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Abstract

Visual image segmentation is the process by
which the visual system groups locations that
are part of the same object. Can knowledge of
objects influence image segmentation, or is the
segmentation process isolated from object
information? The use of object knowledge at this
stage of vision might seem premature, as the goal
of segmentation is to provide input to object
recognition. However, purely bottom-up image
segmentation has proven a computationally
difficult task, suggesting that a “knowledge-
based” approach might be required. We
addressed this issue using two segmentation
tasks:  Subjects either determined whether a
small "x’ was located inside or outside the region
subtended by a block shape, or they determined
whether two small x’s were on the same shape or
different shapes. The familiarity of the shapes
was manipulated, and subjects were fastest to
segment the visually familiar shapes. These
results suggest that image segmentation can be
partly guided by information about familiar
objects, consistent with knowledge-based image
segmentation models.

In everyday vision, observers constantly see
objects that overlap and partially occlude one
another. In order for the visual system to
recognize overlapping objects, each visual object
representation must receive input from the
regions of space that correspond to that object and
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only to that object. Visual image segmentation is
the process by which the visual system groups
locations that belong to individual objects. Is
visual image segmentation a bottom-up process,
or is object knowledge used to partially guide
segmentation?

Each of these alternatives seems equally
plausible. Bottom-up image segmentation is
consistent with the application of heuristics to
the visual field irrespective of the familiarity
of objects in the field. This approach would
result in unfamiliar objects being segmented as
quickly and efficiently as familiar objects. The
work of the Gestalt psychologists can be viewed
as an attempt to identify bottom-up heuristics for
grouping elements of the visual field without the
use of object knowledge (Wertheimer, 1923).
Some research in computational vision has also
focused on developing bottom-up segmentation
processes. For example in Marr’s (1982) visual
processing model, the grouping of features
represented in the raw primal sketch corresponds
to the full primal sketch. However, the full
primal sketch is not influenced by the
familiarity of the objects in the visual field.
Instead, these visual processes are applied to all
objects equally. Other computer vision systems
apply processes such as pixel or region
classification that make no reference to the object
or shape being segmented (Rosenfeld, 1984).

Although some work on image segmentation
assumes a bottom-up process, the possibility that
object information influences image segmentation
is far from a “straw person.” Empirical research
on higher levels of visual processing suggests
that prior knowledge partly guides processing.
This suggests that knowledge-based processing
may be a general computational principle used at
all levels of the visual system. A classic
example of this influence of knowledge is the
word superiority effect (Reicher, 1969), in which



the perception of an individual letter is
improved when it occurs in the context of a word,
as compared to when it appears either in a non-
word or alone.

Recent connectionist implementations of image
segmentation have also suggested that
knowledge can influence segmentation. Mozer
and his colleagues (Mozer et al., 1992) have
trained a connectionist network to segment
images consisting of two overlapping objects. The
network discovers grouping principles based on
the objects to which it has been exposed, rather
than receiving grouping heuristics a priori. More
traditional approaches to computer vision have
also recently emphasized the importance of using
knowledge to guide lower level visual processing
(Lowe, 1985). These approaches suggest that
previously acquired knowledge can influence
image segmentation.

Clearly, previous findings suggest that both
bottom-up and knowledge-based models of image
segmentation are plausible. Surprisingly, there
has been no direct attempt to address this issue
using the methods of experimental psychology.
In the present experiments, we asked which
processing strategy the human visual system
actually uses in performing image segmentation.
In Experiment 1 subjects performed a simple
figure/ground segmentation task. Stimuli were
simple block shapes, and subjects were asked to
determine whether a small probe ‘x” fell inside
or outside the region defined by the shape. In
order to perform this task the subject must
determine whether the location of the x is among
the locations encompassed by the shape; that is,
subjects must group the locations of the region
together and determine whether the probed
region is among the grouped locations (part of the
‘figure’) or not among these locations (part of the
‘ground’).

