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A reference tissue atlas for the human kidney
Jens Hansen1†, Rachel Sealfon2,3†, Rajasree Menon4†, Michael T. Eadon5, Blue B. Lake6, 
Becky Steck4, Kavya Anjani7, Samir Parikh8, Tara K. Sigdel7, Guanshi Zhang9, Dusan Velickovic10, 
Daria Barwinska5, Theodore Alexandrov11, Dejan Dobi7, Priyanka Rashmi7, Edgar A. Otto4, 
Miguel Rivera7, Michael P. Rose4, Christopher R. Anderton9,10, John P. Shapiro8, 
Annapurna Pamreddy9, Seth Winfree5, Yuguang Xiong1, Yongqun He4, Ian H. de Boer12,  
Jeffrey B. Hodgin4, Laura Barisoni13, Abhijit S. Naik4, Kumar Sharma9, Minnie M. Sarwal7, 
Kun Zhang6, Jonathan Himmelfarb12, Brad Rovin8, Tarek M. El-Achkar5, Zoltan Laszik7,  
John Cijiang He1, Pierre C. Dagher5, M. Todd Valerius14, Sanjay Jain15, Lisa M. Satlin1, Olga G. Troyanskaya2,3*‡, 
Matthias Kretzler4*‡, Ravi Iyengar1*‡, Evren U. Azeloglu1*‡, Kidney Precision Medicine Project

Kidney Precision Medicine Project (KPMP) is building a spatially specified human kidney tissue atlas in health and 
disease with single-cell resolution. Here, we describe the construction of an integrated reference map of cells, 
pathways, and genes using unaffected regions of nephrectomy tissues and undiseased human biopsies from 
56 adult subjects. We use single-cell/nucleus transcriptomics, subsegmental laser microdissection transcriptomics 
and proteomics, near-single-cell proteomics, 3D and CODEX imaging, and spatial metabolomics to hierarchically 
identify genes, pathways, and cells. Integrated data from these different technologies coherently identify cell 
types/subtypes within different nephron segments and the interstitium. These profiles describe cell-level func-
tional organization of the kidney following its physiological functions and link cell subtypes to genes, proteins, 
metabolites, and pathways. They further show that messenger RNA levels along the nephron are congruent with 
the subsegmental physiological activity. This reference atlas provides a framework for the classification of kidney 
disease when multiple molecular mechanisms underlie convergent clinical phenotypes.

INTRODUCTION
The kidney has one of the most diverse cellular populations and 
spatial organization in the human body, and it is critical in main-
taining the physiological homeostasis by regulating fluid and 
electrolyte balance, osmolarity, and pH. The basic unit of organiza-
tion in the kidney is the nephron embedded in the interstitium; the 
human kidney has between 210,000 and 2.7 million nephrons. 
There are multiple cell types in the nephron and the interstitium 
including those that comprise the blood vessels and capillaries 
(such as endothelial cells and vascular smooth muscle cells) and 
many types of immune cells.

For decades, there has been a sustained effort to develop a detailed 
understanding of structure-function-endophenotype relationships 
within the kidney tissue to understand its physiology and patho-
physiology (1). Over the past decade, with the advent of single-cell (sc) 

RNA sequencing (RNAseq) technologies, substantial advances have 
been made in enumerating the different cell types in the human 
and mouse kidney (2–11). Computational analyses and modeling 
of sc transcriptomic data and other omics data are starting to pro-
vide rich and deep insight into different kidney disease processes, 
including kidney cancers (11) and fibrosis (6). These studies 
demonstrate the power of omics technologies in developing atlases 
that map structure-function relationships at the single-cell level 
within tissues.

Datasets from different omics technologies provide an un-
paralleled opportunity to understand how the diversity of cell types 
and their constituents underlie physiological functions and how 
they are altered in different disease states. The Kidney Precision 
Medicine Project (KPMP) is a consortium funded by the National 
Institute of Diabetes and Digestive and Kidney Diseases. Using 
kidney biopsies that are ethically and safely obtained from partici-
pants with kidney disease, KPMP aims to create a kidney atlas in 
health and disease. Such an atlas can identify critical cells, pathways, 
and targets for novel therapies and preventive strategies (12, 13). To 
identify and understand disease states, it is necessary to have a 
detailed atlas of tissues that do not show disease phenotype by 
standard clinical histopathological evaluation. We call such an atlas 
“a reference atlas.” Using multiple reference kidney sources, different 
groups in the consortium have generated diverse types of data. 
Among these are single-nucleus (sn) (14) and sc (15) transcriptom-
ics, regional bulk transcriptomics, proteomics, and metabolomics, as 
well as multiple complementary types of imaging methods. We 
have analyzed and integrated these different data types obtained 
from reference kidney tissue specimens, as evaluated by standard 
pathology analysis, from 56 adult human subjects and analyzed 
80,289 single cells. For quality control, we also assessed 24,282 additional 
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single cells from public sn RNAseq data from the literature (16, 17). 
We constructed maps of the different cell types in the kidney and 
the molecular entities and functional pathways within these cell 
types to develop the first version of a reference human kidney atlas. 
To determine whether the molecular details in the atlas enable pre-
viously unknown insights into physiological activity, we compare 
our data to the transcellular sodium reabsorption along the 
nephron, which is essential for maintaining normal blood pressure 
in individuals with normo- and hypertension (18). We find strong 
congruence between physiological activity and the mRNA expression 
signatures of different sodium transporters, indicating that such a 
detailed atlas can provide a deeper understanding of the molecular 
and cellular principles underlying physiological processes. All data 
presented in this study are available for download, and as an inter-
active cellular atlas (atlas.kpmp.org/explorer) to serve as a starting 
point from which data of disease states can be projected onto a 
functional context to drive new molecular classification of kidney 
disease.

RESULTS
The KPMP Consortium conducted different types of omics assays 
and low-throughput imaging experiments at different sites for these 
reference atlas studies. Although it is impossible to definitively 
characterize tissue as healthy, clinical pathologists adjudicated that 
the specimens used in this study show no structural signs of disease 
manifestations. Nevertheless, since we use unaffected tissue regions 
from nephrectomies and biopsies from both living donors and 
transplant recipients (i.e., surveillance biopsies), we use the general 
term reference tissue (table S1). In future studies, these can be com-
pared to diseased tissue specimens.

There were four transcriptomic, two proteomic, two imaging-based, 
and one spatial metabolomics tissue interrogation assays deployed 
on the shared tissue samples (Fig. 1A). These assays yielded 3 to 
48 different datasets obtained from 3 to 22 subjects per assay for a 
total of 56 different adult human subjects (table S1). The assays and 
their detailed tissue preanalytical, tissue processing, data acquisition, 
and analytical data processing pipelines are schematically depicted 
as a flowchart in Fig. 1B. We also summarize, in the integration 
segment of our flowchart, the steps by which the datasets from 
different assays were integrated and harmonized. This is shown on 
the upper right side of the descriptive map.

Integration of multiple transcriptomic interrogation 
techniques shows agreement and technological synergy 
between assays
Separate and integrated analysis of sc, multiplexed sc, and sn tran-
scriptomic datasets confirmed all known major kidney tissue 
cell types of the nephron and multiple immune cells (Fig. 2A). 
Clustering algorithms used to analyze the sc and sn RNAseq data 
separately identified multiple subtypes for several cells. We observed 
differences between the numbers of subtypes in the sc versus sn data 
as different cutoffs were used in the initial analyses (14, 15). Never-
theless, when sc and sn RNAseq data were analyzed in an integrated 
manner, all major cell types were identified, as shown in the central 
panel in Fig. 2A, yielding 16 main clusters (note that some clusters 
contain multiple closely related subtypes). These clusters were 
annotated to 14 cell types based on cluster-specific marker gene 
expression (fig. S1G). Almost every cluster contained cells and nuclei 

from every dataset, documenting consistency of our transcriptomic 
datasets (fig. S1E). For quality control measures see fig. S1 (A to G).

To provide spatial context with respect to different regions of the 
nephron, we compared the sc and sn transcriptomic datasets with 
nephron segment–specific bulk transcriptomic datasets that were 
obtained after laser microdissection (LMD) of kidney segments 
(table S2) (19). Cross-assay Pearson correlation analysis shows that 
there is strong concordance across the data obtained by the differ-
ent technologies, whereby most of the cells and nuclei from each 
cluster were assigned to the correct corresponding LMD subsegment 
in an unbiased manner (Fig. 2B). For example, 83% proximal tubule 
(PT) cells were assigned to the PT subsegment, while 99.5% podo-
cytes were assigned to the glomerular subsegment. As the total 
numbers of cells analyzed are modest compared to some of the 
recent reports, we evaluated whether other independent technologies 
improve the overall atlas framework using integration of orthogonal 
omics assays and post hoc power analyses.

Proteomic and transcriptomic assays produce  
biologically complementary descriptions of  
subsegmental molecular composition
In addition to transcriptomic profiles, we present subsegment-
specific protein expression profiles using two different proteomic 
assays. These assays identify protein expression in the glomerulus 
and the tubulointerstitium (LMD proteomics) or PT [near-single-cell 
(NSC) proteomics] (tables S3 and S4, respectively). For an unbiased 
cross-platform comparison, we focused on podocyte/glomerular 
and PT cells and subsegments in the four transcriptomic datasets. 
Pairwise correlation of logarithmic ratios of gene or protein expression 
values for the glomerular versus tubular cell types or subsegments 
(fig. S2A) followed by hierarchical clustering resulted in grouping 
of the datasets by appropriate regions of the kidney (Fig. 2C; see fig. 
S2B for quantitative information about the clustering heights in the 
dendrogram). Within this broad classification, the subgroupings by 
different assays could be readily identified and are shown (right-side 
labels in Fig. 2C). From this clustering, we conclude that irrespec-
tive of the assay, we can readily identify groups of genes or proteins 
associated with the appropriate anatomical region (i.e., glomerulus 
versus tubulointerstitium). This pattern is observed with or without 
the removal of genes or proteins that are not identified by all tech-
nologies (fig. S2C). In contrast, if we cluster by absolute expression 
values, the clustering is primarily driven by the assay used rather 
than the anatomical region. This is irrespective of whether we use 
datasets with and without removing genes or proteins not detected 
by all technologies (fig. S2, D and E, respectively). These results 
suggest that rather than the absolute presence or absence of the 
different genes or proteins, the relative expression levels are more 
indicative of the corresponding anatomical region of the kidney. 
Correlation analysis of averaged log2 fold changes between all 
combined RNAseq and proteomic datasets suggests that similar 
entities are identified by different assays (Fig. 2D). The 0.61 correla-
tion value that we obtain agrees with the canonical value across 
mammalian tissues as described in (20). However, our comparison 
is based on fold changes and not absolute mRNA and protein abun-
dances. Hence, integration of multiple datasets increases the accu-
racy of the results since integrated RNAseq and proteomic datasets 
show a higher correlation than any individual RNAseq and proteomic 
datasets. Nevertheless, correlation coefficients are high between 
technologies where assays were conducted at different sites (Fig. 2E).

