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Abstract
This paper develops and applies algorithms for optimally merging satellite precipitation products with rain-gauge precipitation 
for accurate rainfall estimation. The satellite-based precipitation products (SBPs) PERSIANN-CDR, TMPA-3B42, GPM-
IMERG, and GSMaP MKV are combined and evaluated to generate accurate rainfall estimates. Daily satellite precipitation 
data are compared with corresponding station data to calculate the bias for the period 2014–2019. Three different algorithms 
are proposed whose adjustable parameters are optimally determined by solving constrained optimization algorithms to produce 
combinations of satellite-based precipitation products. The optimal combination is named optimally merged satellite-based pre-
cipitation (OMSBP). The root mean square error (RMSE), coefficient correlation (CC), and the Nash–Sutcliffe error (NSE) are 
employed to test the proposed method with precipitation data for the Tehran urban region, Iran. The spatially resolved results over 
the studied urban area establish that TMPA-3B42, with an average value MAE, MBE, and RMSE equal to 0.68 mm, − 0.31 mm, 
and 2.94 mm, leads to better estimates of precipitation than those of PERSIANN-CDR, IMERG, and GSMaP MKV. Moreover, 
algorithms alg7 and alg8 yielded better results with respect to the MAE and MBE, respectively. Lastly, algorithm alg3 produced 
better results than alg7 and alg8 based on the RMSE, NSE, and CC corresponding to precipitation predictions.

1  Introduction

Precipitation is a significant component of the water cycle 
and the principal driving hydrologic flux. Remote sensing is a 
powerful tool for determining hydrologic indexes that are used 
in various fields of water resources (Kim et al. 2014; Zhang 
et al. 2019a, 2019b, 2019c; Chawla et al. 2020; Isnain and 
Ghaffar 2021; Duan et al. 2021). Estimation of precipitation at 
the local and global scales is essential for quantifying hydro-
logic balances and for accurate hydrologic modeling (Sun 
et al. 2018; Mahmood et al. 2019; Foufoula-Georgiou et al. 
2020). Many developing countries have low-density precipita-
tion monitoring networks and have limited local-scale moni-
toring (Sharifi et al. 2016; Tiwari et al. 2020). For instance, 
high populated metropolitans are threatened by natural disas-
ters, and their inhabitants are vulnerable to flooding by heavy 
rainfall. Satellites can provide useful datasets for precipitation 
monitoring and prediction in areas where there are few ground 
stations (Smith and Rodriguez 2017; Mahtab et al. 2018; Yang 
et al. 2019; Ogato et al. 2020; Oliazadeh et al. 2021).

There are multiple studies of satellite-based precipitation 
and its applications to hydrologic modeling. Those studies have 
encompassed catchments in Africa (Dembélé and Zwart 2016; 
Guilloteau et al. 2016), Asia (Kim et al. 2017; Vu et al. 2018), 
Australia (Khan et al. 2018), Europe (Duan et al. 2016), North 
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America (Maggioni et al. 2016), South America (Salio et al. 
2015), and the world (Derin et al. 2016).

Several satellite-based precipitation products such as 
TMPA 3B42RT and 3B42V7, Climate Prediction Center mor-
phing (CMORPH) technique, PERSIANN-CDR precipitation 
products, and Global Satellite Mapping of Precipitation–gauge 
adjusted (GSMaP-Gauge) were evaluated concerning their 
effectiveness in detecting intense rainfall in cities of China 
(Huang et al. 2014; Lu et al. 2018; Jiang et al. 2018; Ren et al. 
2018; Li et al. 2019). Their major results show SBPs underes-
timated rainfall and exhibited significant deviations from tem-
poral rainfall variations. Moreover, the GSMaP-Gauge featured 
the best results at the daily temporal scale, and all other SBPs 
underestimated extreme precipitation. In addition, several 
applications of satellite-based precipitation for streamflow 
simulation have been reported to produce acceptable results 
(Jiang et al. 2017; Ma et al. 2018; Wei et al. 2018; Zhu et al. 
2019; Liu et al. 2020; Chao et al. 2021).

