiphy downloaded each sample in the dataset and passed the raw read files to 
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Extensiphy for read alignment and assembly based on the reference sequence (Field et al., 

2022). Extensiphy builds or updates sequence alignments with new, whole-genome 

sequencing data. Extensiphy aligns a sample’s raw reads to a reference sequence and calls 

a consensus sequence. The output consensus sequence is the same length and has the same 

gap positions as the reference sequence, ensuring synteny. Once all samples have been 

assembled in this manner, the sequences are combined with the original alignment or 

reference sequence to form a new, extended alignment. In this version of Extensiphy, read 

alignment is performed by BWA-MEM2 (Vasimuddin et al., 2019), the aligned read files 

are indexed by Faidx (Li et al., 2009) and sequence alignment files are converted to binary 

alignment files by Samtools View (Li et al., 2009). Variant nucleotide calling is performed 

by the Bcftools Mpileup (Li et al., 2009), which outputs a Variant Call File (VCF) (Danecek 

et al., 2011). Vcfutils.pl (Gordon & Hannon. 2021) then converts the VCF to a fastq format 

file and seqtk converts the fastq file to a fasta (Heng. 2021). A more in depth description 

of Extensiphy and the utility of the program are discussed in Field et al., (2022). Once 

assembled, the sequences were stored in the sequence database for this project. 

 

Updated Clade Isolation and Phylogenetic Estimation 

 

 Once all sequences were assembled and added to the sequence database, we 

estimated a resolved phylogeny from the chosen clade-of-interest using RaxML 

(Stamatakis. 2014). We used the GTRGAMMA model and 100 bootstrap replicates to 

produce a majority rule consensus phylogeny. The consensus phylogeny was used as the 

starting tree for the phylogenetic placement of all new samples in the Intensiphy sequence 

database. Placement was performed using the RAxML Evolutionary Placement Algorithm 

(EPA) (Stamatakis. 2014), also using the GTRGAMMA model. As the goal of this analysis 

was only to identify which samples were placed within the clade-of-interest and not to 

assess overall evolutionary relationships, batches of 500 samples from the sequence 

database were combined with the original clade-of-interest. After samples were placed in 

the starting clade-of-interest phylogeny, we identified the new samples placed in the clade-

of-interest of each batch and pulled their sequences from the sequence database, creating 

an alignment containing only sequences in the clade-of-interest. This updated alignment 

was used to estimate a resolved phylogeny using RaxML using the same settings described 

above.  

 

Phylogenetic Comparisons 

 

Once clade estimation was complete, we identified all Pathogen Detection single 

nucleotide polymorphism (SNP) clusters found in the updated clade-of-interest. For 

disambiguation purposes, we will refer to NCBI SNP clusters as lineage clusters, and we 

will specify if the lineage cluster in question was collected from NCBI or from our own 

phylogenetic estimations (COI). The NCBI lineage cluster phylogenies and associated 

metadata were collected from Pathogen Detection for comparison to our results. We used 

Dendropy to identify the most recent common ancestor (MRCA) of all samples in each 

NCBI lineage cluster. Once the MRCA was identified, we isolated all samples descended 
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from the MRCA, including samples not included in the original NCBI lineage cluster 

dataset. Sub-phylogenies for these datasets were pruned from the updated clade-of-interest 

phylogeny and set aside for analyses and comparisons, hereafter referred to as clade-of-

interest (COI) lineage clusters. We then compared the NCBI lineage cluster tree to the COI 

lineage cluster sub-tree. If the COI lineage cluster was found to be monophyletic, we 

calculated the Robinson-Foulds (RF) distance between both trees for each lineage cluster 

using Dendropy (Sukumaran & Holder. 2010). We ignored NCBI lineage clusters that 

contained three or fewer isolates. 

 

Dated Phylogeny Estimation 

 

 We estimated a dated phylogeny for every COI lineage cluster found in our updated 

clade-of-interest phylogeny using the TreeTime software package (Sagulenko, Puller & 

Neher. 2018). We provided TreeTime with sample identification and date metadata, along 

with a starting phylogeny and the original alignment used to estimate the phylogeny. 