http://atlas.kpmp.org/explorer
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Fig. 1. Graphic outline of KPMP data integration and harmonization procedures. The “subway map” representation of the experimental and analytical protocols used 
within KPMP is shown in operational flow from kidney biopsy to the integrated multimodal data represented in this manuscript. The kidney biopsy, which is processed 
through three different tissue processing methods, is shared among tissue interrogation sites (TISs) that generate the data. Four key modalities of molecular data are 
generated: transcriptomic (red), proteomic (blue), imaging (yellow), and metabolomic (green). Biopsy cores 2 and 3 are used for the molecular analysis; biopsy core 1 
(not depicted) is used for histological analysis.
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Fig. 2. Integration of transcriptomic, proteomic, and image-based assays documents concordance across different omics technologies. (A) Scheme showing the 
major nephron segments as identified in our datasets. Sc and sn datasets were either analyzed separately or combined. Uniform manifold approximation and projection 
documents the results of the combined analysis. Cell subtype counts were obtained from the separated analyses (fig. S4, A and B). The corresponding LMD segments 
shown include the markers used to identify each subsegment: phalloidin, fluorescein isothiocyanate–labeled phalloidin for dissection of glomeruli and other structures; 
LRP2, megalin with Alexa Fluor 568 secondary (red); UMOD, directly conjugated Alexa Fluor 546 antibody to uromodulin (red); fluorescein-labeled PNA, peanut agglutinin 
labels collecting ducts (green); 4′,6-Diamidino-2-phenylindole was included for nuclei (blue). (B) We used Pearson correlation analysis of gene expression data to identify 
the closed subsegment in the LMD RNAseq data for each cell or nucleus in the combined transcriptomic analysis. Numbers document the number of cells/nuclei of each 
cluster mapped to each segment. (C) We calculated log2 fold changes between podocyte (or glomerulus) and PT cells (or tubulointerstitium) for each subject based on 
each assay. Pairwise correlation coefficients between all log2 fold changes were determined and used for hierarchical clustering. The variation in the axial ranges 
represents the divergences in the dynamic range of different assays as the axes are non-normalized. (D) Log2 fold changes obtained by the same assay were averaged 
across all subjects, followed by averaging of the results across all four transcriptomics and two proteomics assays. Positive or negative log2 fold changes indicate podocyte/
glomerular or PT/tubulointerstitial expression. (E) Pairwise correlations between the sc/sn RNAseq and proteomic datasets document highest concordance between both 
proteomic and single-cell assays. Positive and negative log2 fold changes indicate podocyte/glomerular and PT/tubulointerstitial expression, respectively.
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Imaging-based molecular data and nonspatial proteomic 
and transcriptomic assays together produce spatial marker 
expression signatures
Imaging assays can provide the spatial specification of omics data, 
such as bulk proteomics (21), and help characterize the contextual 
framework for cell types inferred through dissociated cell transcrip-
tomics; those with well-characterized markers can identify the 
spatial localization of individual cells, which can be independently 
identified from gene expression patterns. By analyzing the relation-
ship between cells identified from sc/sn sequencing technologies 
and co-detection by indexing (CODEX) imaging of canonical 
markers across 27,236 cells, we establish the concordance between 
the assay types for independently identifying cell types and inferring 
molecular profiles for spatially localized cells (Fig. 3). We find a 
strong correspondence between the molecular profiles of cell types 
across data modalities (Fig. 3 and fig. S3). By mapping sc/sn expres-
sion profiles to either LMD segments or the independent imaging 
assays, we were able to further assign dissociated transcriptomic 
signatures to anatomical regions within the kidney. Using these com-
parisons, we can arrange different cell subtypes along the nephron 

and in the interstitium, allowing documentation of the order by which 
they encounter the glomerular ultrafiltrate in the reference state.

Integrated pathway enrichment analysis enables 
identification of functional capabilities of different cell types 
of the kidney
After establishing the consistency between transcriptomic, proteomic, 
and imaging datasets, we used these integrated data to identify the 
cell type–specific functional pathways and network modules. We 
started by individual analyses of the sc/sn RNAseq datasets and by 
identifying the pathways inferred from the expressed genes (14, 15). 
Individualized analyses of sc/sn transcriptomic data ensure that 
these two related technologies do not computationally influence 
each other. In contrast to our integrated analysis of these datasets 
described above, the individual analyses used more relaxed quality 
control cutoffs, such as allowing up to 50% mitochondrial gene 
expression, so the cell subtype–specific gene expression obtained by the 
sc RNAseq dataset was based on 22,264 cells instead of 17,529 cells 
after quality control. The number of nuclei after quality control was 
the same with 17,659 nuclei. These dissociated cell analyses also 

Fig. 3. Integration of single-cell and nucleus transcriptomic data with CODEX imaging data. (A) CODEX imaging provides spatial localization for 30 proteins across 
27,236 cells (spatial distribution of selected proteins visualized). (B) CODEX data were clustered using X-shift clustering to identify groups of cells expressing common 
subsets of protein markers. (C) Each CODEX cluster was mapped to the most similar transcriptomic cluster based on the Pearson correlation between the average scaled 
expression profiles. (D) Visualization of CODEX clusters in spatial context. Yellow dots indicate cells mapped to each cluster, and the side-by-side average expression 
profiles of the CODEX cluster and corresponding mapped transcriptomic cluster are shown.
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allowed us to ascertain that all cell types could be observed inde-
pendently of the method by which the reference tissue was obtained. 
We find that all major kidney cell types can be identified in 
nephrectomy, living donor biopsy, and transplant surveillance 
biopsy tissues based on the individual sc and sn RNAseq datasets 
(fig. S4, A and B, respectively). An exception to this finding is that 
immune cells were mostly identified only within the sc RNAseq 
dataset, while only one cluster of the sn RNAseq dataset that con-
tained less than 1% of all nuclei was annotated to an immune cell 
type, i.e., macrophage (fig. S4B). Almost all cells identified in sc or 
sn RNAseq datasets in the individualized analyses were annotated 
to the same cell type as in the combined analysis (fig. S4, C and D, 
respectively), expressed cell type–specific marker genes (fig. S4, E 
and F, respectively), and mapped to the appropriate LMD segment 
as well (fig. S4, G and H, respectively).

Post hoc power analysis documents consistent cell type 
detection and affirms adequate sampling
Before focusing on cell type–specific functions that we predicted 
from pathway enrichment analysis and module mappings, we 
evaluated how many reference subject samples need to be processed to 
obtain consistently reproducible results. Twenty-four and 47 libraries 
obtained from 22 and 15 subjects were subjected to sc (15) and sn 
(14) RNAseq (table S1), yielding 22,264 cells and 17,655 nuclei after 
quality control, respectively. We separately subjected both RNAseq 
datasets to a standardized sc and sn RNAseq analysis pipeline with 
and without random and progressive removal of libraries (fig. S5A). 
Our analysis pipeline automatically screens for an optimal clustering 
resolution to identify as many major kidney cells with high confi-
dence as possible. Results obtained for the downsampled datasets 
were compared to those obtained for the complete datasets (fig. 
S5B). Our results indicate that for a consistent detection of podo-
cytes (i.e., in at least 95% of all downsampled datasets with the same 
library counts), at least seven (6403 cells) or five libraries (1921 nuclei) 
are needed if subjected to sc RNAseq (Fig.  4A) or sn RNAseq 
(Fig. 4B), respectively. The observed higher identification rate by 
the sn RNAseq assay agrees with a previous report that compared sn 
and sc RNAseq results obtained from mouse kidneys (10). PT cells, 
thick ascending limb (TAL) cells, principal cells (PC), intercalated 
cells (IC), and T cells were always detected in the downsampled 
sc RNAseq datasets. Macrophages (MAC), glomerular endothelial 
cells (GO-EC), and two other endothelial cell (EC) types were 
consistently detected if three (2843 cells), three, or four libraries 
(3817 cells), respectively, were analyzed. In the sn RNAseq datasets, 
we consistently detected PT cells, TAL cells, distal convoluted tubule 
cells (DTL), connecting tubule (CNT) cells, principal cells, and 
intercalated cells in 3, 6, 9, 13, 6, and 4 libraries (1043, 2235, 3395, 
4930, 2235, and 1464 nuclei), respectively. Descending limb cells were 
first detected in 95% of all downsampled datasets at a library count 
of five (1921 nuclei). For additional cell types, see Fig. 4 (A and B). In 
addition, our results suggest that the accuracy of sc or sn assign-
ments to the selected cell types is relatively stable, as documented by 
the low number of cells that are assigned as different cell types or mapped 
to an unrelated tissue subsegment in the downsampled sc and sn 
datasets (fig. S5, C and D, respectively). Similarly, Pearson correlation 
between cell type–specific differentially expressed genes (DEGs) in 
the downsampled and complete datasets follow the same trend. These 
analyses establish the rigor with which we are able to assign path-
ways and physiological functions to the different cell types.

Pathway enrichment analysis and module identification 
helps understand molecular basis of physiological functions 
with cellular resolution
The top 300 significant gene and protein markers of each cell type 
or subtype and subsegment (table S5) were subjected to dynamic 
enrichment analysis using the Molecular Biology of the Cell Ontology 
(MBCO; table S7) (22). In many cases, less than 300 markers were 
significant (table S6), and we consequently used only those for our 
downstream analysis. In contrast to standard enrichment analysis, 
dynamic enrichment analysis is not limited to a single process but 
instead determines whether a set of experimental genes maps to 
multiple functionally related subcellular processes (SCPs). Resulting 
SCP networks can give rise to whole-cell physiological function. 
Nonglomerular and glomerular metabolites (table S8) were subjected 
to pathway enrichment analysis using MetaboAnalyst (fig. S6, A 
and B, respectively) (23) and predicted pathways mapped to MBCO 
SCPs. Similarly, we subjected significant mRNA and protein markers 
to community clustering in a kidney-specific functional network 
using HumanBase (table S9) (24, 25), which was constructed by 
integrating thousands of public genomic datasets using a regularized 
Bayesian framework to predict the probability that every pair of 
genes in the genome is related in a specific tissue context. Combin-
ing both network approaches, we created a detailed map of pathway 
activities in all major cell types in the kidney, which is described 
and discussed in detail within the “Cells of the kidney” section in 
Supplementary Information. As documented by the high metabolic, 
reabsorption and detoxification activity predicted for the PT cells 
(Fig. 5, A and B), our approach identified many well-known cellular 
activities for most kidney cell types and numerous previously un-
known functions (figs. S7 and S16).