Various combinations and merging of widely used satellite 
rainfall estimations were evaluated over regions with vari-
able topographic and climate conditions (AghaKouchak et al. 
2012; Golian et al. 2015; Nie et al. 2016; Hazra et al. 2019; 
Mastrantonas et al. 2019). A combination of the individual 
satellite precipitation products (SPPs) may provide a dataset 

with a higher correlation with gauge data than individual sat-
ellite products (Beck et al. 2017; Yang et al. 2017; Khairul 
et al. 2018). Also, several regression-based methods for dis-
tributed-data applications have been reported (Wang and Li 
2021; Wang et al. 2021), and specialized algorithms for merg-
ing daily precipitation data from several sources have been 
implemented for local and global scale predictions, such as the 
Multi-Source Weighted-Ensemble Precipitation (MSWEP) 
applied in Australia and Africa (Awange et al. 2019).

Few optimization approaches have been reported for 
deriving satellite-based precipitation products useful for 
improving predictions in the field of water resources stud-
ies. The optimal merging of SPPs is helpful for applications 
such as early warning and flood control. The four sets of 
satellite-based precipitation applied in this study are use-
ful for water resource management, particularly in poorly 
gauged and ungauged basins.

The main objectives of this study are (1) evaluating the 
performance of the SBPs relative to the available ground 
rainfall measurements in Tehran city and (2) further improv-
ing the SBPs’ rainfall estimates by applying two fitting 
optimal merging techniques simultaneously. Achieving 
these objectives yields accurate rainfall datasets that can be 
applied in water resources management.

Satellite

Period 1 2 … …

1 11 12 … 1 … 1

2 21 22 … 2 … 2

3 31 32 … 3 … 3

… …

1 2 … …

… …

1 2 … …

Reported data from the j-th 

satellite for all time periods

Fig. 1   Illustration of the data table
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2 � Study area

Tehran, the capital of Iran, is located in northern Iran. Its 
total area is about 730 km2 (Shahbazi et al. 2016), with a 
latitudinal range of 35° 33′ N to 35° 53′ N and a longitudi-
nal range of 51° 6′ E to 51° 36′ E (Delfani et al. 2010), as 
shown in Fig. 1. Tehran’s climate is mostly defined by its 
topographic characteristics, with the Alborz Mountains to 
the north, and the country’s central desert to the south in 
which elevation varies from 1000 to 2300 m (Keikhosravi 
2019). The average annual temperature ranges between 24 
and 26 °C, although the highest temperatures in summer can 
reach 43 °C, and the lowest temperatures in winter can be 
as low as − 30 °C.

The average annual precipitation in Tehran equals 
245.8 mm/year, according to observed precipitation data 
from 1951 through 2015. Regional differences in annual pre-
cipitation are considerable. The maximum average annual 
precipitation can reach 426 mm/year at the Shemiran station, 
which is located in the northern section of Tehran, while the 
minimum average annual precipitation is about 123.8 mm/
year at the Geophysics station, which is placed in the central 
area of the city.

3 � Data sets

3.1 � Gauge stations

The gauge precipitation data utilized in the present work 
were provided by the Iran Water Resources Management Co. 
(IWRM) based on a network of daily rain gauge data. The 
daily ground observed rainfall data are derived from four 
rain gauges distributed over the study regions corresponding 
to the period 2014 through 2019. The characteristics of the 
four ground stations are listed in Table 1. Data preprocessing 
was performed and multi-year daily means were used to fill 
in the missing data.

3.2 � Satellite‑based precipitation

Four satellite-based precipitation products (SBPs) (listed in 
Table 2) are evaluated in this study with data for the Teh-
ran region corresponding to the period March 2014 through 
January 2019. The SBPs are the Precipitation Estimation 
from Remotely Sensed Information using Artificial Neural 
Networks-Climate Data Record (PERSIANN-CDR) from 
the University of California, Irvine, the Tropical Rainfall 
Measuring Mission (TRMM) Multi-satellite Precipitation 
Analysis (TMPA-3B42) from the National Aeronautics and 
Space Administration (NASA), the Global Satellite Mapping Ta
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of Precipitation in near real-time (GSMaP MKV) from the 
Japan Aerospace Exploration Agency (JAXA), and the Inte-
grated Multi-satellite Retrievals for GPM (IMERG) from 
NASA.

