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 Information technologies are increasingly facilitating life-long monitoring 

for civil infrastructure applications. Sensor data, including video signals, can be 

used for long-term structural condition assessment, traffic-load regulation, and 

emergency response following earthquakes or other natural / man-made hazards.  In 

such a strategy, data from thousands of sensors may be analyzed with real-time and 

long-term assessment and decision-making implications.  

 Addressing the above, a flexible and scalable framework has been 

developed and implemented. This framework networks and integrates on-line real-

time heterogeneous sensor data, computer vision, and archiving systems.  
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 Two integrated systems for structural health monitoring have been 

established as demonstration testbeds located on the University of California, San 

Diego (UCSD) campus. These systems handle all tasks of monitoring including, 

data acquisition, data transmission, data archiving, and database querying. From a 

bridge-deck testbed, the use of time synchronized sensor plus video data has been 

pioneered. Using this testbed, over 400,000 sets of synchronized traffic-induced 

strain time histories with video have been recorded and archived over a three year 

period. Using extracted features from image processing, unique cleansed datasets of 

labeled traffic, well suited for use with supervised machine learning algorithms, 

have been created and are available on-line. Elements of this dataset are employed 

for estimation of traffic speed and vehicle classification efforts (in collaboration 

with co-workers).  

 A computational model of the bridge deck system was created to provide 

strain time histories similar to those actually recorded. Within the numerical 

simulation framework, it is shown that neural networks perform satisfactorily in 

providing accurate estimates of vehicle speeds, wheelbases, and axle weights. A 

neural network-based damage detection methodology has also been constructed, 

verified on the numerically simulated data, and tested on the recorded data. 

 An integrated system for structural health monitoring, ready for 

deployment at the thousands of heterogeneous sensors level, has been deployed on 

the Voigt Drive / Interstate-5 overcrossing testbed, also on campus at UCSD. An 

important aspect of this 4-span, 2-lane bridge testbed lies in its availability for 
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collaborative interdisciplinary research. System details and data from a shakedown 

test conducted with a pilot sensor array are presented and discussed. 
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1 Introduction to Structural Health Monitoring 

 This chapter includes a brief literature review of visual inspection for 

damage detection, non destructive testing, structural monitoring systems, and an 

overview for new heterogeneous sensor networks for civil infrastructure health 

monitoring applications. Finally, an outline of the thesis chapters is provided. 

1.1  Current State of Civil Infrastructure 

 The deterioration of civil infrastructure in North America, Europe and Japan 

has been well documented and publicized. In the United States, 50 percent of all 

bridges were built before the 1940's and approximately 42 percent of these 

structures are structurally deficient [e.g., Stalling et al., 2000; ISIS Canada, 2000; 

Aktan et al., 2001a].   In seismically active regions such as the West Coast of the 

United States and Japan, the problem of gradual deterioration of the infrastructure 

over time is compounded by the sudden damage events (or exacerbation of existing 

damage) due to the occurrence of earthquakes [e.g., Elgamal et al., 2002 and Conte 

et al., 2003].  The above statistics underline the importance of developing reliable 

and cost effective methods for managing the massive rehabilitation investments 

needed in the years ahead.  

1.2 Visual Inspection for Damage Identification 

Visual inspection is the traditional method for inspecting structures for 

damage. However, this method has some inherent drawbacks, the first of which is 

the damage must have progressed far enough to be visually observable. Second, 

through visual inspection only the extent of damage is assessed based on subjective 



 2

criteria. This leads to the associated issue of two inspectors examining the same 

signs of deterioration and making different judgments as to the extent and 

significance of damage. Even if the damage is successfully identified, the final 

problem facing the engineer is accurately assessing its effect on the overall health 

of the structure [Aktan et al., 2001a]. Visual inspection also requires much time and 

effort, and may overlook locations of limited and/or no accessibility. 

A study conducted by the Federal Highway Administration’s NDE Center 

[FHWA, 2001] on the accuracy of visual inspection of short-to-medium span 

bridges concluded that at least 56% of the bridges given an average condition rating 

were done incorrectly [Aktan et al., 2001a]. Other findings [Turner-Fairbank 

Highway Research Center, 2005] of interest included:  

• Inspectors commonly failed to make notes regarding observed defects – an 

obvious failure as these observations are critical to understanding the 

assigned condition assessment. 

• A recommendation to change the bridge rating system from simply 

assigning a rating of 0-9 to a more detailed evaluation which provides 

greater accuracy and reliability regarding the health of the structure. 

• The quality of the inspection is greatly affected by the ease of inspector’s 

access to bridge elements and inspector’s comfort with height of structure. 

• Recommendations for increased training of inspectors to recognize 

commonly occurring forms of defects. 
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For extended structures, such as long-span suspension bridges, the difficulty 

is further compounded. Successful visual inspection of these structures is 

dependent on inspecting all possible damage scenarios at all critical locations, not 

an easily accomplished task even for an experienced inspector. Reportedly, the in-

depth visual inspection carried out on the Brooklyn bridge in New York consumes 

three months of time at a cost of over one-million dollars [Yanev, 2000 and Aktan 

et al., 2001b].  Despite all these limitations, visual inspection remains today the 

most commonly practiced damage detection method. 

1.3 Non Destructive Testing 

A more promising means of damage detection involves the analysis of the 

dynamic signature of the structure for features indicative of damage. This field of 

study, known as non-destructive evaluation (NDE), attempts to detect damage in 

the structure based on changes in the vibration characteristics. This method is based 

around the assumption that damage will alter the physical properties of the 

structure consequently altering the structural response [Farrar and Doebling, 1997]. 

Several methods have been proposed to detect any changes in structural 

response and to link it with the associated damage. Most of these methods can be 

classified as belonging to one of three techniques: 

• Damage detection based on modal parameters. These methods start with 

extracting modal parameters (such as natural frequencies, mode shapes, and 

damping ratios) from the recorded data and using these values to calculate 

other physical properties, e.g. system stiffness matrix. Various system 
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parameters (including changes in natural frequencies, changes in mode 

shapes, changes in modal curvature, Ritz vector, matrix updating) have been 

studied and their application as damage indicators explored [Doebling et al., 

1996; Farrar and Jauregui, 1996; Farrar and Doebling, 1997; Sohn et al,. 

2003].  

• Damage detection using statistical pattern recognition approaches. This 

class of techniques treats damage detection as a pattern recognition problem 

whereby using a learned mapping, the causes are discerned from the 

measured system response. Within these techniques, the application of 

neural networks has become a favored mapping identification tool [Garret et 

al., 1992; Ghaboussi, 1993 and 1994; Sohn et al., 2001]. Problems 

associated with these methods involve: How best to perform feature 

extraction / data reduction on the recorded data to manage the size of the 

neural networks. When used as a supervised learning tool it is necessary to 

use data from the undamaged and damaged states of the structure. Often 

times data from the damaged structure is difficult, if not impossible, to 

come by; When multiple damage locations are considered (especially with 

variable damage levels) the amount of training data increases exponentially. 

• Damage detection using time series prediction. In order to avoid some of 

the difficulties associated with the previous methods, researchers are 

looking at ways to perform damage detection based on time series 

prediction [Sohn  and Farrar, 2001]. These methods are typically based on 
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using vibration measurements from a healthy structure to train a neural 

network to predict the system response. When damaged, there will be a 

change in the measured system response and will be seen in the error 

between the measured and predicted response [Masri et al., 1996, Nakamura 

et al., 1998, and Xu et al., 2003]. 

Comprehensive reviews of these methods are available in Sohn et al., 2003 and 

Doebling et al., 1996. 

1.4 Early Attempts at Structural Monitoring 

Early attempts at the application of the aforementioned damage detection 

methods consisted of special tests involving the installation of sensors on a given 

structure and recording data over a relatively short period of time. Once recorded, 

the instrumentation was removed and the data was post-processed and analyzed 

off-site. For bridges, this testing typically involves closing at least one lane of 

traffic while the sensors are being installed (Figs. 1.1 and 1.2). Figures 1.1 and 1.2 

show the installation by the author of a temporary array of accelerometers using an 

articulated boom truck, on the Byron Road Bridge in Tracy, CA (pilot test 

conducted by the author and co-workers). In addition, to minimize uncertainty in 

the traffic loading, the bridges are shut down to all traffic for short periods of time 

while ambient vibration data was recorded. This procedure thereby becomes a time 

consuming procedure, which must be closely coordinated with local traffic 

management agencies.  
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As data is only recorded when the sensors are installed on the structure, 

these methods are only able to capture progressive deterioration when several data 

sets, recorded over an extended period of time, are examined. For locating suddenly 

occurring damage, for example if damage is suspected from a visual inspection, the 

structure must be instrumented and data recorded. This data is later analyzed and 

compared to either previously recorded data or to a simulated model for locating 

damage, a procedure which can take several weeks to go from planning, to field 

testing, to analysis. In this regard, this experimental technique does not lend itself 

to rapid structural assessment. 

 

 

Figure 1.1: Installation of Accelerometers on the Byron Road Bridge in Tracy, CA. 
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Figure 1.2: Close-up of Installation on the Byron Road Bridge in Tracy, CA. 

 

1.5 Continuous Full-Scale Structural Health Monitoring 

One improvement was to permanently install the sensors on the bridge to 

reduce the amount of time require for testing and minimize the impact on traffic (in 

particular associated with sensor installation) [Aktan et al., 2000; Gaun et al., 2006; 

Chen and Feng, 2006]. However, because of the instrumentation costs and 

hardware limitations (associated with the number of analog-to-digital channels 

available) only a limited number of sensors were utilized [Talbot and Stayanoff, 

2005]. Further, in these tests, only one type of sensor was often used [Livingston, 

2004]. As an example, Figure 1.3 shows the sensor layout for the Vincent Thomas 

Bridge in San Pedro, CA [Wahbeh et al., 2005 and Smyth et al., 2003]. This 

instrumentation scheme, composed of 26 accelerometers, is common to many of 

the bridges instrumented by Caltrans. From the data collected from this limited 

density sensor array, engineers are left with much guess work as to the actual health 
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of the structure. Common analysis techniques using this type of data involved 

modal analysis (e.g. tracking the first few natural frequencies and damping ratios 

over time [Lus et al., 1999 and Smyth et al., 2003]). For determining mode shapes 

and modal curvatures of the bridge, it is necessary to make assumptions regarding 

the behavior of the structure. For the above example of the Vincent Thomas Bridge, 

engineers noting the symmetry of the bridge decided to only instrument one-half of 

the bridge. Thereby, when mode shapes are calculated using the recorded data, it is 

only possible to calculate mode shapes for half of the bridge and then assume 

symmetric behavior [Abdel-Ghaffar and Housner, 1997]. For local damage, where 

the damage is not distributed over the bridge, this assumption of symmetric 

behavior is no longer valid. 

 

 

Figure 1.3: Sensor Array for Vincent Thomas Bridge in San Pedro, Ca [Wahbeh et 

al., 2005]. 
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 Another improvement which further improved structural health assessment 

involved the periodic transmission of data from the structure under ambient 

vibration. This periodic data helps to form a baseline for which new data can be 

compared against for locating damage. Originally, this data was transmitted using 

telephone-based modems which, with their limited bandwidth, restricted the 

amount and frequency of data that could be transmitted. 

With the recent developments in sensors, PC-based data acquisition 

hardware, wireless technologies [Law et al., 2005; Lynch and Loh, 2005; and 

Lynch, 2005], and broadband data transmission, there is the potential to acquire 

data from a great number of sensors on a structure and stream the data in near real-

time for rapid damage assessment [Elgamal et al., 2003a, b, 2004; Conte et al., 

2003; and Fraser et al., 2003]. It is expected this next generation of structural health 

monitoring systems [Wang, 2005] will make it possible to detect two types of 

infrastructure deterioration: (i) progressive deterioration over time due to 

environmental effects, and (ii) sudden deterioration due to natural hazards such as 

earthquakes and hurricanes, man-made disasters, and acts of terrorism [Elgamal et 

al., 2002]. Further, these systems will allow transportation management to 

understand the true state of health and rate of degradation of each significant bridge 

of the transportation system, which often cannot be determined from visual 

inspections only. This critical information provides a rational basis for the optimum 
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allocation of limited financial resources towards the maintenance, rehabilitation and 

strengthening of the transportation system as a whole. 

Since the occurrence of the 1994 Northridge earthquake and the 1995 Kobe 

earthquake, there has been a quantum jump in the number of civil structures that 

have been instrumented for monitoring purposes. Furthermore, plans are underway 

to install a variety of strong-motion vibration sensors in many civil structures (in 

some cases many hundreds of sensors in a single structure). In addition to the 

strong motion instrumentation, various other sensor types will also be integrated 

within these new larger-scale sensor arrays.  

These new sensors, which include thermocouples, thermistors, wind 

monitoring stations, and relative humidity probes, seek to provide insight into 

environmental effects on the measured structural response. By integrating many 

different types of vibration sensors, each with their own unique 

advantages/disadvantages, further insight into the structures vibrational response 

will be gained. For example, low-cost capacitive accelerometers are very useful for 

capturing the low frequency motion associated with the first few natural 

frequencies. However, because of their limited frequency range, these sensors are 

not useful for capturing high-frequency motion associated with crack 

initiation/propagation. For this application, piezoelectric seismic accelerometers 

and acoustic sensors coupled with high speed data acquisition is required. 

A final collection of sensors will serve to capture traffic passing over a 

bridge and monitor its effect on the individual structural elements. This group of 
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instrumentation includes digital video cameras, strain gages (both electrical 

resistance and fiber optic), and load cells. In addition to providing the needed 

insight into the loading on the structure for bridge maintenance, these sensors will 

also provide a means for automatically monitoring traffic to detect overloaded and 

speeding vehicles for traffic enforcement [Aktan et al., 2001a]. 

1.6 Hurdles for the Successful Deployment of a Structural Monitoring System 

Clearly, the main issue now facing the structural health monitoring 

community is not the lack of measurements per se, but rather how to measure, 

acquire, process, and analyze the massive amount of data that is currently coming 

on-line (not to mention the terabytes of streaming data that will inundate potential 

users in the near future) in order to extract useful information concerning the 

condition assessment of the monitored structures [Elgamal et al., 2002]. Such an 

effort will not only require collaboration among the data analysis, structural 

engineering, video processing, wireless and sensor network communities, but it will 

require a comprehensive approach to data management and analysis. The 

complexity of data sources, (including real-time sensor and video streams, and the 

output of physics-based and statistical models), and the need to perform advanced 

real-time and off-line analyses (often requiring the integration of real-time sensor 

data with simulation model output) necessitates a scaleable high-performance 

computational infrastructure (Fig 1.4) [Elgamal et al., 2002; Elgamal et al., 2003; 

Fraser et al., 2003]. 
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Finally, for these new monitoring systems to become widely adopted, they 

must provide clear benefits to infrastructure owners and engineers rather than 

inundating them with massive amounts of disjoint data. Further, to absorb the 

considerable expense of these monitoring systems in new structures, the cost 

should be included as part of the overall construction cost rather than as part of the 

yearly maintenance budget. 

 

 

Figure 1.4: Knowledge Discovery Hierarchy: Chart Developed by Tony Fountain, 

UCSD San Diego Supercomputer Center (SDSC), Joel P. Conte, and Ahmed 

Elgamal [Elgamal et al., 2003b] 
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1.7 How This Research Contributes to Advancing the Current State of 

Practice 

The research presented within seeks to develop a framework with an open 

and flexible architecture able to integrate current and future research in the field of 

structural health monitoring (e.g., local non-destructive evaluation techniques such 

as acoustic emissions). The overall research framework addresses development of: 

(1) networked sensor arrays,  (2) a high-performance database with data cleansing 

and error checking, data curation, storage and archival, (3) computer vision 

applications, (4) tools of data analysis and interpretation in light of physics-based 

models for real-time data from heterogeneous sensor arrays, (5) visualization 

allowing flexible and efficient comparison between experimental and numerical 

simulation data, and (6) data fusion. In order to satisfy these requirements, this 

research is making use of recent advances in (1) high-performance databases, 

knowledge-based integration, and advanced query processing, (2) instrumentation 

and data acquisition hardware, (3) computer vision and related feature extraction 

algorithms, and (4) data mining, model-free and model-based advanced data 

analysis, and visualization. As part of a larger NSF funded Information Technology 

Research program, an integrated system based on the knowledge discovery 

hierarchy represented in Figure 1.4 is being built with this framework to achieve 

the above-mentioned objectives. This system integrates all tasks from sensor 

configuration, data acquisition and control, to decision-making and resources 

allocation (Figure 1.5). It is the aim of this research to not only lead to a versatile 
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integrated framework for condition assessment and damage detection under normal 

operating conditions, but also to be beneficial in providing rapid response (in 

virtually real time) due to sudden dynamic loads or terrorist acts.  

 

 

 

Figure 1.5: Conceptual System Architecture [Conte et al., 2003] 
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1.8 Thesis Outline 

 In the following chapters: 

• As envisioned in this thesis, the components of a state-of-the-art structural 

monitoring system are detailed (Chapter 2). This includes information 

related to motion and environmental sensors, data / image acquisition, data 

streaming, data archival, and web-based dissemination. 

• Next, a demonstration testbed is presented (Chapter 3). Within this chapter, 

the monitoring system employed on a series of bridge-deck panels subject 

to traffic loading is discussed. 

• Image processing is performed on the video recorded from the 

aforementioned bridge-deck testbed (Chapter 4). The image processing / 

feature extraction operation is analyzed and the findings discussed. From 

this analysis procedure, a new and unique data set composed of traffic 

induced strain time histories (with time-synchronized video) sorted by 

vehicle type is created. 

• To simulate the response of the bridge decks under vehicular loading, a one-

dimensional finite element model is constructed (Chapter 5). This model is 

created to generate data otherwise unavailable with the real system (high-

speed traffic, damaged state…). 

• Vehicle property estimation and damage detection / classification is 

performed on the simulated data using time history analyses (Chapter 6). 
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• Neural networks are then applied to the data from the finite element model 

to determine vehicle properties and for damage detection purposes(Chapter 

7). 

• The strain data recorded on the bridge decks are analyzed to calculate 

speeds and wheelbases of passing vehicles, to examine distributions of peak 

vehicular strains, and to check for changes in the system response over time 

(Chapter 8). 

• Details of a second structural monitoring testbed installed on a 300-foot 

long concrete multi-cell box girder overcrossing are presented (Chapter 9). 

• Finally, a summary of the dissertation is provided along with key 

contributions and findings from this research (Chapter 10). 

1.9 Summary 

The deterioration of the civil infrastructure in North America, Europe and 

Japan has been well documented and underlines the importance of developing 

reliable and cost effective methods for the massive rehabilitation investments 

needed in the years ahead. In managing the transportation system of the nation or of 

a state, it is essential to understand the true state of health and rate of degradation of 

each significant bridge in the transportation system, which often cannot be 

determined from visual inspections only. With the evolutions in nondestructive 

testing and the advancements in sensor technology, computational power, and PC-

based data acquisition systems, continuous structural health monitoring using dense 
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heterogeneous sensor arrays is now becoming technically and economically 

feasible. 
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2 Components of a Structural Monitoring System 

Within this chapter, components of relevance to a state-of-the-art global 

structural monitoring system are detailed. First, an overview of the various sensors 

that may be employed for dynamic and environmental monitoring is presented. 

Next, options for data and image acquisition are discussed. Finally, details related 

to database systems and web portals for data archival and dissemination are 

provided. 

2.1 Heterogeneous Sensor Array 

 Any monitoring system intended for structural health monitoring may 

incorporate a heterogeneous array of sensors. Most current monitoring systems 

only make use of one sensor type and have a single purpose, whether it be 

monitoring concrete shrinkage/expansion, wind speeds, or vibrations under ambient 

loading [Livingston, 2004]. To fully understand the true state of health and rate of 

deterioration of the structure, it will be necessary to combine the data gathered from 

a multitude of sensor types to garner new information. 

2.1.1 Vibration Monitoring 

 The first class of sensors is intended to measure the dynamic signature of 

structure looking for changes in the vibration characteristics. As was discussed in 

Chapter 1, these changes are indicative of a change in the structural response which 

can result from the onset of damage. The most prevalent sensors for vibration 

monitoring include strain gages, accelerometers, and displacement transducers.  

These sensors are briefly reviewed in the Section 2.2 
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2.1.2 Environmental Monitoring 

 In addition to measuring the dynamic response of civil engineering 

structures, it is also necessary to perform environmental monitoring. Reasons 

include understanding the change in the structural and sensor responses due to 

changes in temperature [Worden et al., 2005], monitoring wind induced vibrations 

(a primary source of excitation particularly with long-span suspension bridges) [He 

et al., 2005], and chemical monitoring which can provide useful information 

regarding corrosion. Typical sensors for environmental monitoring are discussed in 

Section 2.2.4. 

2.1.3 Spatial Resolution 

 As important as the types of sensors being utilized in structural monitoring 

is the number of sensors being employed. As additional sensors are added and the 

spacing between them decreases, the accuracy of the observed deflection curves 

improve. Dense instrumentation arrays also make possible the detection of an 

increased number of modes of vibration. Within these newly observed modes, it is 

possible to examine local modes or local changes in global modes. The methods 

discussed in Chapter 1, which rely on the quality of the modal extraction, would 

benefit leading to increases in our ability to detect the onset of damage in it earliest 

stages. 
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2.2 Typical Sensors 

2.2.1 Strain Sensors 

 Strain gages measure the expansion and contraction of material due to 

mechanical stress or thermal effect. Like all transducers, these sensors rely on 

indirect measurements for determining strains. Two common sensor types are the 

electrical resistance strain gage and the fiber optic strain gage. 

2.2.1.1 Electrical Resistance Strain Gage 

The metallic foil-type strain gage consists of a grid of wire filament (a 

resistor) of approximately 0.001 in. (0.025 mm) thickness, bonded directly to the 

strained surface by a thin layer of epoxy resin. When a load is applied to the 

surface, the resulting change in surface length is communicated to the resistor and 

the corresponding strain is measured in terms of the electrical resistance of the foil 

wire, which varies linearly with strain. The foil diaphragm and the adhesive 

bonding agent must work together in transmitting the strain, while the adhesive 

must also serve as an electrical insulator between the foil grid and the surface.  

When selecting a strain gage, one must consider not only the strain 

characteristics of the sensor, but also its stability and temperature sensitivity. 

Unfortunately, the most desirable strain gage materials are also sensitive to 

temperature variations and tend to change resistance as they age. For tests of short 

duration, this may not be a serious concern, but for continuous, long-term 

monitoring applications, one should include temperature and drift compensation. 
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Bonded resistance strain gages have been proven to be reliable. They are 

relatively inexpensive, can achieve overall accuracy of better than +/-0.10%, are 

available in a short gage length, are only moderately affected by temperature 

changes, have small physical size and low mass, and are highly sensitive 

[http://www.omega.com/literature/transactions/volume3/strain.html]. Bonded 

resistance strain gages can be used to measure both static and dynamic strains. 

 

 

Figure 2.1; Typical Metal-Foil Strain Gages 

(http://www.omega.com/literature/transactions/volume3/strain.html)  

 

2.2.1.2 Fiber Optic Strain Gage 

Fiber optic strain gages measure the strain by shifting the light frequency of 

the light reflected down the fiber from the Bragg grating, which is embedded inside 

the fiber itself. These sensors are immune to EM and RF interference and offer 

better resolution and resistance to corrosive environments than conventional 
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electrical strain gages. Another important advantage with this sensor is 100 or more 

gages may be embedded within the same fiber. Using a multiplexing interrogator 

greatly simplifies the sensor installation and lowers the cost of both the individual 

sensors and associated cabling [Livingston, 1999 and Todd et al., 1999]. A 

disadvantage is they are a more delicate sensor, potentially making them unsuitable 

for certain field applications.  

 

 

Figure 2.2: Long Gage Fiber Sensor [Schulz et al., 2001] 

 

2.2.2 Displacement Sensors 

For monitoring displacements, two general techniques are most commonly 

used.  Direct measurements using either linear variable differential transformers 

(LVDT’s, Fig. 2.3) and non-contacting laser-based sensors or indirect methods 

involving the use of image processing techniques.  Direct measurements are the 

easiest method, but they are limited to unidirectional measurements.  Indirect 

methods allow the possibility of two-dimensional measurements; however, these 

measurements are much more computationally expensive, as they require post-
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processing to yield displacements.  This technique is addressed further in the image 

processing section of this paper (Section 4.7). 

 

Figure 2.3: Macro Sensors DC 750-3000 LVDT 

(http://www.macrosensors.com/) 

 

 

Figure 2.4: Laser Measurement International SPR-04 Single Point Non-
contacting Displacement Transducer (http://www.lmint.com/cfm/index 

.cfm?It=900&Id=23&Se=93&Sv=0) 
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2.2.2.1 Dynamic GPS 

A newly emerging technology for dynamic displacement measurements on 

civil engineering involves the use of GPS receivers. Previously, GPS has been 

utilized for synchronizing system clocks in the hardware deployed as part of remote 

monitoring systems. Through the use of high speed Geodetic receivers operating at 

speeds greater than 50 Hz (Fig. 2.5) with high rate base line monitoring, relative 

displacement accuracies on the order of 1 millimeter in the horizontal directions 

and 2 millimeters in the vertical direction can be achieved [Bock et al., 2000 and 

Bock et al., 2006]. These techniques require placing a GPS antenna (but not 

necessarily the GPS interface module) at each location where one wants to monitor 

displacements on the structure. In addition, to calculate relative displacements, it is 

necessary to have one or more additional reference stations (with the same 

hardware and sampling rate) installed near the structure. 

Using TCP/IP communication, the appropriate monitoring software, such as 

RTD Net software (http://www.geodetics.com/WebSite/products/RTD-

Family.html), controls the receivers and flow of data from the antennas to an off-

site central archiving computer. Once the instantaneous position is archived, it can 

be analyzed in near real time with a latency of less than one second. The same GPS 

receivers used for monitoring displacements are also suitable for synchronizing 

multiple acquisition computers on a distributed sensing array (see Section 2.3.2.2 

for further details). 
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Figure 2.5: Thales Navigation Z-Max and DG14 GPS Receiver and Antenna 

(http://www.thalesnavigation.com/en/) 

 

2.2.3 Accelerometers 

 With strain gages, accelerometers are the most commonly used sensor in 

structural monitoring. A brief summary of the most common accelerometer types is 

presented and their inherent benefits/drawbacks summarized (Table 2.1). 

2.2.3.1 Force Balance Accelerometers 

Force balance accelerometers (FBA, Fig. 2.6) are spring mass devices 

which feature high sensitivity over a relatively low frequency range. The ability to 

make low frequency measurements with high accuracy makes this class of 

accelerometers particularly well suited for seismic and general structural 
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monitoring applications (http://kinemetrics.com). Because of their exceptional 

resolution, this class of accelerometer became the standard for permanent structural 

monitoring systems. However, due to their high costs and evolving sensor 

technologies, other types of accelerometers are becoming more popular. 

 

 

 

Figure 2.6: Kinemetrics FBA-3 Force Balance Accelerometer 

(http://kinemetrics.com/product_Content.asp?newsid=158) 

 

2.2.3.2 Piezoelectric Accelerometers 

This class of sensor makes use of the piezoelectric effect discovered in 1880 

by Pierre and Jacques Curie, whereby certain crystals exhibit electrical charges 

under mechanical loading. Piezoelectric accelerometers incorporate a crystal 

sensing element which has the property of emitting a charge when subjected to a 

force. As these are active electrical systems, the crystals produce an electrical 
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output only when they experience a change in load, they cannot perform true static 

measurements.  Typical piezoelectric accelerometers (Fig. 2.7) offer higher 

measurement and frequency ranges than force balance accelerometers at the 

expense of resolution and inability to measure down to 0 Hz (http://www.pcb.com). 

Lower costs are another advantage of piezoelectric accelerometers over FBA’s. 

 

Figure 2.7: PCB Model 393B04 Piezoelectric Accelerometer 

(http://www.pcb.com/) 

 

2.2.3.3 Capacitive Accelerometers 

Capacitive accelerometers (Fig. 2.8) measure acceleration by monitoring a 

change in electrical capacitance. Within these sensors, the sensing element consists 

of two parallel plate capacitors acting in a differential mode. These capacitors 

operate in a bridge circuit, along with two fixed capacitors, and alter the peak 

voltage generated by an oscillator when the structure undergoes acceleration 

[http://www.sensorland.com/HowPage011.html]. Like the force balance 
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accelerometer, capacitive accelerometers typically operate in a low frequency 

range. Unlike piezoelectric accelerometers, these sensors can measure down to 0 

Hz. The principal advantage of capacitive accelerometers is their low cost, making 

them attractive for dense sensor arrays; however, the resolution of these sensors is 

typically less than either force balance or piezoelectric accelerometers. 

 

Figure 2.8: Crossbow CXL01LF1 Capacitive Accelerometer 

(http://www.xbow.com/Products/productsdetails.aspx?sid=32) 
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Table 2.1: Comparison of 3 Typical Accelerometers 

Accelerometer 
Type / Model 

Measurement 
Range 

Voltage 
Sensitivity

Frequency 
Range 

Broadband 
Resolution Weight

FBA – 
Kinemetrics 

FBA-3 
±1 g 2500 

mV/g 
DC - 50 

Hz 
2.5x10-10 g 

rms 7 kg 

Piezoelectric 
– PCB 

393B04 
±5 g 1000 

mV/g 
0.06 Hz to 

450 Hz 
3x10-6 g 

rms 
0.05 
kg  

Capacitive – 
Crossbow 

CXL01LF1 
±1.25 g 2000 

mV/g 
DC - 50 

Hz 
5 x10-4 g 

rms 
0.068 

kg 

 

2.2.4 Environmental Sensors 

2.2.4.1 Monitoring Surface Temperature of Structural Elements 

There are several very important reasons for monitoring the temperature of 

the instrumented structure. First, and perhaps most importantly, many studies have 

shown that a structure’s natural frequencies and mode shapes are greatly affected 

by temperature [Worden et al., 2005].  Other considerations include performing 

temperature compensation to recorded sensor data (i.e. apparent strains and linear 

scaling of accelerometers), predictions for ice formation, and the assurances of 

proper concrete curing during construction. To measure the temperature of the 

structural elements of the bridge (i.e. truss-stiffener members), thermocouples and 

thermistors are utilized. A thermocouple consists of two dissimilar metals, joined 

together at one end, which produce a small unique voltage at a given temperature. 