In order to test between bottom-up and
knowledge-based image segmentation models, we
manipulated the familiarity of the shapes being
segmented. A bottom-up model would predict no
effect for the familiarity of the region; the
image would be segmented by using properties of
the stimulus itself (e.g., good continuation). The
familiarity of the shapes should have no effect.
However, a knowledge-based model would
predict an effect for the region’s familiarity.
More familiar regions should be segmented faster
than less familiar regions. That is, image
segmentation would be partially guided by using
previous knowledge about the shapes.
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Experiment 1

We manipulated the familiarity of stimuli
that were to be segmented by presenting upright
letters, letters rotated 180°, and non-letter
shapes (derived from letters by moving one
feature), as shown in Figure 1la. This
manipulation allowed us to vary the familiarity
of the stimulus, with an upright letter being
visually the most familiar. The critical test
between bottom-up and knowledge-based
segmentation models would be to compare
performance between the upright and rotated
letter conditions because the bottom-up
information (i.e., the information provided to
the visual system) is identical in these two
conditions. However, the two clearly differ in
the degree of visual familiarity. Upright letters
are seen much more frequently than rotated
letters. If image segmentation can be guided by
previous knowledge of shapes, then we would
expect upright letters to be segmented faster than
rotated letters. In contrast, if segmentation is a
bottom-up process, then there should be no effect
of familiarity. Finally, it should be noted that
comparisons to the non-letter shapes are
somewhat ambiguous because the bottom-up
information has not been controlled.

Method

Subjects. Subjects were 12 Carnegie Mellon
University undergraduates and staff. All had
normal or corrected vision and were native
English speakers.

Stimuli. Stimuli consisted of 12 block shapes,
six letter stimuli and six non-letter stimuli
(Figure 1a). The letters used were uppercase A,
F, K, L, T, and Y. Subjects viewed the stimuli
from a distance of approximately 60 cm. All
shapes were 3.8 cm wide and 5.0 cm tall. Non-
letter shapes were created by altering the
relationships among the features of the letters.
Letters were presented in their upright
orientation condition and in a 180° rotated
orientation condition; the non-letters were
presented in only one orientation.

Subjects’ task was to determine whether a
small probe ‘x’ fell inside or outside the region
bounded by the block shape. The x appeared in a
12 point, bold Helvetica font and was the
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Figure 1. (A) Examples of stimuli used in Experiment 1. (B) Results of Experiment 1. Subjects are fastest
to determine the position of the ‘x” when it is either inside or outside an upright letter.

same distance from the edge of the shape
whether it was inside or outside the shapes. The
x’s were in approximately the same spatial
location whether they were inside or outside.

Procedure. Stimuli were presented via a
Macintosh Plus computer. Each subject received
six blocked presentations; target type remained
constant within a block. Subjects were told the
target type of each block in advance. There were
48 individual trials within each block, 24 with
the x falling inside the shape and 24 with the x
falling outside the shape. An individual trial
began with five asterisks appearing on the screen
in a plus (+) pattern. Subjects initiated a trial by
pressing the space bar; the shape and the small x
were then simultaneously flashed for 100 msec.
The screen was then blank while the subiject
responded via a keypress.

Results and Discussion

Only correct reaction times were used in the
analyses. Reaction times over 1500 msec and
under 100 msec were also excluded. Subjects’
median reaction times for each condition were
analyzed with a two-factor analysis of variance
(target type by ‘x” location).

The mean reaction times for upright, rotated,
and non-letter shapes appear in the Figure 1b.
For reaction times, the main effect for target type
was significant, F(2, 22) = 4.869, p < 0.02, and the
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main effect for inside versus outside was
marginally significant, F(1, 11) = 4.6, p < 0.06,
with “inside” responses being faster than
“outside” responses. There was no interaction,
F(2, 22) = 0.037, p > 0.50. Planned pairwise
comparisons between the target type factor level
means resulted in significant differences between
upright letter and non-letter targets, #(22) =
6.121, p < 0.03, and between upright letter and
rotated letter targets, #(22) = 8.317, p < 0.01.
There was no statistically significant difference
between the non-letter targets and the rotated
letter targets, #(22) = 0.168, p > 0.50. A
correlation between reaction time and percent
correct suggested that subjects did not sacrifice
accuracy for speed, r = 0.162.

These results are consistent with predictions
made by a knowledge-based image segmentation
model. Namely, the familiarity of a shape in
the visual field, in this case a familiar letter,
allows the visual field to be segmented into
figure and ground more rapidly than when the
shape is a less familiar rotated letter or a non-
letter.