3.2.1 � TRMM

The TRMM (Tropical Rainfall Measuring Mission) is a 
joint satellite mission between NASA (The National Aer-
onautics and Space Administration of the USA, Wash-
ington, USA) and JAXA (Japan Aerospace Exploration 
Agency, Tokyo, Japan). It was launched in November 1997 
mainly to measure tropical and subtropical precipitation. 
The TRMM features Precipitation Radar, Microwave 
Imager, and Visible Infrared Scanner as its three types of 
sensors. TMPA-3B42 is the multiple-adjusted daily pre-
cipitation data freely available since 1 January 1998. The 

product is available at relatively good spatial and temporal 
scales (0.25° × 0.25° and 3 h) and covers from 50° N to 50° 
S (Huffman et al. 2007).

3.2.2 � PERSIANN

The PERSIANN data were produced by using artificial neu-
ral network algorithms to estimate the rainfall rate based 
on longwave IR images from geostationary earth-orbiting 
satellites. Data collection implemented a versatile prepar-
ing technique for refreshing the system parameters when-
ever independent estimates of rainfall are accessible. The 
PERSIANN system is improved by infrared bandwidth and 
daytime based on geostationary infrared imagery. Rainfall 
data with a spatial coverage of 60° S–N and spatial resolu-
tion of 0.25° × 0.25° are available from March 2000 through 
the present (Ashouri et al. 2015).

Table 2   Coverage and spatiotemporal resolutions of used SBPs in this study

Data Full name Spatial/temporal resolu-
tion

Source Coverage

3B42 TRMM Multi-satellite Precipitation 
Analysis (TMPA) research product 
3B42

3 h/0.25° NASA 50°N–50°S

PERSIANN-CDR Precipitation Estimation from 
Remotely Sensed Information using 
Artificial Neural Networks-Climate 
Data Record (CDR)

Daily/0.25° University of Cali-
fornia

60°N–60°S

IMERG Integrated Multi-satellite Retrievals 
for the Global Precipitation Meas-
urement (GPM) mission

0.5 h/0.1° NASA 60°N–60°S

GSMaP-MVK Global Satellite Mapping of Precipita-
tion

1 h/0.1° JAXA 60°N–60°S

Table 3   Evaluation indexes of error statistics

 Pg denotes rain gauges rainfall (mm). Ps denotes estimated satellite rainfall (mm). Pg and PS represent the mean values of gauge- and satellite-
based rainfall, respectively. n denotes the number of data

Statistical indicator Formula Perfect value Unit

Mean absolute error
MAE =

n∑

i=1

�
��
�

�
PSi

−Pgi

��
��
�

n   

0 mm

Mean bias error
MBE =

n∑

i=1

(PSi
−Pgi

)

n   

0 mm

Root mean absolute error

RMSE =

�
n∑

i=1

�
PSi

−Pgi

�2

n   

0 mm

Correlation coefficient
CC =

n∑

i=1

�

Psi
−

_

Ps

��

Pgi
−

_

Pg

�

n∑

i=1

�

Psi
−

_

Ps

�2 n∑

i=1

�

Pgi
−

_

Pg

�2

  

1 NA

Nash–Sutcliffe error
NSE = 1 −

n∑

i=1

�

Psi
−

_

Pgi

�2

n∑

i=1

�

Pgi
−

_

Pg

�2

  

1 NA
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3.2.3 � GPM

The GPM was launched in February 2014 and currently 
works in a non-sun-synchronous orbit with a tendency point 
of 65° to calculate light rain, snowfall, and heavy tropical 
rainfall as part of a NASA–JAXA cooperative program. 
GPM improves TRMM’s worldwide coverage, providing 
modern satellite instrumentation, the inter-calibration of 
datasets from other microwave radiometers, composed com-
bined precipitation datasets, diminished dormancy for con-
veying information items, simplified data access, extended 
global ground-validation efforts, and integrated client appli-
cations (Huffman et al. 2015).

3.2.4 � GSMaP

The GPM-based GSMaP products used in this study include 
the standard products (MVK_V4). The GSMaP MVK prod-
uct with high spatial (0.1°) and temporal (1 h) resolution 
is produced using the passive microwave radiometer data 
and infrared (IR) data with a Kalman filter to retrieve the 
precipitation rate generated by an atmospheric moving vec-
tor derived from two progressive IR images (Aonashi et al. 
2009). The GSMaP MVK was adjusted to the observed 
global rainfall data from the Climate Prediction Center, 
evolving into GSMaP_GAU (Kubota et  al. 2007). The 
GSMaP datasets are available in the G-Portal data service 
system (http://​www.​gport​al.​jaxa.​jp).