Using a similar approach to our post hoc power analysis, we 
investigated the robustness of the SCP-identified cell biological 
functions by randomly downsampling libraries from the sc/sn data-
sets. Investigation of the ranks that were obtained for downsampled 
SCPs allows estimation of SCPs that are consistently predicted and 
are probably describing core biological functions. In case of the PT 
cells, most of the consistently identified SCPs by the sc (fig. S17A) 
or sn RNAseq data (fig. S17H) are related to cellular metabolism 
and energy generation, reabsorption, and detoxification. In the case 
of the podocytes, the consistently identified SCPs are involved in 
cell-cell and cell-matrix adhesion. Among other cell adhesion 
pathways, we consistently identify the two SCPs “tight junction 
organization” and “adherens junction organization” based on both 
the sc (fig. S17B) and sn RNAseq assay (fig. S17I). These results 
document the central importance of the glomerular slit diaphragm 
that is described as a specialized form of both tight junctions (26) 
and adherens junctions (27). Figure S17 also shows the results 
obtained for the other cell types.

Comparison of variation of oxygen supply and inferred 
levels of energy metabolism help identify sites vulnerable 
for kidney injury
To identify energy generation pathways in the different cells along 
the renal tubule of the nephron, we generated a focused ontology of 
metabolic pathways (fig. S18A). Using this ontology for enrichment 
analysis allowed us to distinguish between aerobic and anaerobic as well 
as catabolic and anabolic pathways (fig. S18B). To rigorously define the 
groups, we used a rule-based analysis that ignores predicted parent 
pathways if a given child that contains the reactions specific for the 
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parent pathway was not among the predictions. For example, the 
pathway anaerobic glycolysis was only considered if the pathway 
lactate dehydrogenase was predicted as well. See Methods for details.

Expression patterns of different pathways involved in aerobic 
and anaerobic energy generation (Fig. 6 and table S11) were mapped 

to the varying levels of oxygen availability in different regions of 
the nephron (28). This comparison helped us identify regions with 
high susceptibility toward hypoxia-induced kidney injury. Missing 
capability for anaerobic energy generation as predicted from the 
human transcriptomics data (Fig. 6 and fig. S18B) and observed in 
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Fig. 4. Single-cell/nucleus transcriptomic post hoc power analyses show that nine libraries are sufficient to identify most major kidney cell types. Subject libraries 
(or samples) were randomly and progressively removed from (A) the sc (24 libraries) and (B) sn (47 libraries) RNAseq to generate at maximum 100 non-overlapping random 
groups for the remaining samples. Sc and sn datasets were subjected to an automated data analysis pipeline (fig. S5A). To assign cell types to the identified clusters, we 
compared cluster-specific markers of each analysis with literature curated cell type–specific genes (fig. S5B). We counted how many analyses based on the same number 
of remaining libraries that have identified a particular cell type. Horizontal dashed lines mark the 95% plateau; vertical dashed lines indicate the lowest library quantity 
that allowed identification of a given cell type with a probability of 95%. See fig. S5 for complete post hoc power analysis results. See Fig. 2A for cell type abbreviations.
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animal experiments (29) combined with already low pO2 in the 
healthy kidney suggests S3 segment of the PT as a primary site for 
hypoxia-based injury. This reasoning agrees with experimental 
observations (28). High levels of capacity for aerobic energy genera-
tion activity in the medullary TAL (mTAL), a region with low 
oxygen supply, are complemented by high capacity for anaerobic 

energy generation, as also documented in animal experiments (29). 
When the output of the anaerobic energy generation is depleted, 
mTAL can become a second site of kidney injury. Our conclusion 
agrees with the experimental observation that mTAL injury during 
hypoxia depends on epithelial transport activity (28). It can be read-
ily seen that molecular profiles of metabolic pathways in our atlas 
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Fig. 5. Enrichment analysis of markers for PT and glomerular cells and segments predicts well-known cell functions. (A) Marker genes and proteins of each PT cell 
subtype or subsegment were subjected to dynamic enrichment analysis using the MBCO. SCPs that were among the top seven predictions were connected by dashed 
lines, if their interaction was part of the top 25% inferred MBCO SCP interactions, and by dotted lines, if their functional relationship was curated from the literature. Figure 
S8 shows additional predicted SCPs involved in cell adhesion and translation. Metabolites associated with nonglomerular compartments were subjected to MetaboAnalyst 
enrichment analysis (fig. S6). Any pathway among the top eight predicted pathways that was predicted on the basis of metabolites specifically for that pathway was 
mapped to MBCO SCPs, if possible, and integrated into the PT SCP network. MBCO SCPs carnitine shuttle and carnitine biosynthesis and transport were added to the 
predicted MetaboAnalyst pathways since four and two involved metabolites were among the nonglomerular metabolites (see Methods for details). (B) HumanBase 
analysis of PT marker genes and proteins.
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provide a basis for understanding and predicting kidney injury due 
to hypoxia in the clinical setting.

Predicted reabsorption capacities agree with experimental 
reabsorption profiles and provide a molecular basis 
for differential physiological activity along the nephron
Physiological experiments allow us to determine what percentage of a 
filtered ion or small molecule is reabsorbed in a particular nephron 
segment or excreted into the kidney pelvis and ureter. Sodium is the 
central ion for all reabsorption activities; hence, we focused on 
sodium reabsorption as an example of how a tissue atlas with cellular 
resolution can help us understand physiological homeostasis. We 
averaged sodium reabsorption profiles obtained from four different 
standard physiology and school textbooks (30–33) (Fig. 7A). Since 
we estimated that 37% (34) and 30% (35) of the total sodium in the 
PT and loop of Henle are respectively reabsorbed by passive para-
cellular mechanisms, we removed those percentages from the 
reabsorption profiles. Modified experimental values were renormalized 
(Fig. 7A), and an ontology for sodium transport mechanisms across 
the plasma membrane was generated (fig. S19, A to C) to predict 
sodium reabsorption capacities from transcriptomic data. Using our 
sn RNAseq dataset (14) and two additional sets from the literature 

(16, 17), we calculated the sum of all mRNA levels mapping to sodium 
transporter genes across all cells in each segment. Averaged results 
compared well with the experimentally measured reabsorption 
profiles both without (fig. S19D) and with (Fig. 7B) the removal 
of paracellular reabsorption. As the spare capacity for sodium re-
absorption is most likely to be within the loop of Henle (36–39), our 
data show substantial agreement between calculated capacities and 
the experimentally measured reabsorption profiles.

Some nephron segments, such as the loop of Henle and the 
collecting duct, contain multiple cell types with different reabsorption 
mechanisms (36, 40); hence, we mostly focus on cell type–specific 
transport mechanisms (Fig. 7C). We define mRNA levels mapping 
to transporters involved in blood-to-lumen transport (table S12) as 
negative to account for the opposite direction when compared to 
lumen-to-blood transport. Adding all transporter mRNA levels of 
each segment gives the net transport capacities described above 
(Fig. 7B). Regarding individual transport mechanisms, we highlight 
two details here (Fig. 7C): In the PT, we find high capacity for sodium-
coupled transport of multiple molecules, such as amino acids, or-
ganic anions, and sugars. In agreement, sodium reabsorption in the 
PT is the driver for the absorption of many metabolites (30–33). 
mRNA encoding NKCC2 is the predominant species of sodium 
transporter in the TAL cells, in agreement with the large contribution 
of NKCC2 to sodium reabsorption in the TAL (36). We acknowledge 
that the epithelial Na channel ENaC (SCNN1) plays a major role in 
sodium absorption in the connecting tubule and collecting duct, 
where it reabsorbs ~5% of the filtered load of sodium (18), but our 
analysis focuses only on transporters and excludes channels. This 
probably explains our prediction of a higher blood-to-lumen versus 
lumen-to-blood sodium transport in the collecting duct. Calcula-
tion of the reabsorption capacities after inclusion of our sc RNAseq 
dataset  along with sn RNAseq data slightly decreases the match 
with the physiological reabsorption profiles and mRNA levels 
(fig. S19E) but still gives similarly favorable results (fig. S19F). The 
decrease is mainly due to the high mRNA levels associated with the 
basolateral amino acid transporter LAT1 that exports cationic 
amino acids into the blood in exchange for large neutral amino acids 
and sodium (fig. S19F) (41).

In summary, the cell-level atlas provides a detailed picture of 
sodium reabsorption that agrees with experimental reabsorption 
profiles and was up to now not attainable. Similarly to sodium, we 
find that glucose transport along the nephron agrees with glucose 
transporter mRNAs (fig. S19, G and I) and is mainly mediated by 
SGLT2 (fig. S19, H and J), the glucose symporter responsible for 
over 80% of filtered glucose reabsorption in the PT (42).

DISCUSSION
The integration of multiple types of omics data allows us to describe 
in depth multiple SCPs and pathways at cell-level resolution. High 
cross-correlation coefficients for independent technology pairs and 
the successful unbiased clustering of segments affirm the high 
quality of our data, as technological bias can be overcome by a rela-
tively simple algorithm. From such an integrated description, we 
can hypothesize key functions that can help define disease states 
when perturbed. These disease states could have convergent clinical 
phenotypes, although the underlying molecular changes are different. 
Thus, our detailed characterization of the reference state described 
here can provide a new framework for molecular classification of 
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and anaerobic pathways involved in energy generation. Enrichment analysis of cell 
type, subtype, and subsegment marker genes with this ontology predicts high 
dependency of PT cells on aerobic energy generation, suggesting S3 as a primary 
injury site during hypoxia (marked by two explosions) because of its low oxygen 
supply under basal conditions. Enrichment results predict a high aerobic energy 
generation activity for the mTAL that can be compensated by anaerobic energy 
generation. In combination with the already low oxygen saturation in that segment 
under normal conditions, our results suggest that mTAL is the second, although 
less likely, injury site during hypoxia (marked by one explosion). Enrichment results 
are combined from those shown in fig. S18B. Numbers in boxes indicate pO2 in mmHg 
taken from (28). NA, not available.
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kidney diseases. For example, identification of both mitochondrial 
and peroxisomal -oxidation and carnitine transport and local 
biosynthesis pathway in PT cells suggests how individual variations 
in any of these SCPs can contribute to the effects of kidney injury, 
including fibrosis (6). Thus, a convergent clinical phenotype can 
arise from very different molecular changes related to energy 
metabolism. Mapping these changes in individual patients may 
allow for better classification of disease states.