Although these data argue for knowledge-
based segmentation, two points warrant brief
discussion. First, one might wonder why there is
not a significant response time superiority of
rotated letters over non-letters in this task. If
image segmentation is knowledge-based, then
shouldn’t we expect an advantage for the rotated



letters over the non-letters? As mentioned
earlier, comparisons between the non-letter
stimuli and the letter stimuli are ambiguous
because of the fact that visual complexity has
not been controlled. The non-letter shapes may
be visually less complex than the set of letters
used in this experiment. Alternatively, the non-
letters may be sufficiently similar to the letters
that they do partially activate letter
representations.

Second, although these data are consistent
with knowledge-based image segmentation, an
alternative explanation exists. These results
may be due to subjects performing, in effect, two
tasks: image segmentation and recognition of the
shape being recognized. If recognition is faster
for upright letters than it is for rotated letters,
and if segmentation speed is influenced by the
speed of the recognition process, then even if
segmentation is bottom-up, the pattern of results
in Experiment 1 would be expected. This pattern
of results would be due to a kind of dual task
interference from the recognition process.
However, there are empirical data that suggest
dual task interference is not the case. Corballis
and his colleagues have shown that the latency
to name a letter is generally independent of the
angular rotation of the letter (Corballis et al.,
1978). Finally, we conducted an additional
experiment (not reported here due to space
limitations) that demonstrated naming a letter
does not influence segmentation.

Experiment 2

The first experiment established that
figure/ground segregation is influenced by the
familiarity of the object being segmented.
However, figure/ground segregation is only one
image segmentation paradigm. In Experiment 2
subjects observed two overlapping transparent
shapes, as shown in Figure 2a. The stimuli were
the non-letter shapes, rotated letters, and
upright letters used in Experiment 1. Two small
x’s appeared on the stimuli and could either be on
the same shape or on different shapes; subjects
determined whether the x’s were on the same
shape or on different shapes.

Again, bottom-up and knowledge-based
models of image segmentation make differing
predictions as to subjects’ performance. A bottom-
up model of image segmentation would again
predict no effect for the familiarity of the shape
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that was to be segmented. Segmentation would
only operate on the data provided in the image,
perhaps according to Gestalt laws or other
grouping heuristics. A knowledge-based image
segmentation model would predict that subjects
could use their knowledge of objects in order to
help guide segmentation.

Method

Subjects. Sixteen Carnegie Mellon University
staff and students served as subjects. All were
native English speakers and had normal or
corrected vision.

Stimuli. The same block letters used in
Experiment 1 were used. All possible letter pairs
were formed and superimposed on each other for
a total of 15 stimuli. The overlapping letters
were on average 4.43 cm wide and 5.21 cm tall.
The overlapping non-letters were on average 4.95
cm wide and 5.85 cm tall. Shapes were initially
overlapped randomly, but the stimuli remained
the same for all subjects. The overlapping was
performed such that (a) two x’s could be fit onto
the letters and (b) the display was visually not
too complex.

Half of the time the x’s were on a single shape
(“same” condition) and half of the time one x
appeared on each shape (“different” condition).
The x’s appeared in a 12 point bold Helvetica
font and were the same distance from each other
in the “same” and “different” conditions. The
superimposed letters were presented in their
upright orientation and in a 180° rotated
orientation. These stimuli were identical except
for the rotation. Non-letters again only
appeared in one orientation.

Procedure. Stimuli were presented via a
Macintosh Plus computer. Each subject received
nine blocked presentations; the target type was
constant within a block. Prior to each block,
subjects were told the target type of that block,
but they were told that they could ignore the
target type and that they should focus on
determining whether the x’s were on the same
shape or on different shapes.

There were 60 individual trials within each
block, 30 with the x’s falling on the same shape
and 30 with the x’s falling on different shapes.
Individual trials began with a fixation of five
asterisks appearing on the screen in a plus (+)
pattern. Subjects started a trial by pressing the
space bar. The shapes and x’s were then
simultaneously flashed for 200 msec. The screen
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Figure 2. (A) Examples of stimuli used in Experiment 2. (B) Results of Experiment 2. Subjects are fastest
to determine location of the two x’s when the shapes are upright letters.

was then blank while the subject responded via a
keypress.