4 � Methods

4.1 � Evaluation of satellite products

All daily satellite-based precipitation datasets were res-
ampled to a spatial resolution of 0.1° × 0.1° using the 
standard bilinear interpolation method suited for grid-
ded datasets to make them comparable (Yang and Geng 
2016), for evaluating the performance of the SBPs, and 
to compare them with gauge and OMSBPs (optimally 
merged satellite-based precipitations) data. Satellite pre-
cipitation products of fine resolution can be produced 
employing spatial interpolation techniques that are 
broadly used to produce a better estimation of precipita-
tions. Yet, the pattern of precipitation is influenced by 
elevation in urban districts. Utilizing downscaling pro-
cedures with an emphasis on topography increases the 
accuracy of small-scale satellite precipitation.

The satellite pixels that contained at least one rain gauge 
were evaluated in this study, whereas other pixels with no 
rain gauges were excluded from the analysis. Several statis-
tics herein employed (Ebert 2007) are listed in Table 3, and 
they are as follows:

The mean absolute error (MAE) is used to represent 
the first order of the discrepancies which shows the aver-
age magnitude of the error. The mean bias error (MBE) 
provides an estimate of the average error in the data. The 
closer value the MBE is to zero, the higher the accuracy. 

Fig. 2   Flowchart of this study’s methodology

1701Optimal merging of multi-satellite precipitation data in urban areas
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The root mean square error (RMSE) also measures the aver-
age error magnitude but gives greater weight to the larger 
errors (Liu et al. 2017; Ma et al. 2018). The correlation 
coefficient (CC) measures the degree of a linear statistical 
association between satellite precipitation and rain gauge 
observations. The value of CC ranges between − 1 and + 1. 
The value of + 1 indicates a perfect positive linear statisti-
cal association, while − 1 represents a negative statistical 

association. The CC is close to 0 whether there is no lin-
ear correlation or there is a weak linear correlation (Zhang 
et al. 2019a, 2019b, 2019c, 2019d). The Nash–Sutcliffe 
error (NSE) shows how much the observed data correspond 
to the satellite data. The NSE ranges from –∞ to 1, and 
the closer it is to 1, the more accurate the predictions are 
(Belabid et al. 2019).

Furthermore, three Contingency Statistics indexes are 
herein applied to evaluate the accuracy of four satellite 
precipitation products (Sharifi et al. 2016). They are the 
probability of detection (POD), a false alarm ratio (FAR), 
and the critical success index (CSI). The POD measures 
the ratio of satellite precipitation detection to observed 
precipitation events. The FAR represents the ratio of the 
precipitation events falsely identified by the satellite prod-
ucts. The CSI is a proportion of total precipitation events 
which are correctly detected by the satellite products.

These contingency indices were calculated and are listed 
in Table 4. The satellite precipitation products detect precipi-
tation more accurately if POD and CSI are close to 1, and 
the FAR is close to 0.

Table 4   Contingency indices

α denotes the number of precipitation events that are correctly 
detected by the satellite. µ denotes the number of precipitation events 
detected by satellites that have no observed data at a station, and β 
denotes the number of precipitation events that have precipitation 
data at a station but were not detected by satellite-derived precipita-
tion data

Contingency indices Formula Best value

POD POD =
α

α+β
1

FAR FAR =
μ

α+μ
0

CSI CSI =
α

α+β+μ
1

Fig. 3   Location of hydrometric stations for gauge data and the various pixels of satellite-based precipitation products in Tehran city

1702 A. Oliazadeh et al.



1 3

4.2 � Data merging

This paper’s methodology combines the SBPs into an opti-
mally merged satellite-based precipitation (OMSBP) with 
the least bias in each pixel. Figure 2 shows the flowchart 
of the optimal merging algorithm. There are four SBPs in 
each pixel with at least one rain gauge, namely PERSIANN-
CDR, TMPA-3B42, GPM-IMERG, and GSMaP MKV. The 
average of daily biases (additive bias) is calculated between 
each SBPs and observed rainfall values from rain gauges 
throughout 2014–2019.