The Omega “Cement-On” Model COT (Fig. 2.9) is an economical fast response 

thermocouple for surface temperature measurements. These sensors are constructed 
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of 30 gage (0.010") diameter Copper and Constantan wire embedded in a paper-

thin laminate intended for surface applications by bonding with added adhesive. 

The nominal operational temperature range is -190 to 205°C (-310 to 401°F). These 

sensors are employed in the monitoring system deployed on the Voigt Bridge on 

the University of California, San Diego (UCSD) campus and is discussed in 

Chapter 9. 

                

Figure 2.9: Omega “Cement-On” Model COT Thermocouple (Left, http://www. 

omega.com/ppt/pptsc.asp?ref=CO-K) and Signal Conditioning Chip (Right) 

 

2.2.4.2 Monitoring Ambient Conditions 

To measure the relative humidity and air temperature, dual purpose sensors 

like the Pace Scientific Temperature/RH Sensors (Fig. 2.10) are readily available 

(http://www.pace-sci.com/humidity.htm). This is a precision relative humidity and 

temperature probe, which outputs an analog output easily measured with standard 

data acquisition hardware. Another advantage is it does not require any signal 
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conditioning, just a 5 vdc excitation at 2 ma. The humidity output from the sensor 

is typically 0.8 vdc at 0% Relative Humidity (RH) and 3.9 vdc at 100% RH. To 

convert from measured voltage to percent relative humidity, linear scaling is 

performed with ± 2% RH accuracy from 0 – 95% RH. Temperature compensation 

for the RH measurements is similarly performed. 

 

 

Figure 2.10: Pace Scientific Temperature/RH Sensor (http://www.pace-

sci.com/humidity.htm) 

 

2.2.4.3 Wind Speed Monitoring 

As wind induced vibrations are a major source of vibration, particularly on 

long-span suspension bridges [He et al., 2005] where they can govern design, wind 

speeds and directions are important quantities to be measured. An inexpensive 

option for these measurements is the WMS-22B (Fig. 2.11) series sensor capable of 

monitoring wind speed and direction at discrete locations on a bridge. Each 

measured parameter is converted into a 4 to 20mA signal, which through signal 

conditioning can be acquired through the conventional data acquisition hardware. 
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These stations are capable of measuring wind speed from 1 to 136 miles-per-hour 

(mph) with 1 mph resolution. For wind direction, the station offers 0º to 360º 

capability with 2º resolution. 

 

 

Figure 2.11: WMS-22B Series Wind Monitoring Station 

(http://www.omega.com/ppt/pptsc.asp?ref=WMS-20) 

 

2.2.4.4 Chemical Sensing 

 Chemical sensing, such as the detection of chlorides in reinforced concrete, 

can be a useful tool for detecting corrosion in these structures [Livingston, 1999]. 

Other factors to be monitored include the pH during the curing phase of concrete 

construction and half-cell potential 

(http://www.concretecorrosion.net/html_en/maitrise/potent.htm) or redox potential 

for assessing the condition of steel reinforcement in concrete. 
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Figure 2.12: SCRIBE Half-Cell Potential Meter (http://www.cmtinstruments.com/ 

combined-logging-meter-and-half-cell-potential-meter.htm) 

 

2.2.5 Computer Vision 

Within this research, video will serve two important purposes: 

1.  To provide quantitative information about the pattern of the traveling traffic 

loads (and indirectly, an idea about magnitude of these loads) by using pattern 

recognition/video-processing techniques. Integration of acting traffic loads (or load 

patterns) with the corresponding measured strains will reduce uncertainty during 

the system-identification analysis phase (by limiting the scope of possible causative 

load configuration scenarios). 
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2.  To quantitatively measure relative bridge deck motions, component motions, 

and differential joint-motions. In this regard, no sensors are currently available for 

accurate measurement of displacements along an extended structure such as a 

bridge (we usually rely on double integration of acceleration records, but this may 

introduce significant error). As is demonstrated in the following demonstration 

application, computer vision makes it possible to generate this data; however, 

before it can be practically applied for real-time analysis of high-speed video 

(greater than 10 frames-per second), more work is necessary to develop and 

optimize robust approaches for capturing, processing, and analyzing video. 

2.2.5.1 Image Analysis for Monitoring Displacements on Bridges 

The second application, one that has drawn interest recently, is the two and 

three-dimensional measurement of displacements on bridges [Smyth et al., 2003].  

One example is to track displacements of seismic dampers installed on bridges to 

monitor the amount of energy dissipated. In this application, linear variable 

differential transformers (LVDT’s) are not suitable as they are capable of making 

single axis measurements only.  Consequently, optical techniques have drawn 

attention.  One possible means of applying these techniques involves the use of a 

high-resolution camera and laser target or a high resolution camera with an infrared 

illuminator and reflector [Wahbeh et al., 2003].  Using image processing 

techniques similar to those previously discussed, the displacements on the bridge 

can be calculated by tracking the motion of the laser or target. 
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A simple demonstration was conducted wherein a visible laser was shown 

onto a wall, placing a red dot where the laser contacted the wall (Fig. 2.13). A 

camera was stationed nearby and recorded the dot on the wall as the laser was 

moved. While the use of the moving laser on a stationary target for monitoring 

displacements on a civil engineering structure is not as practical as using a 

stationary illuminator with a reflector attached to a moving structure, it does 

produce the same resulting images. Ultimately, both methods produce a set of 

images in which the target (or laser dot) is the only moving object. 

The original image of the laser striking the wall is shown in Fig. 2.13. A 

suitable background image was formed by recording when the laser was turned off. 

When the difference between the background and target images is taken the 

resulting image is shown in Fig. 2.14 (after some additional processing and 

cleansing). By repeating this process for each image recorded and calculating the 

horizontal and vertical centroids of the laser, it is possible to chart the path of the 

laser (Fig. 2.15) and to generate displacement time histories of the motion (Fig. 

2.16). 

With this method, the resolution of the displacement calculation is a 

function of the resolution of the camera and the size of the portion of the structure 

being observed (which is controlled by the zoom capabilities of the camera lens and 

the distance the camera is mounted from the structure). Further, the frequency 

range over which this technique is suitable for monitoring displacements is 
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controlled by the sampling (frame) rate of the camera and video acquisition system. 

For long-span suspension bridges, which are typically governed by their lower 

modes and have as many as 20 or more resonant frequencies under 1 Hz [He et al., 

2005], easily obtainable frame rates of 10 Hz are suitable. With sampling rates of 

this order, local processing is possible; thereby rendering the monitoring system 

able to send only the extracted displacements (or velocities) rather than raw images. 

This can provide for a savings on bandwidth of the order of 10 Bytes versus an 

excess of 1 Megabyte per sample. 

 

Figure 2.13: Original Image of Laser Target 
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Figure 2.14: Resulting Image from Image Processing 
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Figure 2.15: Path of Laser Target (From Image Extraction) 
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Figure 2.16: Time History of the Horizontal Centroid Location 

 

2.3 Data Acquisition 

2.3.1 Data Acquisition versus Data Logging 

Two types of data collection are used for acquiring sensor data from 

bridges.  These are datalogging and data acquisition.  Data logging techniques are 

used when acquiring a relatively short duration of data.  The datalogging software, 

controls the A/D conversion and writes the digitized data to memory directly on the 

datalogger.  Once the acquisition has finished, the data must be downloaded to 

another computer where it can then be processed.  A notable disadvantage of this 

method is that it is not suitable for continuous monitoring.  For example, the 
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Crossbow model AD2012 datalogger (Fig. 2.17) with its eight 12-bit analog inputs 

and programmable sampling rate from 1 to 1000 Hz is only capable of 540,000 

samples before the memory is filled and must be downloaded. 

 

 

Figure 2.17: Crossbow Model AD2012 12-bit Datalogger (http://www.xbow.com) 

 

2.3.2 Data Acquisition Options 

For continuous monitoring applications, data acquisition software and 

hardware is necessary.   Examples of such equipment include National Instruments 

LabVIEW software and analog-to-digital (A/D) boards as well as Kinemetrics’ 

Quanterra Q330 digital recorder with Antelope software.  These systems allow for 

continuous A/D conversion.  The data, once digitized, can be saved to local 

memory or can be streamed to or from a remote location using a variety of 

techniques.   
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In future monitoring efforts on full-size structures, the combined use of a 

dense array of dynamic sensors and advanced model-free and model-based data 

analysis and interpretation methods offers a very promising support tool for (1) 

monitoring the state-of-health of a bridge portfolio, (2) optimum allocation of 

rehabilitation resources, and (3) evaluation of the effectiveness of the rehabilitation 

measure on a given bridge [Elgamal et al., 2002].  For these sensor arrays, many 

more sensors than are currently employed on the composite deck testbed (16 strain 

gages), discussed in Chapter 3, will be required. 

 In these applications it is necessary to select scalable hardware capable of 

reaching channel counts of over 1000.  An example of such hardware is the 

National Instruments PXI-based E series I/O boards, discussed on the second 

bridge testbed in Chapter 9.  Each of these acquisition boards is capable of 

acquiring signals from up to 64 sensors while maintaining the required sampling 

rate and necessary time synchronization between channels. 

 Another important aspect in continuous health monitoring of remote 

structures is optimizing the operation and reliability of the data acquisition setup.  

While it may be physically possible for a system to digitize the signal from over a 

thousand channels at a very high rate, it may not be capable of storing the data to 

disk, let alone streaming to another location.  This issue is explored later in the 

paper.  Ensuring the reliability of the data acquisition software is critical in 

applications on remote structures.  Of concern here is protecting the data 
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acquisition computer from common network problems (such as viruses) as well as 

preventing system conflicts (for example between the data acquisition and anti-

virus software).  In addition, the inherent stability of the Windows operating system 

is a significant concern for continuous long-term monitoring.  For these reasons, 

the use of National Instruments Real-Time operating system and software has been 

explored (Chapter 9).  The inherent advantage with the real time engine software is 

its ability to act as a standalone operating system, thereby decreasing susceptibility 

to viruses (which are often written to specifically attack Windows systems) and 

software conflicts. 

2.3.2.1 PC-Based Data Acquisition 

 In developing pilot structural monitoring systems to test the reliability of the 

data acquisition, transmission, local/post processing, archival, and dissemination 

methods, it was decided to focus on standard PC-based data acquisition hardware. 

These systems (Fig. 2.18) are built around a simple personal computer with a 

Windows operating system. These PCs each have a single PCI-data acquisition 

board supporting sixteen to sixty-four analog inputs. The author has successfully 

employed these systems for remotely monitoring strains on a composite bridge-

deck panel system, measuring accelerations and temperatures on a long span 

suspension bridge (Fig. 2.19), and conducting web-based shake table experiments 

(Fig. 2.20) [Elgamal et al., 2001 and 2005a, b]. The composite bridge-deck 

monitoring system is emphasized in this paper and the setup is reported in Chapter 

3 while the data recorded and analyzed is examined in Chapters 4 and 8. 
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 It was found that these standard systems are well suited for handling 

applications involving a limited number (less than 64) of analog sensors of various 

types. The data acquisition hardware employed with the afore mentioned shake 

table collected data from a heterogeneous sensor array composed of Macro Sensors 

DC 750-3000 LVDTs, Endevco model 7705-1000 and PCB model 3701 capacitive 

accelerometers, and LMI SPR-04 non-contacting displacement transducers. In 

addition, the same I/O board provided an analog output used to drive the shake 

table (Fig. 2.21). 
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Figure 2.18: PC-Based Monitoring System Coupled with a Sample of Available 

Motion and Environmental Sensors 
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Figure 2.19: Homepage of the Remote Monitoring System Employed on the 

Vincent Thomas Suspension Bridge in San Pedro, CA 
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Figure 2.20: Homepage of Webshaker: a Web-Based Shake Table Facility 

(http://webshaker.ucsd.edu) 
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Figure 2.21: Framework of the Webshaker Shake Table Monitoring/Control 

System 

 

 

2.3.2.2 Distributed Data Acquisition on Extended Structures 

For measuring the low frequency dynamic response of extended structures 

(like long-span suspension bridges) along with associated environmental properties, 

it is proposed to use separate generalized distributed data acquisition systems (Fig. 

2.22). Unlike the PC-based systems described in the previous section, these are 

easily expanded to accommodate the large number of sensors required on these 

massive structures. The distributed data acquisition cluster is capable of acquiring, 

analyzing, and transmitting over 512 analog input channels. The main advantages 

of a distributed data acquisition system are: (1) the distance between the sensor and 
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the analog-to-digital converter is minimized, thus substantially reducing 

interference into the analog signal, and (2) by separating the data acquisition into 

manageable clusters, local data processing and more importantly data transmission 

(in light of the limited bandwidth available on most structures) become feasible. 

For potential structural monitoring of a long-span suspension bridge [Conte 

et al., 2006], a sample distributed data acquisition cluster built around a National 

Instruments PXI-1045 18-slot PXI Chassis with a National Instruments PXI-8186 

PXI Embedded Controller (Pentium IV processor, 1 GB of RAM, and 100 GB hard 

drive) is presented. The National Instruments PXI-1045 18-slot Chassis is then 

populated with sixteen PXI-6130E Data Acquisition Boards, providing up to 512 

channels of 16-bit analog differential input or over 1000 channels of single-ended 

analog input. To measure the low frequency response of the bridge, it is intended to 

use a sampling rate of 200 samples per second with this system, much less than the 

maximum sampling rate of 3.125 kS/s. This combined with the 16-bit analog-to-

digital converter makes these boards a reasonable selection. Because of the 

relatively slow sampling speed, anti-aliasing filters are not included with these 

systems. In addition, as these distributed data acquisition systems are meant to 

accommodate a variety of different sensor types, each with their own power 

requirements, signal conditioning is not be handled through the PXI chassis. The 

distributed data acquisition system shown in Figure 2.22 is similar to the system 

employed on the testbed in Chapter 9. 
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Figure 2.22: Typical Distributed Data Acquisition Cluster 
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For local damage detection, where sample rates on the order of 1 kHz are 

necessary, high-speed data acquisition systems are required. As with the 

conventional data acquisition system previously described, on extended structures 

multiple high-speed systems will be employed, each collecting data from a cluster 

of sensors. Each high-speed data acquisition unit (Fig. 2.23) supports 128 channels 

of simultaneously sampled analog input, with signal conditioning and anti-alias 

filtering. The core of the high speed acquisition system is a National Instruments 

PXI-1045 18-slot chassis with a National Instruments PXI-8186 RT Embedded 

Controller. The PXI-8186 RT utilizes a 2.2 GHz Pentium IV processor with 1.0 GB 

of RAM and features dual-boot capabilities (Real-Time operating system and 

Windows XP). For stand-alone bridge monitoring operation, the data acquisition, 

local data processing, and data transmission codes are embedded on the system so 

they start automatically when the system boots, thereby requiring no human 

interaction. Within each PXI-1045 chassis, sixteen PXI-4472 Dynamic Acquisition 

Signal Modules are situated. The PXI-4472 board has eight analog inputs with 24-

bit resolution delta-sigma modulating analog-to-digital converters (that 

simultaneously digitize the input signals at software programmable rates from DC 

to 45 kHz). In addition to the acquiring data, the PXI-4472 incorporates for each 

channel Integrated Electronic Piezoelectric (IEPE) signal conditioning and anti-

aliasing filters (both analog and real-time digital filters implemented in the 

hardware). 
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Figure 2.24 shows how a typical distributed sensing array would be 

employed on a suspension bridge. This system is composed of a central distributed 

data acquisition cluster, 2 high-speed acquisition clusters, and 2 image 

acquisition/processing clusters (discussed in Section 2.4.4). 

 

 

Figure 2.23: High Speed Data Acquisition Cluster 
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Figure 2.24: Typical Distributed Sensing Array on Extended Structure 

 

2.4 Image Acquisition 

2.4.1 Low-Cost CCD Cameras 

The first video acquisition method involves the use of a standard analog 

camera with a  generic video acquisition board.  An example is the use of a typical 

charge-coupled device (CCD) camera (such as the one shown in Figure 2.25) with 

an Osprey 100 (Fig. 2.26) video capture card 

(http://www.viewcast.com/products/osprey.html).  Using commercial video-

streaming technology (e.g., RealPlayer http://www.realplayer.com or Microsoft 
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Windows Media Player http://www.microsoft.com/windows/mediaplayer), a live or 

recorded video signal can be sent to a remote user in near real-time.  

 While useful (http://webshaker.ucsd.edu [Elgamal et al., 2005a,b]) this 

method still suffers from problems associated with loss in image quality due to 

signal compression and difficulty in converting the streamed video into a format 

suitable for image processing (such as jpg stream) and archiving. 

 

 

 

Figure 2.25: Typical Charge-Coupled Device (CCD) Camera 

(http://www.finecctv.com/) 

 

 



 53

 

Figure 2.26: Osprey 100 Video Capture Card 

(http://www.viewcast.com/products/osprey.html) 

 

The MATLAB Image Acquisition Toolbox 

(http://www.mathworks.com/products/imaq/) implements an object-oriented 

approach to image acquisition. Using toolbox functions, an object is created that 

represents the connection between MATLAB and specific image acquisition 

devices (such as an Osprey 100 card). Using properties of the object, it is possible 

to control various aspects of the acquisition process, such as the amount of video 

data to capture. Once a connection to a device is established, image data is acquired 

by executing a trigger. In the toolbox, all image acquisition is initiated by a trigger. 

The toolbox supports several types of triggers that allows for controlling when an 

acquisition takes place. For example, using hardware triggers one can synchronize 

an acquisition with an external device.  Similar to the National Instruments setup 
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detailed in Section 2.4.3, the advantages are the ability to better control the 

acquisition rate, improved time-stamping, and formatting output. 

2.4.2 Network Cameras 

A Network Camera is a camera with a built in Internet web server, which is 

connected directly to a 10/100 Mbit Ethernet network.  Live images, at up to 30 

frames per second, are viewed directly from a web browser. An example is the 

AXIS 2120 (Fig. 2.27) Network Camera 

(http://www.axis.com/products/cam_2120), currently employed on the UCSD 

composite decks testbed (details can be found in Chapter 3), which is as a stand-

alone camera, with a built in web server. In the basic mode of operation you use the 

URL of the camera to access the images and the internal web pages of the camera. 

Operating in this mode, there is no need for an additional PC as the unit acts as its 

own standalone web server.  In addition, the camera can transmit images to a 

remote computer via an FTP connection.   
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Figure 2.27: Axis 2120 Network Camera (http://www.axis.com) 

 

2.4.3 Image Acquisition Boards 

National Instruments offers several PCI and PXI image acquisition boards 

(http://sine.ni.com/apps/we/nioc.vp?cid=1292&lang=US).  These boards connect to 

any color or monochrome camera (similar to the Osprey board discussed 

previously) through either S-video or BNC cable.  However, these boards work 

with National Instruments LabVIEW software or C++ for controlling the 

acquisition and output formats.  An example (Figure 2.28) is the NI 1411 board 

(http://sine.ni.com/apps/we/nioc.vp?cid=11356&lang=US) which is capable of 

acquiring color images at up to 30 frames per second.  A distinct advantage with 

this system over the previous methods is the ability to accurately time stamp the 
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acquired images, especially when connected to the data acquisition computer and 

images are acquired simultaneously with sensor data. 

 

Figure 2.28: National Instruments 1411 Image Acquisition Board 

(http://sine.ni.com/nips/cds/view/p/lang/en/nid/11356) 

 

2.4.4 Image Acquisition Cluster for Real-Time Feature Extraction 

In full-scale structural monitoring, image acquisition/processing systems  

will allow for analyzing traffic flow on a bridge as well as monitoring low 

frequency dynamic response of select bridge subcomponents. In addition to 

performing image acquisition, these systems will perform local processing on the 

recorded images for feature extraction. The information derived from the image 

analysis algorithms along with segments of the compressed video can then be 

streamed for archival.  
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A sample image acquisition cluster (Fig. 2.29) may be composed of a 

National Instruments PXI-1031 4-slot Chassis with a National Instruments PXI-

8186 PXI Embedded Controller (Pentium IV processor and 1 GB of RAM) and a 

National Instruments PXI-8252 IEEE 1394 Interface Board. Each cluster can 

accommodate up to three fire wire (IEEE 1394b) cameras, such as Sony’s DFW-

X710 IEEE 1394 color digital cameras. These cameras incorporate a 1/3 type 

800,000 pixel CCD, partial scanning with 16x16 zones, selectable output modes, 

and an external trigger function with an exposure range from 1/100,000 to 17.5 

seconds (allowing for the clear capture of fast moving objects or still images in low 

light environments). Fire wire cameras allow for longer cable runs than are possible 

with analog or other digital cameras. By employing a Prosilica FB1394B Bridge 

Set to convert from IEEE 1394b (fire wire) to IEEE 1304a (optical fiber) back to 

IEEE 1394b, cable runs of over 1 mile are possible with negligible signal 

degradation. The bulk of the cable run is made using the IEEE 1304a cable. For 

monitoring the flow of traffic and the low frequency response of a bridge, a 

medium speed frame rate of 15 pictures per second could be used, thereby allowing 

for real time processing of the images from cameras attached to each of the 

acquisition clusters. 
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Figure 2.29: Typical Image Acquisition Cluster 
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2.5 Temporal Synchronization of Sensor Data 

2.5.1 Synchronizing Analog Sensors 

 There exists an obvious need to synchronize all of the data acquired from 

the collection of sensors dispersed on a structure. This issue becomes a concern 

when calculating mode shapes based on recorded accelerations or strains (collected 

by one or more data acquisition clusters) as it is critical the data be synchronized or 

the calculations of the phase angle, necessary for determining the relative sign of 

the shape, will be greatly compromised. Another example (as examined in Chapter 

4) involves an array of strain gages installed on a series of composite bridge-deck 

panels situated in a roadway on the UCSD campus and correlating these 

measurements with video recorded of passing traffic. 

 For this problem, the simplest cases are synchronizing the data collected 

from sensors connected to a single I/O device or from multiple I/O devices installed 

in a single acquisition cluster. For the single device case, the timing is controlled by 

the scan clock on the acquisition hardware through the data acquisition software. 

For multiple devices, this can be slightly more complicated. With PXI-based 

hardware, the timing is handled by the PXI chassis clock. If multiple PCI boards 

are being used there is no single clock responsible for synchronizing the acquisition 

from all of the boards. This means any acquisition taken will only be accurate to 

within one time step of the acquisition rate. However, if only moderate accuracy is 

required, the data may be oversampled and then resampled to provide sufficient 

synchronization. However, this only works with hardware installed in a single 
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acquisition cluster.  The synchronization of data collected from multiple systems is 

addressed in the following sections.  

2.5.2 Synchronizing Multiple Data Acquisition Computers 

 Synchronizing the data collected by multiple data acquisition clusters or 

sensor and video data (either from an image acquisition cluster or network camera) 

requires additional considerations. Three approaches to this problem are discussed 

in the following sections. 

2.5.2.1 National Institute of Standards and Technology (NIST) Internet Time 

Service 

The NIST Internet Time Service 

(http://www.boulder.nist.gov/timefreq/service/its.htm) allows users to synchronize 

computer clocks via the Internet. The service responds to time requests from any 

Internet client in several formats including the DAYTIME, TIME, and NTP 

protocols. 

 The Network Time Protocol (NTP) is the most commonly used Internet 

time protocol, and the one that provides the best performance. Large computers and 

workstations often include NTP software with their operating systems. The client 

software runs continuously as a background task that periodically gets updates from 

one or more servers. The client software ignores responses from servers that appear 

to be sending the wrong time, and averages the results from those that appear to be 

correct. 
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Many of the available NTP software clients for personal computers do not 

perform any averaging. Instead, they make a single timing request to a signal server 

(just like a Daytime or Time client) and then use this information to set their 

computer’s clock. The proper name for this type of client is SNTP (Simple 

Network Time Protocol). 

The NIST servers listen for a NTP request on port 123, and respond by 

sending a udp/ip data packet in the NTP format. The data packet includes a 64-bit 

timestamp containing the time in UTC seconds since January 1, 1900 with a 

resolution of 200 ps [http://www.boulder.nist.gov/timefreq/service/its.htm].  

Commercial software is available for making use of NIST Internet Time 

Service for updating the system clock in a data/video acquisition computer. For 

example, Absolute Time Server (http://www.adjusttime.com/atcs.php), a full-

featured time server, works as a WinNT service and is fully RFC-868 and RFC-

2030 compatible provides network level time synchronization on Windows 98, 

ME, NT4.0, 2000, and XP platforms. This software acts as a background process, 

has very low system resources consumption, and can be started before user logon. 

Absolute Time Server works by periodically checking and synchronizing the 

computer’s system clock with NIST time servers. 

 Problems with this program are associated with possible network latency.  

Consequently, the system clock can differ from the NIST clock by as much as 

several seconds.  In addition, programs which make use of the computer’s system 

clock, like LabVIEW when time-stamping recorded data, have problems when the 
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system clock updates in the middle of an acquisition.  Most times, the LabVIEW 

software ignores the updated time.  For the time change to take affect in the 

LabVIEW software, the data acquisition program must be manually stopped and 

restarted. 

A more attractive option for time synchronization is to incorporate 

NIST/NTP synchronization directly into the data acquisition process.  In 

LabVIEW, which has been heavily employed by the author in all of the monitoring 

systems, it is possible to make use of the included TCP functions to establish a 

connection with an NIST time server and using a single timing request on the 

signal server read the necessary information to reset the computer’s system clock.  

A sample of this protocol [Gatling, 2005] is shown in Figure  2.30-2.32. The basic 

steps involved in this process are: 

1. Check the hour on the system clock for the first data point coming out of the 

current buffered data set. 

2. If the hour is the same as from the previous iteration, no action is taken. 

3. Else, a connection with a specified NIST Time Server is established and a 

new time is read. The connection is closed and the new time is used to reset 

the system clock. 
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Similarly to the Absolute Time Server software, this method is also 

susceptible to problems associated with possible network latency.  Consequently, 

the system clock can still differ from the NIST clock by as much as several 

seconds.  However, there is not a problem with the data acquisition software 

recognizing the updated time. 

2.5.2.2 GPS Synchronization 

The most reliable way of updating the system clock on a computer is to 

make use of a GPS clock.  The price of GPS equipment has finally dropped to the 

point where it is affordable. Receiver/decoder modules are available for under $100 

and antennas for about $50. Complete hacker-friendly units with antenna, receiver, 

decoder, and detailed documentation can be had for $400 or less 

(http://www.gpsclock.com). 

 With only the most basic GPS serial output, typical accuracy is only 

approximately one-second.  To improve on this accuracy, more advanced time and 

frequency receivers should be utilized.  These improved hardware components can 

bring the resolution down to the 100 nanosecond level.  For future research on 

large-scale structures, in particular when synchronization is required on multiple 

remote computers, this option is being explored.  

In future systems, Global Positioning System (GPS) will serve a dual role in 

the envisioned structural health monitoring network. Using a GPS receiver, the 

coded satellite signals may be utilized for computing time and displacements at the 
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location of the receiver. The output from the GPS receiver along with a National 

Instruments PXI-6608 Timing I/O Module allows the scan clock on any of the PXI 

chassis to be synchronized with the GPS signal. When possible, only one 

acquisition computer in a particular segment of the bridge needs to be connected 

through a timing I/O module to a GPS receiver. Neighboring acquisition 

computers, located within approximately 100 meters, can be synchronized to this 

particular PXI chassis using the PXI trigger bus. With this system, we do not 

experience either of the problems associated with the NIST time servers – namely 

network latency and conflicts with the data acquisition are no longer a problem.  

The biggest problems associated with GPS clocks are the higher costs and complex 

installations. 

2.6 Data Transmission 

As mentioned in Chapter 1, early efforts in structural monitoring involved the 

use of data logging hardware, which required visiting the installation site to 

manually retrieve the recorded data. This method of data collection does not lend 

itself to the detection of rapidly occurring damage resulting from events like 

earthquakes and acts of terrorism. There exists an obvious need to be able to move 

the acquired data from a remote bridge location to a more convenient location to 

both verify proper operation of the data acquisition system and to perform post 

processing operations.  The rapid advances and expansion of broadband Internet 

has made possible the periodic and even continuous transmission of data. Several 

methods are well suited for moving these large bodies of data, including: TCP/IP, 
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FTP, and mapped network drives. The advantages and disadvantage of each of the 

methods are summarized in the following sections. 

2.6.1 Data Transmission Protocols 

2.6.1.1 Mapped Network Drive 

Mapped network drives are the easiest way to save data over a network. In 

principal, this is very similar to saving a file on a shared folder on another 

computer (for example, by using Microsoft’s network neighborhood). This method 

was employed for transmitting data recorded by the 2-channel peak hourly strain 

system deployed on the UCSD composite bridge-deck panels. The data, once 

acquired, is placed into five-second packets and saved over the Internet to a 

mapped network drive. Details of this system are provided in Chapter 3. From this 

exercise, several limitations with mapped network drives were encountered. First, 

and most importantly, this transmission method is only suited for local 

transmission. For remote monitoring, where the acquisition and archiving 

computers are on separate networks, this transmission method is unavailable. In 

addition, this method only works on extremely stable networks. If a network outage 

is experienced, no data can be transmitted which will crash the data transmission 

program. This can be extremely dangerous if this transmission process is 

incorporated into the data acquisition program.  

2.6.1.2 File Transfer Protocol (FTP) 

 File Transfer Protocol (FTP) provides a means for transferring individual 

files, one at a time, from one computer to another over the Internet.  There are two 
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FTP modes: normal (or active) and passive (PASV). In both modes, the user 

allocates two ports for file transfer, which are the control and data channels. For 

security reasons, the passive method is preferred as the data channel is established 

by the external user as where in normal mode it is initiated by the FTP server. In 

normal mode, the FTP server creates the outbound connection to the external user 

thereby creating a problem for security and firewall software 

(http://war.jgaa.com/ftp/?cmd=show_page&ID=ftp_pasv). 

