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Phylogenetics
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Abstract
Motivation: Neighbour-Joining is one of the most widely used distance-based phylogenetic inference methods. However, current implementations
do not scale well for datasets with more than 10000 sequences. Given the increasing pace of generating new sequence data, particularly in outbreaks
of emerging diseases, and the already enormous existing databases of sequence data for which Neighbour-Joining is a useful approach, new
implementations of existing methods are warranted.

Results: Here, we present DecentTree, which provides highly optimized and parallel implementations of Neighbour-Joining and several of its
variants. DecentTree is designed as a stand-alone application and a header-only library easily integrated with other phylogenetic software (e.g. it
is integral in the popular IQ-TREE software). We show that DecentTree shows similar or improved performance over existing software (BIONJ,
Quicktree, FastME, and RapidNJ), especially for handling very large alignments. For example, DecentTree is up to 6-fold faster than the fastest
existing Neighbour-Joining software (e.g. RapidNJ) when generating a tree of 64 000 SARS-CoV-2 genomes.

Availability and implementation: DecentTree is open source and freely available at https://github.com/iqtree/decenttree. All code and data
used in this analysis are available on Github (https://github.com/asdcid/Comparison-of-neighbour-joining-software).

1 Introduction

Neighbour-Joining (NJ) (Saitou and Nei 1987) is perhaps the
most widely used distance-based algorithm for inferring phylog-
enies. Its success results from its simplicity and computational ef-
ficiency: NJ takes a fraction of the time required by other
popular approaches (e.g. Maximum Likelihood and Bayesian
methods) and is known to perform well in terms of speed and
accuracy for large alignments with low sequence divergence
(Yang and Rannala 2012). Although other approaches such as
Maximum Likelihood and Bayesian approaches perform better
than NJ in many situations, the properties of NJ make it an at-
tractive method for a range of applications, including generating
starting trees for more computationally expensive approaches,
generating rapid trees from large alignments such as SARS-CoV-
2 (McBroome et al. 2021), ribosomal RNA (Quast et al. 2013),
and DNA barcodes (Ratnasingham and Hebert 2007), and NJ
is also widely used to provide guide trees for alignment algo-
rithms (Thompson et al. 1994, Edgar 2004). Despite its utility,
even the fastest existing implementation of NJ, RapidNJ
(Simonsen et al. 2008), does not scale well for alignments con-
taining more than 10 000 sequences, and there are no scalable
implementations of NJ algorithms that are written as libraries

that can be easily incorporated into other software. DecentTree
seeks to address these limitations.

2 Implementation

DecentTree is an optimized and parallel Cþþ implementation
of NJ and BIONJ (Gascuel 1997). DecentTree uses the Vector
Class Library (VCL; https://github.com/vectorclass) and the
multithreading OpenMP to parallelize the computations.
Moreover, we reimplemented the RapidNJ algorithm to opti-
mize memory access patterns and reduce CPU cache miss. The
VCL version of NJ and BIONJ implementation in DecentTree
is denoted with ‘-V’ suffix (NJ-V and BIONJ-V), whereas the
RapidNJ reimplementation is denoted with ‘-R’ suffix (NJ-R
and BIONJ-R). Like other standard implementations of
NJ/BIONJ, DecentTree has a worst-case time complexity of
O(n3), where n is the number of taxa. But we expect
DecentTree to be faster in most cases due to the highly
optimized code.

DecentTree is designed as both a stand-alone program
and a header-only library that can be easily integrated into
other phylogenetic software packages. DecentTree uses
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Cþþ template classes that allow for flexible configuration
of the runtimes such as choosing between single or double
precision arithmetic. As input, DecentTree accepts either a
distance matrix in Phylip format or a multiple sequence
alignment in common formats such as Phylip or Fasta.
When users provide a sequence alignment, DecentTree
computes the Jukes-Cantor pairwise distance matrix (Jukes
and Cantor 1969) from the alignment. As output,
DecentTree reconstructs a distance-based tree in Newick
format. We checked the correctness of our implementations
on simulated data with 100 taxa and alignment lengths
ranging from 1000 to 100 000 sites (Supplementary Fig.
S1) and assessed the code quality of DecentTree using
SoftWipe (Zapletal et al. 2021). The overall score of
DecentTree was 5.7, slightly higher than the average score
of 5.6 for software evaluated by Zapletal et al. (2021).