Let x = (xij)m×n denote the matrix data from n satellites in 
m observational periods, in which, xij denotes the amount of 
precipitation reported by the j-th satellite in the i-th period 
( i and j range from 1 to m, and from 1 to n, respectively). 
We denote the j-th column of the matrix x by xj which indi-
cates the reported data from the j-th satellite for all periods. 
Figure 3 illustrates the format of the table which contains 
the data. This work employs two fitting models. The first 

is based on the power function, and the second is a linear 
regression approach.

4.2.1 � Power function fitting

Consider fitting the following nonlinear function to the 
datasets:

Or equivalently

where the coefficients aj and an+j , j = 1, 2,… , n must be 
determined such that Eq. (1) optimally fit the data, which 
consists of observations at time i , bi . In Eq. (2) each xj and 
y are vectors of length m (the number of periods), and xan+j

j
 

denotes that the power function is applied elementwise. This 
work applies non-negative constraints aj ≥ 0 to avoid 

(1)y = a1x1
an+1 + a2x2

an+2 + ... + anxn
a2n
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ajx
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negative values of precipitation. This yields the following 
constrained optimization problem:

subject to

Equations (3) and (4) define the algorithm 3 (or alg3 
for simplicity) in which �(.) denotes the objective func-
tion, and a denotes the vector of decision variables (i.e., 
the unknown coefficientsak ). As a special case suppose 
thatx1,x2,x3 , x4 indicate the precipitation data of four sat-
ellite datasets PERSIANN, GPM, TMPA, and GSMaP, 
respectively. Similar to Eq. (1), and forn = 4 , the follow-
ing regression combination fits the datasets:

(3)Min�(a) =
∑n

j=1
(
∑m

i=1
((ajxij

an+j − bi)
2
)

(4)ak ≥ 0, k = 1, 2, ..., 2n

In this case, for the objective function of Eq. (3), we 
have n = 4 and thus �(a) = �(a1, a2, ..., a8) . The objec-
tive function of the optimization problem (3) indicates the 
minimization of the distance between the observations and 
the estimated values of precipitation. The minimization is 
performed using adjustable and non-negative parameters 
ak, k = 1, 2, ...., 2n. See Tang et al. (2015) and Tian et al. 
(2013) for details about using the power function.

4.2.2 � Linear function fitting

Consider the following linear regression function:

(5)y = a1x
a5
1
+ a2x

a6
2
+ a3x

a7
3
+ a4x

a8
4
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Equation (6a) does not include a constant coefficient. In 
the case of the existence of bias, a constant coefficient is 
introduced in Eq. (5a) to better fit the data. Thus, add a con-
stant to Eq. (6a) as follows:

The following least-square optimization problem must be 
solved to obtain the optimal values of aj , in Eq. (6a), which 
for non-negativity of precipitation requires non-negative 
constraints:

subject to:

(6b)y = a1x1 + a2x2 +⋯ + anxn + an+1 = an+1 +

n∑

j=1

ajxj

(7a)
Min
aj,

j = 1… n

n∑

j=1

(

m∑

i=1

((ajxij − bi)
2
)

Problem (7a, b) is a constrained optimization problem 
that minimizes the distance between the observed amount 
of precipitation at period i (which is denoted by bi ) and it’s 
an approximated value that is calculated using Eq. (6a). The 
minimization procedure is performed using the adjustable 
parameters aj, j = 1, 2, ...., n.

Similarly, solve the following problem to obtain the opti-
mal values of aj in Eq. (6b):

subject to:

(7b)aj ≥ 0, j = 1, 2, ..., n

(8a)
Min
aj,

j = 1… n + 1

n∑

j=1

(

m∑

i=1

(ajxij + an+1 − bi)
2
)

(8b)aj ≥ 0, j = 1, 2, ..., n + 1
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Problem (8a, b) is a constrained optimization problem that 
minimizes the distance between the observed precipitation at 
period i (which is denoted by bi ) and its estimated value that is 
calculated with Eq. (6b). The minimization procedure is per-
formed using the adjustable parameters aj, j = 1, 2, ...., n + 1.