 To send data using FTP protocol from a remote location, the connection 

with the FTP server is established, the data is sent, and the connection is then 

severed (Fig. 2.33).  This method is well-suited for transferring large files like 

compressed periodic sensor data; however, it does not work as well for 

continuously streaming data.  The reason is for each transfer operation, the 

connection with the remote server must be established before the data packet can be 

sent.  Constantly connecting and disconnecting from the FTP server is a wasteful 

step. Consequently, a better transfer method using TCP/IP protocol is explored in 

the following section. 
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Figure 2.33: LabVIEW FTP Put File Command 

 

2.6.1.3 TCP/IP 

With Transmission Control Protocol / Internet Protocol (TCP/IP) it is 

possible to communicate over single networks or interconnected networks 

(Internet), including those separated by large geographical distances. TCP/IP routes 

data from one network or Internet computer to another, and because it is available 

on most computers, it can transfer information between diverse systems. 

As with all other communications protocols, TCP/IP is composed of layers 

(http://www.yale.edu/pclt/COMM/TCPIP.HTM):  
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• IP - is responsible for moving packet of data from node to node. IP 

forwards each packet based on a four byte destination address (the IP 

number).  

• TCP - is responsible for verifying the correct delivery of data from 

client to server. TCP adds support to detect errors or lost data and to 

trigger retransmission until the data is correctly and completely 

received.  

• Sockets - is a name given to the package of subroutines that provide 

access to TCP/IP on most systems. 

With a TCP/IP connection, it is not necessary to save any of the acquired 

data to the local disk.  Instead, the data can be streamed directly from the system 

memory.  In addition to providing faster data streaming rates, this method also 

reduces the requirements for the data acquisition computer.  The TCP/IP operation 

can be performed as part of the LabVIEW data acquisition program.  In this 

scheme, the data is acquired from the buffer, placed in packets, and sent via the 

TCP/IP connection.  This method is currently being employed to stream the 16 

channels of data from the UCSD composite deck sections 

(http://healthmonitoring.ucsd.edu/streamdata.jsp) described in detail in Chapter 3. 

The basic framework of sending data via a TCP/IP connection is outlined in 

the following sample code written in National Instruments LabVIEW software 

(http://www.ni.com/labview/). This program (Fig. 2.34) was written to run in the 

background and transmit data stored locally by a data acquisition program. Each 
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packet of data acquired by the acquisition program was written to the hard drive 

and the filename was appended to a LabVIEW global variable. This program relies 

on two while loops (Fig. 2.35). The first loop, referred to as the outer loop, is 

responsible for opening and closing the TCP/IP connection. The second (inner) 

loop controls and monitors the data transmission and deletes the sent data from the 

local hard drive. 

The first step in this program is to establish the TCP/IP connection labeled 

1a in Figure 2.35. To accomplish this, a path (IP address), port number of the 

TCP/IP listener, and a time out are specified (Fig’s. 2.34 and 2.35) in the outer 

loop. Next (step 1b in Fig. 2.35), the program opens the global variable “Data To 

Be Sent” and checks the file size to determine if there is new data to be transmitted. 

If no data is found (1c in Fig. 2.35), the program waits the number of milliseconds 

specified by “Seconds to Wait” before checking again for new data. 

If one or more data files are found, the program opens up the first of these 

files (2a, Fig. 2.36) and determines the size of the data set in bits (2b, Fig. 2.36). 

Next, the program sends the data using the TCP/IP connection (2c, Fig. 2.36) and 

checks the amount of data sent (2d, Fig. 2.36). The amount of data to be sent is 

compared to that which was sent (3a, Fig. 2.37). If these numbers are identical, the 

data files is deleted (3b) and the filenames is removed from the global variable 

containing the list of data still to be sent (3c, Fig. 2.38). If a data transmission error 

is encountered as indicated by the size of the data not equaling what was sent (4a, 

Fig. 2.39) or a time out during the TCP/IP write, the inner loop is closed (4b, Fig. 
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2.39) and the TCP/IP connection is closed (4c, Fig. 2.39) and then reset (4d, Fig. 

2.39) in the outer loop. 

 

 

Figure 2.34: LabVIEW Front Panel of TCP/IP Data Streaming Program 
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 A necessary component of a TCP/IP data stream is the development of a 

program to read the data from the specified TCP/IP data port and to load it into the 

database.   For the testbed detailed in Chapter 3, this is being accomplished using a 

PERL script loader program.  This program reads and stores 10,000 time steps of 

data from the TCP/IP connection and stores them to a buffer.  Once the 10,000th 

row is read, the program loads all of the data into the DB2 database, clears the 

buffer, and restarts the process.  This insertion process (10,000 rows) takes 

approximately 20 seconds on a conventional PC desktop.   

 A potential bottleneck in the program potentially exists when multiple 

computers are streaming data to a single machine which handles buffering and 

insertion into the database (Fig. 2.40).  The insertion of the data into the database is 

the most time consuming process and if the data is not inserted quick enough, the 

insertion computer will eventually run out of memory.  Among the possible 

solutions to this problem are: using a faster computer (which includes using SCSI 

hard drives in conventional computers or utilizing high-end database machines, 

such as the IBM Regatta machines) or to employ multiple computers in the data 

insertion phase, as shown in Figure 2.41. 

 To test the portability of the developed data buffering/insertion program on 

future expanded monitoring systems incorporating hundreds of sensors, a test was 

conducted using simulated data.  100-channels of simulated data (0.005 time step) 

were generated on three separate computers and streamed using TCP/IP protocols 

to a single buffer/insertion server. The ability of the server to manage the large data 
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flow was verified in successful uploading of all of the simulated data into a 

database, over a two week period, without dropping any time steps. 

 

 

 

Figure 2.40: Single Insertion Data Loader 
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Figure 2.41: Multi Insertion Server Model 

 

2.6.2 Requirements on Bandwidth 

 The amount of data (including both sensor and video data) capable of being 

transmitted from a remote monitoring site is governed by the upload speed of the 

employed Internet Service Provider (ISP) and download speed on the archiving 
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side. As the archiving databases are connected to high speed networks (T1 or 

better), it is the upload speed available at the field sites which are critical. 

2.6.2.1 Broadband Internet Connectivity 

 A brief comparison of typical Internet upload (uplink) speeds is provided in 

Figure 2.42. Within this figure, it can be seen that dial-up access can only provide 

up to 3% of what is available through cable modems. DSL, while faster than dial-

up, is still less than 20% of an optimal cable connection. Satellite-based Internet 

speeds vary greatly from 256 kilobits-per-second (kbps) on the DW4020 terminal 

to 1.6 Megabits-per-second (Mbps), or 80% of cable speeds. Finally, within cable 

service, these are widely differing speeds based on which cable package is 

purchased. Also with cable Internet, the speeds reported in Figure 2.42 are the 

maximum possible. In practice, cable service provides tend to cap these numbers at 

values significantly below the optimal ones shown here. 
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Figure 2.42: Comparison of Typical Upload Speeds (January 2006) 

 

2.6.2.2 Alternate Internet / Network Solutions 

To bring data from a remote location where conventional broadband-

Internet connections (such as DSL and cable) are not available, the feasibility of 

satellite-based Internet is being explored.  In future full-scale monitoring 

applications, transmitting data from the bridge will be accomplished using separate 

satellite-based data links attached to each of the data/image acquisition clusters 

(Fig. 2.43). The system investigated is the DIRECWAY system (www.hns.com). 

Hughes Network Services (HNS) DW6000 Terminal system utilizes two-way 
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satellite service to provide broadband IP anywhere in the world. The DW6000 

receives and transmits data through the system’s antenna and outdoor electronics, 

over the satellite, and via the DIRECWAY Network Operations Center. TCP 

connections can be initiated to or from hosts at the remote locations. An additional 

advantage is the intranet communications are secure and isolated from other 

enterprise intranets and from remotes accessing the “public” Internet operating in 

the same network. With the DW6000, information rates of 48 Mbps for receiving 

and 256 kbps are possible.  

The 4020 terminal (Fig. 2.44) provides high-performance delivery of 

accelerated IP traffic.  It is compatible with all common TCP/IP applications, UDP, 

or RTP traffic and works with any OS which supports IP over Ethernet. The 

satellite-dish (Fig. 2.45) supports Ku-band frequency band (14.0 – 14.5 GHz 

uplink, 10.95 – 12.75 GHz downlink) with outbound carrier data rates of 4.6 Mbps 

to 48 Mbps and inbound carrier data rates: 64, 128 or 256 Kbps.  Newer systems, 

such as the DW7700 (Fig. 2.46), support speeds scalable up to 90 Mbps and upload 

speeds of 1.6 Mbps.  
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Figure 2.43: Satellite-Based Data Transmission from Bridge to UCSD Campus 

(http://healthmonitoring.ucsd.edu) 
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Figure 2.44: DIRECWAY 4020 Two-Way Broadband Terminal (www.hns.com) 

 

 



 87

 

 

Figure 2.45: DIRECWAY Satellite Dish Installed on the SERF Building at UCSD 
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Figure 2.46: DIRECWAY DW7700 Broadband Satellite Router (www.hns.com) 

 

2.7 Data Archiving 

One of the main issues facing the structural health monitoring community is 

not the lack of measurements per se, but rather how to measure, acquire, process, 

and analyze the massive amount of data that is currently coming on-line in order to 

extract useful information concerning the condition assessment of the monitored 

structures [Elgamal et al., 2002].  A first step in this direction is the housing of the 

incoming data. Simply acquiring data and storing it as a series of text (ASCII) files 

is not a particularly desirable or practical strategy especially when performing post-

processing data analysis (although this is still common with many current 

monitoring systems). Consequently, a series of DB2 databases have been 

established to house the sensor and video data from the UCSD composite bridge-
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deck testbed (http://healthmonitoring.ucsd.edu/compositedeck.jsp). Details 

regarding these particular databases is found in Section 3.4. 

Within these databases, a key consideration to the system architecture is the 

design of the database schema, which will be used to catalogue sensor network 

information, sensor data and metadata, as well as derived data products for 

distribution and further analysis.  Among the challenges of building a 

comprehensive schema are ensuring that it will be scalable with the large volumes 

of data that it will eventually contain, as well as facilitating the querying and 

analysis of the data from within the database. Monitoring the health of civil 

infrastructure systems requires a comprehensive approach to data management and 

analysis. The complexity of data sources (including real-time sensor and video 

streams, and the output of physics-based and statistical models), and the need to 

perform advanced near real-time and off-line analyses (often requiring the 

integration of real-time sensor data with simulation model output) necessitates a 

scaleable high-performance computational infrastructure.  

A central component is a data management system capable of storing raw 

and preprocessed sensor data from multiple sensor streams, video data from 

potentially multiple cameras, simulated data produced by load and sensor response 

models, and derived data produced by a variety of analysis tools. The role of the 

system is to provide query support to the structural analyst who may wish to 

retrieve stored or computed information from a single data source, or from a virtual 

data source constructed by integrating multiple actual data sources. As shown in 
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Figure 2.47, the data management system must be able to interface with a variety of 

analysis tools, either to export data to them, or to store back results of computations 

performed by these engines (as with the image processing discussed in Chapter 4 

and neural network strain analysis in Chapter 8 [Yan et al., 2005]), producing 

derived data that may itself be queried. 

2.8 Query Support for Archived Data 

 To make use of the data after it has been archived, it must be made available 

for use with the analysis software. This means being able to isolate specific 

portions of the recorded data from within the entire recorded data set and load them 

for analysis. For this reason, the data was stored within a series of databases, rather 

than just storing series of text files and images on a large number of hard drives. 

 These database systems provide a means for quickly and easily accessing 

any or all of the recorded data and metadata. Now, for example to look at recorded 

strain time histories in which peak strains exceed a certain threshold, a quick search 

of the metadata tables provides this information. In contrast, if this was done by 

opening each of the corresponding data text files, loading the data from within the 

files, and then searching for the maximum values, the amount of time required 

would be orders of magnitude greater. As detailed in Section 3.5.1, the data 

recorded from the UCSD testbeds may now be queried using either a direct 

connection to the DB2 databases or on-line using a web browser and the developed 

web portal. 
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Figure 2.47: Envisioned Integration of Sensor Networks with Database Systems 

and Web Portal: Courtesy of Tony Fountain, SDSC [Elgamal et al., 2003c] 
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2.9 Web Portal for Data Dissemination 

To provide users with limited or no database programming skills access to the 

recorded data, a web portal was created (Fig. 2.48). This portal (created with the 

assistance of project webmaster Minh Phan, http://healthmonitoring.ucsd.edu) 

allows users to utilize and apply pre-written queries to all of the data recorded from 

the UCSD structural monitoring testbeds. Using a standard web browser, like 

Internet explorer, world wide access is made available for browsing through the 

data returned by these queries.  

On the composite bridge deck, these functions include: 

• The ability to query the raw data for the peak strains registered over a 

period of time 

(http://healthmonitoring.ucsd.edu/compositedeck2/search1.jsp and 

http://healthmonitoring.ucsd.edu/compositedeck16/searchPeak.jsp). 

• Use the labeled vehicle type data set to examine strain time histories 

corresponding to a particular type of vehicle 

(http://healthmonitoring.ucsd.edu/compositedeck2/searchVehicleType.jsp, 

http://healthmonitoring.ucsd.edu/compositedeck16_all/vehicle16.jsp, and 

Section 4.6 of this paper). 

• Browse through processed/analyzed data, such as extracted features from 

recorded video (http://healthmonitoring.ucsd.edu/compositedeck16 

/search5.jsp and Section 4.5 in this document) and vehicle classifications 

assigned from an employed neural network 
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(http://healthmonitoring.ucsd.edu/compositedeck2/predict.jsp, Fig. 2.49 

[Yan, 2006]). 

Within the UCSD testbed, Web Services are employed to achieve modularity 

and extensibility between the various components of the system and also between 

this and other systems.  Initially, Web Services seemed most appropriate in the 

areas of system and sensor network-related configuration and control, as an 

interface to the data being collected and the analysis routines provided. Also 

investigated was the use of Web Services in other areas, including: interaction 

between the analysis and processing components of the system, data and video 

streaming, as well secure data access and transport.  Furthermore, the Web Services 

approach provides a vendor-neutral, platform-independent, standards-based, and 

industry supported means of achieving this decoupling. Further details regarding 

the web portal are provided in Section 3.5. 
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Figure 2.48: Web Portal for UCSD Structural Monitoring Testbeds 
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Figure 2.49: Web Page for Displaying Assigned Labels Using A Neural Network 

Applied to Recorded Strains [Yan, 2006]. 
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2.10 Summary 

Within this chapter, the elements composing a state of the art structural 

monitoring system have been detailed. First, an overview of the dynamic and 

environmental sensors required for a heterogeneous sensor array was presented. For 

continuous monitoring applications, where data logging is not practical, PC-based 

data/image acquisition has been addressed, and a key issue of data/image 

synchronization was noted. Data transmission protocols for streaming data from a 

remote bridge site to more suitable location were explored. As simply storing 

acquired data as a series of a text files is not a viable option in post-processing data 

analysis, issues related to database systems were discussed. A test was conducted in 

which data from 300 simulated sensors were streamed to a single 

buffering/insertion server which was able to successfully manage the flow of data 

and upload the entire data set (generated over a 2 week period) to a database. 



 

 97

3 Application – UCSD Composite Bridge-Deck Panels (Testbed for 

Framework) 

Within this chapter, a demonstration testbed for the application of the 

developed integrated structural monitoring framework is presented. The monitoring 

system has been deployed on a series of composite bridge-deck panels located on 

the University of California, San Diego campus which are subject to traffic loading. 

A brief background on the bridge decks (including the reason they were selected 

for this study) is provided followed by a summary of the equipment used for the 

data and image acquisition. Next, issues related to data/video synchronization, data 

transmission, data archiving, and web-based data dissemination are discussed. 

Finally, details of the traffic data that has been recorded are summarized. 

3.1 Reason for Using As a Testbed 

For testing the algorithms and methodologies developed as part of a NSF 

sponsored ITR research grant (for which the material presented within this paper 

directly relates), it was decided to select a small structure on the UCSD campus to 

instrument and monitor. This testbed for monitoring technologies would serve a 

crucial role in developing, troubleshooting, and evaluating the reliability of all 

aspects related to structural monitoring.  This structure had to be located nearby 

and easily accessible to allow for constant modifications required during the initial 

installation.  
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The University of California, San Diego (UCSD) composite bridge-deck 

panels [Zhao, 1999 under the supervision of Professors Vistasp Karbhari and 

Frieder Seible of UCSD] were selected for their existing array of strain gages and 

location near the Science and Engineering Research Facility (SERF) Building, 

centrally located on the UCSD campus. These bridge decks were installed (with 

instrumentation) in a roadway on campus and are subjected to a nearly continuous 

stream of traffic (including campus shuttle busses, passenger vehicles, delivery 

trucks, and construction equipment). As shown in Figure 3.1, the panels are located 

between the two white lines traversing the road. This structure proved extremely 

useful and convenient as it was already instrumented with an array of strain gages 

and existing conduits brought all of the cables from the sensors into one of the labs 

in the SERF building.  By having ready access to an existing sensor array (Fig. 

3.2), the expenditure of time required to have the monitoring testbed up and 

running was greatly reduced. To begin measuring strains on the bridge decks, all 

that had to be done was connect the strain gage leads to the appropriate signal 

conditioning modules, which were then run to the data acquisition hardware. In this 

regard, the time consuming, expensive, and labor intensive operations of selecting a 

structure, receiving necessary permissions, and installing the sensors were 

bypassed. Since the signal from all of the strain gages, passed directly into a nearby 

lab (Fig. 3.3), it was decided to house all of the data acquisition hardware within, 

which proved to be both time and cost saving as environmental enclosures were not 

required. Additional advantages included the presence of high speed Internet within 
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the lab which enabled continuous data transmission and the presence of a large 

window overlooking the composite decks that provided a suitable location for 

installing a camera to record passing traffic. 

 

 

Figure 3.1: UCSD Composite Bridge-Deck Panels 

 

 

Figure 3.2: Existing Strain Gage Array 
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Composite 
Bridge Decks

SERF Building
Rm. 136

 

Figure 3.3: Aerial View of Composite Bridge Decks and SERF Building (Photo 

Courtesy of UCSD FacilitesLink, https://facilities.ucsd.edu) 

While the composite bridge decks were extremely useful in getting a 

functional monitoring testbed operational in the shortest time possible, one 

disadvantage was associated with the layout of the existing sensor array. In 

adopting this testbed, it was necessary to make due with the existing sensor array as 

changes to the sensor network are not easily accomplished.  To access the sensors, 

the decks would have to be removed from the roadway and temporary concrete 

decks (which had to be cast in advance) installed in their place.  This work also 

requires shutting down at least one lane of traffic on a campus road used heavily by 
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shuttle busses and delivery trucks. While useful for monitoring deformation during 

static load testing, under traffic loading the existing sensor array provided relatively 

redundant information on the west side of the composite bridge decks and much 

less information from the east side. Further, while over 30 sensors were originally 

installed in 1996, many of them (including all of the displacement transducers) 

were no longer functional. When the project was initiated, 16 of the strain gages 

functioned (Fig. 3.2); however, upon completion only 14 were still operational. 

Again, replacing gages or adding other types of sensors to the decks was therefore 

not a possibility as this necessitated removing the decks. 

3.2 Background 

The three field-size fiber-reinforce polymer (FRP) deck panels and one 

reinforced concrete deck panel (Figures 3.4 and 3.5) were installed along a roadway 

(spanning an underlying open instrumentation conduit) on the campus of UCSD in 

the summer of 1996 [Zhao, 1999]. Each panel measures 4.58 m (15 ft) in length 

and 2.29 m (7.5 ft) in width. The instrumentation conduit was excavated in the 

street and reinforced concrete end-supports were cast with a clear span of 4.0 m (13 

ft). The longitudinal direction of the panels is parallel to that of traffic direction on 

the street. The panels were connected to each other and to the curbs by shear keys 

filled with concrete (shown in Figure 3.6), and supported at the ends in the 

longitudinal direction on hydrostone. Polymer-concrete wearing surface was 

applied individually to the top surface of each panel prior to installation. The 
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installation of one of the panels is shown in Figure 3.7.  These installed panels were 

proof-tested to approximately 36 tons (80 kip) prior to installation. 

As reported in Zhao, 1999, the objective of the original test setup was to 

monitor the change in deflection response of the deck panels over time. This was 

done by comparing the panel behavior from time to time with the assumption that 

the shear key connections between neighboring decks are rigid and do not degrade 

over time. Thus, changes in deflection under the same load over time would reflect 

a stiffness change of the deck panels only. These efforts included measuring 

deflection of the deck panels at different time intervals under the same static 

loading conditions. Two tests - one on February 20, 1997 and the other on April 3, 

1999 - were conducted [Zhao, 1999].  Dead load was applied at the center of each 

panel using two reinforced concrete blocks with a total weight of 108 kN (24.3 

kip). Readings from strain gages mounted on the top and bottom surfaces of the 

deck panels (at mid- and quarter span) were recorded [Zhao, 1999].  No visual 

damage in either the surface of the composite panels or the shear keys between the 

panels was observed at the time of the tests. Further details regarding the test setup 

and experimental results are available in Zhao, 1999. 
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Figure 3.4: Construction Details of Deck Sections.
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Figure 3.5: Schematic of the Cross-Sections of the Decks (see Fig. 3.3 for HD, G1, 

G2, and RC Definitions, Adapted from Zhao, 1999). 
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Figure 3.6: Concrete-filled Shear Keys [Zhao, 1999]. 

 

 

Figure 3.7: Field installation of a FRP Composite Deck Panel [Zhao, 1999]. 
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3.3 Current Monitoring System 

On February 19, 2002, live data from selected strain gages along with audio 

and video feeds (Figures 3.8 and 3.9) became available on-line on a 24/7 basis over 

a web-site for worldwide access (http://healthmonitoring.ucsd.edu). The recorded 

audio, video, and strain data are archived within a database to provide a convenient 

environment for developing intelligent algorithms for data analyses, and for 

monitoring traffic loads. This monitoring environment is ideal for development and 

verification of such computer-based automated algorithms. 

 

 

 

 

Figure 3.8: Location of Gages 1 and 2 in Existing Sensor Array 

 

3.3.1  Experimental Setup 

The current health monitoring website setup utilizes the array of strain 

gages (Fig. 3.8) mounted on the underside of the composite decks [Zhao, 1999].   
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These sensors are connected to a Personal Computer, by means of an Analog to 

Digital (A/D) converter. Through a stand-alone software interface (LabVIEW VI 

http://ni.com/), the computer controls the acquisition of output response.  In the 

first generation system, this computer also acted as a web-server, allowing the 

remote Internet user access to the available on-line functions. Later, more 

sophisticated, versions streamed the acquired data to a remote computer where it 

was archived within a database and made available on-line through a webportal 

using improved database querying features. An attached network video camera 

along with a java refresh applet or ActiveX viewer provided a continuous live 

image to the user (Fig. 3.9). 
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Figure 3.9: Pilot Monitoring Website (http://healthmonitoring.ucsd.edu) for 

Composite Bridge-deck Panels Testbed 

 

3.3.2 Hardware Components and Data Acquisition 

The experimental hardware employed on the original pilot system was 

composed of the following items: 

• National Instruments (http://ni.com/) PCI-MIO-16E-1 analog I/O board 

(Fig. 3.10) with the following characteristics: 1.25 MS/s, 12-bit, eight 

differential analog inputs, 2 differenetial analog outputs, ± 10 V range. 

• Axis 2120 network camera (Fig. 3.11) with iPIX 180° network camera 

viewer allows for an unlimited number of users, virtual pan/tilt/zoom, 
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up to 30 frames per second 

(http://visualsecurity.com/html/ipixcam.html). 

• TML general purpose foil strain gages (Fig. 3.12, http://straingage.com) 

with 10 mm gage length. 

• Encore Model 633 strain gage bridge amplifier (Fig. 3.13)  

(http://www.encore-elec.com/m633.htm). 

 

 

Figure 3.10: National Instruments PCI-MIO-16E-1 Analog I/O Board 
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Figure 3.11: Axis 2120 Network Camera 

 

 

Figure 3.12: Typical Foil Strain Gage 
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Figure 3.13: Encore Model 633Strain Gage Bridge Amplifier 

 

The employed server computer was a PC running Microsoft Windows NT 

Server 4.0.  A multi-tasking environment allowed the Internet Information Services 

(IIS) 4.0 Web Server (http://www.microsoft.com/iis), National Instruments 

LabVIEW, and gnuplot (for generation of the figures) to run at the same time. 

These applications controlled the Web interface and data acquistion/processing. 

Coordination and execution of all tasks (Fig. 3.14) were conducted in the Web 

Server environment, by making use of HTML and Perl [Asbury et al. 1997] scripts.  

Data acquisition and basic signal conditioning (e.g., filtering) were carried out by 

LabVIEW.  A PERL script was utilized for updating the gif image of the digital 

strain data on the website (Fig. 3.9).  The script also searched through the data files 

determining the maximum values and stored these within a simple database (Fig. 

3.15) as a series of individual tables.   
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Figure 3.14: Framework for Pilot 2-Channel Peak Hourly Strain Monitoring 

System 
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Figure 3.15: Pilot Web-Based Interface for Archived Strain Database.  

 

Subsequent monitoring systems separated the data acquisition from the data 

streaming and relied on additional computers for data archiving and dissemination. 

Similar PC-based acquisition hardware was again utilized in these efforts. The 

analog to digital converter currently in use is a National Instruments 

(http://ni.com/) PCI-6031E analog I/O board (Fig. 3.16) with the following 

characteristics: 100 kS/s, 16-bit, thirty-two differential analog inputs, 2 differential 

analog outputs, ± 10 V output range.  This board, which is controlled through the 

LabVIEW software, digitizes the analog signal (voltage) from the sensors at a 
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programmable rate (in the current setup 200 Hz) and places the data in a circular 

buffer. 

When a specified number of samples are collected in the buffer, the data is 

loaded into the LabVIEW software and basic signal processing operations are 

conducted. This includes offset removal (using either the mean or median values), 

scaling (converting from voltages to units of strain), and filtering. The data once 

processed is saved to disk as an ASCII file. While these operations are taking place, 

new data continues to load into the circular buffer. Once the write is completed, the 

data is loaded into either a second LabVIEW VI or by a PERL script which handles 

the data streaming/transfer (discussed further in the following section). 

        

Figure 3.16: National Instruments PCI-6031E Data Acquisition Board and SCB-

100 Connector Block 

 

Currently, an Axis 2120 Network camera (Figure 3.12) is employed on the 

UCSD composite bridge-decks. Image acquisition is controlled directly by the 
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camera’s built in Internet web server, which is connected directly to a 100 megabit 

Ethernet network.   In the basic mode of operation, the URL of the camera is used 

to access the images and the internal web pages of the camera. These web pages 

allow for setting the acquired image size/compression and controlling the 

lighting/brightness/white balance (Fig 3.17), configuring network settings (Fig. 

3.18). Operating in this mode, there is no need for an additional PC, as the unit acts 

as its own stand alone web server. The acquisition frame rate is set through the web 

page shown in Fig. 3.19. In theory, this camera should be able to acquire up to 

25/30 images/sec, with the time-stamp embedded in the image filename; however, 

because of the limited processing capabilities of the camera’s internal processor 

and use of File Transfer Protocol to stream the images, consistent frame rates of 

only 4 FPS were achieved. 
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Figure 3.17: Internal Web Page on Network Camera for Setting Image Quality. 
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Figure 3.18: Internal Web Page on Network Camera for Configuring Network 

Settings 
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Figure 3.19: Network Camera Web Page for Setting the Image Acquisition Rate 

 

Finally, a generic analog microphone was place near the composite decks to 

record the sounds of passing traffic. This microphone was connected to the 

“microphone in” port of the data acquisition computer and was recorded using an 

additional LabVIEW VI. This VI controls the sampling rate of the audio, acquires 

the audio using a buffered acquisition, and converts each audio time history into a 
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compressed wav file. Converting to a wav file, as opposed to saving the data as an 

ASCII file, provided significant savings in file size. 

A schematic of the experimental setup, showing the interaction of the 

various components in the acquisition, streaming, and archiving phases is shown in 

Figure 3.20. Synchronizing the data from each of these sensors is of particular 

interest, especially when attempting to fuse the data from multiple instruments (i.e., 

comparing each of the strain time histories with the corresponding video). Within 

the composite deck monitoring framework, NTP servers were utilized for 

synchronizing the data acquisition computer and network camera. For the network 

camera, this was accomplished using the webpage shown in Fig. 3.21, which 

allows for specifying an NTP server for connecting the camera to. 
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Figure 3.20: Schematic of Experimental Setup for Acquiring, Streaming, and 

Archiving Data from the Composite Bridge-Deck Testbed 
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Figure 3.21: Internal Web Page on Network Camera for Configuring NTP Time 

Synchronization Settings 
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For the data acquisition computer, this proved more troubling as early on 

experiments with commercial software, such as Absolute Time Server 

(http://www.adjusttime.com/atcs.php), proved unreliable. Problems with this class 

of software are associated with programs utilizing the computer’s system clock, 

like LabVIEW when time-stamping recorded data and controlling the acquisition 

timing, which have problems when the system clock updates in the middle of an 

acquisition.  Most times in these instants, the LabVIEW software simply ignored 

the updated time.  It was found for the time change to take affect in the LabVIEW 

software, the data acquisition program had to be stopped and then restarted. 

Primarily for this reason, it was decided to incorporate the NTP time 

synchronization directly into the data acquisition program. LabVIEW can make use 

of the included TCP functions to establish a connection with an NIST time server 

and using a single timing request on the signal server read the necessary 

information to reset the computer’s system clock.  A sample of this protocol is 

shown in Figure 2.30 – 2.32. The code checks the current time on the system clock 

and compares this number against the value for the previous iteration (buffer).  If 

the hour is unchanged, then no action is taken; however, if the hour has changed, 

then a connection with NIST time server is established and using the Read Time 

subVI in LabVIEW the clock is reset.  