3 Benchmarking

We compared the performance of the four implementations of
the NJ and BIONJ algorithms in DecentTree (NJ-R, NJ-V,
BIONJ-R, BIONJ-V) to implementations of the same algo-
rithms in four other software implementations which take dis-
tance matrices as input [the BIONJ algorithm implemented in
the original BIONJ software, the NJ and BIONJ algorithms
implemented in FastME v2.1.6.2 (Lefort et al. 2015), and the
NJ algorithms implemented in Quicktree v2.5 (Howe et al.
2002) and RapidNJ v2.3.2] and one other implementation
which takes a sequence alignment as input [FastTree (Price
et al. 2009, Price et al. 2010)]. To do this, we analysed the
simulated data we used to check DecentTree (see above), and
three challenging empirical datasets: a SARS-CoV-2 align-
ment (COVID19 datasets) (https://github.com/bpt26/parsi
mony, accessed on 11 May 2021) (McBroome et al. 2021)
and two high-quality ribosomal RNA v138.1 datasets from
the SILVA database (Quast et al. 2013), the small subunit
(SSU_NR99) and the large subunit (LSU_NR99) datasets. To
examine performance across a range of dataset sizes, we ran-
domly subsampled seven subsets of 1000, 2000, 4000, 8000,
16 000, 32 000, and 64 000 sequences from each dataset using
Seqtk version 1.3-r116-dirty (https://github.com/lh3/seqtk).
For the comparisons which use a distance matrix as input we
first computed the distance matrix for each subset using
DecentTree and then ran all software using these distance ma-
trices as input (command see Supplementary Information).
For the programmes that support multiple-threading
(DecentTree, FastME, RapidNJ, and FastTree), we bench-
marked them with 1 thread and 32 threads. We set the maxi-
mum wall-clock time to 12 h and the maximum memory limit
to 500 Gb.

These settings resulted in 378 analyses for using distance
matrices as input: 21 data subsets � 9 implementations (4 for
DecentTree, 2 for FastME, and 1 for BIONJ/Quicktree/
RapidNJ) � 2 thread counts; and 210 analyses using multiple
alignments as input: for 21 data subsets � 5 implementations
(4 for DecentTree and 1 for FastTree) � 2 thread counts. We
recorded the wall-clock time and peak memory usage of each
analysis on a server with 256 CPUs of 2.5 GHz and 1 Tb
RAM. To compare the resulting trees, we computed their log-
likelihoods using IQ-TREE (Nguyen et al., 2015) under the
GTRþG model.

4 Results

Analyses of simulated data show that all algorithms in
DecentTree, BIONJ, FastME, and RapidNJ performed well,
but Quicktree and FastTree (using the NJ anlaysis only) per-
formed poorly in terms of the Robinson–Foulds (RF) distance
of the estimated trees to the true trees (Supplementary Fig.
S9).