Integrated view of kidney cellular functions
One advantage of the presented multiomics data integration strategy 
is the ability to infer how different classes of biomolecules may enable 
complex multicellular functions leading to potentially predictive 
biomarkers. Spatial metabolomics identifies N-palmitoylsphingomyelin 
(SM d18:1/16:0) as a spatial correlate of glomerular kidney segments 
(correlation coefficient  >  0.9; Fig.  8A), as described previously 

(43,  44). To identify the cell types involved in its synthesis, we 
screened all glomerular cell types for expression of genes involved 
in ceramide, sphingomyelin, and sphingosine metabolism (45, 46). 
Transcriptomics identify SERINC5 (serine incorporator 5) and 
CERS6 (ceramide synthetase 6) as specifically expressed in podo-
cytes or in podocytes and mesangial cells, respectively (Fig. 8B). 
SERINC5 incorporates serine into the membrane of the endoplasmic 
reticulum, making it available for ceramide and phosphatidylserine 
synthesis (45). CERS6 is identified by all transcriptomic assays in 
the podocyte. CERS6 is one of six ceramide synthases that converts 
sphingosine and acyl–coenzyme A (acyl-CoA) into ceramide. In 
contrast to the other five ceramide synthases, it has a high substrate 
specificity toward palmitoyl-CoA (C16:0) (46), thereby generating 
ceramides with the correct acyl chain length to be converted into 
SM d18:1/16:0. Only one technology, sn RNAseq, shows CERS6 to 
be expressed in mesangial cells as well, albeit at a lower level of 

BA

C

Total Na+

6.0 ± 1.8%
Transcellular Na+

8.8 ± 2.6%

Total Na+

66.0 ± 4.2%
Transcellular Na+

61.1 ± 3.6%

Total Na+

24.2 ± 5.7%
Transcellular Na+

25.0 ± 6.1%

Total Na+

2.3 ± 2.2%
Transcellular Na+

2.9 ± 3.8%

Total Na+

1.5 ± 1.7%
Transcellular Na+

2.2 ± 2.6%

mRNA counts (%)100
80
60
40
20
0

Ex
pe

rim
en

ta
lly
 d
et
er
m
in
ed

so
di
um

 re
ab

so
rp
tio

n 
(%

) m
R
N
A
 counts (%

)

Proximal
tubule

Loop
of Henle

Collecting
duct

ExcretionDistal
convoluted
tubule

100
80
60
40
20
0
-20
-40

Trans
cellular
Na+

reabs.

40

20

0

20

40

60

80

100

PT DTL ATL TAL DCT CNT PC IC

Sodium transporter
Sodium L2B
   Sodium L2B by symporter
      Sodium sulfate symporter
         NaS1 (SLC13A1)
      Sodium potassium symporter
         Sodium potassium chloride symporter
            NKCC2 (SLC12A1)
      Sodium phosphate symporter
         Sodium phosphate symporter, type III
            PiT 2 (SLC20A2)
            PiT 1 (SLC20A1)
         Sodium phosphate symporter, type II
            NPT2a (SLC34A1)
         NPT4 (SLC17A3)
         NPT1 (SLC17A1)
      Sodium nucleoside symporter
         CNT1 (SLC28A1)
      Sodium mono , di  or tricarboxylate symporter
         Sodium monocarboxylate symporter
            Sodium lactate symporter
               SMCT2 (SLC5A12)
      Sodium glucose symporter
         SGLT2 (SLC5A2)
      Sodium chloride symporter
         Sodium chloride creatine symporter
            CT1 (SLC6A8)
         NCC (SLC12A3)
      Sodium carnitine symporter
         High affinity carnitine sodium symporter
            OCTN2 (SLC22A5)
      Sodium bicarbonate symporter
         NBCn1 (SLC4A7)
         NBCe1 (SLC4A4)
      Sodium amino acid symporter
         Sodium aspartate symporter
            Sodium hydrogen aspartate vs potassium antiporter
               EAAT3 (SLC1A1)
               EAAT1 (SLC1A3)
   Sodium L2B by antiporter
      Sodium vs hydrogen antiporter
         NHE3 (SLC9A3)

Sodium B2L
   Sodium B2L by symporter
      Sodium mono , di  or tricarboxylate symporter B2L
         Sodium dicarboxylate symporter B2L
            NaDC3 (SLC13A3)
      Sodium chloride symporter B2L
         Sodium chloride GABA symporter B2L
            GAT2 (SLC6A13)
      Sodium amino acid symporter B2L
         Sodium large neutral amino acid symporter B2L
            Cationic amino acid vs large neutral amino acid sodium antiporter
               gamma+LAT1 (SLC7A7)
         Sodium glutamine symporter B2L
            SNAT1 (SLC38A1)
   Sodium B2L by antiporter
      Hydrogen vs sodium antiporter
         Hydrogen vs sodium amino acid antiporter
            Hydrogen vs sodium alanine antiporter
               SNAT3 (SLC38A3)
      Calcium vs sodium antiporter
         NCX1 (SLC8A1)

PT Loop of Henle DCT Collecting duct
PT
cell

DTL
cell

ATL
cell

TAL
cell

DCT
cell

CNT
cell PC IC

B
lo
od

-to
-lu

m
enm
R
N
A
 le
ve
ls
 (%

)
Lu

m
en

-to
-b
lo
od

Fig. 7. Predicted sodium transport capacities match with experimentally determined reabsorption profiles. (A) Estimated transcellular sodium reabsorption 
before and after removal of estimated paracellular sodium reabsorption from experimentally determined total sodium reabsorption profiles. (B) Using our and two 
other sn RNAseq datasets, we calculated the sum of all mRNA counts that mapped to genes involved in sodium lumen-to-blood (L2B) and blood-to-lumen (B2L) transport 
for each segment of the renal tubule. Net reabsorption capacities for sodium (colored bars) were determined by subtracting both sums and compared to experimentally 
determined transcellular sodium reabsorption (gray bars). (C) L2B and B2L cell type–specific transport mechanisms for sodium are visualized above and below the abscissa, 
respectively. Error bars document SEs. Parent-child relationships are documented in the legend, where children SCPs are written below their parent SCPs and shifted to 
the right. To prevent double counting, we removed any mRNA levels from each parent SCP that are already visualized as part of its child SCPs. Parent SCPs missing in the 
diagram were added to the legend next to an uncolored box for a proper documentation of the SCP hierarchy. In case of multiple parent SCPs, we only show one parent. 
Stacked bar diagram colors are in the same or reverse order as in the legend for L2B and B2L, respectively.
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significance (rank 293  in mesangial cells versus 116 and 126  in 
podocytes; fig. S20).

Transcriptomic datasets also predict the expression of enzymes 
involved in sphingomyelin synthesis in nonglomerular cells. In 
general, only one specific enzyme of this pathway is expressed per 
cell type. Consequently, podocytes (and mesangial cells) are the 
most likely synthesis site(s) for this particular sphingomyelin, as 
demonstrated by the spatial metabolomics data. Altered metabolism 
of multiple sphingolipids including sphingomyelin and its metabo-
lites is observed in several glomerular diseases (47). Cellular 
sphingomyelin is predominantly localized at membranes derived 
from the trans-Golgi and plasma membrane (48). It is involved 
in multiple functions, including cell signaling, lipid rafts formation 
(49), caveolar endocytosis (48), and apoptosis (50). In addition, it 
has long been known that sphingomyelin (as part of lipid rafts) is 
enriched in desmosomes (49, 51) and tight junctions (52). Given the 
central importance of foot process interactions between neighboring 
podocytes, the potential importance of this metabolite in making 
different types of cell-cell contacts and the enzymes involved in its 
biosynthesis in podocytes can be readily appreciated. Five technol-
ogies that focus on genes and proteins identify cell-cell/cell-matrix 
adhesion as podocyte key functions, and the sixth technology iden-
tifies a specific metabolite that we consequently predict would be 
involved in the same key functions, thus providing integrated 
support for the role of sphingomyelins in podocyte cell-cell interac-
tions. Sphingomyelin with very long (C24) acyl chains, but not 
palmitoyl (C16) sphingomyelin, is the predominant species associ-
ated with tight junctions (52). Tight and adherens junctions are 
morphologically only observed in developing or diseased podocytes 

(53), while healthy podocytes form the glomerular slit diaphragm 
(53). These observations indicate that we may be able to use decreased 
levels of C16 SM and increased long-chain SM as a predictive bio-
marker for disease progression even before changes in glomerular 
filtration rates.

The distribution of mRNAs for the various transporters mapped 
in this study also agrees well with the known levels of reabsorption 
activities identified in physiological experiments, suggesting that 
the transporter mRNA levels along the nephron can provide an 
indication of transcellular transport capacity for individual cell 
subtypes. While our results are confirmatory of known physiology, 
we note that only through our atlas, one will now have the frame-
work to investigate the molecular mechanisms of renal dysfunction 
in the context of individual cell subtypes and to generate hypotheses 
that can be directly tested using physiological approaches.

The value of a reference tissue atlas
There have been several valuable studies focused on sc transcrip-
tomic analyses of human kidney tissue (6, 7, 9, 11) in the context of 
different diseases. Although each of these studies have provided 
substantial insight into disease processes, their mapping of reference 
kidney tissue has often been limited to a single source of tissue and 
focused on cell types relevant to the disease of interest. In contrast, 
in this study, we have studied only human kidney specimens without 
disease; we use multiple omics technologies, including regional and 
sc/sn transcriptomics, proteomics, and spatial metabolomics in 
conjunction with imaging assays to obtain an extensive, near-
comprehensive spatial map of the human kidney at the single-cell 
resolution. Our experiments identify all known major cell types in 
the kidney and recapitulate several known subtypes. In addition, we 
can identify different types of endothelial cells, vascular smooth 
muscle cells, fibroblasts, and different circulating immune cells. 
Together, these different cell types and subtypes provide a detailed 
picture of the cellular and molecular composition of the human kidney.

Here, we have extended our bioinformatics analyses beyond 
ranked lists of genes (table S13) and associated pathways to identify 
coherent networks of pathways that give rise to function. We have 
developed our model in a systematic manner such that we identify 
key functions for each cell type and subtypes. These physiological roles 
identified through pathways and marker gene lists enable the devel-
opment of a multiscale atlas that connects expression patterns to 
whole-cell and tissue-level physiological functions. The proteomics 
and metabolomics and the spatial imaging data from CODEX allows 
for the mapping of sc/sn RNAseq–based cell type identification 
to canonical cell type markers and appropriate spatial regions. This 
exercise provides independent orthogonal validation of both the cell 
type and the spatial localization within the nephron (Figs. 2A and 7).

Limitations and future refinements
Several limitations of our study should be noted. Not all cell types 
are identified with the same certainty and depth, although our cell 
types agree well with other published studies (6, 8, 11, 17). In addi-
tion, our sc/sn RNAseq assays contain a relatively low number of 
cells compared to some of the contemporary studies. However, this 
is compensated for by use of multiple omics and other technologies, 
all of which provide convergent conclusions in the identification of 
cell types.