Sample collection date and SRA run metadata were collected from the Pathogen Detection 

database for each sample in the updated clade-of-interest. Collection dates are an included 

category of Pathogen Detection metadata but not all samples have recorded collection date 

values. Dated phylogenies were also estimated for the starting clade-of-interest and the 

updated clade-of-interest. 

 

Anti-Microbial Resistance Overlay 

 

 Anti-microbial resistance gene profiles were collected from the metadata included 

for each sample in the clade-of-interest. The anti-microbial resistance gene data was 

reformatted to a presence-absence heat map and overlaid on any applicable COI lineage 

cluster phylogenies using the Interactive Tree of Life tree manipulation platform (Letunic. 

& Bork. 2021). To examine overarching dynamics of anti-microbial resistance genes found 

throughout the starting and updated clade-of-interest phylogenies, the total counts of each 

anti-microbial resistance gene found in the starting and updated clade were summed and 

visualized.  

 

 

3.4 Results 

 

Updated Clade-of-Interest Dataset 

 

 The clade-of-interest started with 69 samples, excluding two outgroup lineages, 

prior to updating (Figure 3.1). Upon completion of updating with samples from NCBI 

Pathogen Detection, the clade-of-interest contained 1,092 samples and two outgroup 

lineages for a total of 1,094 samples (Figure 3.2). Sequences in the dataset all matched the 

reference length of 1,859,910 bases, comprising 317 loci. Pathogen Detection metadata 

dated these samples as being collected between 2016 and 2021. The starting clade-of-

interest contained an average of 12 anti-microbial resistance genes per isolate prior to 
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updating and contained an average of 14 anti-microbial resistance genes after updating. 

There were samples corresponding to 6 NCBI lineage clusters in the starting clade-of-

interest and samples from to 33 NCBI lineage clusters in the updated clade-of-interest. Of 

these 33 COI lineage clusters, we identified 15 COI lineage clusters containing three or 

more lineages (Figure 3.3). Of these 15 COI lineage clusters, two were recovered with all 

isolates listed in the corresponding Pathogen Detection NCBI lineage clusters and as 

monophyletic clades: NCBI lineage clusters PDS000104762 and PDS000104763, labeled 

in the clade-of-interest as COI cluster 4 and COI cluster 5. The remaining 13 COI lineage 

clusters were all found to be paraphyletic and a range of lineages included in the 

corresponding NCBI lineage clusters were not included in the updated clade-of-interest, 

having been placed outside of the clade-of-interest during the placement phase of the 

workflow. The number of isolates found in each COI lineage cluster was variable for both 

the starting and updated clade-of-interest. In the starting clade-of-interest, 5 COI lineage 

clusters had 6 or fewer associated samples and the remaining single COI lineage cluster 

contained 55 isolates. In the updated clade-of-interest, the smallest COI lineage clusters 

were represented by 1 sample, and the largest COI lineage cluster containing 401 isolates. 
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Figure 3.1: Starting clade-of-interest. This version includes the original 69 isolates and 

does not include the two outgroups. 
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Figure 3.2: Updated clade-of-interest. Includes 1,092 isolates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Updated clade-of-interest with Pathogen Detection SNP cluster locations 

displayed as separate colors. The two lineage clusters found with all lineages listed in the 

NCBI lineage cluster and as monophyletic clades are COI cluster 4 and COI cluster 5, 

individually displayed in Supplemental Figure 4 and Supplemental 5, respectively. 

 

 

SNP Cluster Phylogenetic Comparisons 

 

 When making comparisons between the NCBI lineage clusters and our COI lineage 

clusters, we first examined the number of shared isolates. Of the 15 comparisons, we found 

that two lineage clusters had the same set of isolates between the NCBI version and the 

COI version (Table 3.1). These two lineage clusters contained 81 and 15 isolates and 

comparisons of the NCBI and COI versions returned RF distances of 16 and 5, respectively. 