Analyses of empirical data show that for analyses which
started with distance matrices, DecentTree was the only im-
plementation that completed every analysis within 12 h
(Supplementary Fig. S2) and was the fastest implementation
on the larger subsets of each of the three datasets. On the
smaller subsets of each dataset (�8000 sequences), RapidNJ
tended to be the fastest implementation, although the absolute
differences in execution time versus the fastest DecentTree al-
gorithm were small (0.5–36 s when RapidNJ was faster, while
for the COVID19 dataset with 8000 sequences and 32
threads available DecentTree was 26 s faster) (Fig. 1 and
Supplementary Figs S3–S5). DecentTree tended to be the fast-
est implementation on the larger subsets of each dataset, par-
ticularly when using multiple threads, although this does
come at the cost of using �1.5� to �3� more memory than
RapidNJ (Fig. 1 and Supplementary Figs S6 and S7). On the
largest subsets we analysed (64 000 sequences), DecentTree
was 2.9 and 5.1 h (1.8 and 5.6 fold) faster than RapidNJ for
the COVID19 dataset with 1 and 32 threads, respectively
(Fig. 1 and Supplementary Table S1). For the LSU_NR99
dataset, DecentTree was 2.2 and 3.5 h (1.9 and 4.2 fold)
faster than RapidNJ with 1 and 32 threads, respectively; and
DecentTree was the only software able to complete the analy-
sis of the 64 000 sequence SSU_NR99 dataset in under 12 h
(RapidNJ quit without producing any output for this dataset,
and we were unable to determine why). The performance of
the four DecentTree algorithms (NJ-R, NJ-V, BIONJ-R,
BIONJ-V) differed modestly, but NJ-R tended to be the fast-
est, particularly on the larger subsets, while NJ-V tended to be
the most memory efficient. Likelihood analysis shows that the
different implementations produce trees that can differ some-
what in their fit to the data. For example, the different
implementations produce trees that differ by 30–2681 units of
log-likelihood on COVID19 datasets. NJ algorithms tended
to produce trees with higher likelihoods than BIONJ algo-
rithms for COVID19 and LSU_NR99, but worse trees for
SSU_NR99 (Fig. 1 and Supplementary Figs S3–S7). RF distan-
ces (Supplementary Figs S8–S14) show that the tree topologies
inferred by DecentTree and other implementations are some-
times different from each other, e.g. by 3.43%–23.51% on
8000 sequences datasets. These large differences are driven by
the very large proportion of very short branches in these trees
(e.g. more than 70% of branches in the 64 000 sequence
COVID tree represent <1 substitution. Supplementary Fig.
S15). Because the alignments lack information to resolve these
branches, most are resolved effectively at random, leading to
large normalized RF distances.

We compared DecentTree to FastTree when inferring a tree
from an alignment (the results above pertain to trees inferred
from distance matrices). The results (Supplementary Fig. S16)
showed that when using one thread, DecentTree is generally
slower than FastTree, e.g. by 1.4–1.9 times on 64 000 sequen-
ces, but this is reversed with 32 threads (e.g. DecentTree is
2.7–14.1 times faster than FastTree on 64 000 sequences).
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DecentTree always consumed more RAM than FastTree. For
instance, DecentTree NJ-V and FastTree required �50 GB
and �17 GB RAM on 64 000 sequences, respectively. This
memory footprint means that DecentTree may not be applica-
ble for datasets with millions of sequences. Likelihood analy-
sis shows that Decenttree NJ-V produces trees with a higher
likelihood on COVID19 datasets.

To test the influence of the types of topological move used
by different software on the inferred trees, we built additional
trees on the 4000 sequence subsets (COVID19, LSU_NR99,
and SSU_NR99) using FastME (SPRs), FastTree (NNIs), and
DecentTree (default setting), and compared the log-
likelihoods of the resulting trees using a GTRþG model in
IQ-TREE (Supplementary Fig. S17). The result shows that
FastME (SPRs) has the best log-likelihood on COVID19 and
SSU_NR99 subsets, whereas FastTree (NNIs) has the best
log-likelihood on the LSU_R99 subset. Log-likelihood

differences between the trees inferred by DecentTree are at
most 380 to 51 240 units, while these numbers are from 0 to
65 738 for FastTree.

5 Conclusions

DecentTree allows users to quickly estimate very large NJ
trees with a range of algorithms. In addition, because
DecentTree is implemented as both stand-alone software and
a header-only library, it is easy to incorporate it into other
software. This will help to ensure that future improvements in
NJ algorithms can be seamlessly integrated into other
software and pipelines.

Supplementary data

Supplementary data are available at Bioinformatics online.

Figure 1. The comparison of different implementations on the 8000 (A) and 64 000 (B) sequence subsets of COVID19, LSU_NR99, and SSU_NR99

datasets. BIONJ and Quicktree do not support multithreading.
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Data availablity

DecentTree is open source and freely available at https://
github.com/iqtree/decenttree. All code and data used in this
analysis are available on Github (https://github.com/asdcid/
Comparison-of-neighbour-joining-software).
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