With both systems, network latency led to occasional errors in the time 

synchronization. These errors are evident when the recorded video is played 

alongside the strain time histories (Fig. 3.22).  The peaks in the strains correspond 
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to the vehicle axles passing over the strain gages; however, when comparing the 

time history with the video it is not until after a few seconds after the strain gages 

have recorded the peak corresponding to the second axle crossing the middle of the 

decks that the bus arrives at this point in the video. It is worth noting that with the 

PC-based data acquisition hardware, it is impossible to simply set the time on the 

NTP clock once and only make adjustments for daylight savings changes. On the 

bridge-deck monitoring project, it was observed that the data acquisition process 

consumed enough system resources that the Windows system clock slowed down 

and began to lag the actual time. Over a very short period of time, the error tended 

to become significant, thereby necessitating frequent updates; however, these errors 

did not interfere with associating the video clips with the associated strain time 

histories. The errors associated with time synchronization have been addressed in 

the developed system employed on the Voigt Bridge testbed and are discussed in 

Chapter 9. 
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Figure 3.22: Recorded Video and Strain Time History Showing an Error in the 

Time Synchronization 

3.3.3 Data Streaming 

Within the framework developed for the composite-bridge deck monitoring, 

streaming the data recorded by the strain gages, video camera, and microphone is 

accomplished using three distinctly different methods. The simplest of the data 

transmission operations is the network camera, followed closely by the audio, and 

then strain gages, which is by far the most complex.  

File Transfer Protocol (FTP) is utilized to transfer the images from the 

installed network camera to a remote computer where the images are archived. This 

streaming process is controlled through the internal processor on the network 

camera. Through a pair of built in web pages, the camera is configured to first 
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operate in sequential mode (Fig. 3.23), whereby images from the camera are 

uploaded continuously to a target server at a defined frame rate (as opposed to 

triggered operation). Next, the transfer protocol, remote server, and image 

path/filename settings are configured (Fig. 3.24). Within this page, the camera 

allows the time stamp coming from the NTP synchronized clock to be used for 

creating each image filename. 

On the destination side of this operation, a PC-based system with an 

enabled FTP server is required. The employed server must allow write access to the 

camera, and for security reasons; access to the FTP site was restricted solely to the 

network camera’s IP address and required appropriate user name and password 

(easily configured on the camera). It was found unprotected FTP sites set up on 

high-speed networks (like the one available at UCSD) tend to draw unwanted off-

campus traffic. 
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Figure 3.23: Network Camera Web Page for Configuring Camera Operation 
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Figure 3.24: Network Camera Web Page for Configuring Transfer Protocol, 

Remote Server, and Image Path/Filename Settings 

 

For transferring the Wav files created from the audio data by the LabVIEW 

software, a mapped network drive was utilized. Within the LabVIEW software, 

when the audio buffer is filled and the data is converted to a wav file, a sequential 

loop first saves the audio file to the local hard drive. Next, using the “Copy File” 

command, the file is moved over the campus network to a shared folder on the 
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archiving computer. Pending successful transmission of the Wav file, it is deleted 

from the acquisition computer and the sequence is repeated for the next file. This 

proved to be the simplest method for transferring data between the two computers 

located on campus. For remote installations (off campus), the Wav file would 

instead be saved to the local hard drive off the acquisition computer and then 

transferred using FTP rather than a mapped network drive. 

The last remaining portion of data, the strain gage data, proved to be the 

most difficult to stream. The first method utilized for transferring the strain data 

recorded by the 2 Channel setup was done using mapped network drives. Starting 

at the composite deck site, the analog signals generated by the two strain gages are 

continuously digitized on the data acquisition computer through utilization of 

National Instruments LabVIEW software (http://www.ni.com/labview/). Once 

digitized, the signals are stored in a buffer. When five seconds of data (or 1000 

samples taken at a rate of 200 samples per second) collects in the buffer, the data is 

output and appended to the previous fifteen seconds of data. These two strain time 

histories (each twenty seconds long) are then saved to disk on the data acquisition 

computer as an ASCII formatted text file (data.txt). Additionally, a second text file 

(t0.txt) is created to save the time stamp (start date and time) of the time history. In 

the data acquisition iterations that follow, the strain and date/time filenames remain 

unchanged and the program simply overwrites the old data. 

Implementing a set of ‘while loop’ commands, a permanently running Perl 

script loads the file data.txt. To ensure that the entire time history of a vehicle is 
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captured, the Perl script scans only a five second window of strains (between 7 and 

12 seconds in the 20 second time history) for the peak absolute strains in both 

gages (Fig. 3.25).  

If the peak absolute strain for either gage exceeds the previously recorded 

values for the current hour, the old peak strain time histories are overwritten by the 

new ones in the Peak Hourly Strain (PHS) text files. Note, each of these three files 

(maxData1hour1.txt, maxData1hour2.txt, maxData1hour2b.txt) contain a single 

column of data with 4000 rows: (1) the PHS time history for Gage 1, (2) the PHS 

time history for Gage 2, and (3) the Gage 1 strain time history associated with the 

peak hourly Gage 2 data, respectively. The two time stamps corresponding to these 

files are stored separately. 

At the end of each hour, the PHS time histories are loaded into the DB2 

database on a networked computer. A Perl script, called on by Windows Task 

Scheduler, accomplishes this by reading the strain data and time stamps (from 

maxData1hour1.txt, maxData1hour2.txt, maxData1hour2b.txt), and loading the 

data into the database. 
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Figure 3.25: Twenty Second Strain time History Composed of 4 Five Second 

Windows 

 

While this method has the advantage of utilizing local processing to 

minimize the amount of data that must be transferred, it was deemed cumbersome. 

Consequently, in later work with acquiring data from all 16 strain gages, an 

alternate transmission methodology was employed. As with 2 channel setup, the 

analog signals generated by the sixteen strain gages are continuously digitized on 

the data acquisition computer through utilization of National Instruments 

LabVIEW software and stored in a buffer. When five seconds of data (or 1000 

samples taken at a rate of 200 samples per second) collects in the buffer, the data is 

not saved this time. Instead, when the data comes out of the buffer, basic signal 
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processing is performed and the data is then placed into a packet and transferred to 

a remote computer using Transmission Control Protocol / Internet Protocol 

(TCP/IP). As discussed in Section 2.6, TCP/IP makes it possible to communicate 

over single networks or interconnected networks (Internet), even over large 

geographical distances. Further, because TCP/IP is available on most computers, it 

can transfer information between diverse systems. With a TCP/IP connection, it is 

not necessary to save any of the acquired data to the local disk.  Instead, the data 

can be streamed directly from the system memory.  In addition to providing faster 

data streaming rates, this method also reduces the requirements on the data 

acquisition computer. 

A necessary component of the TCP/IP data stream was the development of 

a program to read the data from the specified TCP/IP data port and to load it into 

the database.   Within the setup currently being presented, this was accomplished 

using a PERL-based loader program.  This program reads and stores 10,000 time 

steps of data from the TCP/IP connection and stores them to a buffer.  Once the 

10,000th row is read, the program loads all of the data into the DB2 database, clears 

the buffer, and restarts the process.  This insertion process (10,000 rows) takes 

approximately 20 seconds on a conventional PC desktop. 

An additional refinement was made later to the employed strain data 

transfer program. For remote monitoring applications, it is expected that network 

problems will be encountered. These could be in the form of the network speed 
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dropping or becoming unavailable all together for extended periods of time. In 

these instants, the TCP/IP program built into the data acquisition will be unable to 

transmit all of the data. Consequently, incoming data will continue to collect in the 

buffer until it overflows and causes the whole acquisition program to crash. This 

was addressed by separating the data acquisition and data streaming program into 

separate files. Now, the data is digitized, processed, and then saved to disk as a 

LabVIEW global variable. Once the write is completed, the data is loaded into a 

second VI which packages the data and sends it out using TCP/IP as before. 

Pending successful transmission, the old data is deleted from the acquisition 

computer. If there are any problems with the data transfer, the TCP/IP connection is 

closed, the computer waits 2 seconds, re-opens the TCP/IP connection, and then 

tries sending the data again. This process is repeated until the data is successfully 

sent.  This method, best utilizes the available bandwidth on networks with variable 

performance. 

3.4 Data Archiving 

 As has been repeatedly emphasized in the previous chapters, it is becoming 

the situation where acquiring and processing data is no longer the biggest problem. 

Difficulties are arising in managing the massive amounts of data coming from these 

newly emerging monitoring systems. In particular, how to make sense of the data 

as it arrives and how to get it into the analysis software? To address these issues, a 
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series of databases were constructed to house the flow of sensor and video data 

from the UCSD composite bridge-deck testbed (http://healthmonitoring.ucsd.edu) 

3.4.1 Database Architecture for 2-Channel Peak Hourly Strain Monitoring 

System 

When a peak hourly strain (PHS) is detected by one of the two strain gages 

that monitor traffic crossing over the composite decks, the corresponding strain 

time histories and video are saved to disk and uploaded into the DB2 database. 

(Figure 3.26 maps the strain data archiving procedure from the composite decks to 

the database, the details of which have been described in the preceding sections.) 

Within this database, the time-stamped peak hourly strains for Gages 1 and 2 (Fig. 

3.9 and 3.25) are recorded. Their corresponding strain time histories are stored in 

separate files. In addition, the strain data in Gage 1 is recorded whenever Gage 2 

data is logged.  

The DB2 database contains three metadata tables (tb_peak1, tb_peak2, 

tb_peak2b), which are updated hourly with the peak absolute strain and the time at 

which it occurred, as well as separate hourly strain time history tables. For each 

hour, a new row is inserted into the three metadata tables. Each row consists of two 

values, the mpeak and mdate (Fig. 3.27).  The mpeak is the peak absolute strain, 

and the mdate is the corresponding date/time information (yyyy-mm-dd-hh.mm.ss) 

when the peak strain was recorded. Simultaneously, a new table is created each 

hour to store the twenty second strain time histories (4000 rows). These tables each 

contain three columns - (1) mvalue1 (the PHS time history for Gage 1), (2) 
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mvalue2 (the PHS time history for Gage 2), and (3) mvalue2b (the Gage 1 strain 

time history associated with the peak hourly Gage 2 data), respectively. The names 

of these tables (tb_yyyy_mm_dd_hh) are constructed using the date/time 

information (i.e. the table for 2 PM on October 4, 2004 is called 

tb_2004_10_04_14). It is worth noting that both gages do not necessarily 

experience peak absolute hourly strains for the same vehicle. Therefore, the time 

stamp in tb_peak_1 corresponds to the data in column 1 of the hourly strain time 

history table. The tb_peak_2 and tb_peak_2b time stamps are identical and are 

associated with columns 2 and 3 in the hourly strain time history table. 
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Figure 3.26: Two-Channel Peak Hourly Strain Data Archiving Architecture. 
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On the hour, all video images for the previous hour are loaded from 

temporary storage into an image archiving computer. A second Perl script is called 

to isolate video image sequences corresponding to the peak strain time histories for 

the past hour. Each twenty-second image sequence (composed of eighty jpg images 

taken approximately 0.25 seconds apart) is saved to disk using a naming scheme, 

which indicates the year, month, day, hour, minute, and second that the sequence 

started, as well as the individual frame number in the sequence (for example, 

image_20041004092528_01.jpg). Matlab (http://mathworks.com/products/matlab) 

then performs image processing (discussed in detail in Chapter 4) on the two sets of 

images, and outputs the results directly into two tables in the database 

(tb_image_extraction1 and tb_image_extraction2). The image processing outputs, 

per frame, include the image ID, the image area, the vertical and horizontal 

components of the vehicle centroid, and the width and height dimensions of the 

bounding box that encompasses the vehicle. Therefore, 160 rows are added to the 

table tb_image_extraction1 each hour. The table tb_image_extraction2 contains 

only the image ID and peak vehicle areas detected (i.e. 1 row of metadata is added 

each hour). 
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Figure 3.27: Sample DB2 Database Peak Hourly Strain and Time Stamp Metadata 
Table (tb_peak1) 

 

3.4.2 Database Architecture for 16-Channel Continuous Strain Monitoring 

System 

On the hour, A Perl script connects to the database and loads the entire set 

of strain time histories recorded by the 16-channel monitoring system (sixteen time 

histories each composed of 720,000 time steps) stored in the temporary buffer table 

(tb_data_temp). This script uses a peak detection algorithm applied to the data from 

gage 9 to determine when a vehicle crosses the bridge decks. This detection 

program relies on finding the peaks corresponding to the vehicle’s axles. To be 

classified as belonging to a vehicle, the detected peaks must exceed a predefined 

threshold of 5x10-6 and to prevent false identification, due to spurious electrical 

spikes in the data, the strain must exceed the threshold for at least 0.05 seconds. 

The detection algorithm follows the following operations: 

1. Set the threshold limit for Gage 9 (εmin = 5 x 10-6) and initial start time (start 

of hour), T1 and end time (end of hour), T2.  
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2. Within a recursive loop, the time history from T1 to T2 is scanned for the 

peak strain. If the maximum strain is below the threshold, then the program 

jumps out of the loop. Else, a vehicle is detected and the program finds the 

time stamp corresponding to the peak strain. The peak strain and time stamp 

are saved to the metadata table (tb_peak9) and the ten-second strain time 

history (5-seconds before and after the peak) is saved into a daily table 

(tb_yyyy_mm_dd). 

3. The entire hourly strain time history is then divided into three parts.  The 

first part is composed of the data to the left of the peak strain [T1 : Tpeak – 5 

seconds]. The second portion of the data is the peak strain which has been 

loaded into the database [Tpeak – 5 seconds : Tpeak + 5 seconds]. The third 

and final section is the data to the right of the peak strain [Tpeak – 5 seconds 

: T2]. 

4. Steps 2 and 3 are repeated on the data to the left of the peak until no 

additional peaks are found. 

5. Steps 2 and 3 are repeated on the data to the right of the peak until no 

additional peaks are found. 

6. Finally, all of the data in the temporary table (tb_data_temp) from the start 

of the hour to the end of the hour is deleted.  During this processing, new 

data continues to be loaded into the table by the data loader Perl script. 
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Only the data with vehicles crossing are loaded into the database, the remaining 

data is either deleted or placed into temporary storage and then discarded (after one 

week).  

When the vehicle detection program finishes running, a second Perl script is 

run to isolate the forty images associated with each vehicle in the metadata table 

tb_peak9.  The Matlab-based image processing program is run and the extracted 

features (peak area and corresponding vertical and horizontal centroids) are loaded 

into the metadata table tb_image_extraction16. The framework of this database and 

the interaction of the various tables is shown in Figure 3.28. 
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Figure 3.28: Sixteen-Channel Strain Data Archiving Architecture  
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3.4.3 Recorded Data 

Captured by the records in both databases are a diverse variety of vehicle 

types ranging from golf carts to five-axle semi-trucks (Figs. 3.29 and 3.30). For the 

two-channel peak hourly strain database, there are 25,685 vehicles recorded 

between 2/19/02 and 4/22/05. In the sixteen-channel continuous monitoring 

database, there are a total of 439,654 vehicles recorded between 10/9/03 and 

3/31/05. The range of strains imposed on the gages varied from approximately 0 to 

4.5x10-4 for the peak hourly strain system and from 0 to 3.0x10-4 for the 16-channel 

continuous monitoring system. Each vehicle’s strain time histories display a unique 

response signature where each distinct positive peak indicates a vehicle axle 

crossing. For example, a comparison of the data recorded by the two-channel and 

sixteen-channel systems for four typical vehicle types is shown in Figures 3.29 and 

3.30. Note, that the sample strain time histories in Figure 3.29 have been filtered 

using a bandpass filter (3rd order Butterworth lowpass filter with 0.5 Hz low cutoff  

and 15 Hz high cutoff frequencies) to reduce the appearance of electrical noise 

present in the original system. 
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Figure 3.29: Sample of Recorded Data from 2-Channel Peak Hourly Strain 

Monitoring System 
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Figure 3.30: Sample of Recorded Data from 16-Channel Continuous Strain 

Monitoring System 
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3.5 Web Portal 

Work was begun concurrently in several areas in order to build the 

envisioned high-performance software system infrastructure [Elgamal et al., 2002] 

required for this project (http://healthmonitoring.ucsd.edu).  One of the first steps 

consisted of using ASIS Java-based Web Service development tools to adapt 

existing CGI-accessible analysis functions. These functions, which included the 

ability to query for data containing the peak registered strain over a period of time 

and extracted features from recorded video (Fig. 3.31).  Within these efforts, Web 

Services is a key technology in helping to build a modular and interoperable 

analysis, monitoring and response system [Elgamal et al., 2003c].   

Within the UCSD testbed, Web Services are being employed to achieve 

modularity and extensibility between the various components of the system and 

also between this and other systems.  Initially, Web Services seemed most 

appropriate in the areas of system and sensor network-related configuration and 

control, as an interface to the data being collected and the analysis routines 

provided. Also being investigated is the use of Web Services in other areas, 

including: interaction between the analysis and processing components of the 

system, data and video streaming, as well secure data access and transport.  

Furthermore, the Web Services approach provides a vendor-neutral, platform-

independent, standards-based and industry supported means of achieving this 

decoupling.  
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Figure 3.31: Web Portal for Accessing Recorded Data from Composite Bridge 

Decks 

 

3.5.1 Database Querying 

Two methods are currently available for providing users access to the data 

contained within the two composite bridge-deck databases. The first uses a direct 

connection to the DB2 databases to establish read access. This requires the user to 

have the DB2 Connect (client) software 

(http://www.ibm.com/software/data/db2/db2connect/edition-ee.html) installed on 

their system. This software provides the application programming interface (API) 
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drives and connectivity infrastructure for direct connection from Windows 

applications to the database servers. Further, database connectivity add-ins for 

analysis software, like Matlab’s Database Toolbox 

(http://www.mathworks.com/products/database/) and National Instruments 

LabVIEW Database Connectivity Toolset 

(http://www.ni.com/toolkits/lv_db_conn.htm), simplify this operation allowing data 

to be queried from the database and loaded directly into the analysis software for 

processing. However, there are several disadvantages associated with this manner 

of accessing the data: 

1. Users must be provided access to the databases (usernames, passwords, IP 

addresses, which are supplied by contacting the ITR project webmaster -  

mnphan@ucsd.edu - and requesting support). 

2. Users must have a thorough understanding of the database architecture and 

be able to locate the data and metadata in the appropriate tables. 

3. To query the data, users must be fluent in the database syntax for writing 

the queries necessary to retrieve the data. 

A series of queries (Table 3.1) illustrating these difficulties is now presented. 
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Table 3.1: Sample DB2 Queries 

Query 

# 
DB2 Query 

1 

select p.mdate as mdate, peak, id, case when a.mdate is null then 0 else 1 

end as audio from tb_peak2 p left join tb_image_extraction2 i on 

p.mdate = i.mdate left join tb_audio a on p.mdate = a.mdate where 

(hour(p.mdate) between 0 and 23) and p.mdate between '2005-03-19 

12:00:00' and '2005-04-22 11:59:59' and peak >= 3.0E-4 order by peak 

desc 

2 

select i.mdate, p.peak, i.area from tb_image_extraction2 i, tb_peak2 

p where p.mdate = i.mdate and (area between 5000 and 25000) and 

(i.mdate > '2005-04-21 11:00:00') order by mdate 

3 

with tb_peak9_temp as (select * from tb_peak9 where date(mdate) =  

'2005-02-01' and hour(mdate) = 8), tb_image_extraction16_temp as 

(select * from tb_image_extraction16 where date(mdate) =  '2005-02-01' 

and hour(mdate) = 8) select p.mdate, mvalue, id from tb_peak9_temp p 

left join tb_image_extraction16_temp i on (p.mdate = i.mdate) order by 

mdate 

4 

select mdate, c8, c11 from tb_2005_02_01 where mdate between 

timestamp('2005-02-01-08.38.01.872900') - 5 second and 

timestamp('2005-02-01-08.38.01.872900') + 5 second order by mdate 

fetch first 100 row only 

5 

with tb_peak9_temp as (select * from tb_peak9 where date(mdate) =  

'2005-02-01' and hour(mdate) = 8), tb_image_extraction16_temp as 

(select * from tb_image_extraction16 where date(mdate) =  '2005-02-01' 

and hour(mdate) = 8 and area between 5000 and 25000) select i.mdate, 

p.mvalue, i.area from tb_image_extraction16_temp i, tb_peak9_temp p 

where p.mdate = i.mdate order by mdate 
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The first query connects to the two-channel peak hourly strain database and 

returns from the database the time stamp (in date/time format), gage 2 peak strain, 

image name (corresponding to the image with the largest area determined from 

image processing), and availability of audio for all of the peak hourly data recorded 

between noon of March 19, 2005 and 11:59:59 AM on April 22, 2005, where the 

peak strain was greater than 3 x10-4. The data is sorted in descending order based 

on the time recorded. A screen capture (taken from DB2 Command Line Processor) 

of this query and the data returned is provided in Figure 3.32.  

 

 

Figure 3.32: Screen Capture Taken from DB2 Command Line Program for the 

Sample Query. 

 

The second means of accessing the data from the composite bridge-decks 

databases is through a web-based interface. This user interface was established for 
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convenient online querying and downloading of the recorded data. All data 

archived from noon on 12/17/2002 through the present is available. For the two-

channel peak hourly strain monitoring system, the webpage 

http://healthmonitoring.ucsd.edu/compositedeck2.jsp (Fig. 3.33) allows guests to 

access the (A) “Peak Hourly Strain Database,” (B) “Vehicle Type Data Subset,” 

and (C) “Climatic Data.” Brief descriptions of each link are provided for ease of 

use.  

 

 

Figure 3.33: Homepage of the 2-Channel Peak Hourly Strain Database Interface 
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Selecting the first link takes users to the Peak Hourly Strain Database (Fig. 

3.34). This database contains all Gage 1 PHS records and Gage 2 PHS records 

(with the corresponding Gage 1 strain data). This is the most generic way of 

accessing the complete set of peak hourly strains and images recorded. By selecting 

“Query Peak Hourly Strain Database,” users are provided a pre-written query for 

connecting to the database and retrieving the recorded data. For this query (Fig. 

3.35), the data can be sorted based on gage number, start and end dates, hour 

interval (for example, this option allows users to focus on daytime traffic where the 

image quality best), and the minimum and maximum peak hourly strains. The same 

sample query presented above (except sorted in descending order based on peak 

strain) with samples of the returned data are shown in Figures 3.36 and 3.37. The 

most obvious advantages to this database interface are the structure of the database 

is not important and users no longer have to be fluent in database syntax. As with 

the first method, this interface has restricted access requiring a Guest level account 

on the web portal; however, anyone may complete the on-line registration 

(http://healthmonitoring.ucsd.edu/register.jsp) to receive an account. 

 In the data returned in Figure 3.36, there are a couple of features worth 

noting. First, the peak strain, along with the entire strain time history, is included 

on the right hand side. By clicking on the image of the time history, users are taken 

to an interactive java applet allowing them to zoom in on the data. The picture on 

the left-hand-side (in this example of the campus shuttle buses) corresponds to the 

image with the largest area as determined from the image processing / feature 
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extraction algorithm. Clicking on the “View recorded video” button plays the 80-

frame traffic video. If audio data is available, it will be indicated by the microphone 

present on the first record returned (but not on the second one). 

 

 

Figure 3.34: Webpage for the Peak Hourly Strain Database 
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Figure 3.35: Web for Querying the 2-Channel Strain Data 
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Figure 3.36: Results for the Sample Query 

 

A disadvantage of the on-line database interface is the number of available 

queries is limited. Should users wish to add additional features to their queries, they 

will need to either contact the webmaster for assistance or connect directly to the 

database.  An example (Query 2, Table 3.1) is presented in which the peak area 
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(from feature extraction) is returned with the same data queried in the previous 

query. In this query, an additional constraint that the peak area must be between 

5,000 and 25,000 pixels2 was also imposed. The returned data is displayed in the 

screen capture below (Fig. 3.37). 

 

 

 

Figure 3.37: Screen Capture Taken of the Second Sample Query. 

 

The second link on the main 2-channel database web page, Vehicle Type 

Data Subset, allows users sole access to the 6265 records with vehicle type labels (a 

subset of the Peak Hourly Strain Database). Within this section, users are permitted 

to select one of the following options: (1) “Query Vehicle Type Data Subset,” (2) 

“Scatter Plot of Gage 2 Peak Hourly Strain(s) vs. the Corresponding Gage 1 

Strain(s),” (3) “Gaussian Fit of the Peak Strains Histogram,” and (4) “Download 
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Data from the Vehicle Type Data Subset.” This data set is discussed in detail in 

Section 4.6. 

The Climatic Data 

(http://healthmonitoring.ucsd.edu/compositedeck2/searchClimaticData.jsp), the 

third link on the main page, provides users with helpful tips for obtaining 

temperature and relative humidity data for the local area that may be desired in a 

through analysis of strain variations. A plot of the hourly temperatures recorded at 

a nearby weather station along with it’s associated query are shown in Fig. 3.38. 

Three additional web pages taken from the 2-channel peak hourly strain 

database are included in Figures 3.39 – 3.41.  The first of these figures shows a bar 

plot of the average of the hourly peak strains recorded between February 19, 2002 

and April 22, 2005. In Figure 3.40, the data is instead averaged by day. It is worth 

noting the strains in Fig. 3.43 are less in the early morning and in Fig. 3.44 on the 

weekends when the campus shuttle buses are not running and the peak hourly 

strains typically are caused by lighter passenger vehicles. Finally, in Fig. 3.45, the 

peak hourly strains are plotted versus time for the week of April 15-22, 2005. As 

with the other two figures, the strains are lowest in the late night / early morning 

and on the weekends. 
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Figure 3.38: Sample of Climatic Data and Associated Query. 
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Figure 3.39: Averaged Hourly Peak Strains 
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Figure 3.40: Averaged Daily Peak Strains 
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Figure 3.41: Plot of Hourly Peak Stains versus Time 
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A similar web-based interface (Fig. 3.42) was created to provide access to 

the data recorded by the 16-channel continuous strain monitoring system. The 

available query for recorded vehicle strains is shown in Figure 3.43. This query 

allows users to specify the start and end dates, hour interval, and minimum and 

maximum strains, and the returned data (Fig. 3.44) is sorted by 

ascending/descending order of peak strain or date recorded. 

 

 

Figure 3.42: Web Page for 16-Channel Database Interface 
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Figure 3.43: Web-based Query Page for 16-Channel Strain Data 
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Figure 3.44: Results of Query from 16-Channel Strain Database 

 

As with the 2-channel database, the 16-channel database can also be queried 

using a direct connection with DB2. The same query string used in the sample from 

the web page above is shown in Query 3 (Table 3.1). A screen capture taken from 

DB2 Command Line Processor of the metadata data returned is shown in Fig. 3.45 
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Figure 3.45: Screen Capture of the Returned Metadata from Query 3. 

 

Two additional queries are also presented (Table 3.1). Query 4 returns (Fig. 

3.46) the first 100 time steps of the strain data recorded by gages 8 and 11 (along 

with the corresponding date/time information). For this query, the start and end 

times correspond to five-seconds before/after a detected peak in the data. This is the 

type of query used to generate the strain time histories shown in Figure 3.30. The 

final example (Query 5) returns the date/time, channel 9 peak strain, and 

corresponding peak area (Fig. 3.47) recorded between 8:00 – 8:59 AM on February 

1, 2005 in which the peak area is between 5,000 and 25,000 pixels2. 
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Figure 3.46: Screen Capture of Returned Strains for Query 4. 

 

 

Figure 3.47: Screen Capture of Returned Date/Time, Channel 9 Peak Strain, and 

Peak Area from Query 5. 
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3.6 Summary 

A research testbed for applying the aforementioned structural monitoring 

framework was established. PC-based data acquisition was employed along with a 

network camera for continuous monitoring of a series of instrumented composite 

bridge-decks. Over a three-year period, time synchronized video and strain data 

(achieved by separately synchronizing the network camera and data acquisition 

computers with an NTP Internet time server) have been recorded and archived in a 

series of databases, and made available for on-line querying. The continuously 

recorded data was post processed and separated into 439,654 discrete events, each 

composed of a ten-second strain time history and 40 images of a vehicle crossing 

the bridge decks. Local processing potential for data reduction and event detection 

was demonstrated with the peak hourly strain database established for the 2-

channel monitoring system. 
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4 Video Analysis 

Image processing has been performed on the video recorded from the 

aforementioned bridge-deck testbed. In this chapter, the image processing / feature 

extraction operation is analyzed and the findings discussed. From this analysis 

procedure, a new and unique data set composed of traffic induced strain time 

histories (with time-synchronized video) sorted by vehicle type has been created. 

Within this research, recorded video was analyzed for two purposes. The first, and 

primary, emphasis was to combine video and other sensor data to define loads (and 

speed of moving traffic), along with response (measured strains / displacements / 

accelerations…) on the structure. This work opens new and far-reaching avenues, 

as current research only relies on monitoring and analysis of the structural 

response.. 

4.1 Matlab-based Feature Identification 

The image sequences captured using video cameras give a large amount of 

data.  However, to extract useful information such as location, velocity, and type of 

vehicles, the image sequences need to be processed using image analysis and 

computer vision. In order to determine the properties of the vehicles on the bridge, 

the vehicles should be separated from the background images.  To separate moving 

objects from stationary background, the “background subtraction method” is 

typically used [Friedman and Russell, 2001 and Ridder et al., 2000].  This method 

dynamically forms a model of the scene background, compares each new frame to 
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the model, and separates the pixels that have different properties from the 

background. 

A series of Matlab programs were developed to process the images that 

have been archived as part of the monitoring activities of the UCSD Powell 

Laboratory testbed composite deck panels 

(http://healthmonitoring.ucsd.edu/research.jsp).  These programs make use of not 

only the base Matlab software, but also specific functions found in the Matlab 

Image Analysis toolbox.  As previously discussed, since December 17, 2002, 

images captured when the hourly peak recorded strains occur have been stored.  

When an hourly peak strain is detected by one of the two strain gages that have 

been monitoring traffic crossing over the composite decks, a twenty second long 

time history, containing the peak signal, is saved to disk and uploaded into a 

database.  When the time history is saved, the corresponding video is also saved.  