Of the other 13, the range of isolates found in the NCBI lineage clusters was between 7 

and 435. In 11 of the remaining 13 cluster comparisons, the differences between the number 

of isolates listed in the NCBI clusters and the number isolates found in the COI clusters 

ranged from 1 to 34 isolates. In the two remaining cluster comparisons with the most 
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extreme variation in found isolates in the COI cluster compared to the NCBI cluster, the 

NCBI clusters included 60 and 90 more isolates than the COI clusters (Table 3.1). 

 

Table 3.1: Clade-of-interest lineage cluster descriptors. Two NCBI lineage clusters were 

recovered in our updated clade-of-interest with all listed samples. 

 

Lineage Cluster 

NCBI ID 

Count of 

lineages in 

NCBI 

cluster 

Count of 

lineages in 

updated 

COI cluster 

Lineages 

removed 

during COI 

placement 

step 

Monophyletic in 

updated COI 

tree? 

RF 

distance 

(if 

applicable) 

PDS000104762 81 81 0 Yes 16 

PDS000104763 15 15 0 Yes 5 

PDS000062540 28 19 9 No N/A 

PDS000099711 33 32 1 No N/A 

PDS000104765 34 18 16 No N/A 

PDS000104770 7 6 1 No N/A 

PDS000105692 130 40 90 No N/A 

PDS000107814 435 401 34 No N/A 

PDS000107815 132 128 4 No N/A 

PDS000107816 30 29 1 No N/A 

PDS000107817 50 42 8 No N/A 

PDS000107819 38 25 13 No N/A 

PDS000109193 30 18 12 No N/A 

PDS000109194 16 14 2 No N/A 

PDS000109195 191 131 60 No N/A 

 

 

Dated Phylogeny Investigation 

 

 We estimated dated phylogenies for our updated clades-of-interest. The updated 

dated phylogeny included tips with estimated collection dates set in the future (Figure 3.4). 

Tip dates were considered misdated if the year date reported by TreeTime differed from 

dated reported in the Pathogen Detection metadata. We considered any dated phylogenies 

with any misdated collection dates as unreliable for additional analyses. We inferred dated 

phylogenies for the COI lineage clusters found in our updated clade-of-interest. Of the 15 

lineage clusters for which we inferred dated phylogenies, two lineage clusters produced 

dated phylogenies without misdated tips or internal nodes. The NCBI IDs for these clusters 

were PDS000048684.14 and PDS000104763.1, which we have relabeled as lineage cluster 

1 and lineage cluster 5 to clarify that these lineage clusters are found in our updated clade-

of-interest and reflect the toplogies found there (Figures 3.5, 3.6). Lineage cluster 1 

included samples with collection dates estimated between 2017 and 2021, with a clade root 

delineation set in 2011 (Figure 3.5). Lineage cluster 6 included samples with collection 
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dates estimated between 2018 and 2019, with a clade root delineation set in late 2017 

(Figure 3.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Dated phylogeny estimated for the updated clade-of-interest. Several branches 

can be seen as dated many years into the future, the longest of which has a collection date 

in the Pathogen Detection metadata of October 2018 but is dated in this figure almost 600 

years in the future. 
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Figure 3.5: COI lineage cluster 1 dated phylogeny. All dates that were provided by the 

Pathogen Detection database metadata are accurate in this dated phylogeny. 
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Figure 3.6: COI lineage cluster 5 dated phylogeny. All dates that were provided by the 

Pathogen Detection database metadata are accurate in this dated phylogeny. This lineage 

cluster was also one of two clusters in the updated clade-of-interest that contained all the 

samples listed in the NCBI lineage cluster. 