Results and Discussion

Only correct reaction times were used in the
analyses. Responses faster than 100 msecs or
slower than 2000 msecs were excluded. Subjects’
median reaction times for each condition were
analyzed with a repeated measures two-factor
analysis of variance (target type by ‘x” location).
Planned pairwise comparisons were conducted
between the target type factor means.

The mean reaction times for upright, rotated,
and non-letter shapes appear in Figure 2b. As
before, knowledge-based image segmentation
predicts a main effect for target type, which was
significant, F(2, 30) = 5.18, p < 0.02, as was the
main effect for x location, F(1, 15) = 6.32, p < 0.03,
with “same” responses being faster than
“different” responses. The interaction was not
significant, F(2, 30) = 2.81, p > 0.08. Planned
pairwise comparisons were performed between
the target type factor means. The reaction times
to upright letters were significantly faster than
reaction times to non-letters, #(30) = 3.03, p <
0.005. Reaction times to upright letters were also
significantly faster than reaction times to
rotated letters, #(30) = 2.44, p < 0.02. There was
no significant difference between reaction times
to non-letter targets and rotated letter targets,
t(30) = 0.59, p > 0.40.
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The error data were also analyzed with a two
factor repeated measure ANOVA. The pattern
of results was similar to that observed in the
reaction time data. The main effect for target
type was significant, F(2, 30) = 3.99, p < 0.03, as
was the main effect for x location, F(1, 15) = 4.22,
p < 0.001, with “different” responses being more
accurate than “same” responses. The interaction
was not significant, F(2, 30) = 0.39, p > 0.50.
Planned pairwise comparisons on the target type
factor level means revealed significant
differences between the non-letters and upright
letters, #(30) = 2.78, p < 0.01, and the rotated
letters and upright letters, 1(30) = 1.92, p < 0.06.
There was no significant difference between the
non-letter shapes and rotated letters, #(30) =
0.81, p > 0.40.

These results are consistent with those from
Experiment 1, suggesting that visual image
segmentation can be guided in part by knowledge
of the shapes being segmented. In the second
experiment, subjects are fastest to respond to
whether the two locations are on the same shape
or on different shapes when the shapes are
familiar letters, as opposed to rotated letters or
non-letters.

Conclusions

The results of these two experiments, taken
together, suggest that image segmentation is a
knowledge-based process: Knowledge about the



shapes being segmented can partially guide the
segmentation process. However, an unresolved
issue concerns the locus of these familiarity
effects. That is, where is this knowledge of
objects coming from? Specifically, are these
effects due to top-down influences from internally
stored visual memories, or are they due to a
processing advantage within the segmentation
stage itself?

While we do not have an answer to this
question at present, we have previously argued
for an interaction between image segmentation
and internally stored visual object
representations (Vecera & Farah, 1992). This
model, shown in Figure 3, suggests that the
knowledge effects observed above are the result
of cascaded processing (McClelland, 1979):
Preliminary results of partial processing at an
earlier stage are available to the next stage, and
feedback from a later stage in turn guides
processing in this earlier stage. Specifically, as
the image is segmented, activation is sent to
object-level representations stored in visual
memory. As matches are made with these object
representations (as presumably happens with
upright letters), these representations send
activation back to the image segmentation stage
(the “grouped array” in Figure 3). This top-down
activation reinforces groupings that correspond to
familiar objects, allowing segmentation to
finish faster than it would if there were no
such top-down activation.

However, the alternative model in which
knowledge is implemented in the segmentation
process itself is also plausible. This model has
been suggested by Mozer and his colleagues
(Mozer et al., 1992). Mozer's model implements
knowledge in a connectionist network that is
trained to segment images. In this scheme,
familiarity effects might be expected on the
basis of low-level image statistics, such as

Object
Representations

Al

Grouped
Array

Spatial
Representations

Figure 3. Proposed model of image segmentation.
Adapted from Farah (1990).
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familiar combinations of features, not partial
matches to objects in visual memory.

Although the locus of knowledge remains
unresolved, the results of experiments in progress
will allow us to distinguish between the two
alternatives and to better understand the
computational architecture of the visual system.
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