This twenty-second long video is composed of eighty jpg images, each taken 

approximately 0.25 seconds apart.  Each images in the sequence is saved to disk 

using a naming scheme, which indicates the year, month, day, hour, minute, and 

second that the sequence started, as well as the individual frame number in the 

sequence (for example, image_20030510112939_1.jpg). 

The basic strategy for the feature extraction algorithm used is to compare 

changes in the absolute difference of two images.  Matab begins with reading the 

sequence name and the number of frames in the sequence.  The first image in the 

sequence is then read and temporarily stored as the background for the rest of the 
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sequence (Fig. 4.1).  To ensure that there are no significant objects in this 

background image that would cause the lingering appearance of static objects, a 

comparison is made with the second image in the sequence.  A new image is 

created from the absolute difference between the two color images.  For each pixel 

in the resulting image, any difference between the two images will show up in the 

value stored at the pixel.  For no change, the value will be zero and for pixels where 

there is a change, the greater the difference the larger the stored value. The 

resulting image is converted to a binary image (black and white) and the values at 

each of the pixels are summed and compared to a threshold value.  If the summed 

value exceeds the threshold, it is assumed that there is at least one moving object 

that is contaminating the feature extraction process.  To correct this problem, the 

program sets the second image as the background and takes the absolute difference 

with the next picture in the sequence (in this case the third image) and compares it 

to the threshold value.  This process is repeated until a suitable background image 

is located. 

Then, using a “for loop,” each image in the sequence (Fig. 4.2) is compared 

to this background image (Fig. 4.1).  For each iteration in the loop, the area of all 

differing clusters of pixels and the horizontal and vertical centroids of the largest 

area of differing pixels are determined.  In addition, the dimensions of a “bounding 

box” which fits around the largest group of pixels is determined.  By monitoring 

the change in location of the horizontal centroid, the direction of the traffic can be 

determined and from the area, the type of traffic can be classified.  To improve on 
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the quality of the resulting image, after the absolute difference is taken between two 

images (Fig. 4.3) and before it is converted to black and white, the resulting image 

is brightened (by multiplying every value by a constant) (Fig. 4.5).  The image is 

then converted to black and white (binary) so that the region properties can be 

determined (area, centroid, bounding box, Fig. 4.6).  However, before the region 

properties are determined the image is cropped to remove sections affected by 

shadows (Fig. 4.7), the holes in the image are filled (Figure 4.8), and then the 

whole image is filtered to help remove any scattering of stray pixels (Figure 4.9). 

Next, two sets of processed images to be displayed on the website.  The first 

of these is a set of black and white images showing the objects detected.  A second 

set of images is prepared which takes the original color images and superimposes 

onto them a green dot indicating the location of the centroid of the largest object 

detected as well as a red bounding box which encompasses this detected object 

(Figures 4.10 – 4.13).  Finally the data from the feature extraction process (Area, 

Area of largest object detected, horizontal centroid, vertical centroid, length & 

height of bounding box, direction, and vehicle type) is loaded into the database 

(Table 4.1 & Figure 4.13).  
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Figure 4.1: Background Image 

 

 

 

Figure 4.2: Additional Image in Sequence 
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Figure 4.3: Absolute Difference of Background and Image in Sequence 
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Figure 4.4: Pixel Coordinate System Used in Matlab 
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Figure 4.5: Absolute Difference After Brightening 

 

 

Figure 4.6: Binary (Black and White) Image 
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Figure 4.7: Black and White Image after Cropping 

 

 

Figure 4.8: Binary Image after Holes Have Been Filled 
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Figure 4.9: Resulting Image after Filtering 

 

 

Figure 4.10: Centroid of Largest Object – Note All Other Pixels Are Equal to Zero 
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Figure 4.11: Original Figure with Superimposed Location of Centroid (Green Dot). 

 

 

Figure 4.12: Bounding Box – Note Every Pixel Not On the Border of the Bounding 

Is Equal to Zero. 
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Figure 4.13: Original Figure with Superimposed Bounding Box (Red box) and 

Centroid (Green Dot). 

 

Table 4.1: Region Properties for Sample Feature Extraction 

ΣArea (pixels) = 20805 

Area of largest object (pixels) = 20287 

Horizontal Centroid ( x ) (pixels) = 166.0585 

Vertical Centroid ( y ) (pixels) = 116.0282 

Horizontal Length of Bounding Box (Pixels) = 224 

Vertical Height of Bounding Box (Pixels) = 124 

Direction = East 

Classification = 4 (Large Truck) 
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4.2 Classification (Schema) of Extracted Features 

A stimulus is a load pattern generated by direct observation (by post-

processing traffic information captured by video cameras), from a load generation 

software used by simulation engines or by a physical load mechanism applied to 

the structure. A novel aspect of this research is to develop tools to allow for the 

creation of a load database for video data.  For video data, the goal is to be able to 

record the types (an 18-wheeler vs. a compact sedan) and positions of load objects 

at specific time instants within the database. This will be stored as a spatially 

indexed valid-time temporal data coming from the video analysis engine, which 

will be converted to a load by a video data wrapper process. This is to be 

accomplished using a separate lookup table or a load generation function for each 

object recorded at a time instant.  

To one day realize these goals, it is necessary to develop a schema for the 

video data and determine which extracted features from the video to consider for 

defining the stimulus provided by the passing traffic. With the quality of video 

available from the composite decks, the following features are utilized: detected 

area of passing traffic, horizontal and vertical centroids, dimensions and aspect 

ratio of bounding box. For each recorded image, these features are determined and 

stored within the database. Based on these features, a very rough estimation of the 

vehicle type is made; however, a more comprehensive classification method based 
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on the use of neural networks applied to recorded strains and video is detailed in 

Elgamal et al., 2005. 

Once the video limitations, discussed in the following section, have been 

overcome additional features will become available and greatly aid this load 

estimation.  These features include the exact location of the vehicle at a known time 

instant, edges of the vehicle, color density, etc. It is expected, these improved 

features will make possible cotraining of a neural network based on recorded 

strains and extracted video features, thereby greatly increasing the power of the 

traffic identification tools and allowing for true load estimations. 

4.3 Limitations 

There are two main categories of limitations/drawbacks associated with the 

video and image processing techniques.  The first class is associated with the 

hardware and the second with the image processing algorithms. With the hardware, 

insufficient resolution, insufficient and inconsistent frame rates, and indexing errors 

are perhaps the most significant sources of error.  If the camera resolution is too 

low, it becomes difficult to find the edges and shape of an object that one is trying 

to detect, particularly for methods that rely on edge detection for determining the 

objects dynamic properties (i.e., speed). Further, low resolution can also lead to 

errors in attempting to separate the background from the object creating gaps in the 

object which are mistaken for the background (Fig. 4.14). This problem proved 

quite troublesome on the composite decks, but has been remedied with higher 
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resolution cameras incorporated the improved system employed on the Voigt 

Bridge testbed (discussed in detail in Chapter 9). 

 

 

Figure 4.14: Original and Processed Image with Only Partial Detection and Gaps 

Resulting From Insufficient Resolution 

 

Insufficient frame rates lead to problems with failing to detect portions of 

high speed vehicles. On the composite deck testbed, the frame rate was controlled 

by the internal processor of the network camera.  The processor transmitted the 

images over the campus network to a remote computer located in another lab using 

an FTP connection. While the network connection was capable of very high frame 

rates, the internal processor was only able to maintain 4 frames-per-second. This 

low speed frame rate led to missed traffic in the recorded video data as seen in 

Figure 4.15. This problem became more pronounced at nights and weekends when 

vehicle speeds tended to increase. In addition to being hampered by slow frame 
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rates, network cameras, like the one used on the composite decks, also suffer from 

inconsistent frame rates. While the camera employed in this application sampled at 

a nominal 4 Hz frame rate, the time between frames was not consistently 0.25 sec. 

This made calculations of speed, based on a constant frame rate, impossible. Again, 

these are problems that have been solved on the newly employed testbed on Voigt 

Bridge, where the acquisition rate is controlled by the data acquisition computer.  

 

 

 

Figure 4.15: Consecutive Frames Showing only Front and Rear of Passing Vehicle. 
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Figure 4.16: Three Consecutive Images (Taken of a UCSD Campus Shuttle Bus) 

Which Demonstrates the Inconsistent Frame Rate of the Network Camera. 

 

The second class of errors is associated with the algorithms employed for 

feature extraction in the image processing operation. One problem that occurs when 
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a single image is used to form the background in the background subtraction 

method is the creation of ghosts. If an object is present in the background image, 

but not in subsequent images it will show up as a stationary detected object (Fig. 

4.17). In this figure, there is a pedestrian crossing the street in the first frame, but 

not in the later ones. When these later frames are processed and the difference 

between the two images is taken, the pedestrian continues to shows up. This 

problem can be reduced by forming a background from the combination of multiple 

images [Achler, O and Trivedi, M., 2004]. Many background subtraction methods 

are not robust enough to handle the possible change of scene lighting, moving 

shadows, etc. In recent years, most researchers have noticed these issues and a lot 

of efforts have been made towards solving them [Mikik et al., 200 and Prati et al., 

2003]. An important issue that still needs to be addressed here is moving shadows. 

Severe shadows can result in large errors in object localization and can cause 

serious problems for the algorithms that use the moving object detection results for 

subsequent processes. 
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Figure 4.17: Background Image (Top) and Additional Frame (Bottom) with a 

Ghost of the Pedestrian (Right Hand Side of Image) 

 

4.4 Data Fusion Application 

Demonstration applications for the fusion of the raw video and extracted 

features with the recorded sensor data from the strain gages and microphone have 

been developed [Fraser et al., 2004]. This fusion of the sensor data is essential for 

understanding the interaction between the various sensors and extracting as much 

information as possible from each data source. One such example is detailed in 

Figure 4.18, which shows the original color image of a passing truck with the 

vehicle centroid (indicated by the green square) and bounding box (red box) in the 
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left hand picture, the processed binary image (right hand picture), the time-

synchronized quarter span (gage 1) strain time histories (below the video), as well 

as the tabulated data from the image processing algorithm. This derived data 

includes the direction of the vehicle, area of the detected vehicle (in pixels 

squared), the dimensions of the bounding box, a vehicle type (based on the 

aforementioned area). 

 

 

Figure 4.18:  Example of Data Fusion with Results of Image Extraction and Strain 

Data in Database  
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4.5 Website for Displaying Video (with Extracted Features) with Sensor Data 

Within the ITR portal, a webpage (http://healthmonitoring.ucsd.edu 

/imageAnalysis.jsp) was created to query and process image sequences from the 

database and return extracted features (Fig. 4.19).  The first portion of the webpage 

allows users to query the database for the 2-channel peak hourly strain (Fig. 4.20). 

For these queries, users may display results based on the time the data was 

recorded, by the peak strain, or maximum area of the largest detected object. 

Returned features include the strain time histories, the original image set with a 

green dot indicating the location of the centroid of the largest object detected, the 

processed black and white image set, area and centroids of the largest object 

detected in each frame, and estimates of the type and direction of vehicle crossing 

the bridge-decks (based on the size of the vehicle detected and the horizontal 

motion of the centroid). A collection of data for varying vehicle types is included in 

Figures 4.21 – 4.26. 

For this first batch of queries, all of the data has been previously processed 

and archived within the database.  A second webpage allows users to view recently 

recorded data.  Since the image processing algorithms are run on the hour, to view 

the extracted data corresponding to the peak strain for the last 5 minutes, 15 

minutes, or current hour, it is necessary to first call on and run the Matlab image 

processing program for this data. 
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Figure 4.19: Webpage for image Processing Results from Composite Bridge Deck 

Testbed 
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Figure 4.20: Results of Querying Archived Strain Data and Image Processing 

Results  – Arranged by Date. 
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Figure 4.21: Example of Data Fusion of Recorded Strains, Recorded Video, and 

Extracted Features for a Campus Shuttle Bus 

 

Figure 4.22: Example of Data Fusion of Recorded Strains, Recorded Video, and 

Extracted Features for a Large Multi-Axle Truck 
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Figure 4.23: Example of Data Fusion of Recorded Strains, Recorded Video, and 

Extracted Features for a Forklift Truck 

 

Figure 4.24: Example of Data Fusion of Recorded Strains, Recorded Video, and 

Extracted Features for a Concrete Truck 
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Figure 4.25: Example of Data Fusion of Recorded Strains, Recorded Video, and 

Extracted Features for a Campus Police Car 

 

Figure 4.26: Example of Data Fusion of Recorded Strains, Recorded Video, and 

Extracted Features for a Minivan 



 191

4.6 Creation of Labeled Data Sets for Analysis 

An important preliminary step in the data analysis process was 

classification of the vehicles into distinct bins based on vehicle types. Viewing 

captured still-frame thumbnails and videos, the vehicles were manually sorted into 

bins including Trucks, Buses, Large Personal Vehicles, UCSD Police Vehicles, 

Small Personal Vehicles, and Unique Vehicles. Within each of these broad bins, 

further sorting was performed to identify types of vehicles with consistent number 

of axles (i.e. vehicle models), axle spacing, and/or weight distribution. 

Additionally, this extensive binning process incorporated cleansing of the data, 

removing all data records where (1) multiple vehicle crossings occur three seconds 

before or after the absolute peak strain, or (2) time synchronization of the video and 

strain time histories vary significantly.  

The resulting data set (compiled in collaboration with Kendra Oliver) 

contains 6265 records binned into 57 vehicle types (Fig. 4.27). Profiles of the fifty 

seven vehicle types with corresponding images are available in Appendix 1. It is 

the author’s opinion that this data set can prove extremely valuable for testing 

algorithms for traffic management and vehicle classification using artificial 

intelligence algorithms. In particular for supervised learning methods, this type of 

labeled data is required for the training and evaluation phases. For each of these 

records, the dataset includes two strain gage time histories, videos, still-frame 

image thumbnails (both the original color thumbnail and the image-processed 
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binary thumbnail, discussed later in further detail), vehicle types, and 

environmental temperatures. This dataset is publicly available over the worldwide 

web at http://healthmonitoring.ucsd.edu (Fig. 4.27) for either (1) querying (by 

selecting “Interactive” and then “Composite Testbed Deck Panels: 2 Channels” in 

the tool bar, Fig. 4.28), (2) downloading (by clicking on the “Download Strain 

Gage Data” button, Fig. 4.29), or (3) direct DB2 database access (by requesting 

further assistance). 

In addition, simple analysis applications are available on-line using this 

labeled data.  For examples, users may query the database and examine interactive 

scatter plots of channel 1 and 2 peak strains for each of the vehicle types (Fig. 

4.30). These plots are useful in drawing rough distinctions in the data (for example 

separating cars from small trucks from large trucks). Another example is shown 

Figure 4.31, which shows the peak strain distributions and Gaussian fit of the 

recorded data of one or more selected vehicle types (in this case UCSD Buses Type 

9). 

A similar data set (compiled in collaboration with Kendra Oliver and Laura 

Flores), composed of 4,950 records has also been created for the 16-channel 

continuous monitoring system (http://healthmonitoring.ucsd.edu/ 

compositedeck16_all/vehicle16.jsp). 
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Figure 4.27: Website for Accessing the Labeled Data Set Containing 6265 Records 

Binned into 57 Vehicle Types (Webpage Created with the Assistance of Minh Phan 

and Kendra Oliver) 
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Figure 4.28: Results of Querying 2-Channel Labeled Data Set for UCSD Buses 

Type 9 and Strain Gage 2 (Webpage Created with the Assistance of Minh Phan and 

Kendra Oliver) 
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Figure 4.29: On-line Data Download from 2-Channel Labeled Data Set for Alliant 

Trucks (Created in Collaboration with Minh Phan and Kendra Oliver) 
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Figure 4.30: Scatter Plot of Channel 1 and 2 Peak Strains for Krispy Kreme Trucks, 

Red and Black Garbage Trucks, UCSD Buses Type 9 and Police Cars (Created in 

Collaboration with Minh Phan and Kendra Oliver) 
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Figure 4.31: Peak Strain Distribution of UCSD Buses Type 9 and Corresponding 

Gaussian Fit (Created in Collaboration with Minh Phan and Kendra Oliver) 
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4.7 Summary 

The image sequences captured using the employed network camera on the 

composite bridge-deck monitoring system provide a large amount of data. 

However, to extract useful information (vehicle types, location...) from the raw 

video, the image sequences needed to be processed using image analysis. To 

determine the properties of the vehicles crossing over the bridge-decks, a 

background subtraction algorithm was used to separate moving objects (vehicles) 

from the stationary background. For each of the aforementioned strain time 

histories, image processing extracted the picture most clearly showing the vehicle 

crossing the bridge decks, thereby making it possible to sort and bin the time 

histories by vehicle type. This operation allowed for examining the distribution of 

vehicles crossing the decks, applicable for studying probability distributions of 

traffic loads and their effects (e.g., strains). Further, by sorting and binning the 

recorded traffic, a unique data set was established in which the measured bridge 

response and images corresponding to the loads (passing traffic) are both available. 

This data is extremely useful for applying artificial intelligence algorithms for 

vehicle classification and property estimation as well as for monitoring for changes 

in the bridge system response over time. 
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5 Numerical Simulation of Bridge Deck System 

To simulate the response of the bridge decks under vehicular loading, a one-

dimensional finite element model was constructed and is discussed in this chapter. 

This model was created to generate data otherwise unavailable with the real system 

(e.g., high-speed traffic and data from damaged states). In this numerical 

environment, input is obviously fully defined (speed, wheelbase, axle weights…). 

Consequently, insights can be gained as to the potential of machine learning 

algorithms in extracting knowledge from the actual recorded data sets. 

To simulate the response of the bridge deck system, particularly under 

traffic loading, a one-dimensional finite element model was analyzed using the 

computational framework OpenSees (http://opensees.berkeley.edu/). In a future 

full-scale health monitoring system, it is envisioned that OpenSees [McKenna and 

Fenves, 2000] will constitute the required computational engine for mechanics-

based modeling and analysis of bridge systems. OpenSees (Open System for 

Earthquake Engineering Simulation) is an open source software framework to 

simulate the response of structural and geotechnical systems to earthquake and 

dynamic loads in general. The object-oriented framework of OpenSees allows the 

structural response simulation to be factorized into independent classes such as 

model building, finite elements, constitutive material models, boundary conditions 

and constraints, solution strategies, equation solvers, time integration algorithms, 

and recorders emulating sensors. In addition, OpenSees supports a wide range of 

simulation models, solution procedures, and distributed computing models 
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[McKenna and Fenves, 2000]. It also has very attractive capabilities for automatic 

parameterization of a structural model, probabilistic modeling, response sensitivity 

analysis and reliability analysis. 

With each finite element model, it was assumed the four bridge decks (three 

fiber-reinforced polymer and one reinforced concrete) could be modeled using 

equivalent homogeneous materials.  The properties of the equivalent sections 

(Young’s Modulus and mass density) were determined from static (dead load) 

[Zhao, 1999] and dynamic free vibration testing.  

 
5.1 Analytical Simulation of Bridge Deck System Using One-Dimensional 

Finite Element Model  

The one-dimensional finite element model shown in Figure 5.1 is composed 

of 61 nodes and 60 elastic beam-column elements, each three-inches long. For the 

beam-column elements, it is necessary to enter values for cross sectional area, 

Young’s modulus, moment of inertia, and assign mass values to nodal degrees of 

freedom [Mazzoni et al., 2005]. To simulate the boundary conditions of the bridge 

decks, which are connected to the sill through shear keys, simple support boundary 

conditions were assumed, with a 6 inch overhang beyond the supports. 

 



 

 

201

 

Figure 5.1: Simplified One-Dimensional Beam-Column Finite Element Model of 

Bridge Decks 

 

5.2 Model Calibration 

The finite element model was calibrated from recorded static and dynamic 

test data. During the static test, dead loads were applied to each of the individual 

decks and deflections were measured at various locations along the length of the 

deck. From the load-defection data, the corresponding Young’s Modulus of a 

simplified simply supported beam was calculated. To determine the mass of the 

bridge decks, an impulse was applied to generate a free vibration response, which 

was recorded using accelerometers installed on the surface of the decks. From the 

recorded acceleration time histories and their associated Fast Fourier Transforms, 

the fundamental frequency of the bridge deck system was determined and applied 

for calculating the unknown mass. 

5.2.1 Static Dead Load Test 

During static testing [Zhao, 1999], deck HD was placed in a simply 

supported beam configuration and loads were applied along the midspan using 

hydraulic actuators as shown in Fig. 5.2. Under this loading configuration, a 3.30 in 

deflection was observed at midspan, corresponding to a 221 kip load. These values 
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were used with the simplified simply supported beam system shown in Fig. 5.3 to 

determine the unknown elastic modulus of deck HD.  

 

. 
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Figure 5.2: Static Loading Configuration for Composite Bridge Deck HD 
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Figure 5.3: Simplified Simply Supported Beam 
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From Static Load Test: 
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To determine the stiffness of the bridge deck system, the above Young’s Modulus 

was used with a uniform rectangular beam measuring 180 inches in length, 360 

inches wide, and 8.27 inches high. This yielded an equivalent stiffness (EI) of 

2710255.3 inKips ⋅× . 

5.2.2 Dynamic Free Vibration Test 

A series of dynamic tests were then carried out; whereby, a 15 pound 

hammer (with an internal load cell) was used to apply a vertical impact at the center 

of the bridge decks.  A Crossbow CXL01LF1 capacitive accelerometer (±1 g, 0.56 

mg resolution, 0-50 Hz frequency range) was installed on deck 2 near the impact 

location (Fig. 5.4) and measured the vertical vibration during the free vibration 

response following each impact (Fig. 5.5). The accelerometer was bolted to an 
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aluminum anchor plate and attached to the surface of the roadway using a semi-

permanent tar adhesive. As the accelerometer was on top of the bridge decks it 

could only be installed while no vehicles were present. This meant when a lull in 

traffic was observed, the accelerometer and anchor plate were placed on the decks 

and data was acquired. When a vehicle approached, the accelerometer and plate 

then had to be hurriedly removed. A Crossbow AD2012 data logger was used to 

power the sensor and to perform the analog-to-digital conversion. Using this 

datalogger, a series of twenty second long time histories (acquired with a 200 Hz 

sampling rate) were recorded. A sample of one of these time histories is included in 

Figure 5.5. Within this time history, there are a series of three small impacts in the 

first 2 seconds, followed by three larger impacts over the next 2 seconds, and then 

one last medium impact. For each hammer hit, it can be seen the motion has 

returned to zero before the next impact was applied. A close-up of the first large 

impact is shown in Figure 5.6. Fast Fourier Transforms (FFT) of the recorded 

acceleration time histories were analyzed and the fundamental frequency for the 

unloaded bridge deck system was determined to be 22.4 Hz (Fig. 5.7).  
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Figure 5.4: Locations of Impact and Accelerometer on Composite Bridge Decks 

 

 

Figure 5.5: Vertical Acceleration Time History for Hammer Impacts Applied at 

Midspan. 
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Figure 5.6: Close-up of Acceleration Time History Detailing the Impact and Free 

Vibration Phases. 

 

 

Figure 5.7: Fast Fourier Transform of Recorded Free Vibration Acceleration Time 

History  
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By treating the composite decks as a simply supported beam, with the 

previously determined equivalent stiffness, the mass and density of the equivalent 

deck system were determined by solving for the mass in equation 5.7 [Chopra, 

2000] that yields the same fundamental frequency as was measured (f1 = 22.4 Hz). 

For a simply supported beam, each natural frequency may be calculated by, 
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Rearranging and solving for the unknown mass per unit length, M, yields: 
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Substituting in the Young’s modulus determined from the static test data 

with the cross sectional area and moment of inertia determined from the deck 



 

 

208

geometry, the mass, weight, density, and specific weight were determined. Finally, 

by calculating the logarithmic decrement during the free vibration following one of 

the hammer impacts (Fig. 5.8), an estimate for damping was determined (Table 

5.1). From Table 5.1, it is evident the damping estimates vary depending on which 

cycles are examined. While the largest damping ratio is observed under the largest 

amplitudes which would seem to indicate an amplitude dependent damping, it is 

felt that the variation in damping ratio should attributed to errors in the calculation 

based on the sampling rate used for acquiring the acceleration time histories. Had 

faster sampling been used, the estimated values for this test would have been more 

consistent. For modeling the system, an average value of 5%, similar to the value 

found using several seconds of free vibration, was used. It was also assumed this 

damping ratio was the same for all modes. These assumptions allowed for 

determining equivalent Rayleigh damping. Equations 5.9 and 5.10 are for the 

coefficients used to build the Rayleigh damping matrix. The properties of the 

equivalent simply supported beam are summarized in Table 5.2. 
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Figure 5.8: Free Vibration Time History Used for Calculating Damping 

 

Table 5.1: Logarithmic Decrements and Damping Ratios Estimated from Free 

Vibration 

Cycle Number Logarithmic Decrement, δ Damping Ratio, ζ 

y1 to y2 0.4361 6.94% 

y2 to y3 0.2088 3.32% 

y9 to y10 0.2803 4.46% 

y1 to y10 0.3001 4.78% 
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Table 5.2: Properties of Equivalent Simply Supported Beam 
 

Mass, m 
in

kips 2sec
02744.0

⋅
 

Weight, W kips605.10  

Density, ρ 
inin

kips 2

3
8 sec

101204.5 −×  

Specific Weight, γ 3
5109785.1

in
kips−×  

Young’s Modulus, E 1918.12 2in
kips  

Moment of Inertia about 
Strong Axis, I 

1.697 x 104 4in  

Rayleigh Coefficient, ao 11.3097 

Rayleigh Coefficient, a1 0.000141 

 
 

These mass properties along with the previously determined elastic modulus 

were utilized to construct the finite element model shown in Figure 5.1. This 

model, composed of 61 nodes and 60 elastic beam column elements, was analyzed 

using the computational framework OpenSees (http://opensees.berkeley.edu/). For 

each node, a nodal mass corresponding to each degree-of-freedom had to be 
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assigned. For this study, nodal masses were assigned using a tributary area based 

on neighboring elements. Next, for the elastic beam column elements, the cross 

sectional area of the element, Young’s Modulus, and moment of inertia were 

assigned based on the previous calculations. By using 60 identical elements, the 

corresponding 3 inch element length proved suitable for traffic modeling and 

damage analysis. 

An impulse load was applied to the middle node of the finite element model 

to generate a free vibration response (Fig’s. 5.8 and 5.9), which when analyzed in 

the frequency domain (Fig’s. 5.10 and 5.11), confirmed the equivalent finite 

element beam had the same fundamental natural frequency as the actual bridge 

deck system. 

 

 

 

Figure 5.9: Quarter Span Free Vibration Strain Time History.  
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Figure 5.10: Midspan Free Vibration Strain Time History.  

 

 

Figure 5.11: FFT of Quarter Span Free Vibration Strain Time History.  

 

 

Figure 5.12: FFT of Midspan Free Vibration Strain Time History.  
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5.3 Traffic Modeling 

To simulate the bridge-decks’ response to traffic crossing over, the one-

dimensional finite element model (Fig. 5.1) was again analyzed using OpenSees. In 

this study, a single vehicle passing over the bridge-decks is simulated by ignoring 

the interaction between the beam and vehicle, instead considering only the moving 

forces [Foda and Abduljabbar, 1998 and Chen and Feng, 2006]. To simplify the 

simulation, the vehicles are considered to be the moving forces only, in other 

words, the interaction between the beam and vehicles is ignored.  Since the loads 

can only be prescribed at the nodes in the finite element model, the time history of 

moving load at each node must be defined according to the vehicle velocity. For a 

typical finite element mesh (Fig. 5.12), the time history is usually assumed such 

that the load arrives at node I at time It  and keeps a constant value until it arrives at 

the next node. This type of time history is easily implemented in the finite element 

model, however, the size of each element must be small and the number of 

elements is controlled by the slowest velocity of the moving load and the period of 

the beam [Saadeghvaziri, 1993]. To improve the accuracy of the results, the time 

history expressed in equations 5.11 and 5.12 is used to represent the moving load.  

The time history includes two parts: the force and the moment, which can be 

derived by the equivalent nodal load definition using the mechanics of structures.  

Node I first experiences loading at time ti-1. This load continues to increase, 

reaching a maximum value at time tI after which it decreases to zero loading at time 

tI+1 (Fig. 5.13). 
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I-1 I I+1e e+1

P
v

I : Node number
e : Element number
P : Moving load
v : Velocity of moving load  

 
Fig. 5.13: Typical Finite Element Model 
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In equations 5.11 and 5.12, tI is the time corresponding to the load arriving 

at node I and tp is the time required for the load to traverse one element: 

 

v
Lttttt IIIIp

∆
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, where L∆ is the element length and v is the vehicle’s speed. It should be noted in 

equation 5.13, all element lengths are assumed to be the same. 
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Figure 5.14: Equivalent Load and Moment Time Histories for Single Axle Moving 
Load, where v=15 m/s (33.5 MPH), pt =0.4 sec., It =1.0 sec, and P=1 N. 

 

 

Simulating a vehicle passing over the bridge decks thereby involves 

generating 122 individual time history files, two for each node.  Each of these 4-

second long input force time history files is 100 kBytes (4000 time steps with a 

0.001 second time increment); therefore, each simulation requires generating 12 

Mbytes of input files. For running large numbers of traffic and damage scenarios, 
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Matlab programs were written to generate the necessary finite element tcl scripts 

and input motion files and batch commands were used to run all of the tcl scripts in 

OpenSees. This process required entering specific values (which later were chosen 

at random) for the vehicles speed and wheelbase. For all cases, a unit force was 

assigned to all the axle weights. Within the model’s tcl script, scaling factors were 

then used to produce the desired axle weights.  

The linear analysis was conducted using Newmark’s method for the average 

acceleration case with a modified Newton algorithm. The Modified Newton 

Algorithm uses the modified Newton-Raphson method to advance to the next time 

step. The difference between this method and the Newton-Raphson method is that 

the tangent stiffness is not updated at each step, thus avoiding expensive 

calculations needed in multi-DOF systems; however, for a linear analysis this is not 

important. In all of the finite element modeling, a time step of 0.001 seconds was 

used. 