 

 

Anti-Microbial Resistance Overlay 

 

 We collected anti-microbial resistance gene profiles from the Pathogen Detection 

metadata associated with each sample in the two COI lineage clusters for which we 

obtained reliable dated phylogenies. We constructed Interactive Tree of Life annotation 

files for the entire updated clade-of-interest and applied the annotation files to the three 

dated phylogenies. Both lineage clusters displayed high retention of anti-microbial genes 

throughout each cluster (Figures 3.7, 3.8). Isolates in lineage cluster 1 include 16 anti-

microbial resistance genes, 14 of which are found in all isolates in the cluster. Of the two 

anti-microbial resistance genes that were not ubiquitous, one was not observed in one 

isolate and the other was missing from two isolates (Figure 3.7). The isolates were not 

sister to each other and the bifurcation leading to these samples occurred in 2011. Isolates 
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in lineage cluster 6 were found to possess 16 anti-microbial resistance genes. All 16 

resistance genes were found in all the isolates of the lineage cluster (Figure 3.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.7: COI lineage cluster 1 dated phylogeny with anti-microbial resistance gene heat 

map. Red indicates the presence of an anti-microbial resistance gene and blue indicates a 

gene is absent. 

 

 

 

 

 

 

 

 

 

 



61 

 

 

 

 

 
 
Figure 3.8: COI lineage cluster 5 dated phylogeny with anti-microbial resistance gene heat 

map. Isolates found in this lineage cluster are positive for all 16 anti-microbial resistance 

genes 

 

 

 When examining the overarching antimicrobial dynamics of the starting and 

updated clade-of-interest (Figures 3.9, 3.10), we found that the starting clade contained 16 

anti-microbial resistance genes in total (Figure 3.9). Of the 16 anti-microbial resistance 

genes found in the starting clade, eleven were found in all isolates while another 5 were 

found at variable levels throughout the clade. The updated clade-of-interest hosts isolates 

with 26 anti-microbial resistance genes. Ten anti-microbial genes were found in all isolates 

while 6 genes were found in variable numbers of isolates and another ten isolates were 

found in few isolates (Figure 3.10). 
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Figure 3.9: Summed anti-microbial resistance gene prevalence throughout the starting 

clade-of-interest. 
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Figure 3.10: Summed anti-microbial resistance gene prevalence throughout the starting 

clade-of-interest. Ten anti-microbial loci are found ubiquitously, six are found at varying 

levels. Ten loci were found in only a few isolates. 

 

 

3.5 Discussion 

 

 Investigating N. gonorrhoeae evolutionary relationships is a crucial task for 

researchers in organizations that inform policy makers. Existing methods of investigating 

gonorrhea have proven effective but are not perfect. The NCBI pathogen Detection 

program is suitable for rapidly connecting samples and housing significant metadata. The 

NCBI Pathogen Detection pipeline processes sequence data by assembling genomes de 

novo before using a series of kmer matching and SNP comparison stages to identify and 

refine lineage groupings (NCBIa. 2022). Finally, the Pathogen Detection pipeline estimates 

a maximum compatibility phylogeny for each lineage group (Cherry. 2017). We present an 

alternative method that improves on several aspects of the pipeline and offers researchers 

a flexible tool to build homologous sequence databases that can easily be used to 
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investigate evolutionary dynamics throughout a large set of lineages. Our method uses 

reference guided assembly to rapidly assemble loci-of-interest into a concatenated 

sequence for each lineage. The sequence of each lineage is added to a database which can 

be reconstituted into a multiple sequence alignment at any time. Following database 

construction, any set of loci can be used with a scaffold phylogeny to investigate the 

relationships of any set of lineages in the database by selecting a clade-of-interest in the 

scaffold phylogeny and using phylogenetic placement to partition lineages within and 

outside of a clade-of-interest. Once the clade-of-interest has been expanded with new 

lineages from in the database, a full maximum likelihood estimation is performed to 

provide high quality evolutionary relationships. If the clade-of-interest has grown too large 

for efficient estimation as a single clade, researchers may split the clade into sub-clades to 

improve processing.  