As seen in our three-dimensional (3D) imaging assays, the 
spatial distribution of different cell types within the kidney varies 
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Fig. 8. Podocytes are the synthesis site for glomerular SM d18:1/16:0. (A) Matrix-
assisted laser desorption/ionization mass spectrometry imaging reveals that the 
ion distribution of SM d18:1/16:0, [M + Na]+, correlates with the glomerular kidney 
regions. (B) Podocytes express two genes involved in sphingomyelin synthesis 
including the genes CERS6 that is identified by both sn and sc RNAseq datasets and 
the LMD RNAseq dataset. CERS6 specifically generates C16 ceramides, the direct 
precursor for SM d18:1/16:0. (C) CERS6 is also expressed in mesangial cells, although 
only detected by the sn RNAseq dataset. Glomerular expression of the gene 
SERINC2 is detected by the LMD RNAseq assay.
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substantially; therefore, it is expected that the composition of sc/sn 
RNAseq signatures also varies. When fewer cells are detected, typi-
cally, we also identify a lesser number of marker genes and SCPs. 
Currently, we do not know whether the relative number of cells that 
we detect in the sc/sn RNAseq assays reflect the proportions in situ. 
Further sampling within the KPMP will likely resolve this issue. It is 
also likely that further sampling will also enable mapping of SCPs in 
every single-cell type with similar certainties. Nevertheless, for all 
the major cell types of the kidney, post hoc power analyses indicate 
that we have sufficient power to map the core cell-level functions 
from SCPs generated from orthogonal assays. In addition, the 
number and functional identity of major cell subtypes need to be 
further studied. Currently, subtype identification is based on statis-
tical reasoning used for the clustering algorithms. How many 
subtypes there are for a given kidney cell and whether these subtypes 
exist in all individuals require further studies using confirmatory 
spatial imaging technologies. Studies in other tissues, such as brain 
(54) and heart, have identified multiple subtypes of paraventricular 
interneurons and ventricular myocytes. Hence, it is likely that kidney 
cell types may also contain major subtypes. Despite these limita-
tions, this study provides a detailed functional view of a kidney map 
at the single-cell resolution, which can be used to understand major 
aspects of kidney physiology, as demonstrated by the two examples 
described above.

Information becomes knowledge only when it is deliberately and 
systematically cataloged such that new cohesive insights can readily 
be drawn, as shown above for sphingomyelin-related functions in 
podocytes. Ontological classification could enable the generation of 
new insights, especially when it involves multiscale relationships 
between molecules, cell types and their subtypes and tissue level 
physiological function. In addition to the integrated analytics 
presented here, KPMP is also building a community-based Kidney 
Tissue Atlas Ontology (55) that may aid such relationship building. 
Together, the final knowledge environment and the kidney tissue 
atlas constructed by KPMP, which is available at www.atlas.kpmp.
org, should be able to help molecularly characterize cellular types 
and subtypes in the kidney, improve patient care by providing new 
disease classifications, and may ultimately lead to new patient-
specific therapeutic approaches.

METHODS
Omics and imaging assays used within KPMP target different types 
of molecular components with different resolution, sensitivity, and 
precision. An important function of the KPMP Central Hub is to 
integrate the different types of data using a set of analytical tech-
niques. This process is summarized in Fig. 1. Throughout the paper, 
we consistently use the same continuous color code to identify 
different assays or cell types. The experimental assays that generate the 
raw data and all their technical details including standard operating 
procedures are detailed under “Data generation and initial analysis” 
and publicly released with all their technical details and version-
controlled release dates on the KPMP protocols.io page (www.
protocols.io/groups/kpmp/publications).

Identification of DEGs, proteins, and metabolites
We analyzed data from four types of transcriptomic, two proteomic, 
one imaging-based, and one metabolomic tissue interrogation assays. 
The pilot data presented for each assay comprises 3 to 48 different 

datasets that are obtained from 3 to 22 subjects (table S1). Kidney 
tissue was procured from a spectrum of tissue resources including 
from unaffected parts of tumor nephrectomy specimen (n = 38), 
living donor preperfusion biopsies (n = 3), diseased donor ne-
phrectomies (n = 5), and normal surveillance transplant (n = 5) and 
native kidney biopsies (n = 4). Single-cell and sn transcriptomics 
clusters were obtained from previous analyses (14, 15). Within each 
assay, we generated lists of DEGs, differentially expressed proteins 
(DEPs), and metabolites that describe those genes, proteins, or 
metabolites that are up-regulated or enriched in a particular sc 
cluster, sn cluster or kidney subsegment, if compared to all other 
clusters or subsegments.

For pathway enrichment analysis and module identification, 
cluster-specific DEGs were obtained from published analyses from 
PREMIERE Tissue Interrogation Site (TIS) (Michigan, Princeton, 
Broad) sc RNAseq (15) and UCSD/WU TIS sn RNAseq (14) data-
sets. We excluded the clusters PT cells 3 and principal cells 2 from 
the sn RNAseq dataset since these clusters showed an inflammatory  
stress response. Similarly, we excluded the cluster “Unk” from the sn 
and the clusters “Pax8positivecells” and “LOH/DCT/IC” from the 
sc RNAseq assays. LMD RNAseq and proteomics (OSUIU), NSC 
proteomics (UCSF) and spatial metabolomics (UTHSA-PNNL-
EMBL) datasets were individually processed as described in the 
Supplementary Materials. Only DEGs and DEPs that indicate genes 
and proteins that are higher expressed in a particular cell subtype, 
type, or segment were considered for all analyses.

Ranking of DEGs and DEPs
In the case of the DEGs and DEPs that were used for dynamic 
enrichment analysis, (22) module identification, (25) and post 
hoc power analysis, sn and sc DEGs were first ranked by adjusted 
P value and then by decreasing fold changes (i.e., fold changes 
were used as a tiebreaker). Top ranked 300 entities with a maximum 
adjusted P value of 0.05 were subjected to downstream analysis. 
Similarly, DEGs and DEPs obtained for each kidney subsegment 
based on LMD bulk RNAseq (19) or LMD and NSC proteomics 
were ranked first by P value and decreasing fold changes, and the 
top ranked 300 DEGs and DEPs with maximum nominal P value of 
0.05 were subjected to pathway enrichment analysis or module 
detection (see below).

Dynamic enrichment analysis
Top DEGs and DEPs for each podocyte cluster/glomerulus, PT cell 
cluster/tubulointerstitium, and principal cell cluster/collecting duct 
subsegment were separately subjected to dynamic enrichment analy-
sis using the MBCO (version 1.1) level-3 SCPs (22) that can be 
found at github.com/SBCNY/Molecular-Biology-of-the-Cell and 
www.mbc-ontology.org. The annotated interconnected hierarchy 
of MBCO is enriched using a unique algorithm that infers weighted 
relationships between functionally related SCPs. For all analyses, we 
considered the top 25% weighted relationships. Dynamic enrich-
ment analysis uses the top relationships to generate context-specific 
higher-level processes by merging functionally related SCPs that 
contain at least one DEG or DEP. The context-specific higher-level 
SCPs contain all annotated genes of the original SCPs and are added 
to the annotated ontology to generate a context-specific ontology. 
The context specific ontology at this point contains single and 
merged SCPs. This list is then used for enrichment analysis of the 
DEPs or DEGs using Fisher’s exact test. All SCPs that are among the 

http://www.atlas.kpmp.org
http://www.atlas.kpmp.org
http://www.protocols.io/groups/kpmp/publications
http://www.protocols.io/groups/kpmp/publications
http://github.com/SBCNY/Molecular-Biology-of-the-Cell
http://www.mbc-ontology.org
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first seven predictions are connected on the basis of the top in-
ferred relationships using solid lines. All networks for a particular 
cell type and the corresponding segment were merged, and each 
SCP was color-coded according to the source assay(s) that initiated its 
dynamic enrichment. SCPs predicted by multiple assays contain multi-
ple slices that are color-coded accordingly. SCP size is determined by 
the number of assays that identified a particular SCP. Multiple sub-
types or a particular cell type (e.g., PT cells) are all color-coded by 
the same assay specific color. If an SCP was predicted for more than 
one subtype, it contains multiple slices colored with the assay 
specific color. SCPs predicted by different assays for the same 
cell type or corresponding segment were connected on the basis 
of the top 25% inferred MBCO relationships using solid lines. Addi-
tional well-known functionally related SCPs were connected using 
dashed lines.

We used the right-tailed Fisher’s exact test to calculate the likeli-
hood of obtaining the observed or a higher overlap between a list of 
DEGs/DEPs and a list of genes/proteins annotated to a particular 
SCP. To calculate this likelihood, we consider which genes or 
proteins have a chance to be identified as differentially expressed. 
Only genes/proteins that are detected by a particular assay and are 
statistically analyzed for differential expression can be identified as 
DEGs/DEPs. Consequently, only these genes/proteins are considered 
as the experimental background set for the Fisher’s exact test. Simi-
larly, the ontology background set only contains genes that have a 
chance to be assigned to a given SCP. In the case of the sc (15) and 
sn (14) RNAseq datasets, all genes that are part of the UMI (unique 
molecular identifier) read count matrices comprise the experi-
mental background genes. In the case of the LMD bulk RNAseq and 
the LMD and NSC proteomics datasets, the experimental back-
ground genes/proteins were all genes/proteins that were statistically 
analyzed for differential expression (tables S2 to S4, respectively). 
MBCO contains an SCP that is labeled “Background genes” and 
contains all genes that were identified during its population via text 
mining. The intersection of the experimental and ontological back-
ground genes/proteins is called background genes/proteins and is 
different for every assay and ontology combination. For additional 
statistical accuracy, we removed all genes and proteins that were 
not part of the background genes/proteins from the lists of DEGs, 
DEPs, and SCP genes before each enrichment analysis.

Module detection
In parallel to enrichment analyses, we also performed another 
network-based pathway enrichment technique, identifying modules of 
cell type–specific marker genes within the kidney-specific functional 
network using the HumanBase interface (hb.flatironinstitute.org). 
For each cell type, module detection was performed using all cell 
type–specific DEGs detected by sc and sn RNAseq (adjusted P value < 
0.01) and segment-specific DEGs and DEPs detected by the other four 
technologies (nominal P value < 0.01). Module detection is a net-
work-based approach described by Krishnan et al. (25), and con-
struction of the functional networks is described by Greene et al. 
(24). In contrast to the prior knowledge-based MBCO networks, the 
kidney-specific functional network is constructed using a data-driven 
regularized Bayesian framework based on the information in thou-
sands of datasets, which include coexpression, transcription factor 
binding, protein-protein interactions, and other data types. Modules 
are detected using a community clustering algorithm based on 
connectivity between genes in the kidney-specific functional network, 

and enrichment analysis is subsequently performed to identify func-
tional enrichments in each module.