Rather than recording the output displacements and forces at all of the 

nodes and elements in the mesh, it was decided to focus on specific elements at key 

locations. For initial studies, the elements at one-quarter and middle span were used 

(Fig. 7.11) and later sixteen elements evenly spaced along the length of the deck 

were used (Fig. 7.12).  For each of these recording elements, the bending moments 

(M) were output as individual text files.  As a post processing operation, these files 

were loaded into Matlab and strains (ε) were determined in accordance with 

Hooke’s Law, equation 5.14 [Popov, 1976]. 
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Recorder Elements  

Figure 5.15: One-Dimensional Finite Element Model with 2 Recording Elements 

 

 

Recorder Elements
 

Figure 5.16: One-Dimensional Finite Element Model with 16 Recording Elements 

 

 To test the accuracy of the constructed FE model, a comparison was 

performed between a recorded campus police car and an equivalent simulated 

vehicle (Fig. 5.16). A campus police car was selected as the wheelbase and 

approximate axle weights of the modified Ford Crown Victoria were known. In this 

simulation, a speed of 26 MPH was used along with axle weights of 1.274 kips 

front and back. The recorded and simulated strains are shown in Figure 5.17. From 

this figure, it is seen the model does a good job predicting the peak strains caused 

by each axle. Also, the duration of loading, from when the front axle first touches 
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the decks to when the rear axle passes, is also consistent. Problems are associated 

with unloading between the two axles. In the recorded data, the strains reach a 

much lower level in between the two peaks than in the simulated data. Another 

difference is in the width of each peak as the simulated peaks are wider than the 

recorded ones. In general, the results were deemed suitable for an initial study. 

While the FE model does not provide an exact representation of the actual 

composite bridge-deck system, it is close enough to provide insight into the 

response and behavior of the actual structure.  

 

Recorded Vehicle Equivalent Simulated Vehicle 

 

9.558 ft
1.274 kips 1.274 kips

 

Figure 5.17: Recorded Police Car and Equivalent Simulated Vehicle 

 



 

 

219

 

Figure 5.18: Recorded and Simulated Strain Time Histories for Campus Police Car 

 

To illustrate the change in strain response for different vehicle types, three sets 

of midpsan strain time histories are included in Figures 5.18-5.20. For this 

example, three distinctly different vehicle types were considered, and the properties 

of these vehicles (Car, 2-Axle Truck, and 2-Axle Bus) are summarized in Table 

5.3. Each figure contains the response for a different speed (10, 20, and 30 MPH 

respectively). Within the time histories, there are several features worth noting: 

• Each distinct peak corresponds to an axle passing over the recording 

element. 
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• As the speed of the vehicle increases, the width of the response decreases 

and the distance between the peaks, corresponding to each of the wheels 

passing over the recording element, also decreases. 

• In this example, as the speed increases the peak strains remain fairly 

constant. 

• For vehicles with wheelbases less than 14 feet, the first axle does not move 

off the decks before the second moves on, and consequently the strains do 

not return to zero in between the two peak axle strains. 

While capable of generating strain time histories similar to the ones measured 

on the bridge decks, the finite element model does not, nor was it ever intended to, 

provide an exact replication of the measured data. Instead, it is only meant to 

produce comparable data which may be used to test the various analysis algorithms. 
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Table 5.3 Properties for 3 Typical Simulated Vehicles 

Vehicle 
Type 

Wheelbase 
(ft) 

Front Axle 
Weight 
(Kips) 

Rear Axle 
Weight 
(Kips) 

Similar Observed Traffic 

Car 9 2 2 

 

Garbage 
Truck 13 9 19.5 

 

Bus 
 18 11 25 
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Figure 5.19: Comparison of Simulated Midspan Strains (Element 30) for Car, 2-

Axle Truck, and 2-Axle Bus Crossing at 10 MPH 
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Figure 5.20: Comparison of Simulated Midspan Strains (Element 30) for Car, 2-

Axle Truck, and 2-Axle Bus Crossing at 20 MPH 
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Figure 5.21: Comparison of Simulated Midspan Strains (Element 30) for Car, 2-

Axle Truck, and 2-Axle Bus Crossing at 30 MPH 

 

5.4 Summary 

The application of supervised learning techniques for vehicle property 

estimation requires information related to vehicle speed, wheelbase, and axle 

weights. As these pieces of information are not available in the strain data recorded 

on the composite bridge decks, training neural networks based solely on the 

recorded strain data was impossible. Similar problems exist in training neural 
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networks to detect and classify damage in the bridge decks where vehicle induced 

strains taken from the damaged state of the bridge decks is unavailable, and 

damaging the decks was not a possibility. Consequently, a computational model of 

the bridge decks had to be created to provide strain time histories similar to those 

recorded on the actual system. Good results were obtained using a one-dimensional 

finite element model in which the interaction between the structure and vehicle 

were ignored (instead traffic was modeled as a series of moving loads). The 

generation of the finite element input and load files was implemented into Matlab 

which allowed for the efficient generation and execution of the large numbers of 

runs (thousands) necessary for the conducted parametric studies and neural network 

training. 
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6 Vehicle Property Estimation and Damage Detection 

 Within this chapter, strain time histories generated by the one-dimensional 

finite element model subject to simulated traffic loads were analyzed to garner 

information regarding the vehicles properties and for damage detection. For 

estimating the speeds and wheelbases of the simulated traffic (useful properties for 

classifying traffic by vehicle type) strain time histories were analyzed for a data set 

consisting of a single vehicle type (constant wheelbase and axle weights) and for 

random traffic. Next, the same finite element model was used to model traffic 

crossing the bridge-deck system in the original (undamaged) and damaged states. 

In this exercise, damage was simulated by reducing Young’s Modulus (stiffness) 

for one or more elements. By examining changes in the computed peak strains, it 

was possible to locate damage and to make approximations as to the level of the 

reduction in stiffness. 

6.1 Vehicle Identification and Property Estimation 

6.1.1 Traffic Identification for Typical Bus 

The first data set used for traffic identification relates to a single vehicle 

type passing over the bridge decks at various speeds. For these scenarios, a 

wheelbase of 168 in, front axle weight of 11 kips, and rear axle weight of 25 kips, 

similar to a fully-loaded 2-axle bus, were used. 631 individual scenarios were 

numerically simulated (wheelbase and axle weights were held constant and the 

speed varied from 2 miles-per-hour to 65 miles-per-hour in 0.1 MPH increments).  
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The first vehicle parameter to be estimated was speed. This required 

outputting the quarter span and midspan bending moments and calculating the 

associated strains. To calculate the speed, it was necessary to determine the instant 

in time when the front axle passes over each of the recording elements. These 

values correspond to the two predominant positive peaks in the strain time 

histories. To locate these local maxima, a Matlab program which searches for and 

returns all local maxima and minima in a vector was implemented [Koptenko, 

2003]. Maxima with amplitudes lower than the set threshold of 5x10-5 were 

ignored, as these discarded maxima are predominantly found in the free vibration 

phase.  

The results of this program run on the original strain time histories from the 

2-axle bus moving at 16 MPH are shown in Figure 6.1. In this figure, the solid line 

is the quarter span strain with a solid circle denoting the first maxima and squares 

subsequent maxima. Similarly, the dashed line is the midspan strain with an “x” for 

the first maxima and asterisk for remaining maxima. Ideally, only one maxima per 

axle will be identified; however, other maxima associated with the bridge deck 

system vibrating about its natural frequency during the loading/unloading phase are 

also present. To remove these unwanted peaks, a 5th order lowpass Butterworth 

digital filter was applied to the strain data prior to locating maxima (Fig. 6.2). 

Using a lowpass filter with a cutoff frequency less than the bridge decks natural 

frequency sufficiently smoothed the data thereby greatly improved the results. As 

shown in Figure 6.2 for the previous time histories filtered using a 15 Hz cutoff 
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frequency, only two peaks (corresponding to the two axles) were identified for each 

time history. 

 

 

Figure 6.1: Unfiltered Midspan and Quarter Span Strain Time Histories for 

Simulated Bus Crossing at 16 MPH. 

 

 

Figure 6.2: Filtered Midspan and Quarter Span Strain Time Histories for Simulated 

Bus Crossing at 16 MPH.  
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Once the maxima corresponding to the front axle crossing the recording 

elements have been determined, the speed can be calculated by dividing the 

distance in between the recording elements (3.5 ft) by the change in time between 

the axle first arriving at quarter and then midspan. For the example shown in Figure 

6.2, the calculated speed was 16.45 MPH while the actual speed used in the 

numerical simulation was 16 MPH. This method was applied to the 631 bus 

patterns and the results of the calculations are shown in Figure 6.3, for the 

unfiltered, lowpass filter with 15 Hz cutoff frequency, and lowpass filter with 5 Hz 

cutoff frequency. The results for the unfiltered data are very poor, particularly at 

low speeds. This is attributed to the algorithm incorrectly identifying peaks not 

associated with the axles (as shown in Fig. 6.1). The best results were obtained by 

applying a filter with a 15 Hz cutoff frequency, for which case the average error 

was 6.34 MPH. From Fig. 6.3, there are two important observations: 

In the data that was filtered using the 15 Hz cutoff frequency, at low speeds 

(less than 8 miles-per-hour) the algorithm occasionally overestimated the speed. In 

some cases, the error exceeded 100%. The explanation for these extremely high 

errors is shown in Fig. 6.4. Even after applying the lowpass filter, additional peaks 

associated with the bridge deck system vibrating at its first natural frequency were 

found. Figure 6.4 shows the strain time histories for a simulated bus traveling at 5.6 

MPH. In this figure, the solid line is the quarter span strain time history and the 

dashed line the middle span. For the quarter span strain, the 1st identified peak 

(indicated by the ) correctly corresponds to the front axle passing over the quarter 
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point of the bridge decks. However, the first peak in the middle span strain time 

history (indicated with an “x”) does not correspond to the front axle crossing the 

middle of the bridge decks. Since the time difference between the first peaks is 

approximately 15% of the expected value, the calculated speed is six and a half 

times too large. This also explains the error at low speeds in the unfiltered data. 

In the filtered data, as the speed increases the estimated speed diverges from 

the actual speed. From Figure 6.3, as the cutoff frequency decreases, the speed at 

which the estimated speed begins to diverge from the actual value used in the finite 

element simulation also decreases and the errors at the higher speeds worsens. For 

the data filtered using a 15 Hz cutoff frequency, at speeds beyond 40 MPH, the 

scatter in the estimation increases and begins to diverge from the actual value. For 

the data filtered with a 5 Hz cutoff frequency, the results are very good for speeds 

below 12 MPH. Beyond this speed, the estimated speeds diverge very quickly and 

the average error for the 631 cases was 28.5 MPH. For both of the filtered cases, 

the estimated speeds can be represented using a 2nd order polynomial. 
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Figure 6.3: Comparison of Actual Speed Used in Finite Element Simulation Versus 

Calculated Value for Unfiltered, 15 Hz Cutoff Frequency, and 5 Hz Cutoff 

Frequency Cases. 
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Quarter Span Strain

Middle Span Strain

 

Figure 6.4: Strain Time Histories (Filtered with a 15 Hz Lowpass Filter) for a 

Simulated Bus Traveling at 5.7 MPH 

 

The explanation for the divergence is related to the phase shift of the filter 

as is illustrated in Figures 6.5 and 6.6. As the cutoff frequency decreases, and the 

effect of the filter becomes more pronounced, the time history shifts to the right. 

This shift becomes more pronounced for higher speeds leading to the increase in 

the divergence. 



 

 

233

 

Figure 6.5: Comparison of Quarter Span Strain Time Histories for Unfiltered and 

Filtered (15 Hz Cutoff Frequency and 5 Hz Cutoff Frequency) Cases 

 

Figure 6.6: Comparison of Midspan Strain Time Histories for Unfiltered and 

Filtered (15 Hz Cutoff Frequency and 5 Hz Cutoff Frequency) Cases 
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To adjust for the affect of the filtering, polynomials were fit to the 15 Hz 

and 5 Hz cutoff frequency calculations and are represented respectively by 

equations 6.1 and 6.2.  

 

( ) 785.45461.00115.0 2 +⋅+⋅= ActualActualCalculated SpeedSpeedSpeed               Eq. 6.1 

( ) 5461.07639.00247.0 2 +⋅+⋅= ActualActualCalculated SpeedSpeedSpeed             Eq. 6.2 

An adjusted speed was calculated for each case by plugging the calculated 

speeds into equations 6.1 or 6.2 and solving for the actual speed. The resulting 

adjusted speeds are shown in Figures 6.7 and 6.8. The average error has decreased 

to 1.50 MPH for the filtered data using a 15 Hz cutoff frequency and 0.38 MPH for 

the 5 Hz cutoff. 

 

Figure 6.7: Comparison of Actual Speed Used in Finite Element Simulation Versus 

Calculated Speed Adjusted for Lowpass Filter (15 Hz Cutoff Frequency).  
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Figure 6.8: Comparison of Actual Speed Used in Finite Element Simulation Versus 

Calculated Speed Adjusted for Lowpass Filter (5 Hz Cutoff Frequency). 

 

In addition to calculating the speed of a passing vehicle, it is also possible to 

estimate the wheelbase. This calculation is made by multiplying the calculated 

speed by the time delay between the front and rear axles crossing the quarter span 

recording element. The resulting wheelbase calculations for the 631 bus cases are 

shown in Figure 6.9 along with the adjusted values in 6.10, where the average error 

is 5.87 in. 
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Figure 6.9: Comparison of Actual Speed from Finite Element Simulation Versus 

Calculated Wheelbase Using Filtered Data (5 Hz Cutoff Frequency). 

 

 

Figure 6.10: Comparison of Actual Speed from Finite Element Simulation Versus 

Adjusted Wheelbase Using Filtered Data (5 Hz Cutoff Frequency). 
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6.1.2 Traffic Identification for Random Vehicle Type 

The second data set analyzed was composed of 300 load cases in which 

random values were assigned to the speeds, wheelbases, and axle weights. In this 

study, the speed ranged from 5 to 40 MPH, wheelbase from 120 to 240 in, front 

axle weight from 2 to 12 kips and rear axle weight from front axle weight plus 0 to 

10 kips. Histograms of the vehicle speeds, wheelbases, front axle weight, and rear 

axle weight are shown in Figures 6.11-6.14. 

 

Figure 6.11: Histogram of Simulated Vehicle Speeds 

 

 

Figure 6.12: Histogram of Simulated Vehicle Wheelbases 



 

 

238

 

Figure 6.13: Histogram of Simulated Vehicle Front Axle Weights 

 

 

Figure 6.14: Histogram of Simulated Vehicle Rear Axle Weights  

 

A 5th order lowpass filter with a 5 Hz cutoff frequency was applied to each 

of the strain time histories and as with the first data set, the speed and wheelbase of 

each vehicle were calculated. The average error for speed calculation is 14.20 MPH 

and after adjusting for filter affects, using the relationships determined for the 

previous data set, the error decreases to 1.87 MPH (Fig. 6.15). For the wheelbase, 

the average error is 79.57 in and 32.69 in respectively (Fig. 6.16). 
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Figure 6.15: Comparison of Actual Speed from Finite Element Simulation versus 

Calculated Speeds Using Filtered Data (5 Hz Cutoff Frequency). 

 

 

Figure 6.16: Comparison of Actual Wheelbase from Finite Element Simulation 

versus Calculated Wheelbase Using Filtered Data (5 Hz Cutoff Frequency). 
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6.2 Damage Identification Using the One-Dimensional FE Model 

The previously discussed one-dimensional finite element model with 

moving loads was used to simulate traffic passing over the undamaged and 

damaged bridge decks. To simulate damage, Young’s modulus of one or more 

elements is reduced. By examining the response of the bridge decks and looking for 

a change in strain between the undamaged and damage scenarios it is possible to 

detect damage. 

6.2.1 Damage Detection Using a Single Vehicle Type 

For this initial study, damage patterns were restricted to either uniform 

damage or damage occurring in one of the three local damage zones (Fig. 6.17) 

located at quarter, middle, and three-quarter span. The first step involved verifying 

a change in the bridge deck response could be observed in the damaged 

configuration. For this, the simplest case of a single vehicle was considered. To 

start, the value of Young’s Modulus was reduced by 25% for all of the elements 

and then for only those elements that form local damage zone 1. The time histories 

for element 16 in Fig. 6.18 show no change in the bending moment between the 

undamaged and damaged configurations. However, when strains are computed in 

accordance with equation 5.14, it is clear that there is a very noticeable change in 

strain (Fig’s. 6.19 and 6.20). This is a very useful observation as this is the property 

that is easily measured on the real bridge deck system (using either electrical 

resistance or fiber optic strain gages). 
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Local Damage
Zone 1

Local Damage
Zone 2

Local Damage
Zone 3

Elements: 15, 16, 17, 18 Elements: 43, 44, 45, 46Elements: 29, 30, 31, 32

Recorder Elements  

Figure 6.17: One-Dimensional Finite Element Model Detailing Location of 

Recorder Elements and Local Damage Zones. 

 

 

Figure 6.18: Element 16 Bending Moment Time History for Undamaged, 25% 

Uniform Reduction in Stiffness, and 25% Reduction in Zone 1. 

 

 

Figure 6.19: Element 16 Strain Time History for Undamaged, 25% Uniform 

Reduction in Stiffness, and 25% Reduction in Zone 1. 
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Figure 6.20: Close-up of Element 16 Strain Time History for Undamaged, 25% 

Uniform Reduction in Stiffness, and 25% Reduction in Zone 1. 

 

Next, the strains in the undamaged elements were examined for a 25% 

reduction in stiffness for Zone 2 elements. The strain time histories for elements 16, 

28, and 32 are shown in Figure 6.21-6.23. From these figures, there is no change in 

strain for any of the undamaged elements, even those (element 28) situated right 

next to the damaged elements.  

 

 

 

Figure 6.21: Element 16 Strain Time History for 25% Reduction in Zone 2 

Stiffness. 
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Figure 6.22: Element 28 Strain Time History for 25% Reduction in Zone 2 

Stiffness. 

 

 

Figure 6.23: Element 32 Strain Time History for 25% Reduction in Zone 2 

Stiffness. 

 

As only those elements which are damaged present a change in strain, it 

was decided to focus on the peak strain from each of the recording elements. In the 

undamaged state, the strain profile generated by plotting only the peak strains at the 

recording elements is a very smooth function (Fig. 6.24).  When damage occurs in 

one of the local damage zones, there is a very pronounced change in the strain 

profile at the location of the damage (Fig. 6.24). 
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Figure 6.24: Peak Strain Profile for Undamaged State. 

 

 

 

 

 

Figure 6.25: Peak Strain Profile for Local Damage in Zones 1, 2, and 3 (Top, 

Middle, Bottom). 
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 When the strain profiles for the local damage scenarios are subtracted from 

the profile for the undamaged state, the change is even clearer (Fig. 6.26). As 

expected, the increase in the peak strain is inversely proportional to the decrease in 

Young’s Modulus. This observation makes it possible to quantify the level of 

damage; however, it is only possible when data from the undamaged state for the 

same vehicle traveling at exactly the same speed is available. Consequently, this 

method of detecting and quantifying the level of damage is not practical for random 

traffic loading. 
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Figure 6.26: Change in Strain Profile Corresponding to 25% Reduction in Stiffness 

for Zone 1, 2, and 3 Elements. 

 

6.2.2 Damage Detection Using Random Traffic 

As peak strains at the recorder elements appear to be a good indicator of 

damage, a study was conducted using the aforementioned traffic set from section 

6.1.2, consisting of 300 random vehicle parameters. The 300 input patterns were 

separated into four cases: undamaged, local damage in Zone 1, local damage in 

Zone 2, and local damage in Zone 3. For the damaged scenarios the value of the 
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modulus of the affected elements was randomly reduced up to 50%. Damage was 

restricted to one zone at a time and the values of Young’s modulus for the four 

elements that constitute each damage zone were uniformly reduced. 

A plot of the percent reduction in Young’s modulus for the 300 cases is 

shown in Figure 6.27. For each simulation, the resultant forces and moments were 

output and recorded for the 16 elements shown in Figure 5.15. From the moments, 

the strains were calculated and the peak strain profiles along the length of the beam 

were saved. For each of the four damage scenarios, 50 of the 75 strain profiles were 

selected at random and first normalized (such that the sum of the sixteen 

normalized strains equals 1.0) and then averaged to form a typical profile 

representative of each damage case (Fig. 6.28). It should be noted that this form of 

normalizing the strain profiles is only one of a vast number of possible ways. 

 

Figure 6.27: Plot of Percent Reduction in Local Stiffness versus Simulation 

Number. 
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Figure 6.28: Typical Strain Profiles (50 Averages) for Undamaged, Zone 1 Local 

Damage, Zone 2 Local Damage, and Zone 3 Local Damage Cases. 

 

The 300 strain profiles were compared to each of the four typical profiles 

and the root-mean-squares (RMS) of the absolute differences between the average 

and individual profiles was calculated (Fig. 6.29). For each load case, a damage 
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assessment was performed by deciding which of the four typical profiles the 

individual strain profile most closely fits. This was done by finding the minimum 

RMS value for each case and assigning a damage type (undamaged, Zone 1, Zone 

2, or Zone 3) based on this value. 

 

 

 

 

 

Figure 6.29: RMS of Difference Between Strain Profile and Typical Zone 1, Zone 

2, Zone 3, and Undamaged Profiles. 
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 Based on this method, 73.67% of the 300 records shown in Figure 6.30 

were correctly labeled. Further conclusions which may be drawn from this figure 

include: 

• All cases in which the damage was represented by a reduction in Young’s 

Modulus greater than 17% were correctly labeled.  

• All but one of the damage scenarios in which the reduction was less than 

10% were incorrectly labeled as undamaged. 

• All of the undamaged cases were properly labeled.  

• For scenarios in which the damage was represented by a 5 to 17% 

reduction in Young’s Modulus, over 80% of the 59 cases were incorrectly 

labeled as undamaged. 

 
Zone 1 Local Damage Zone 2 Local Damage Zone 3 Local Damage Undamaged

 

Figure 6.30: Scatter Plot of Damage Labeling versus Percent Reduction in Young’s 

Modulus. 
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Overall, this method proved only moderately effective in identifying 

damage and assigning the proper labeling. From Figure 6.31, in all cases in which 

the method correctly identified the presence of damage it also assigned the  proper 

location. For damage levels less than approximately 15%, the method was unlikely 

to recognize the damage, thereby making it unsuitable for detecting early on the 

onset of progressive damage. Further, this method is nonconservative as there were 

no false positive damage indications. In summary, this method only proved 

moderately effective at detecting damage. In particular, for low level damage (less 

than 15%), it tended to assign an undamaged label (only 10% of these damage 

patterns were properly identified). Also, this method provide little information 

regarding the extent of the damage. For these reasons, an improved damage 

detection/classification method using Neural Networks was developed and is 

presented in the following chapter. 
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Zone 1 Local Damage Zone 2 Local Damage Zone 3 Local Damage Undamaged

 

Figure 6.31: Damage Zone Classification versus Actual Damage Zone 

 

6.3 Summary 

The strain time histories generated from the finite element model were used 

for vehicle property estimation and damage detection. These operations were first 

done using the peak strains and then later with neural networks. Peak middle and 

quarter span axle strains (along with the time at which they occur) from the strain 

data were used for calculating speeds and wheelbases for each simulated vehicle. 

For the random traffic, the average error in the speed calculation was 1.87 MPH 

and 32.69 inches for wheelbase. For damage identification, the peak strains at 

sixteen locations distributed along the length of the FE model were utilized. For the 

case of a single vehicle type with constant speed, wheelbase, and axle weights, it 

was possible to accurately determine the extent and location of damage. Under the 
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more difficult case of random traffic loading (in which vehicle properties are 

randomly generated), it was only possible to detect local reductions in stiffness 

over 15%. 
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7 Application of Neural Networks for Vehicle Property Estimation 

and Damage Identification/Classification Using Simulated Data 

In this chapter, neural networks are applied to the data from the finite 

element model to determine vehicle properties and for damage detection purposes. 

First, neural networks are applied for estimating vehicle properties (speeds, 

wheelbases, and axle weights) from traffic data in which one property at a time is 

changed and thereafter from random traffic data. In this study, multiple forms of 

feature extraction were explored. Next, neural networks were used with peak 

strains to perform damage detection and classification. Finally, an alternate method 

is detailed in which strain time histories from one location in the finite element 

model are used as inputs to a neural network which then predicts strains at a 

neighboring location, and comparisons between the predicted and actual strains are 

used to detect and assess the level of damage. 

7.1 Utilizing Neural Networks within an Integrated Health Monitoring 

Framework 

Using the latest enabling technologies, the objectives of health monitoring 

are to detect, locate, and assess the level of structural damage to the civil 

infrastructure. As changes in a systems dynamic response can result from either the 

presence of damage or from environmental/operational factors (loading conditions, 

thermal loading, …), another important factor for bridge monitoring is determining 

traffic loading parameters, namely vehicle speed, wheelbase, and axle weights. 
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Within this chapter neural network applications for traffic identification and 

damage detection within a general framework of structural health monitoring are 

discussed. As previously presented, an integrated health monitoring framework is 

being developed to incorporate all tasks from sensor configuration, data acquisition 

and control, to decision-making and resources allocation. Within this framework, 

neural networks, which do not require information concerning the 

phenomenological nature of the system being investigated, are employed to detect 

changes in model-unknown structures.  

 Neural networks, which were originally developed to form a mathematical 

model of the human brain [Bishop, 1998], derive their name from their correlation 

to a collection of interconnected neurons (the cells that perform information 

processing in the brain) [Russell and Norvig, 1995]. They have been shown to work 

well in widely varying fields, providing satisfactory performance in tasks that 

otherwise prove difficult to solve explicitly using other numerical techniques. To 

date, these networks have been successfully applied for: 

• Pronunciation of written English text by a computer [Sejnowski and 

Rosenberg, 1987], which involved learning the mapping from text to 

phonemes. 

• Reading zip codes on hand-addressed envelopes, a character recognition 

problem [Le Cun et al. 1989]. 

• Steering a vehicle on a single highway lane by observing the performance 

of a human driver [Pomerleau, 1993]. 
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• Within civil engineering, Masri et al. (1996) and Nakamura et al. (1998) 

have applied neural networks to recorded vibration data for damage 

detection. 

While often treated as a black box, neural networks require careful attention in 

their construction. In developing the network, the user must consider the number 

and types of units and activation functions to use and how these units are to be 

connected. For training, it is necessary to select which features to use as inputs for 

the network, as well as what are the outputs (for the example of damage detection 

on a civil structure, this could be: occurrence of damage, location of damage, level 

of damage, type of damage, or some combined form). 

An important limitation of neural networks is that like any supervised 

learning method, they require data from the undamaged and damaged states of the 

structure and generally data from the damaged state is difficult to come by. A 

common alternative is to generate data from a calibrated finite element model 

simulating each of the potential damage states. However, the success of this 

method is closely tied to how accurately the model simulates the actual structure. 

Another limitation is damage often occurs at more than one location at a time. For 

simulating training data where all possible damage scenarios must be simulated, the 

number of damage locations and levels can lead to an exponential increase in the 

number of patterns which must be considered. Finally, unlike decision trees which 

follow a logical derivation for new data, neural networks provide no explanation 
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for why a given output value is reasonable, even when they predict well [Russell 

and Norvig, 1998]. 

7.2 Vehicle Property Estimation Using Data from One-Dimensional Finite 

Element Model with Vehicles with Only One Variable Characteristic 

The aforementioned computational model of the bridge-deck system 

(discussed in Chapters 5 and 6) was employed for generating simulated data to 

explore the potential of neural networks as a traffic identification tool based on 

changes in strain time histories [Fraser et al,. 2004]. To simulate traffic crossing 

over the bridge-decks, the one-dimensional finite element model, composed of 

sixty beam-column elements, (Fig. 7.1) was analyzed using the computational 

framework OpenSees (http://opensees.berkeley.edu/). The goal of this research is to 

apply the neural network to identify/predict traffic speeds and wheelbases based on 

strain time histories. If successful, these techniques may be applied in future 

research to actual measured data with the ultimate goal of reducing uncertainty 

during the system-identification analysis phase (by limiting the scope of possible 

causative load configuration scenarios). 

 

Figure 7.1: Finite Element Model of Composite Bridge-Decks 
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Considering the range of vehicles likely to be encountered on the bridge-

deck system, two classification problems were chosen for this initial study. The 

first data set consisted of the situation where the vehicle type (axle weight and 

wheelbase) was kept constant and the speed varied in quarter mile-per-hour (MPH) 

increments from 5 to 65 MPH. For each of these scenarios, strain time histories 

were generated at middle and quarter span. In this study, a single vehicle passing 

over the bridge-decks is simulated by ignoring the interaction between the beam 

and vehicle, instead considering only the moving forces [Foda and Abdujabbar, 

1998 and Chen and Feng, 2006]. This simulation replicates the situation where a 

campus shuttle bus crosses the decks at a speed somewhere between 5 and 65 MPH 

(Fig. 8.2).  Of the 241 scenarios generated, 201 were selected and served as the 

training set for the neural network. The remaining 40 cases were reserved as a test 

set to evaluate the network performance. 

 

 

Figure 7.2: Typical UCSD Shuttle Buses Crossing Over Composite Bridge Decks 



 259

             

In addition, a second class of scenarios was considered in which the 

vehicle’s speed and axle weights were held constant and the wheelbase varied from 

5 to 30 feet (in 0.25 foot increments). For this class, 81 of the scenarios were used 

for training and the remaining 20 for testing. 

If all the time steps in the strain time histories (for examplea a ten-second 

long time history with a 0.001 second time increment is composed of 10,000 

points) were to be considered features and implemented as neural network inputs, 

the network structure would grow far too large and the training would become time 

consuming and effort intensive. Furthermore, because strain time histories are 

continuous curves, the information in the data is actually highly redundant. 

Therefore, data compression and feature extraction were performed. 