 By identifying the most-recent-common-ancestor of all lineages in NCBI lineage 

clusters in our own clade-of-interest, we were able to identify and collect the composition 

of the monophyletic group containing these lineages, including lineages that were 

identified by NCBI as belonging to a different cluster. We used this method to investigate 

several NCBI identified lineage clusters in our own clade-of-interest, comparing the 

composition of the NCBI identified lineage clusters to those found in our own clade-of-

interest. We found that several lineage clusters from NCBI Pathogen Detection are 

paraphyletic in our clade-of-interest, although the majority of lineage clusters found in our 

clade-of-interest are closely related rather than distributed across the entire clade. We used 

the metadata associated with the samples in our clade-of-interest to build dated phylogenies 

for several lineage clusters and found that erratic tip dating based on branch length and 

cluster size. Based on our exploration of dated lineage clusters, we found that smaller sub-

clades with relatively equivalent evolution rates lead to the most accurate dated phylogeny 

estimates. We also used associated anti-microbial resistance metadata to build resistance 

profiles for lineage clusters in our clade-of-interest, finding little variation in individual 

resistance genes in these sub-clades. 

 Our investigation of individual lineage clusters found in our clade-of-interest 

produced interesting results, regarding the topologies of the lineage clusters themselves 

and of how our method handles sample classification in and outside of the clade-of-interest. 

We limited our analyses to the 15 lineage clusters that returned with four or more lineages 

from the NCBI identified clusters. Only two lineage clusters as identified by NCBI were 

found in the clade-of-interest with all member lineages included and as monophyletic 

clades. The remaining 13 clusters had varying numbers of NCBI identified member 

lineages placed outside of the clade-of-interest (Table 3.1).  

 Partitioning of lineages included and excluded from the clade-of-interest is a key 

stage of our approach and we argue its beneficial to the efficiency of the method. Attempts 

to place lineages into the full 1,237 lineage phylogeny from our work in Field et al., (2022) 

were unsuccessful. We expect this failure of program performance was driven by dataset 

size, both in terms of number of included lineages and the sequence lengths associated with 

each lineage. To accommodate the extreme size of the sample set included in the Pathogen 

Detection database that we sourced samples from, we removed all samples from the 

starting phylogeny except the starting clade-of-interest and a single outgroup lineage. 
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Taxon sampling dictates that by doing this, we skewed the preference of placement 

locations (Heath et al., 2008). However, as the majority of lineages in this filtering tree 

were included in the clade-of-interest itself, the expectation of bias in placements is that 

lineages would place into the clade with more starting lineages. As the majority of the 

clade-of-interest is included in 15 lineage clusters and none of the 15 analyzed lineage 

clusters lost a majority of the lineages described by the Pathogen Detection pipeline, we 

are confident that our filtration approach introduced minimal sampling bias. We also found 

that the 13 lineage clusters that lost lineages during our placement stage were also 

paraphyletic compared to their versions produced by the Pathogen Detection pipeline. 

While these clades were found as paraphyletic, none of lineages from these clusters were 

widely distributed around the clade-of-interest except cluster 9. Lineage cluster 9, the 

largest lineage cluster, also includes many short branches throughout the phylogeny, 

possibly contributing to its intermingling with other lineage clusters. The paraphyletic 

nature of some lineage clusters could also be due to our dataset’s expanded sequence 

lengths and maximum likelihood estimation method (Bertels et al., 2014). Regardless of 

the methodology used, questions involving more detailed examinations of lineage 

relationships are likely to value an examination of sub-datasets including fewer lineages. 

 Estimating dated phylogenies from the lineage clusters required selecting smaller 

lineage clusters. Initially, our estimations of full clade-of-interest dated phylogenies 

included tips dated in the future. Generally, these branches were longer than most other 

branches in the clade-of-interest, presumably caused by a rate increase in these lineages. 

While the dates attached to lineages on shorter branches appeared reasonable given the 

provided date metadata, we chose a cautious approach to handling these erroneously dated 

long branches by focusing date estimations on smaller, monophyletic lineage clusters. By 

choosing smaller clades and avoiding excessively long branches, we obtained reliable 

dated lineage cluster estimates that would be useful for any additional analyses. 