Equations  (3)–(4), (7a, b), and (8a, b) are con-
strained nonlinear programming problems that cor-
respond, respectively, to the algorithms herein named 
alg3, alg7, and alg8. These programming problems are 
solved with classical nonlinear programming algorithms 
such as the steepest descent, quasi-Newton methods, or 
with evolutionary algorithms. This paper relies on the 
Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-New-
ton method. The BFGS algorithm approximates the Hes-
sian matrix of second derivatives to make its computa-
tion more efficient (Bazaraa et al. 2013). It is noteworthy 
that in our case study, the number of satellites is n = 4 . 
The results obtained from the application of this paper’s 
algorithms are discussed in the next section.

5 � Results and discussion

5.1 � Statistical error analysis

Three statistical indicators of errors on a daily scale were 
calculated (MBE, MAE, RMSE). The MBE index meas-
ures an average overestimation or underestimation. The 
results of Figs. 4, 5, 6 and 7 demonstrate the TMPA-
3B42 data has the smallest deviation from gauge data 
compared to other satellite sources. Only in the Shemiran 
region did the PERSIANN produce the best estimate with 
an error deviation of 0.56 mm. In all four regions, the 
TMPA satellite data are underestimated as indicated 
by the negative ranges of the MBE. The IMERG data 
recorded the most deviation from terrestrial data in 
all stations by MBE of 1.78, 1.48, 1.24, and 1.63 mm, 
respectively. However, the GSMaP satellite recorded bet-
ter performance than PERSIANN in other areas. It is 
noteworthy that the Mehrabad station is an airport station 
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where aviation activities may affect the satellite-based 
precipitation estimation.

The MAE indicates that the TMPA-3B42 satellite data 
performed better in all four studied regions. The best 
results based on the MAE correspond to the Mehrabad 
station for TMPA-3B42 data with a value of 0.52 mm. 
The next best data performance was that of the GSMaP 
data in the Chitgar, Mehrabad, and Geophysical regions 
where the MAE equaled 0.8, 1, 1.2 mm, respectively, 
and PERSIANN at the Shemiran station with an MAE 
of 1.7 mm. It is concluded that the IMERG data has the 
poorest accuracy compared to other data sources, except 
in the Shemiran region according to the values of MAE.

The RMSE results show that the TMPA-3B42 data 
performed better than other data sources, and it equaled 
0.5 mm in the Mehrabad region. The next best one was 
the GSMaP satellite data in the Cheitgar, Mehrabad, and 
Geophysical areas. The PERSIANN had better estimates 
than other data sources in the Shemiran region. The 
IMERG data had the poorest results with an RMSE rang-
ing between 6.5 and 7.6 mm. The GSMaP satellite in the 
Shemiran region performed poorly concerning the three 
evaluation indices compared to the other areas. It is con-
cluded that due to the higher elevation of the Shemiran 
region, the GSMaP satellite performs with lower accu-
racy of precipitation estimation in high altitudes. Also, 
the TMPA-3B42 data estimation is more accurate in this 
region than elsewhere, although it has acceptable perfor-
mance in all other stations for all indices.

5.2 � Contingency index analysis

It is seen in Table 5 that PERSIANN’s precipitation obser-
vations are more accurate than other observations. This 
source correctly detected at least 88% of rainfall events 
and performed the best detection at the Shemiran station 
with a POD = 0.95. The TMPA-3B42 data performed more 
poorly in detecting daily rainfall events than the other three 
sources, with a POD = 0.46 for the Mehrabad station, and 
the index variations were negligible in the other three 
regions.

Concerning the FAR index, the results indicate the 
TMPA-3B42 data has a lower FAR index than other 
Mehrabad regions, which means that it recorded less 
false precipitation than other sources. Also, FAR has the 
highest percentage for the Geophysics station concerning 
PERSIANN and GSMaP by 74%. The PERSIANN data 
performs better than ground-based data detection, yet, 
it recorded more false precipitation than other satellites 
and has the weakest performance for this index. This 
indicator is better for GPM than the GSMaP satellite in 
the Mehrabad, Shemiran, and Geophysics regions. Only 
the GSMaP performance is better in the Chitgar region. Ta
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These results establish that the PERSIANN recorded 
more precipitation events than the other satellites, many 
of which were false and did not occur in reality.