Principal Components Analysis (PCA) was herein employed for feature 

extraction [Yan et al., 2004 a, b, c]. PCA reduces the dimension of a data set by 

transforming the original (possibly correlated) features into a new set of 

uncorrelated features (i.e., Principal Components or PCs [Jolliffe, 1986]. These PCs 

are ordered so that the first few retain most of the variance displayed by the original 

features. For this data set, the information of significance was mainly contained in 

the first 10 to 20 principal components, which were used as the network inputs. In 

this example, for each pair of time histories corresponding to one particular event, 

the number of features was reduced from 20,000 (the strain at every one of the time 

steps in both of the ten-second long strain time histories is considered to be a 
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feature) to the first ten principal components. These ten PCA features were used as 

the input in the neural network. 

Following Yan et al. (2004a), a typical two-layer perceptron neural network 

(Fig. 8.2) was used as the statistical pattern classifier. This was done in accordance 

with Bishop (1995) which showed a two-layer neural network using a sigmoidal 

activation function is capable of approximating any continuous functional mapping.  

Performance of the network is highly dependent on the activation functions being 

chosen. According to LeCun (1998), using a symmetric sigmoidal activation 

function such as a hyperbolic tanh often leads to faster convergence during 

training. Thus, the activation function of the hidden layer employed hyperbolic 

tanh function as recommended by LeCun (1998): 

 

)3/2tanh(7159.1)( hhg =                                                                                   Eq. 7.1 

 

where h is the value of the corresponding hidden unit. The “softmax” activation 

function (Bishop 1995), 

 

∑= j
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i eey /                                                                                               Eq. 7.2 
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was used as the activation function of the output layer so as to obtain a vector of 

positive values whose sum is 1.0, where yi is the ith component of network output 

vector [Y], and aj is the value of the jth output unit (Fig. 7.3). 
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Figure 7.3: Neural Network Structure [Yan et al., 2005] 

 

The neural network was then defined with the 10 input units, 15 hidden 

units (preliminary studies showed 15 to be sufficient), and a single output unit 

(corresponding to normalized speed or wheelbase). During training, the example 

inputs are fed into the network and if the network computes outputs that match the 

target values (actual values used in the finite element simulation) then nothing is 

done to the network. However, if there is an error whereby the outputs do not 

match the targets, then the weights in the network must be adjusted. However, with 

the two layer neural network used in this problem, there are many weights 

connecting each input, hidden, and output unit the difficulty becomes in assessing 
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how the error should be divided amongst the contributing weights [Russell and 

Norvig, 1994]. This problem is compounded in the damage detection/classification 

application where multiple outputs are used and each of the weights contributes to 

more than one output. The back-propagation learning algorithm [Bishop, 1995] 

solves the problem of dividing the contribution of the weights and was therefore 

used to train the network, and adjust the weights by minimizing the error between 

network outputs and targets (corresponding desired values for the outputs), where 

the error was defined by the cross entropy error function [Bishop 1995]: 

 

)(log])/log([ ∑∑ −=−= i iii iii tytytError                                                                Eq. 7.3 

 

where, ti is the ith component of target vector [T]. 

The traffic patterns in the training set were visited sequentially, and the 

network configuration was updated by the back-propagation learning algorithm 

after each visit. Since the training set was composed of only 201 traffic patterns, 

the data was repeatedly used during this phase. Each loop over all patterns visited 

during training is called an epoch.  

This optimized network configuration was then subjected to the test set with 

40 traffic patterns. The same PCA transformation used for the training set was 

applied to the test set so as to extract compatible Principal Component features. 
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Comparing the network outputs with the targets for all patterns in the test 

set, the average error in the speed estimation was 0.28 MPH (Fig. 7.4). For 

wheelbase estimation, the average error was 0.30 feet (Fig. 7.5). 
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Figure 7.4: Comparison of Estimated and Actual Speeds 
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Figure 7.5: Comparison of Estimated and Actual Wheelbases 

 

7.3 Vehicle Property Estimation Using Data from One-Dimensional Finite 
Element Model with Random Traffic Loading 
 

Having demonstrated the viability of neural networks as a tool for 

identifying vehicle properties when only one vehicle property (either speed or 

wheelbase) is varied, the effectiveness under the more realistic scenario of random 

traffic loading was explored.  As training, validating, and testing a neural network 

requires a large data set, it was impractical to weigh and measure numerous 

vehicles and them drive each of them over the actual bridge decks. Consequently, 

the three-hundred sets of strain time histories corresponding to the random traffic 

generated with the one-dimensional finite element were employed. The properties 

of this data set were discussed in detail in section 6.1.2. For this data, the speed, 



 265

wheelbase, front axle weight, and rear axle weight for each vehicle was determined 

using four separate neural networks.  

7.3.1 PCA-Based Feature Extraction 

Rather than using the data from all 16 of the recording elements, only two 

were selected – elements 12 and 28. These elements were chosen as they 

correspond roughly to the quarter and middle span locations of the bridge-decks 

and are outside of the local damage zones. This is an important consideration since 

damage was modeled as a reduction in stiffness. Therefore, the presence of damage 

(with its corresponding reduced stiffness) causes higher strains which lead to errors 

in the determination of axle weights. To further reduce the size of the data put into 

the neural network, Principal Component Analysis was again used thereby reducing 

the number of features from 8000 to just 20 (corresponding to the first 20 principal 

components). 200 of the traffic patterns were randomly selected and used for 

training while the remaining 100 were reserved for testing.  

 The neural network was then defined with the 10 input units, 15 hidden 

units (preliminary studies showed 15 to be sufficient), and a single output unit. For 

optimizing the network configuration, the backpropgation learning algorithm was 

applied for 200 loops over all of the data (epoch = 200) as was done with single 

vehicle type.  

This optimized network configuration was then subjected to the test set with 

100 traffic patterns, and the results of this test are detailed in Figures 7.6-7.9. 
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Comparisons with the results from this test, the results from the neural network 

with a single vehicle type, and the data from Chapter 6 are presented in Table 7.1. 

 

 

 
Figure 7.6: Comparison of Simulated Speed versus Value Estimated by Neural 

Network 
 

 
 

Figure 7.7: Comparison of Simulated Wheelbase versus Value Estimated by Neural 
Network 
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Figure 7.8: Comparison of Simulated Front Axle Weight versus Value Estimated 
by Neural Network 

 

 
 

Figure 7.9: Comparison of Simulated Rear Axle Weight versus Value Estimated by 
Neural Network 
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Table 7.1: Comparison of Identified Vehicle Properties for Neural Network with 

Single Vehicle Type, Neural Network with Random Vehicle Type, Random 

Vehicle Type from Chapter 6. 

 

 

 

7.3.2 Peak Detection for Neural Network Inputs 

  The peak detection algorithm used in Chapter 6 was applied to the 

simulated strain time histories from recording elements 12 and 28. Using this 

algorithm, the arrival time and corresponding peak strain for each of the vehicle’s 

axles were determined. Figure 7.10 shows the two strain time histories for a typical 

vehicle with the extracted values summarized in Table 7.2.  

Vehicle Property Average Error 
for Single 

Vehicle Type 
with Neural 

Network 

Average Error for 
Random Vehicle 
Type with Neural 

Network 

Average Error 
for Random 

Vehicle Type 
from Chapter 6 

Speed 0.28 MPH 1.94 MPH 1.87 MPH 

Wheelbase 0.30 ft 2.23 ft 2.72 ft 

Front Axle Weight - 0.63 kips - 

Rear Axle Weight - 0.94 kips - 
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Figure 7.10: Strain Time Histories for Typical 2-axle Vehicle Showing Axle 

Arrivals Determined from Peak Detection Algorithm 

 

 

Table 7.2: Extracted Features for Typical 2-Axle Vehicle 

1st Axle Arrival at 
Element 12 0.544 sec  1st Axle Arrival at 

Element 28 0.674 sec 

Element 12 Peak 
Strain from 1st 

Axle 
2.0143 x 10-4  

Element 28 Peak 
Strain from 1st 

Axle 
2.6971 x 10-4 

2nd Axle Arrival at 
Element 12 1.141 sec  2nd Axle Arrival 

at Element 28 1.272 sec 

Element 12 Peak 
Strain from 2nd 

Axle 
4.5903 x 10-4  

Element 28 Peak 
Strain from 2nd 

Axle 
6.1243 x 10-4 
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Using these eight extracted features (which were normalized such that the 

minimum and maximum ranged from -1 to 1) as inputs, a new set of neural 

networks were trained and used for estimating the speed, wheelbase, front axle 

weight, and rear axle weights for a test data set. The results are included in Figures 

7.11-7.14, and summarized in Table 7.3. Overall, the results have considerably 

improved over all the previous methods. 

 

 

Figure 7.11: Comparison of Simulated Speed versus Value Estimated by Neural 

Network using Extracted Features from Peak Detection Algorithm 
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Figure 7.12: Comparison of Simulated Wheelbase versus Value Estimated by 

Neural Network using Extracted Features from Peak Detection Algorithm 

 

 

Figure 7.13: Comparison of Simulated Front Axle Weight versus Value Estimated 

by Neural Network using Extracted Features from Peak Detection Algorithm 
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Figure 7.14: Comparison of Simulated Rear Axle Weight versus Value Estimated 

by Neural Network using Extracted Features from Peak Detection Algorithm 

 

 

Table 7.3: Average Error for Vehicle Properties Estimated from Neural Networks 

using PCA and Peak Detection Based Feature Extraction 

Vehicle Property 

Average Error for 

Random Vehicle Type 

with Neural Network 

using PCA 

Average Error for 

Random Vehicle Type 

with Neural Network 

using Peak Detection 

Speed 1.94 MPH 0.42 MPH 

Wheelbase 2.23 ft 0.17 ft 

Front Axle Weight 0.63 kips 0.07 kips 

Rear Axle Weight 0.94 kips 0.128 kips 
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7.4 Damage Detection Using Neural Networks and One-Dimensional Finite 

Element Model with Random Traffic 

The pattern recognition abilities of neural networks make them an attractive 

tool for damage detection. Like any supervised learning method, neural networks 

require data from the undamaged and damaged states of the structure for training. 

While typically scarce for actual civil engineering structures, these can be rather 

easily (yet tediously) simulated using the one-dimensional finite element model. 

Having generated the 300 traffic patterns previously discussed, the next 

decision is which damage sensitive features should be used as input for the neural 

network. Previously, Principal Components Analysis was used for selecting 

features for determining vehicle properties with the neural networks. For damage 

detection, rather than applying Principal Components Analysis for feature 

reduction, it was decided to instead use only the peak strains [Liu and Sun, 1997] 

from the 16 recording elements shown in Figure 5.15. This method affectively 

reduces the number of features from 64,000 (4,000 time steps for each of the 16 

recording elements) to just 16. While all the information in the original time 

histories is not preserved, this method makes use of strains inherent ability to detect 

local changes in the system and provides local data from along the full length of the 

bridge decks. 

Further data cleansing was performed and found to significantly improve 

the results. This cleansing consisted of applying a 5th order lowpass Butterworth 

filter with a 5 Hz cutoff frequency prior to determining the peak strains. This filter 
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served to smooth the data and remove any free vibration about the approximate 20 

Hz fundamental frequency. In addition, the data was normalized by the peak strain 

recorded at element 24. This served to remove variations in the peak strain due to 

the random axle weights.  

Once the patterns were defined and the damage sensitive features selected, a 

multi-class neural network was constructed and trained for locating the presence of 

damage on the simulated bridge deck system. This network was defined with the 16 

input units (corresponding to the peak filtered strains normalized by element 24), 

32 hidden units (chosen such that the number of hidden units was twice the number 

of input features), and 4 output units. The 4 output units (summarized in Table 7.4) 

correspond to the presence of damage at one of the three local damage zones or to 

the case of no damage present. Of the 300 traffic patterns, 200 were used for 

training, 40 for validation (used as an objective standard to quantify the error in the 

neural network output), and 60 for testing. 

As when used for vehicle property estimation, the backpropagation learning 

algorithm was again used to train and optimize the network. The optimized network 

was then applied to the 60 test records (Fig. 8.9) and the results are shown in 

Figures 7.15 – 7.18 and Table 7.5. 
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Table 7.4: Summary of Output Classes 

Output Class Damage Description 

1 Local Damage in Zone 1 

2 Local Damage in Zone2 

3 Local Damage in Zone 3 

4 Undamaged 

 
 
 

 
 

Figure 7.15: Histogram of Percent Reduction in Local Stiffness for Test Data 
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Figure 7.16: Test Number versus Percent Reduction in Local Stiffness (Using 

Maximum Strain Distributions Filtered and Normalized by Element 24). 
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Figure 7.17: Percent Reduction in Local Stiffness versus Neural Network 

Confidence 

 

 

Table 7.5: Neural Network Success Rate for Identifying Damage by Damage Class 

 Damage Classification 

 1 2 3 4 Total 

Number of 

Successes 
15 13 14 14 56 

Number of 

Failures 
0 2 1 1 4 
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Figure 7.18: 3-D Histogram of Actual Classification versus Classification Assigned 

By Neural Network. 

 

Overall, this optimized neural network was able to successfully classify 

93.3% of the test scenarios, identifying all damage scenarios where the local 

stiffness reduction was greater than 3%. By filtering the data prior to normalizing 

the strain distributions, the classification accuracy increased by 5% and the damage 

threshold for successful identification improved from 8% with the unfiltered strains 

(Fig. 7.19) to 3% for filtered (Fig. 7.16). In comparison to the results from Chapter 
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6, the detection threshold has dropped from 15% local damage to 3%, and the 

overall accuracy has increased from 73.6% to 93.3%. 

 

 

 
Figure 7.19: Test Number versus Percent Reduction in Local Stiffness for 

Unfiltered Maximum Strain Distributions (Normalized by Element 24). 

 
7.5 Damage Classification Using Neural Networks and One-Dimensional Finite 

Element Model with Random Traffic 

 Having demonstrated the neural networks ability to locate the presence of 

damage from the simulated data, the next logical step was to apply neural networks 

for classifying the level of the damage. The most straightforward approach involves 

training a multiclass neural network where each class represents a range of damage 

levels for a particular local damage zone. In this example, three damage ranges (1 – 
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15%, 15 - 30%, and 30 – 50% reduction in Young’s Modulus) were considered for 

each of the three local damage zones. Consequently, ten classes were used (9 

damaged and 1 undamaged).  

 The previously used data set composed of 300 strain patterns provides 

approximately 25 patterns for each of the damaged classes and 75 undamaged 

patterns. These sets of 25 patterns were too few for training, validation, and testing 

so an additional 300 patterns were generated. The properties of this new combined 

data set (composed of 600 random vehicles) are detailed in figures 7.20 – 7.24. 

 

Figure 7.20: Histogram of Simulated Vehicle Speeds 

 

Figure 7.21: Histogram of Simulated Vehicle Wheelbases 
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Figure 7.22: Histogram of Simulated Vehicle Front Axle Weights 

 

 

Figure 7.23: Histogram of Simulated Vehicle Rear Axle Weights 

 

Figure 7.24: Histogram of Percent Reduction in Young’s Modulus 
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350 of the patterns were selected for training and 100 patterns each for 

validation and testing. To prevent biasing of the training set resulting from adding 

proportionally more undamaged scenarios, fifty of the undamaged patterns were 

discarded. The histogram of the damage classes for the training data is shown in 

Fig 7.25. 

 

 

Figure 7.25: Histogram of Training Data Damage Classes 

 

The neural network was defined with the 16 input units (corresponding to 

the peak filtered strains normalized by element 24), 32 hidden units, and 10 output 

units (each output corresponding to one damage class). The 10 output units are 

summarized in Table 7.6. Once the network architecture was determined, the 

backpropagation learning algorithm was again used to train and optimize the 

network. The optimized network was then applied to the 100 test records (Fig. 

7.26) and the results are shown in Figures 7.27 – 7.29 and Table 7.7. 
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Table 7.6: Summary of 10 Output Units Utilized in Damage Classification 

Output Unit 

Number 
Description of Damage 

1 1-15% Reduction in Stiffness for all Elements in Zone 1 

2 15-30% Reduction in Stiffness for all Elements in Zone 1 

3 30-50% Reduction in Stiffness for all Elements in Zone 1 

4 1-15% Reduction in Stiffness for all Elements in Zone 2 

5 15-30% Reduction in Stiffness for all Elements in Zone 2 

6 30-50% Reduction in Stiffness for all Elements in Zone 2 

7 1-15% Reduction in Stiffness for all Elements in Zone 3 

8 15-30% Reduction in Stiffness for all Elements in Zone 3 

9 30-50% Reduction in Stiffness for all Elements in Zone 3 

10 Undamaged 

 

 

Figure 7.26: Histogram of Test Data Damage Classes 



 284

 

Figure 7.27: Percent Reduction in Local Stiffness versus Neural Networks Ability 

to Successfully Classify Data 

 

Figure 7.28: Percent Reduction in Local Stiffness versus Neural Network 

Confidence 
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Table 7.7: Neural Network Success Rate for Classifying Damage by Output Unit 

 Output Unit 

 1 2 3 4 5 6 7 8 9 10 Total

Number of 

Successes 
4 6 9 5 9 9 6 6 8 25 87 

Number of 

Failures 
5 0 1 1 0 1 3 1 1 0 13 
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Figure 7.29: 3-D Histogram of Actual Classification versus Classification Assigned 

By Neural Network. 
 
 

From Figures 7.29 and 7.27, there are a few general results which may be 

drawn: 

 

1. For the lightly damaged classes (classes 1, 4, and 7), the neural network 

had a tendency to assign, incorrectly, the undamaged class (class 10). 
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Only for the lightly damaged cases, did the neural network incorrectly 

assign the undamaged label. 

2. For the incorrect labeling (with the exception of when the neural 

network assigns the undamaged label), the neural network always 

assigns a neighboring label. This is indicative of having trouble near the 

boundaries between the labels and is confirmed in Fig 7.27. 

3. There were no false indications of damage whereby a damaged label 

was assigned to the undamaged system. 

4. The majority of the incorrect labels were associated with the lightly 

damaged scenarios. 

7.6 Damage Detection Using Neural Networks and One-Dimensional Finite 

Element Model with Random Traffic and Simultaneous Damage Locations. 

 The next application involves the use of the neural network for damage 

detection when damage is allowed to occur simultaneously at multiple locations. 

The various damage scenarios are summarized in Table 7.8. As with the previous 

example, additional traffic patterns were necessary for training, validation, and 

testing. It was decided to generate 200 patterns for each damage scenario and to 

assign 175 patterns from each scenario for training, 25 for validation and 25 for 

testing. Ultimately, 1600 random traffic patterns were utilized herein, the properties 

of which are summarized in Figures 7.30 – 7.32. 

Three multi-class neural networks were constructed and trained for locating 

the presence of damage in one of the local damage zones on the simulated bridge 
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deck system. Again, these networks were defined with the 16 input units 

(corresponding to the peak filtered strains normalized by element 24) and 32 

hidden units (chosen such that the number of hidden units was twice the number of 

input features), and 2 outputs (either damaged or undamaged). Each testing pattern 

(composed of a set of normalized peaks strains from the 16 recording elements) 

was applied individually to the three neural networks and the results are shown in 

Figure 7.33 and summarized in Table 7.9.  98.0% of the testing patterns were 

correctly identified for Zone 1, 98.5% for Zone 2, and 96.5% for Zone 3. Overall, 

the neural network correctly identified 93.5% of the combined damage patterns. All 

but two of the errors are associated with very low damage levels (less than 2%) 

being misclassified as undamaged. 
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Table 7.8: Summary of Damage Scenarios 

Damage Scenario Number of Patterns Simulation Numbers 

Undamaged 200 1-200 

Zone 1 200 201-400 

Zone 2 200 401-600 

Zone 3 200 601-800 

Zones 1 & 2 200 801-1000 

Zones 2 & 3 200 1001-1200 

Zones 1 & 3 200 1201-1400 

Zones 1, 2, & 3 200 1401-1600 

 

 

Figure 7.30: Simulation Number versus Percent Reduction in Stiffness for All 

Elements in Zone 1 
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Figure 7.31: Simulation Number versus Percent Reduction in Stiffness for All 

Elements in Zone 2 

 

Figure 7.32: Simulation Number versus Percent Reduction in Stiffness for All 

Elements in Zone 3 
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Figure 7.33: Results for Damage Detection 

 

 

Table 7.9: Results from Damage Detection for Simultaneous Damage Locations 

 Accuracy 

Zone 1 Results 98.0% 

Zone 2 Results 98.5% 

Zone 3 Results 96.5% 

Overall Results 93.5% 
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7.7 Damage Classification Using Neural Networks and One-Dimensional Finite 

Element Model with Random Traffic and Simultaneous Damage Locations. 

 The final application presented in this chapter involves the same 

aforementioned data set and three neural networks for classifying the level of 

damage in each of the local damage zones. Again, three neural networks were 

utilized, one responsible for each damage zone; however, this time each network 

had 4 output units (undamaged, 1-15% reduction in stiffness, 15-30% reduction in 

stiffness, and 30-50% reduction in stiffness).  

 

Table 7.10: Summary of the 4 Output Units Used for Each Neural Network 

Output Unit  Damage Description 

1 Undamaged 

2 
1-15% Reduction in Stiffness for all Elements in 

Damage Zone 

3 
15-30% Reduction in Stiffness for all Elements in 

Damage Zone 

4 
30-50% Reduction in Stiffness for all Elements in 

Damage Zone 

 

 

 The results for each of the neural networks are presented in Fig’s 7.34 – 

7.39 and summarized in Table 7.11. From Figures 7.34 - 7.36, most of the incorrect 
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labeling occurs near the boundaries of each class. From Fig’s 7.37 -7.39, it can be 

seen that incorrect labels are assigned to their neighboring classes. Overall, the 

neural networks were able to accurately classify approximately 97% of the 

scenarios from each local damage zone and 90.5% of combined simultaneously 

occurring damage scenarios. 

 

 

Figure 7.34: Results of Damage Classification for Local Damage Zone 1 
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Figure 7.35: Results of Damage Classification for Local Damage Zone 2 

 

 

Figure 7.36: Results of Damage Classification for Local Damage Zone 3 
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Figure 7.37: Neural Network Classifications for Local Damage Zone 1 

 

Figure 7.38: Neural Network Classifications for Local Damage Zone 2 
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Figure 7.39: Neural Network Classifications for Local Damage Zone 3 

 

 

Table 7.11: Summary of Damage Classification for Simultaneously Occurring 

Damage Scenarios 

 Accuracy 

Zone 1 Results 97.0% 

Zone 2 Results 96.5% 

Zone 3 Results 96.5% 

Overall Results 90.5% 
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7.8 Utilization of a Predictive Neural Network for Damage Detection 

 While the aforementioned damage detection method was able to accurately 

detect and classify over 90% of the data used in the previous example, composed of 

200 test scenarios. This method is limited in that it only provided a very rough 

judgment regarding the level of damage. The output could only place the damage in 

one of four classes (undamaged, 1-15% reduction in stiffness, 15-30% reduction in 

stiffness, or 30-50% reduction in stiffness). No information regarding where in 

these ranges the individual cases fell is available. In addition, this method suffers 

difficulties near the boundaries of the classes. As has been previously discussed, 

increasing the number of classes in order to decrease the uncertainty of the exact 

value of damage requires generating an immense amount of data, particularly when 

simultaneous damage locations are being considered. In fact, in these cases, the 

number of scenarios required grows exponentially with the number of output 

classes.  

For these reasons, a new method of using neural networks for damage 

detection is presented. Ideally, this new method would: 

1. Only use information (traffic patterns) from the healthy (undamaged) state 

of the structure for network training. 

2. Be capable of detecting damage occurring simultaneously at multiple 

locations. 

3. Provide an output that can be directly correlated with the damage level. 
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Only requiring data from the undamaged structure is an important advantage as the 

amount of data required during network training is much less than the in the 

previous method. Further, for deployment on actual structures, a calibrated FE 

model is no longer required. Instead, the neural network is simply trained on the 

data from the healthy structure. 

 Within this section, a method in which a predictive neural network is used 

for damage detection is presented. The premise is strain time histories taken at one 

location on a structure are fed into a series of neural networks which predict the 

strains at other locations along the structure. The error between these predicted 

strains and the actual values measured at these locations are then monitored. With 

this method, all of the training is done using data from the undamaged structure. 

When damage occurs (in one or more locations), the mappings employed by the 

neural networks responsible for the damage and undamaged locations no longer are 

valid. Consequently, the error between the predicted and measured strains increases 

and the magnitude of this error is utilized for assessing the extent of the damage. 

 An example is now presented using data generated from the one-

dimensional finite element model of the composite bridge-deck panel system. In 

this example, the strain time histories from quarter span are used as inputs for a 

neural network. The neural network uses these inputs to output a prediction of the 

middle span strain time histories, which can then be compared to the actual values 

generated by the finite element model. 
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7.8.1 Principle Component Analysis of Strain Time Histories for Feature 

Reduction 

Prior to applying the quarter span and midspan strain time histories 

generated from the finite element model to the neural network, Principle 

Component Analysis (PCA) was applied to reduce the number of features. In this 

application it was found through visual inspection of the reconstructed time 

histories that using only the PC’s that preserved 99.0% percent of the variance in 

the data provided good results.  For the 4-second long (4001 time steps) quarter 

span strain time histories, 22 PC’s were required. Similarly, 21 PC’s were used for 

midspan strains. Figures 7.40 a-d and 7.41 a-d, show both the quarter and middle 

span strain time histories for a typical vehicle moving at 5, 10, 15, 20, 25, 30, 35, 

and 40 miles-per-hour. The projections of the principle components for the same 

time histories are included in Figures 7.42 a-d and 7.434 a-d, respectively. All of 

the employed time histories in this section start 0.4 seconds before the front axle 

first makes contact with the bridge decks.  

Figures 7.44 a-d and 7.45 a-d show the original quarter span strain time 

histories as well as the time histories reconstructed from the normalized principle 

components, using the inverse PCA transformation. Figures 7.76 a-d and 7.77 a-d 

detail the original and corresponding reconstructed midspan strain time histories. 
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Figure 7.40 a-d:  Quarter Span and Midspan Strain Time Histories for a Typical 

Simulated Vehicle Traveling at approximately 5, 10, 15, and 20 MPH (from top to 

bottom).
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Figure 7.41 a-d:  Quarter Span and Midspan Strain Time Histories for a Typical 

Simulated Vehicle Traveling at approximately 25, 30, 35, and 40 MPH (from top to 

bottom).
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Figure 7.42 a-d:  Quarter Span and Midspan Principle Component Projections for a 

Typical Simulated Vehicle Traveling at approximately 5, 10, 15, and 20 MPH 

(from top to bottom).
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Figure 7.43 a-d:  Quarter Span and Midspan Principle Component Projections for a 

Typical Simulated Vehicle Traveling at approximately 25, 30, 35, and 40 MPH 

(from top to bottom).
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Figure 7.44 a-d: Quarter Span Original and Reconstructed Strain Time Histories for 

Speeds of 5, 10, 15, and 20 MPH.
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Figure 7.45 a-d: Quarter Span Original and Reconstructed Strain Time Histories for 

Speeds of 25, 30, 35, and 40 MPH. 
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Figure 7.46 a-d: Midspan Original and Reconstructed Strain Time Histories for 

Speeds of 5, 10, 15, and 20 MPH.
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Figure 7.47 a-d: Midspan Original and Reconstructed Strain Time Histories for 

Speeds of 25, 30, 35, and 40 MPH.  
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7.8.2 Neural Network Training 

The original neural network was trained using 200 simulated traffic 

patterns, in which the vehicles’ speeds, wheelbases, and axle weights were random 

variables (Figure 7.48). From this figure, it can be concluded too few records were 

used for training (based on the normalized error for validation data set increasing 

after a few epoch resulting from over training). When an additional 100 traffic 

scenarios were added to the training data and, the training curve became acceptable 

(Fig. 7.49). Therefore, a training set composed of 300 traffic scenarios (with 

random speeds, wheelbases, and axle weights) was employed. 

 
 

 
 

Figure 7.48: Original Network Training Curve for 200 Traffic Patterns 
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Figure 7.49: Network Training Curve for 300 Traffic Patterns 
 

7.8.3 Local Damage Detection Using Strains from a Single Vehicle Moving at a 

Fixed Speed 

 The first application for the trained neural network was to detect damage 

when a single vehicle (with fixed wheelbase and axle weights) moving at a constant 

speed is used. In this example, data was simulated for the undamaged as well as 5, 

10, 15, 20, 25, 30, 35, 40, and 45% reduction in stiffness of the elements in local 

damage zone 1. The original strain time histories (output from the FE model), 

reconstructed strains using the inverse PCA transformation, and the predicted 

middle span strains are shown in Figures 7.50-7.59. From these figures, it can be 

seen that the original and reconstructed strains are nearly identical, as indicated by 

the nearly perfect overlap. As the damage level increases, the strains at the quarter 
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span increase and the value of the middle span strains from the FE model remain 

constant. However, since the predicted midspan strains are based on the quarter 

span values, they increase as the damage increases. Consequently, the error 

between the predicted and actual midspan strains increases as the level of damage 

increases.  This exercise was repeated for a second random vehicle and the error 

between the actual and predicted midspan strains are shown in Figure 7.60. A 

normalized error has been adopted which was found to be sensitive to damage even 

under random loading. This normalized error is calculated by first taking the 

difference between the predicted and actual finite element strains. Next, the root 

mean square (RMS) value of the absolute difference vector is computed. Finally, 

this value is divided by the square root of the are under the finite element strain 

time history.  

 

Figure 7.50: Quarter and Middle Span Strains for Undamaged Configuration 
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Figure 7.51: Quarter and Middle Span Strains for 5% Reduction in Stiffness 

 

Figure 7.52: Quarter and Middle Span Strains for 10% Reduction in Stiffness 

 



 312

 

Figure 7.53: Quarter and Middle Span Strains for 15% Reduction in Stiffness 

 

Figure 7.54: Quarter and Middle Span Strains for 20% Reduction in Stiffness 
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Figure 7.55: Quarter and Middle Span Strains for 25% Reduction in Stiffness 

 

Figure 7.56: Quarter and Middle Span Strains for 30% Reduction in Stiffness 
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Figure 7.57: Quarter and Middle Span Strains for 35% Reduction in Stiffness 

 

 

Figure 7.58: Quarter and Middle Span Strains for 40% Reduction in Stiffness 
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Figure 7.59: Quarter and Middle Span Strains for 45% Reduction in Stiffness 

 

 

 

Figure 7.60: Percent Reduction in Stiffness versus Normalized Error  
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7.8.4 Local Damage Detection Using Strains from a Single Vehicle Moving at 

Random Speeds 

 Next, the difficulty of the problem was increased by taking the same 

singular vehicle and this time running the simulation at random speeds. This was 

done to determine if the error (and therefore network performance) is dependent on 

the speeds used in the simulation. This was done by using the same neural network 

that had been trained on the 300 random vehicles and testing with a data set 

composed of 300 traffic patterns in which the vehicle wheelbase and axle weights 

were constant but the speed was a random value (Fig. 7.61). For 100 of these 

patterns, no damage was present, while in the other 200 patterns local damage 

existed in zone 1. 