Enrichment analysis for metabolites
All glomerular and nonglomerular metabolites that were identified 
for the three subjects were merged and subjected to pathway en-
richment analysis using MetaboAnalyst (23) with the selections: 
hypergeometric test, relative-betweenness centrality, Homo sapiens 
(Kyoto Encyclopedia of Genes and Genomes), website version 
3/22/2021. We analyzed which metabolites were part of the top 
eight predicted metabolic pathways. We removed those pathways 
among the top eight predictions that were predicted on the basis of 
the metabolites that are shared substrates in multiple pathways and 
consequently unspecific for the identified pathway [i.e., we ignored 
the glomerular pathways “linoleic acid metabolism,” “alpha-linoleic 
acid metabolism,” “glycosylphosphatidylinositol-anchor synthe-
sis,” and “arachidonic acid metabolism” that were predicted on the 
basis of the lipids “phosphatidylethanolamine” and “phosphatidyl-
choline” and the pathway “phenylalanine, tyrosine, and tryptophan 
biosynthesis” that was predicted on the basis of the central precursor 
“3-(4-hydroxyphenyl)pyruvate”]. We mapped the kept Metabo-
Analyst pathways onto MBCO pathways whenever possible; if those 
pathways did not have a corresponding MBCO pathway, then the 
original pathway names were preserved. Since the nonglomerular 
metabolites contained multiple carnitine derivates, we added the 
MBCO pathways “carnitine shuttle” (based on l-acetylcarnitine, 
malonyl-carnitine, l-palmitoylcarnitine, and l-carnitine) and “carnitine 
biosynthesis and transport” (based on l-carnitine and 3-dehydroxy-
carnitine) to the pathways predicted from spatial metabolomics, 
assigning the ranks 9 and 10, respectively.

Integration of single-cell/single-nucleus transcriptomics
In contrast to bulk mRNA sequencing, where the gene expression 
measurements reflect an average across all captured cell types, sc 
or sn mRNA sequencing allows the measurement and comparison 
of comprehensive gene sets obtained from individual cells. This 
approach enables mapping of cellular heterogeneity with high 
throughput. In the first phase of the project, three KPMP tissue 
interrogation sites (TISs) performed this approach to generate 
sc/sn expression data from normal adult kidney tissue. In addition 
to locally acquired kidney tissue samples, each TIS also used a set of 
common KPMP pilot tumor nephrectomy tissue samples to gen-
erate the expression data. Sc transcriptomic data was produced by 
PREMIERE (24 libraries from 22 subjects) (15) and UCSF (10 libraries 
from 10 subjects), whereas the sn data were made by UCSD (47 
libraries from 15 subjects) (14). Following is a brief description of 
the integration of the data from the three sites.

Data from each site were first processed using the Seurat 3.0 
R package (56). As a quality control step, nuclei/cells with less than 
500 and more than 5000 features and more than 20% mitochondrial 
genes were removed, yielding 17,529 and 13,130 cells along with 
17,657 nuclei. The processing steps included normalization and 
identification of highly variable genes. We then removed potential 
doublets using DoubletFinder (57) from each dataset. Next, we used the 
integration algorithm embedded in the Seurat R package to perform 
combined analysis of sc/sn transcriptomic data. The integration 
algorithm first identified a set of anchor genes in each processed 
dataset. These anchor genes were then used to harmonize the datasets. 
The downstream process included scaling, principal components 

http://hb.flatironinstitute.org
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analysis, batch integration using harmony, dimensionality reduc-
tion using uniform manifold approximation and projection, and 
unsupervised clustering. The clustering was performed at low reso-
lutions (clustering granularity of 0.5). Enriched genes for each cluster 
compared to all other clusters were identified using the Wilcoxon 
rank-sum test.

Integration of single-cell, single-nucleus, and laser capture 
microdissection bulk transcriptomics
To integrate sc sequencing, sn sequencing, and LMD bulk tran-
scriptomic datasets, we first determined the overlap between genes 
identified both in the LMD dataset and in the corresponding 
single-cell transcriptomic dataset. From this set of shared genes, we 
restricted further analyses to a subset of genes showing variable ex-
pression in the single-cell dataset. We then computed the Pearson 
correlation between each individual cell in a scaled single cell/single 
nucleus dataset and the LMD transcriptomic dataset. For this cor-
relation, we used the logarithmized mean fold change that was ob-
tained by dividing the average expression of each gene within a 
subsegment by the average expression of the same gene within all 
other subsegments. Using this approach, we can assign each cell to 
the appropriate LMD segment that shows the highest correlation 
value. To evaluate the overall segment assignments for individual 
cell clusters, we examine the normalized distribution of cells assigned 
to each LMD segment within a given single-cell cluster and present 
this as a normalized heatmap that represents overlap between 
different transcriptomic assays.

Proteomic-transcriptomic coexpression analysis
LMD and NSC proteomic datasets identified protein expression in 
two kidney subsegments: glomeruli and tubulointerstitium for LMD 
and glomeruli and PT for NSC. Here, we did not combine sequencing 
and proteomic results of multiple subjects to generate DEGs and 
DEPs but compared the results obtained for each individual person. 
Because only one dataset per segment was generated from each 
individual person by the LMD and NSC technologies, we could not 
calculate P values in this analysis. Furthermore, both proteomic 
technologies only generated results for two subsegments, i.e., the 
glomerular and PT segments for NSC proteomics and the glomerular 
and tubulointerstitial subsegments for the LMD proteomics. 
Consequently, we collectively calculated the fold changes between 
podocyte/glomeruli and PT/tubulointerstitial cells or subsegments 
for each individual subject.

For the sc and sn transcriptomic datasets, we identified technol-
ogy-, subject- and cell type–specific gene expression, using the 
“Average Expression” functionality embedded in the Seurat R 
package (RNA assay and counts slot) on the integrated single cell 
and nucleus RNAseq data analysis described above (fig. S2). For 
each technology, we characterized all genes/proteins that were 
identified in at least one cell type or subsegment of at least one 
subject and defined these genes/proteins as a technology-specific 
background set. The intersection of all background sets was defined 
as the set of common genes/proteins. Subject-specific podocyte or 
glomerular gene and protein expression was calculated by dividing 
gene and protein expression in podocytes, or glomeruli, by gene and 
protein expression in PT cells or PT/tubulointerstitial subsegments, 
after adding 1 to prevent division by 0. Ratios were inverted to 
describe PT/tubulointerstitial-specific gene expression. Log10 abso-
lute expression values and log2 ratios of all genes/proteins or all 

common genes/proteins were subjected to pairwise correlation, 
followed by hierarchical clustering. Log2 ratios were averaged over 
each subject within each technology and pairwise Pearson correla-
tion coefficients were determined between the different technologies 
using the set of common genes. Mean log2 ratios were averaged 
across the four RNAseq platforms and the two proteomic platforms, 
followed by determination of the Pearson correlation coefficient 
using the set of common genes.

Comparison of cell type–specific imaging and transcriptomic 
expression data
Clustering of the CODEX data was performed using 31 features 
(size and 30 protein markers: AQP1,CD34,THP,CK7,CD104, 
CD7,podoplanin,CD16, CD38, CD279, CD4, CD8, CD278, CD3, 
COLIV, AQP2, CD11c, CD21, CD19, CD138, CD31, CD45, Ki67, 
SYNPO, CD90, HLA-DR, CD68, CD9, pan-CK, and calbindin) 
using the most recent version of the VorTeX software (26 April 2018 
release). Before clustering, cells were filtered to only those with QC 
parameter of 1, and each feature was scaled to have mean 0 and SD 
of 1 across all remaining cells. X-shift clustering was performed 
using parameters as specified by Black et al. (58). The clustering with 
K (number of neighbors for the density estimate) of 60 (31 clusters) 
was selected using the elbow point method. The normalized inten-
sities of each marker were averaged within each cluster to generate 
per-cluster profiles and three clusters corresponding to background 
or noisy signal were removed. To map between the CODEX clusters 
and the integrated sc/sn dataset, all features were used except for 
size, pan-CK, and COLIV. Integrated sc and sn data were normalized 
and scaled, and the average expression value of each marker was de-
termined for each sc cluster. Genes in the sc data were subsetted to 
genes matching CODEX features (AQP1, CD34, UMOD, KRT7, 
ITGB4, CD7, PDPN, FCGR3A, CD38, PDCD1, CD4, CD8A, ICOS, 
CD3D, AQP2, ITGAX, CR2, CD19, SDC1, PECAM1, PTPRC, 
MKI67, SYNPO, THY1, HLA-DRA, CD68, CD9, and CALB1). The 
Pearson correlation between each CODEX cluster and each single-cell 
cluster was computed, and each CODEX cluster was mapped to the 
single-cell cluster with the maximum Pearson correlation.

Post hoc power analysis
The sc and sn RNAseq datasets were obtained from 22 and 15 sub-
jects, respectively, whose samples were sequenced in 24 and 47 
libraries (table S1). We used these datasets to assess the reproduc-
ibility and reliability of both assays in a post hoc power analysis. 
This analysis compares results by the complete datasets with the 
results by down-sampled datasets where libraries are randomly and 
progressively removed from the complete data.

Both complete datasets were separately subjected to a standardized 
Seurat pipeline for the identification of sc or sn clusters and 
DEGs (fig. S5A). Nuclei and cells with less than 400 or 500 features, 
respectively, and more than 5000 features as well as more than 50% 
mitochondrial genes were removed. “SCTransform” was used for 
data normalization and scaling (based on top 2000 features), 
followed by principal components analysis. The first 30 principal 
components were used for dimensionality reduction before identifying 
cell neighborhoods using the Seurat functionality “FindNeighbors.”

Our analysis pipeline now searched for an optimal resolution 
that identified as many predefined cell types as possible. The pre-
defined cell types included all major kidney cell types for both sc 
and sn RNAseq datasets, while we excluded the immune cell types 
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in case of the single nucleus datasets. Our pipeline identified clusters 
using the Seurat functionality “FindClusters” and an initial resolu-
tion of 0.5, followed by annotation of cell types to each cluster. 
Briefly, our pipeline calculates cluster-specific marker genes using 
the Seurat functionality “FindAllMarkers” and an adjusted P value 
cutoff of 0.05. If more than 300 marker genes were identified, we 
only used the top 300 most significant genes for cell type annotation. 
Marker genes of each cluster were compared with literature-curated 
cell type–specific essential genes (table S10) using Fisher’s exact 
test. For each cluster we generated a list of cell type assignments 
that can be ranked by significance P values. If the quotient of the 
first and the second most significant P values was smaller than 0.05, 
our pipeline assigned the cell type associated with the first P value to 
that particular cluster. If not, it investigated if the quotient between 
the second and the third most significant P values is smaller than 
0.05. In this case, it assigned both the first and second cell type to 
that particular cluster. This way our algorithm acknowledges that 
closely related cell types cannot always be distinguished from each 
other based on sc/sn RNAseq datasets (e.g., PT and descending 
limb cells). If the quotient between the second and third P values is 
higher than 0.05, our pipeline left that cluster unassigned. Our 
pipeline now analyzed whether all predefined cell types were iden-
tified (ignoring double cell type assignments). If not, it increased 
the resolution by 0.1 and repeated all steps leading to cluster identi-
fication and cell type annotation, until all predefined cell types were 
identified or a maximum resolution of 2.0 was achieved. The final 
selected resolution was that resolution that lead to the identification 
of the highest number of predefined cell types, under the require-
ment that all cell types that were identified at lower resolutions 
needed to be identified at this resolution as well. If this was not the 
case, we ignored the resolution completely. If multiple resolutions 
identified the same number of cell types, we selected that resolution 
that was associated with the lowest number of cells belonging to clus-
ters with no cell type annotation. If there were still multiple candidate 
resolutions, we selected the lowest one. Clusters annotated to the 
same cell types were merged and cell type–specific marker genes 
were calculated (adjusted P value = 0.05).