The CSI, which is complementary to the POD index, 
shows the percentage of success in precipitation event 
detection for all recorded events. According to CSI 
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results presented in Table 5, the GPM satellite data per-
forms better in detecting rainfall events, and it had better 
accuracy in distinguishing non-rainfall events. The GPM 
satellite recorded better results than other data sources 
concerning the POD index except for PERSIANN and 
also had better results than other data sources for the 
FAR index except for TMPA.

5.3 � Optimally merging of SBPs

It is seen in Fig. 8 that the TMPA data had better results for 
the Chitgar station judged by the best MAE value among 
all other satellites and methods. Also, among the three pro-
posed algorithms, alg7 has better performance of MAE 
by 0.53 mm at the Chitgar and Mehrabad stations, while 
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Table 4
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comparing TMPA and alg3 indicates the TMPA is slightly 
better for the MAE. Also, three merging techniques have the 
same and best MBE of about 1.7 mm at Mehrabad Station.

Figure 9 reveals the TMPA-3B42 data has better perfor-
mance for the NSE among all satellites where it was in the 
range − 0.05 to 0.06, while alg3 generally is better among the 
three proposed algorithms. The TMPA-3B42 and alg3 had 
superior performance at the Mehrabad station.

Similar to other stations the TMPA-3B42 data outper-
form other satellite-based models, while alg3 performed 
better than alg7 and alg8 concerning RMSE, CC, and NSE. 
TMPA-3B42 is slightly better than alg7 with respect to MAE 
at the Shemiran station. Lastly, the TMPA-3B42 data are 
better among the satellite data sources, similar to other sta-
tions. alg3 has the best performance for RMSE, CC, and 
NSE at the Geophysics station.

It could be argued that the best NSE pertains to the 
TMPA-3B42 data at all stations among the SBPs, while the 
alg3 has the best NSE for the proposed algorithms where it 
was 0.09 at Chitgar station according to Fig. 9. Similarly, the 
GSMaP has the best CC of 0.44 among all other SBPs and is 
smaller than all implemented algorithms based on Fig. 10. 
This shows that all algorithms are effective in improving the 
CC index at all stations, whereas alg3 is the best with respect 
to the CC with a value of 0.5 at the Shemiran station.

This paper’s results establish that algorithms 7 and 8 
were the most accurate merging methods within the study 
area. Figure 9 establishes that all proposed algorithms 
changed the Nash Sutcliffe coefficient from negative val-
ues to positive values, which demonstrates the improve-
ment achieved with the merging algorithms. It would be 
valuable to find the ideal combination of rain gauges and 
SBPs to improve the precision of precipitation estimations. 
These combinations can be applied to reduce the risk and 
uncertainties of modeling natural disasters such as flooding 
and droughts under future conditions.

6 � Concluding remarks

This paper introduced two optimally data-merging methods 
and explored the accuracies of four satellite-based precipi-
tation products: PERSIANN-CDR, TMPA-3B42, GPM-
IMERG, and GSMaP MKV, for the period 2014–2019 in 
Tehran. Our results established that TMPA had the best 
performance among the satellite-based models. Also, the 
proposed algorithm of alg3 featured the best performance 
(even in comparison with individual satellite-based data) 
for RMSE, CC, and NSE. The algorithm alg7 has the best 
performance concerning the MAE and MBE.

The merging of SBPs is recommended for other urban 
study zones worldwide. Unquestionably, alternative com-
bining strategies, e.g., a nonlinear mix of SBPs, may be 

applied to estimate precipitation with higher accuracy than 
that exhibited by individual data products. It is pivotal to 
evaluate the performance of SBPs of various temporal and 
spatial scales, especially in those urban areas that have 
low-density gauging networks. It is noteworthy that further 
evaluation must be performed before applying the proposed 
blending technique to pixels with no rain gauge data, i.e., 
to ungauged areas. Finally, the comparison of satellite data 
with the estimates from the proposed merging algorithms 
indicates that the merging results are more accurate than the 
satellite estimates and had less uncertainty. Consequently, 
we recommend the proposed merging procedure be applied 
in the validation of satellite-based precipitation data.

Future research will (1) integrate the two optimization 
methods herein presented coupled with an evaluation of 
goodness-of-fit statistics for the assessment of rainfall esti-
mation errors and (2) incorporate combined and optimized 
rainfall products based on multi-source satellites to simulate 
urban streamflow with improved precision relative to current 
technologies.
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