Additionally, future studies are not limited to lineage clusters as these were an artificial 

constraint on our analyses. Smaller clades or sub-divisions of clades could be used to 

estimate dates piecemeal throughout the clade-of-interest, avoiding issues involving long 

branches. The issue of increased rates might also be avoided by selecting fewer or shorter 

loci and including fewer invariant sites in the final sequence alignment. Biological 

mechanisms such a horizontal gene transfer could also play a role in obfuscating accurately 

estimated dates. Future analyses of horizontal gene transfer could emphasize the careful 

selection of loci for future analyses or an accommodation of such a mechanism's influence 

on the dataset. Regardless, the method we have described here is applicable for efficiently 

building dated phylogenies if used appropriately. 

 When analyzing the change in anti-microbial resistance profiles of isolates in the 

clade, we found that while the average number of anti-microbial resistance genes found 

throughout the clade had increased, the new anti-microbial resistance genes found in the 

updated clade-of-interest were generally found in only a few isolates. These low prevalence 

anti-microbial resistance genes are interesting due to their potential as fringe resistance 

genes that could be in the process of being eliminated from the clade as no longer useful 

or as the first stages of resistance to a new or rarely used anti-microbial being transmitted 

to a new clade. The difference in resistance gene prevalence throughout the updated clade 
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also displays the selection of one resistance allele over another as some variants of a gene 

are found in almost all isolates while other variants are found in almost none. When we 

examined the anti-microbial resistance profiles of the two dated phylogenies, we found that 

both sub-clades primarily reflected larger clade-of-interest anti-microbial resistance 

dynamics as both contained resistance genes that were found in all isolates across the clade. 

Lineage cluster 1 contained two resistance genes with high but not ubiquitous prevalence 

throughout the sub-clade. These two resistance genes were found to have variable 

prevalence throughout the clade-of-interest and could reflect the last two isolates to not 

receive the resistance genes through horizontal gene transfer. 

 The results we’ve provided here are valuable for gonorrhea surveillance moving 

forward and highlight some potential next steps for surveillance organizations to consider. 

The continued proliferation of this clade over time displays that rapid analyses of large 

bacterial datasets are feasible when using some of the tools we outlined. While our study 

focused on N. gonorrhoeae surveillance, other bacterial pathogens are also recognized as 

threats to nations around the world. We expect our research can be applied to any bacterial 

pathogen and prove particularly useful in examining anti-microbial resistant pathogens that 

are not currently tracked by the Pathogen Detection database. Intensiphy downloads 

sequences directly from the NCBI SRA, giving future surveillance projects the freedom to 

collect data for any pathogen. This simple but effective data collection method paired with 

Extensiphy’s ability to accommodate an alignment with any incorporated loci points to 

easy assembly of anti-microbial loci if present in any query taxon as long as they’re 

included in the reference sequence. The utility of analyzing any bacterial pathogen with no 

included metadata would improve a surveillance program’s ability to monitor outbreaks 

and transmissions when circumstances are not ideal and metadata is not collected. Taken 

together, our results have quantitatively described the expansion of a clade of N. 

gonorrhoeae, with an analysis of sub-clade temporal analyses and anti-microbial resistance 

profiling. Our results also describe the utility that any pathogen surveillance program can 

gain by employing our methods. 

 

 

3.6 Conclusions 

 

 We developed and described an approach for rapidly processing sequence data to 

investigate evolutionary relationships. We applied this method to a dataset of over 16,000 

N. gonorrhoeae samples collected from the NCBI Pathogen Detection database and 

specifically applied our method in a manner suitable for pathogen monitoring efforts. The 

method of phylogenetic sample filtration we introduced can accommodate large databases 

with relative ease and is applicable beyond investigations of just N. gonorrhoeae. We 

compared the results of our clade updating process to the results of an established NCBI 

pipeline and found that while our estimates differed, they were of comparable utility. The 

results of our method shed light on an interesting challenge in large scale dated phylogeny 

estimation that should be acknowledged when selecting loci and lineages for 

investigations. While researchers will have to choose the method best suited for their 

questions, we feel we have provided a flexible and reliable framework for investigating 
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evolutionary relationships at multiple scales. Our approach makes it straightforward to link 

extensive metadata on sample provenance with core genome alignments and statistically 

rigorous phylogenetic inferences. 
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