Nuclei and cells that were assigned to a particular cell type and 
map or did not map to the corresponding LMD tissue subsegment 
were counted, using the subsegmental correlation analysis described 
above. Cell type–specific marker genes were subjected to dynamic 
enrichment analysis using MBCO. If more than 300 marker genes 
were identified, we only subjected the top 300 genes. All SCPs 
among the top seven predictions were further investigated.

We progressively and randomly removed libraries from the 
complete (reference) datasets to generate 100 non-overlapping 
downsampled datasets for each number of remaining libraries. 
Down-sampled data were subjected to the same analysis pipeline 
and results were compared with the reference results. We calculated 
the percentage of downsampled datasets for each number of 
remaining libraries that identified a particular cell type. If a particular 
cell type was identified in a down-sampled dataset, we counted how 
many of its nuclei/cells were assigned to the same or to a different 
cell type in the reference analysis. To visualize both counting results 
in the same plot, we defined those cell counts that mapped to a 
different cell type to be negative, so these counts are plotted below 
the abscissa. Similarly, we counted how many nuclei/cells of a 
particular cell type mapped and did not map to a particular tissue 
subsegment. Here, we also defined those cell counts that mapped to 

a different subsegment to be negative. We calculated the Pearson 
correlation between the DEGs of each cell type in the downsampled 
datasets and the reference datasets based on log2 fold changes.

Pathway enrichment analysis normally involves identification of 
the most significant pathways irrespective of their P values. To 
document the reliability of the SCPs that were among the top seven 
predictions in the complete dataset, we identified the ranks of these 
SCPs in each downsampled dataset as well. Ranks were averaged for 
each SCP and number of analyzed libraries.

Documentation of cellular metabolism
We generated a small ontology that contains the major metabolic 
pathways involved in energy generation and sphingomyelin synthesis. 
We defined parent-child relationships, where child pathways de-
scribed subfunctions of their parent pathways (fig. S17A). Pathways 
were populated with genes curated from the literature, parent 
pathways also populated with the genes of their child pathways. The 
ontology is publicly available at github.com/SBCNY/Molecular-
Biology-of-the-Cell and mbc-ontology.org. Before enrichment analysis, 
we added all genes of the “Gene_ontology_biological_process_2018” 
library that we downloaded from the enrichR website (59) as back-
ground genes of the ontology.

We subjected the top 500 significant marker genes and proteins 
(sc/sn RNAseq: adjusted P value 0.05, LMD RNAseq, LMD/NSC 
proteomics: nominal P value 0.05) to enrichment analysis using this 
ontology and Fisher’s exact test. Investigation of the predicted path-
ways that are specific for a particular reaction allowed to decide in 
which reaction(s) those enzymes participate that are shared by 
multiple pathways. Child pathways that specifically describe the 
function of their parent pathways are visualized in the same color in 
fig. S17A. If only pathways that contained the shared reactions of 
multiple parent pathways were predicted, we assumed that they 
participated in the default parent pathways “glycolysis,” “ketone body 
catabolism” or “aerobic glycolysis.”

Because the sn RNAseq data were derived from cortical, medullary, 
and mixed samples (fig. S4B), we distinguished between medullary 
(DTL, ATL1-3, TAL-1, PC-3, and IC-A2, for abbreviations see 
Fig. 2A) and cortical cell types (all other cell types of the renal tubule 
of the nephron). All other datasets were assigned as cortical. Enrich-
ment result negative log10 P values were first averaged across the 
different cell subtypes of the same cell type and then across the 
different transcriptomic datasets. In case of the sc and sn RNAseq 
assays, we considered the number of cells assigned to each subtype 
of a particular cell type. The averaged negative log10 P values is 
representative of the cell counts of each cluster.

Because marker genes characterize those genes that are higher 
expressed in a particular cell type, subtype, or subsegment if 
compared to all other cell types or subsegments, missing identifica-
tion of a particular pathway does not mean that there is no pathway 
activity at all. For example, we did not identify any podocyte marker 
genes involved in any of the analyzed energy generation pathways, 
although podocytes can generate energy by anaerobic glycolysis 
(60). Here, our analysis simply documents that the levels for those 
genes are lower in podocytes than in most of the other kidney cells.

Comparison of experimental reabsorption and gene 
expression profiles
Experimentally determined reabsorption capacity profiles that 
describe what percentage of a filtered sodium or glucose is reabsorbed 
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in a particular nephron segment were curated from standard medical 
and physiological text books (30, 31, 33, 61), followed by averaging 
of the curated numbers for each ion or molecule. As these are 
widely used medical school textbooks, we assumed that the infor-
mation is correct and did not further track down the values given in 
these books to the primary papers from which these values were 
obtained. In addition, we assumed conversation of physiological 
processes across mammalian species, and we did not ascertain 
whether all values were derived from the same species or more than 
one species.

Generation of a transmembrane transport ontology
Because human single cell and single nucleus RNAseq datasets 
(14–17) contain gene expression profiles in all major nephron cell 
types, we reasoned we could compare segment specific gene expres-
sion levels of the transporter or channel of interest with these 
physiologically measured reabsorption profiles. Using gene ontology  
MBCO (22), Wikipedia articles, and selected reviews as sources 
(36, 40), we generated a comprehensive ontology of transmembrane 
transporter at the plasma membrane (fig. S19A). Within gene 
ontology, we focused on all biological processes and molecular 
functions that were children of “sodium ion transport,” “sodium ion 
transmembrane transporter activity” as well as “glucose transport,” 
“glucose transmembrane transporter activity,” as defined by the 
“is_a” and “part_of” relationships. From MBCO, we added all genes 
assigned to the SCP “sodium transmembrane transport.” The initial 
list of transporter candidates was manually investigated to validate 
their transporter activity. True positives were assigned to de novo 
SCPs that describe the movement mechanism (i.e., transport via 
symporter or antiporter), the movement direction (i.e., lumen-to-
blood or blood-to-lumen) and all ions or molecules that are trans-
ported by that mechanism. In case of antiporters, we specified 
which ions or molecules move in opposing directions by separating 
them with the term “vs.” If the protein translated from a particular 
gene had a unique name that is commonly used and is different 
from the official National Center for Biotechnology Information 
(NCBI) gene symbol, we assigned the gene to that particular protein 
name (e.g., SLC12A1 and SCL12A3 were assigned to NKCC2 and 
NCC, respectively). Here, we did not describe the activity mediated 
by that protein (e.g., “sodium potassium chloride transport by the 
symporter NKCC2”), because this would create unnecessarily long 
names in our figure legends. Nevertheless, in all analyses, these pro-
teins were processed as if they were SCPs. Consequently, whenever 
we use the term SCP in the manuscript, we refer to these proteins as 
well. Each SCP-gene association was supported by at least one 
reference that could be the NCBI gene summary, UniProt gene sum-
mary or a PubMed ID for a supporting article (table S12). To allow 
systematic analysis and grouping of transmembrane movements, 
we integrated all SCPs into a SCP hierarchy of parent and children 
SCPs (fig. S19B) using a strategy we have described for the MBCO 
ontology (22). This hierarchy converges children on parent SCPs 
that describe more generalized shared transport mechanisms. For 
example, the SCP “sodium potassium chloride symporter” (that is 
the parent of the SCP “NKCC”) is the child of the two parent SCPs 
“sodium chloride symporter” and “sodium potassium symporter.” 
We left out the SCP “potassium chloride symporter,” because here, 
we focused on sodium and glucose transmembrane transport. These 
SCPs are then connected to the higher-level SCP “sodium lumen-
to-blood transport by symporter.” For both sodium and glucose all 

SCPs finally converge on either one of two different overall parent 
SCPs describing transcellular lumen-toward-blood transport and 
transcellular blood-toward-lumen transport. Discussed example 
of SCP relationships and two additional examples are shown in fig. 
S19B. Figure S19C shows the hierarchical organization of all SCPs 
involved in sodium lumen-to-blood and blood-to-lumen transport. 
All parent SCPs were populated with the genes of all of their 
children SCPs. Last, we kept only those genes in the ontology that 
localize to the plasma membrane based on the jensenlab human 
compartment ontology with a minimum confidence score of 4 
(out of maximal 5) (www.compartments.jensenlab.org).

Calculation of predicted reabsorption capacities
Besides our own sc and sn RNAseq dataset (14, 15), we used two dif-
ferent sn RNA seq datasets that were generated from undiseased tissue 
as well (16,  17). All datasets document how many mRNA mole-
cules are transcribed from each gene in each individual cell. These 
numbers are described as UMI counts (62), but in this study, we use 
the term mRNA counts or levels to indicate that it is a quantitative 
measure of mRNA levels of a certain species. The cells and nuclei in the 
sc and sn RNAseq datasets were previously grouped into clusters 
using standard software packages, followed by identification of 
cluster-specific marker genes and cell type and subtype annotation 
(14, 15, 17). We analyzed the raw UMI matrix (GSE114156) (16) using 
the Seurat package (as outlined in fig. S5A) and annotated kidney cell 
types based on cell type–specific gene expression (table S10).

We assumed that that mRNA molecule counts (i.e., UMI counts) 
of each transporter or channel in each cell reflect the capacity of that 
particular cell for transmembrane movement of that particular ion 
or molecule. The following explanation of how we predicted move-
ment capacities from those mRNA levels is summarized in fig. 
S19A. We initially processed all four datasets, i.e., one sc RNAseq 
and three sn RNAseq datasets, independently. For each dataset and 
SCP of our transmembrane movement ontology we summed up all 
mRNA molecules that are expressed in all cells of a particular cell 
type or nephron segment and map to genes involved in that SCP. It 
should be noted that we documented total and not mean capacities, 
because we did not divide the mRNA count sums by the number of 
cells in each particular cell type or segment. If a particular cell type 
or nephron segment contains more cells, it is assumed to contribute 
more to the reabsorption of a particular ion or molecule, if the 
appropriate transporter is present. Measured physiological reab-
sorption profiles describe net lumen-to-blood transport values in 
each segment. To account for the different transport directions 
predicted from SCPs that are involved in lumen-to-blood and 
blood-to-lumen transport, we defined all mRNA levels mapping to 
blood-to-lumen transport SCPs as negative. This allowed the calcu-
lation of net lumen-to-blood transport capacities by adding up all 
mRNA counts involved in lumen-to-blood transport and all (nega-
tive) mRNA counts involved in blood-to-lumen transport of each 
ion or molecule. Because the physiological profiles document how 
much percent of a particular ion or molecule is reabsorbed in a 
particular nephron segment, we expressed all SCP capacities in percent 
of the net lumen-to-blood transport capacities of the corresponding 
ions or molecules. Consequently, the sum of all predicted transport 
capacities along the nephron is 100% for both sodium and glucose 
(mRNA levels assigned to blood-to-lumen transport are still defined 
as negative), allowing the direct comparison of mRNA levels and 
reabsorption profiles. Any SCPs that mediate the transport of 
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multiple ions or molecules were normalized independently for each 
ion and molecule to calculate the relative contribution of that SCP 
to the total reabsorption capacity of each ion or molecule. Final 
percentages of the same SCPs predicted by the three sn RNAseq 
datasets or all four datasets were averaged.

Identification of cell type markers
Marker genes and proteins of each cell subtype or segment were 
ranked as described above. If multiple cell subtypes were identified 
on the basis of the single cell or single nucleus RNAseq datasets, we 
calculated the average rank for that cell type. Original or averaged 
ranks were averaged again over the different assays for each cell type 
and selected segment, followed by reranking. The top five reranked 
genes/proteins were selected as cell type markers in table S12. To 
identify combinations of markers that best define each cell type, we 
also used a machine learning approach (63) to find marker combi-
nations that optimally separate each cell type from all other cell types 
for sc, sn, and integrated sc/sn RNA-seq datasets.

Generation of nephron schema
We used BioRender.com to create the nephron schema in Fig. 7.

Data generation and initial analysis
Seven different RNAseq, proteomics, metabolomics, and imaging 
datasets were generated and analyzed by five different TISs. The 
PREMIERE TIS (composed of Michigan, Princeton, Broad) gener-
ated sc RNAseq data, the USCD/WashU TIS generated sn data, the 
UCSF TIS generated sc RNAseq, NSC proteomics and Codex 
imaging data, the IU/OSU TIS generated LMD RNAseq and LMD 
proteomics data, and the UTHSA-PNNL-EMBL TIS generated spa-
tial metabolomics data.
Sn RNAseq (UCSD/WashU) and single-cell RNAseq (PREMIERE)
UMI count matrixes and list of DEGs were downloaded from 
published analyses for the PREMIERE TIS (composed of Michigan, 
Princeton, Broad) single-cell RNAseq (15) and UCSD/WashU TIS 
Single-nucleus RNAseq (14) datasets. We excluded the PT cells-3 
and principal cells-2 clusters from the single-nucleus RNAseq dataset, 
because these clusters showed an inflammatory or a stress response.
Subsegmental LMD transcriptomics (IU/OSU)
A comprehensive LMD protocol is published on protocols.io (www.
protocols.io/view/laser-microdissection-8rkhv4w). Briefly, 12-m 
frozen sections are obtained from an optimal cutting temperature 
(OCT) preserved tissue block and adhered to LMD membrane 
slides (Leica, Buffalo Grove, IL). The tissue undergoes a rapid stain-
ing protocol involving acetone fixation, washes with ribonuclease 
(RNAse)–free phosphate-buffered saline, and antibody incubation 
in 10% bovine serum albumin. The slides undergo dissection with a 
Leica LMD6500 system with pulsed ultraviolet laser. After collecting 
a minimum tissue area of 500,000 m2 in an RNAse-free micro-
centrifuge tube, the RNA is isolated using the PicoPure RNA Isolation 
Kit according to the manufacturer’s instructions (Applied Biosystems, 
catalog no. KIT0204). The RNA quality is assessed by Bioanalyzer; 
ribosomal RNA is depleted, and cDNA libraries are prepared using 
the SMARTer Universal Low-Input RNA Kit (Takara, no. 634938). 
Sequencing was conducted on an Illumina HiSeq 4000. Mapping 
was performed using STAR (v2.5.2b), and read counts were quanti-
fied with featureCounts (subread v.1.5.0). Total read counts mapping 
to each gene were generated with edgeR, normalized, and converted 
to expression ratios.

Segment-specific gene expression was compared to the gene 
expression in all other subsegments using an unpaired t test with 
equal variance. Subsegment-specific gene expression ratios were 
calculated similarly.
Subsegmental LMD proteomics (IU/OSU)
A comprehensive LMD proteomics protocol is published on 
protocols.io (www.protocols.io/view/laser-microdissection-for-
regional-transcriptomics-8rkhv4w?version_warning=no). Our LMD 
proteomic methods have also been previously published in detail 
(64,  65). Briefly, 10-m frozen sections are obtained from an 
OCT-preserved tissue block and adhered to polyethylene naphthalate 
membrane slides for LMD. Frozen sections are fixed in 70% ethanol, 
incubated in H2O to remove OCT, briefly stained with hematoxylin, 
and dehydrated in ethanol. LMD is performed and glomeruli and tubu-
lointerstitial samples are collected separately in 0.5% RapiGest/50 mm 
NH3HCO3 solution. The collected samples are then boiled for 
20  min for protein retrieval and digested overnight with trypsin. 
Peptides are dried, resuspended in acetonitrile/formic acid, and 
analyzed using liquid chromatography tandem–mass spectrometry 
analysis using an Easy-nLC 1000 HPLC coupled to an Orbitrap 
Fusion mass spectrometer (Thermo Scientific, Waltham, MA). Data 
are searched using Proteome Discoverer 2.1 (Thermo Scientific) 
and searched against a human UniProt database (version 05/26/18). 
Data are analyzed following global normalization of spectral counts.

Glomerular gene expression was compared to the tubulointerstitial 
gene expression using an unpaired t test with equal variance. 
Glomerular to tubular-specific gene expression ratios were calculated 
similarly.
3D immunofluorescence imaging and tissue 
cytometry (IU/OSU)
The entire 3D fluorescence imaging and tissue cytometry protocol 
is published on protocols.io (dx.doi.org/10.17504/protocols.
io.9avh2e6). Briefly, frozen cores are sectioned at 50 m using a cryostat 
and fixed using 4% paraformaldehyde. A panel of up to eight anti-
bodies was incubated to identify renal and immune cell types. Images 
were acquired in up to eight channels using a Leica SP8 confocal 
microscope. Volume stacks spanning the whole thickness of the tissue 
were taken using a 20× numerical aperture (NA) 0.75 or 40× NA 
1.3 objectives with 0.5- to 1.0-m spacing. Large-scale confocal 
imaging of overlapping volumes was performed with an automated 
stage and stitched using Leica LASX software (Germany). A 3D 
image rendering was done using Voxx v2.09d. The 3D tissue cytometry 
was performed on image volumes using VTEA, which was developed 
as a plugin for ImageJ/Fiji as previously described (66).
CODEX imaging (UCSF)
The CODEX technology comprises of immunofluorescence staining 
with antibodies conjugated to unique oligonucleotide sequence 
targeting markers of interest probed with complementary oligo-
nucleotide reporters tagged to fluorophores (67). CODEX fluidics 
instrument is used for iterative cycles of imaging, dye, and reporter 
removal allowing high plexity. 4′,6-Diamidino-2-phenylindole for 
nuclear signal along with complementary oligonucleotide probes 
tagged to Alexa Fluor 488, Atto 550, and Cy5 fluorophores are 
revealed in each cycle. CODEX Software Suite allows raw image 
processing for subtraction of background noise, deconvolution to 
eliminate out-of-focus light, collapsing z-stacks into single best 
focus, shading correction, and cycle alignment in addition to 
image segmentation based on watershed algorithm. Flow cytometry 
standard expression data and raw images as TIFF files are generated 
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and can be visualized in external software for gating, clustering, and 
phenotyping.

Transplant normal biopsy was stained with 29-plex panel of 
CODEX antibodies, followed by immunofluorescent staining of 
calbindin and imaged at 20× resolution on a Keyence BZ-X710 
microscope. Raw data were transferred and processed with CODEX 
Software Suite comprising CODEX Instrument Manager and 
processor. Processed data were visualized in the CODEX Multiple 
Analysis Viewer (MAV), an ImageJ plugin to eliminate artifacts, 
assess cell segmentation, gating, annotation, and generation of 
subpopulation for downstream analyses. Clustered population were 
visualized in MAV by overlaying with corresponding markers and 
annotated population to assess cell type enrichment.
Spatial metabolomics (UTHSA-PNNL-EMBL)
Ten-micrometer-thick renal cortical tissues were sectioned using 
a cryostat (Leica Microsystems), thaw-mounted on indium tin 
oxide–coated slides (Bruker Daltonics), and prepared for matrix-
assisted laser deposition/ionization mass spectrometry (MALDI-MSI) 
by spraying with 2,5-dihydroxybenzoic acid (40 mg/ml in 50% 
MeOH:H2O) using the TM-Sprayer automated spraying robot (HTX 
Technology). The following spraying parameters were used: 80°C 
nozzle temperature, a flow rate of 0.05 ml/min, 10 passes, a N2 pres-
sure of 10 psi, a track spacing of 3 mm, and a 40-mm distance 
between the nozzle, and sample was maintained. MALDI-MSI was 
performed using a MALDI-Fourier-transform ion cyclotron reso-
nance (FTICR) imaging mass spectrometer (Bruker Daltonics) set 
at a 120,000 resolving power at mass/charge ratio (m/z) 400 or a 
MALDI-Orbitrap mass spectrometer (Thermo Scientific) set at the 
120,000 resolving power at m/z 200. The data were inspected fol-
lowing the quality control guidelines as developed within KPMP 
and converted into the imzML centroided format using the SCiLS 
software (Bruker Daltonics) or ImageInsight software (Spectroglyph 
LLC), followed by the submission to METASPACE and annotation 
against the SwissLipids and Human Metabolome Database (HMDB) 
molecular databases with the false discovery rate of 20%, as de-
scribed in (68).

We have developed an approach to find glomeruli markers in 
MALDI-MSI data by using METASPACE and colocalization analy-
sis. First, we have selected a template marker that was localized 
within the glomerular regions, as confirmed by the histology. 
This ion was annotated by METASPACE as ceramide phosphate 
CerP(d34:1) (68). Then, we performed a spatial colocalization analysis 
by calculating for all other detected metabolites and lipids their 
spatial correlation with CerP(d34:1) using the cosine score. The 
molecules with the correlation above 0.2 were considered and manu-
ally curated to show the colocalization with the glomeruli regions 
by overlaying every ion image with the histological image. The 
resulting 30 markers were uploaded to the KPMP DataLake and 
were used for the multiomics integration analysis.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn4965

View/request a protocol for this paper from Bio-protocol.
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