 

 

Figure 7.61: Histogram of Simulated Speeds 
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As with the previous example, the normalized errors between the predicted 

and actual middle span strains were calculated and are plotted in Fig. 7.62. In 

general, as the level of damage increases, the normalized error also increases. In 

Figure 7.63, the level of damage is plotted against the normalized error. From this 

figure, it appears that below 10-15% of damage, the normalized error between the 

undamaged and damaged cases is indistinguishable.  Finally, the normalized errors 

are plotted against the speeds used in the finite element simulation (Fig. 7.64). 

While, the true dependence on speed is unclear, it does appear from the undamaged 

records (as indicated by the * in Fig. 7.64) the normalized error is affected by 

speed. This issue is addressed later in section 7.8.7 of this paper. 

 

 

Figure 7.62: Traffic Patten Number versus Normalized RMS Error 
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Figure 7.63: Percent Reduction in Local Stiffness versus Normalized Error 

 

 

Figure 7.64: Speed Used in FE Simulation versus Normalized Error 
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7.8.5 Characterizing Performance of the Neural Network for Variable Axle 

Weight in Undamaged Configuration 

 Having shown the normalized error between the actual strains and the 

values predicted by the neural network are dependent on the speed used in the finite 

element simulation, a similar check was made of the axle weights used. This was 

done by generating fifty traffic patterns using the one-dimensional finite element 

model in which the vehicle speed and wheelbase were held constant at 25 miles-

per-hour and 15 feet, respectively. For these patterns, the axle weights varied 

according to: 

 

Front Axle Weight (kips) = 2 + 10*Rand[0 1]                                                 Eq. 7.4 

 

Rear Axle Weight (kips) = Front Axle Weight + 10*Rand[0 1]                      Eq. 7.5 

 

Histograms of the front and rear axle weights are shown in Figures 7.65 and 7.66. 

Figure 7.67 is a plot of front versus rear axle weights. 
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Figure 7.65: Histogram of Front Axle Weights 

 

 

Figure 7.66: Histogram of Rear Axle Weights 
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Figure 7.67: Front Axle Weight versus Rear Axle Weight 

 

The fifty sets of strain time histories were reduced using the previously 

discussed PCA transformation and fed into the trained neural network. The 

predicted principle components were then converted back to strain time histories 

using the inverse PCA transformation, and the normalized RMS error was 

calculated. Plots of the normalized error versus front axle weight, rear axle weight, 

and total vehicle weight are shown in Fig’s 7.68-7.70. From these figures, there 

does not appear to be a correlation between axle weight and normalized error. 
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Figure 7.68: Front Axle Weight versus Normalized RMS Error 

 

 

Figure 7.69: Rear Axle Weight versus Normalized RMS Error  
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Figure 7.70: Total Vehicle Weight versus Normalized RMS Error 

 

7.8.6 Local Damage Detection Using Strains Time Histories Generated Under 

Random Traffic Loading 

A new data set was constructed in which the speeds, wheelbase, and axle 

weight for 500 patterns were randomly selected.  100 of these patterns were for the 

undamaged state. Of the remaining 400 patterns, 200 had damage in local zone 1 

and 200 in local zone 2. The damage was again modeled by reducing the stiffness 

of all elements in the local damage zone by the same random value. The strain time 

histories were then reduced to PC’s and fed into the neural network. The 

normalized errors between the actual and predicted midspan strain time histories 

were calculated and are plotted in Fig. 7.71. The normalized errors are also plotted 
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versus the percent reduction in stiffness in Fig. 7.72. From this figure, it appears the 

normalized error can be used to recognize damage greater than approximately 10%. 



 325

 

Fi
gu

re
 7

.7
1:

 S
im

ul
at

io
n 

N
um

be
r (

So
rte

d 
by

 P
er

ce
nt

 D
am

ag
e 

in
 E

ac
h 

Zo
ne

) v
er

su
s N

or
m

. E
rr

or
 



 326

 

Fi
gu

re
 7

.7
2:

 P
er

ce
nt

 D
am

ag
e 

ve
rs

us
 N

or
m

al
iz

ed
 E

rr
or

 



 327

7.8.7 Alternate Procedure for Normalizing the Strain Time Histories 

To address the dependence of the normalized error on the speeds used in the 

finite element simulations and to reduce the threshold beyond which damage may 

be detected and alternate method for normalizing the strain time histories is 

presented. Rather than performing Principal Component Analysis on a four-second 

long time history, an alternate strategy is employed in which only the portion of the 

strain time histories corresponding to when the vehicle is actually crossing the 

bridge decks is used. 

This procedure consists of first finding the two peak strains corresponding 

to the front and rear axles passing over the recording element (or strain gage). The 

peaks are indicated by the filled circle in Fig’s. 7.73 and 7.74. Next, the zero 

crossing to the left of the first peak and to the right of the second peak strain are 

found. This portion of the data is isolated as it is during this time that the vehicle is 

in contact with the bridge decks. As the PCA program requires all of the input and 

target strain time histories contain the same number of time steps, it is necessary to 

resample the data to provide a constant number of points (in this example 1000 

points). Depending on the speed used in the simulation, it may be necessary to 

decimate the data (as with the simulated bus traveling 10 MPH in Fig. 7.73b) or to 

interpolate (simulated bus traveling 40 MPH in Fig. 7.74b). The resampled data 

used for inputs into the PCA program are shown in Figures 7.73c and 7.74c. 
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Figure 7.73: Time Scale Normalization of a Simulated Bus Traveling at 10 MPH: 

Original Time History (top), Section of Interest (Middle) and Resampled (Bottom) 



 329

 

Figure 7.74: Time Scale Normalization of a Simulated Bus Traveling at 40 MPH 

Original Time History (top), Section of Interest (Middle) and Resampled (Bottom). 



 330

This normalization method was applied to the 500 traffic patterns described 

in the previous section. From Figure 7.75, for the 100 undamaged scenarios the 

normalized error is independent of the speed, wheelbase, or axle weight. This is a 

marked improvement over the previous damage detection method. When applied to 

the damaged data (Fig. 7.76 and 7.77), the threshold for detecting the presence of 

damage decreases to 2% (down from approximately 10% in the previous example).  



 331

 

Figure 7.75: Normalized Error versus Speed, Wheelbase, Front Axle Weight, and 

Rear Axle Weight (Top to Bottom). 
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7.9 Summary 

For vehicle property estimation using neural networks it was decided to 

begin with the most straightforward case: in the finite element model one vehicle 

property (speed or wheelbase) was changed at a time and the neural networks 

abilities to identify the changes were examined. In this study, strain time histories 

from middle and quarter span were used along with Principal Component Analysis 

for feature reduction. Under these conditions, network performance was very good. 

Next, each vehicle property (speed, wheelbase, front axle weight, and rear axle 

weight) was treated as a random property and a new set of strain time histories 

were analyzed. In this exercise, different methods of feature reduction were 

explored, including peak axle strains and principal component analysis. It was 

found using peak axle strains (along with the corresponding time at which these 

strains occur) as inputs gave the best results, and accuracies under random traffic 

loading of 0.42 MPH for speeds, 0.17 ft for wheelbases, 0.07 kips for front axle 

weights, and 0.13 kips for rear axle weights were achieved. One limitation with 

applying this method to recorded strain time histories is the amount of data required 

for network training. 

For damage detection under random traffic loading, neural networks had to 

be employed. Neural networks were able to detect and classify the level of damage, 

with 90% accuracy, even when damage was allowed to occur in simultaneous 

locations. By training separate networks to monitor each damage zone and 

combining the output from each, the amount of training data required is vastly less 
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than using a single network (which requires many more damage scenarios). 

However, as with all supervised learning techniques, the more refined the 

classification levels, the more data required for network training. Therefore, an 

alternate method of damage detection was explored which did not require any 

training data from the damaged state of the structure (a big advantage when 

applying the detection methods to real data). This new method used strain time 

histories from one location on the FE model of the bridge decks to train a neural 

network to predict an associated time history at another location. Principal 

Component Analysis was employed to reduce the number of features in the each of 

the input and target strain time histories from 4000 to less than 10. As the neural 

network is trained using data exclusively from the undamaged state when damage 

occurs, the error between predicted and measured (generated) strains within these 

damaged regions increases. A normalized error was utilized providing correlation 

between the percent reduction in stiffness (level of damage) and the difference in 

the predicted and observed strains, even under random traffic loading. Ultimately, 

changes in stiffness as low as 2% could be consistently detected, providing a 

significant improvement over the previously employed methods.  Again, as this 

method does not require data from the damaged structure and can be trained using 

random traffic patterns, it is easily implemented on actual data from the composite 

bridge decks. 
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8 Analysis of Strain Data Recorded on UCSD Bridge Decks 

Using the analysis techniques detailed in the preceding chapters, the data 

recorded on the UCSD bridge-deck panels have been analyzed. Presented within 

this chapter are the results from the data in the continuous monitoring database (16 

strain gages and time synchronized video, see Section 3.3.1 for further details). The 

first set of calculations involved determining the speeds and wheelbases of passing 

traffic. Using these calculated speeds, the dynamic amplification of the peak strains 

resulting from changes in speed was analyzed. Finally, predictive neural networks, 

similar to those employed in Section 7.8, were used to look for changes in the 

response of the bridge deck system over time. 

8.1 Traffic Analysis Using Strain Time Histories 

 For calculating speeds and wheelbases of traffic, it was decided to focus on 

the data from a few select vehicle types from the set of labeled data (Section 4.6). 

In these exercises, the strain time histories from 5 vehicle types (Passenger Cars, 

Vans, UCSD Bus Type 5, UCSD Bus Type 8, UCSD Bus Type 9) were used. The 

number of available records, minimum and maximum channel 9 peak strains, and 

typical image are summarized in Table 8.1 By performing these calculations on one 

vehicle type at a time, it is possible to examine the error in the calculations based 

on the histograms of calculated wheelbase. Since only one vehicle type is used at a 

time, all of the resulting wheelbases should have the same value. The scatter in this 

data directly correlates with the level of error in both the speed and wheelbase 

calculations. For monitoring the bridge deck response over time with the series of 
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neural networks, the data set contained a more general collection of vehicles. This 

strain data was generated by typical two-axle vehicles and is discussed later in this 

chapter. A flowchart outlining the sensor data analysis is provided in Figure 8.1. 
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Table 8.1: Vehicle Types Used in Speed and Wheelbase Calculations 

Vehicle 
Type Sample Image 

Number 
of 

Recorded 
Crossings

Minimum 
Channel 9 

Peak 
Strain 

Maximum 
Channel 9 

Peak 
Strain 

Passenger 
Cars 1147 5.232 

x10-6 
6.686 
x10-5 

Vans 220 5.814 
x10-6 

9.302  
x10-5 

UCSD, 
Bus Type 

5 
253 7.558 

x10-6 
1.517  
x10-4 

UCSD 
Bus Type 

8 
919 6.976 

x10-6 
1.238  
x10-4 

UCSD 
Bus Type 

9 
1143 9.302 

x10-5 
1.651  
x10-4 
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Network For Monitoring 
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Neural Network For 
Vehicle Type 
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Figure 8.1: Flowchart for Sensor Data Analysis 
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 8.1.1 Calculating Vehicle Speeds from Labeled Data 

 The strain time histories from the aforementioned 5 vehicle types were used 

to determine the speeds of each of these vehicles.  These calculations use the 

records from the quarter span and middle span sensors installed on Deck 2 (gages 8 

and 11, Fig. 8.2). Typical time histories from these two strain gages are shown in 

Fig. 8.3. Prior to analyzing the data, it is important to understand the shapes of 

these time histories and how they are formed. Figure 8.4 indicates 6 key locations 

that control the shape of the time histories. These points numbered from 1 to 6 (left 

to right) are the : 

1. Outer left edge of the decks,  

2. Beginning of the free span,  

3. Quarter span,  

4. Middle span,  

5. End of the free span,  

6. Outer right edge of the decks.  

From inspection of the time histories (Fig. 8.5), it can be seen that when an axle is 

located between points 1 and 2, strain gages mounted on the underside of the bridge 

decks (like gages 8 and 11) will experience negative strains, resulting from reverse 

bending. Once the axle passes point 2, the gages will begin to measure positive 

strains.  These strains increase until reaching their peak value when the axle is 

situated directly over the gage. For strain gage 8, this is when the axle is over the 

quarter span location and over the middle span location for gage 11. After crossing 
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the strain gage, the strains decrease reaching zero when the axle passes over point 

5. Between points 5 and 6, the gages again record negative strains which eventually 

tend to zero when the axle moves past point 6 and off of the bridge decks.  

 

 

 

 

Figure 8.2: 16 Channel Strain Gage Array 
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Figure 8.3: Typical Quarter Span (Channel 8, Top) and Middle Span (Channel 11, 

Bottom) Strain Time Histories 

 

 

Gage 8 Gage 11

Reinforced Concrete
End-Supports

1 2 3 4 5 6

 

Figure 8.4: Side View of Composite Bridge Decks 
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Figure 8.5: Close-up of Strain Time Histories with Indicators for Crossing 

Significant Locations 

 

As peak strains are registered when an axle passes over the sensor, this 

provides the first means of calculating speeds. By measuring the difference in time 

between when the first axle passes over the two strain gages it is possible to 

determine the vehicle’s speed. This is done with the knowledge that the two gages 

are spaced 3.75 feet apart. Therefore, by dividing this distance between the two 

sensors by the difference in arrival time, the speed is found. As mentioned 

previously, the accuracy of this method depends heavily on how accurately these 

peaks can be found. Because of the modest sampling rate of 200 Hz used, for a 

vehicle traveling at the speed limit of 25 MPH being off by just one time step in 
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detecting the peaks causes an error of approximately 1.14 MPH or 4.5% in the 

speed calculation. This high level of sensitivity is an unfortunate disadvantage of 

the close sensor spacing. 

A second method for calculating speeds, which is not as sensitive to the 

exact time used in the calculation involves measuring the amount of time it takes an 

axle to cross over the unsupported portion of the bridge decks, between points 2 

and 5 in Figure 8.3. Since this method relies on strains recorded over a longer 

distance, it is less effected by small errors in determining exact arrival times. For 

the same example of a vehicle traveling at 25 MPH, a one time step error only 

produces a 0.28 MPH (or 1.1%) error. 

The steps involved in both of these calculations are now presented in the 

quarter span strain time histories shown in Fig. 8.6 and middle span time histories 

in Fig. 8.7. Both methods first require the peak strains corresponding to each axle 

be found. Because of the high frequency vibration associated with the structure 

vibrating at its natural frequency of 22.4 Hz, a digital low pass Butterworth filter 

(5th order roll off and 5 Hz cutoff frequency) was applied to the data prior to 

determining the peak strains. Using the same Matlab-based program described in 

Section 6.1, peak axle strains were first found in this filtered data (top figures in 

Fig’s 8.6 and 8.7). These peak values are indicated by the filled circles in these 

figures. To avoid the nonlinear effects of the phase angle shift in the time histories 

(resulting from filtering) on the speed calculations, the corresponding maximum 

strains in the original time histories were found (2nd plot from the top in Figures 8.6 
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and 8.7). This was done by simply finding the maximum strain (as indicated by the 

filled circles) in the neighborhood of the peak values in the filtered data. These 

values from the original data were then used to calculate the set of speeds based on 

peak axle strains. 

To determine the speeds based on the amount of time required to cross the 

unsupported portion of the bridge decks, the peak strain corresponding to the 

vehicle front axle was used to locate the instants in time when the axle reaches 

points 2 and 5 in Fig. 8.4.  This was done by finding the zero crossings around the 

first peak, a simple procedure easily done in Matlab. Once these two times, 

indicated by the squares in the 2nd from the bottom plots in Figures 8.6 and 8.7, are 

determined, the speed is calculated by dividing the clear span of the bridge decks 

(14 feet) by the time taken to cross this distance. 
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Figure 8.6: Sample Quarter Span (Channel 8) Strain Time History with Indicators 

for Detected Peak Strains and Times when Crossing Over Supports 
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Figure 8.7: Sample Middle Span (Channel 11) Strain Time History with Indicators 

for Detected Peak Strains and Times when Crossing Over Supports 
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These two methods were applied to the 3,682 records contained in the 5 

vehicle types represented in Table 8.1. For each vehicle type, the calculated speeds 

from both methods are presented in the Fig’s. 8.8 – 8.12. 

 

 

 

Figure 8.8: Calculated Speeds versus Date for Passenger Cars 
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Figure 8.9: Calculated Speeds versus Date for Vans 

 

 

Figure 8.10: Calculated Speeds versus Date for UCSD Type 5 Buses 
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Figure 8.11: Calculated Speeds versus Date for UCSD Type 8 Buses 

 

 

Figure 8.12: Calculated Speeds versus Date for UCSD Type 9 Buses
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Figure 8.13: Histogram of Calculated Speeds Using Peak Strains for Passenger 

Cars, Vans, Ucsd Type 5, 8, an9 Buses (Top to Bottom) 
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Figure 8.14: Histogram of Calculated Speeds Using Time for First Axle to Cross 

Bridge Decks for Passenger Cars, Vans, Ucsd Type 5, 8, an9 Buses (Top to 

Bottom) 
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8.1.2 Calculating Vehicle Wheelbases from Labeled Data  

Having finished calculating speeds in the previous section, these values may 

now be used to find the wheelbase of each vehicle. Determining the vehicle 

wheelbase is worthwhile in that it is a useful quantity for: 

1. Identifying mislabeled strain time histories in the labeled vehicle type data 

sets. This is done based on finding outliers in the calculated wheelbases for 

each class. Some of these outliers are caused by strain time histories which 

have been incorrectly placed into a vehicle type set (usually attributed due 

to errors in the time synchronization between the images from the network 

camera and the recorded strains). 

2. Assessing the level of errors in the speed and wheelbase calculations. As 

many of the labeled vehicle classes are composed of a single vehicle type, 

the calculated wheelbases for these classes should be constant. The scatter 

in the calculated wheelbases is directly correlated to the error in the 

wheelbase and speed calculations. 

3. Comparing with the vehicle type classes which have been automatically 

assigned by a series of neural networks [Yan et al., 2005]. 

The wheelbase calculations rely on the values of previously determined 

speeds. Using the data from the middle span strain gage (channel 11) wheelbases 

are calculated by multiplying the vehicle speed by the difference in time it takes for 

the front and rear axles to pass over the strain gage. Again as this method relies on 

peak strains, it is again very sensitive to the accuracy in which the peak values are 
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determined. Plots of the calculated speeds versus wheelbases are shown in Fig’s. 

8.14 – 8.18 along with the corresponding histograms in Fig’s. 8.19 – 8.23. 

 

 

Figure 8.15: Calculated Speed versus Wheelbase for Passenger Cars 
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Figure 8.16: Calculated Speed versus Wheelbase for Vans 

 

Figure 8.17: Calculated Speed versus Wheelbase for UCSD Type 5 Buses
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Figure 8.18: Calculated Speed versus Wheelbase for UCSD Type 8 Buses 

 

 

Figure 8.19: Calculated Speed versus Wheelbase for UCSD Type 9 Buses  
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Figure 8.20: Histograms of Calculated Wheelbases for Passenger Cars 

 

  

Figure 8.21: Histograms of Calculated Wheelbases for Passenger Vans 
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Figure 8.22: Histograms of Calculated Wheelbases for UCSD Type 5 Buses 

 

  

Figure 8.23: Histograms of Calculated Wheelbases for UCSD Type 8 Buses 
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Figure 8.24: Histograms of Calculated Wheelbases for UCSD Type 9 Buses 

 

From these figures, there are a few important observations which may be 

made. First, calculating speeds and wheelbases based on the time required for each 

axle to pass over the bridge decks works well for long wheelbase vehicles, but nor 

for short ones. For vehicles with wheelbases less than 14 feet, the front axle is still 

on the bridge decks when the rear axle begins crossing. Therefore, as the strains 

decrease following the peak corresponding to the front axle, the strain is unable to 

reach zero before the 2nd axle arrives onto the end-support and forces negative 

strains. Consequently the calculated speeds and wheelbases for these vehicles are 

too large. This can be clearly seen in 8.24 and 8.25 where the mean wheelbase and 

the scatter in the histograms are much larger for the calculation based on the width 
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of the strain time histories (rather than peak strains). For long-wheelbase vehicles, 

the calculations based on the width of the strains is much more accurate. This can 

be attributed to the methods lower level of sensitivity to small errors in determining 

the exact instant when the vehicle crosses the strain gages. This is clear in the 

histograms for the UCSD Type 9 buses. Both methods produce similar mean 

wheelbases, but the scatter is much less in the second method. From the scatter 

plots of calculated speeds versus wheelbases (Fig. 8.22) and histograms of 

calculated wheelbases (Fig. 8.27) for the UCSD Type 8 buses, there appears to be 

some inconsistency in the sorting of the buses in this class. From these figures, 

there appears to be buses with two different wheelbases placed together in the same 

data set. This is something that will need to be investigated later in more detail. 

8.2 Peak Strain Analysis 

 Several factors contribute to determining the remaining service life of 

bridge decks. Included in these are structural factors like quality of the 

construction, material factors such as quality of concrete used, and environmental 

factors. Within the environmental factors, average daily truck traffic is an important 

consideration. The effects of heavily loaded trucks are critical on the evaluation of 

deck slabs [Broquet et al., 2004 and Broquet et al, 1999]. Monitoring traffic 

(particularly for heavy vehicles) is an important aspect of road maintenance and 

highway safety. Analyzing the effects of truck traffic is essential for modeling 

pavement wear, tracking fatigue loading, preventing sudden punch failure resulting 

from overloaded vehicles (Fig. 8.29), and estimating the remaining life expectancy 
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[Raz et al., 2004 and Oh et al., 2001]. Having information regarding the number 

and size of vehicles helps with highway safety in that the severity of traffic 

accidents is related to the size of the vehicles involved [Oh et al., 2001]. 

 

 

Figure 8.25: Example of Punch Failure on a Concrete Bridge Deck 

 

 Inductive loop detectors are commonly used to generate a magnetic 

signature (maximum magnitude, magnetic length, etc) of passing vehicles. From 

these signatures, a vehicle type may be assigned using neural networks or a similar 

artificial intelligence algorithm. From these assigned vehicle labels and the 

maximum magnetic magnitude recorded, estimates of the axle loads are made. 

These loads are then applied to a structural model to calculate resulting stresses and 

strain within the bridge elements. This represents a complex process with many 

potential sources of error. A more direct method for assessing a vehicle’s impact on 

a structure involves the use of dynamic strain measurements (like those taken on 

the UCSD composite bridge deck panels). Now, rather than measuring a vehicle 
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property to make estimates of loads and then the bridge response, the strains in the 

bridge are directly measured, thereby greatly reducing the uncertainty in the bridge 

response. 

 An example of using recorded strains from the composite bridge decks is 

presented in Figures 8.30 and 8.31. These figures are plots of the daily number of 

vehicles recorded in which the peak strains exceed 5 x10-6, 1 x10-5, 5 x10-5, 1 x10-4, 

1.2 x10-4, and 1.4 x10-4. From these figures, it is possible to determine the expected 

daily number of vehicles causing strains within a certain range. For example, 

approximately 1000 personal vehicles and 600 buses / delivery trucks cross over 

the composite decks each work day when school is in session. The large gap in the 

data is the summer break when campus shuttle buses are not running. Similar 

smaller gaps are present for the weekends as well as Easter and Christmas holidays. 

These bands of days in which the traffic volume significantly decreases are 

important in monitoring traffic volume, particularly for structures like this one in 

which traffic density follows seasonal trends. A common assumption in structural 

monitoring is traffic volume remains fairly constant for many bridges [Melhem et 

al., 2003]. In the case of the composite bridge decks, if a series of traffic 

measurements using inductive loop detectors were made during one of these 

periods, the traffic density would be greatly underestimated.  

A second set of traffic density plots are included in the six plots of Figure 

8.32. These are constructed from the average hourly number of vehicles in which 

the peak strains exceed the same limits of 5 x10-6, 1 x10-5, 5 x10-5, 1 x10-4, 1.2 x10-
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4 and 1.4 x10-4. Within these figures, it can be seen that the number of medium and 

large peak strains significantly increases starting at 7 am when the campus shuttle 

buses begin running and decreases into the late night as the number of buses 

operating also decreases. 
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Figure 8.26: Number of Daily Records in which Peak Strain Exceeds 5 x10-6 (top),  

1 x10-5 (Middle), and 5 x10-5 (Bottom) 
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Figure 8.27: Number of Daily Records in which Peak Strain Exceeds 1 x10-4 (top),  

1.2 x10-4 (Middle), and 1.4 x10-4 (Bottom) 
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Figure 8.28: Average Hourly Count of vehicles in Which Peak Strains Exceed 5 

x10-6 (Top-Left), 1 x10-5 (Top-Right), 5 x10-5 (Middle-Left), 1 x10-4 (Middle-

Right), 1.2 x10-4 (Bottom Left), and 1.4 x10-4 (Bottom-Right) 
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8.3 Dynamic Amplification of Peak Strains 

 As discussed in Chapter 1, intervention on an existing bridge is typically 

done based on a series of safety guidelines and criteria. In assessing the dynamic 

response of the bridge under vehicular loading, dynamic amplification factors 

(DAF) are usually applied to account for structure/vehicle interaction effects. In 

this assessment, equivalent dynamic loads are found by multiplying the static 

vehicle load by dynamic amplification factors. These DAF’s are typically generated 

from measured or simulated data from the global response of the bridge. As noted 

in Broquet et al., 2004, little research has been done on dynamic amplification 

factors for bridge slabs. In Broquet et al., 2004, the authors performed a parametric 

study using numerical simulations to better understand the dynamic behavior of 

concrete bridge deck slabs and to determine more appropriate DAF’s for these 

systems. The authors argued that heavily loaded trucks govern the safety 

assessment of bridge deck slabs and the application of inappropriate DAF’s may 

have significant financial implications.  

 A study was made to apply to data recorded from the UCSD composite 

bridge-deck panels for determining the dynamic amplification factors resulting 

from changes in a vehicle’s speed and position of the vehicle on the bridge decks. 

However, because of limitations associated with perspective problems with the 

installed camera, the exact position of the vehicle on the bridge decks could not be 

properly ascertained. Consequently, only the peak recorded strains versus speed 

could be investigated. The labeled vehicle type data set utilized in Section 8.1 of 
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this paper was a natural choice for this study. As each labeled data set is composed 

of only one vehicle type, the variation in the individual vehicle properties 

(wheelbase and axle weights) is minimized. The peak strains recorded at quarter 

and middle span on Deck 2 (respectively by strain gages 8 and 11 in Figure 8.2) 

were plotted against the speeds calculated in Section 8.1.1. The results for the five 

vehicle types (passenger cars, vans, UCSD Type 5 Buses, UCSD Type 8 Buses, 

and UCSD Type 9 Buses, summarized in Table 8.1) are shown in Figure 8.31 – 

8.35. 

 

Figure 8.29: Peak Quarter (Top) and Middle (Bottom) Span Strains versus 

Calculated Speed for Passenger Car Data 
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Figure 8.30: Peak Quarter (Top) and Middle (Bottom) Span Strains versus 

Calculated Speed for Van Data 
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Figure 8.31: Peak Quarter (Top) and Middle (Bottom) Span Strains versus 

Calculated Speed for UCSD Type 5 Bus Data 
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Figure 8.32: Peak Quarter (Top) and Middle (Bottom) Span Strains versus 

Calculated Speed for UCSD Type 8 Bus Data  
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Figure 8.33: Peak Quarter (Top) and Middle (Bottom) Span Strains versus 

Calculated Speed for UCSD Type 9 Bus Data 

 

 A large two-axle vehicle was simulated using the one-dimensional 

numerical model described in Chapter 5. The peak strains at quarter and middle 

span versus the speeds used in the simulations are shown in Figure 8.36. In 

addition, the static loads for the simulated vehicle are indicated at both locations by 

the dashed lines in these figures. In comparing the results from the recorded and 

simulated data, it can be seen there is a variation in the peak response versus speed 
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that is present in the simulation data but does not appear in the measured data. In 

the simulation data, if the DAF is defined as the peak dynamic strain divided by the 

static value, dynamic amplification factors ranging from 0.955 to 1.18 for middle 

span strains and 0.935 to 1.20 for quarter span are calculated (ranges which are 

consistent with a moving load applied to a simply supported beam [Chopra, 2000]). 

There are two primary explanations for the difficulties in the measured data: 

1. The assumption of nearly constant axle weights is clearly not valid, 

particularly if only a maximum 20% change in strain (as indicated by the 

finite element data) is expected in the dynamic response. This needs to be 

addressed in future work through a series of calibration tests in which 

vehicles of known weight are run across the bridge decks at various speeds 

while the strains are measured. This data should then be used to form a 

training set for a neural network to estimate the axle weights of passing 

vehicles (as was done on the simulation data in Section 7.3.2). 

2. While in the numerical model simulating vehicles traveling at high speeds 

was easily accomplished, this is not the case with the measured data, 

particularly as the bridge decks are installed a few hundred feet from the 

campus police station. Consequently most of the measured data is from 

vehicles moving near or below the 25 MPH speed limit. 
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Figure 8.34: Scatter Plot of Speed versus Peak Middle and Quarter Span Strains 

from Finite Element Model 

 

8.4 Utilizing a Predictive Neural Network to Monitor for Changes in System 

Response 

 In Section 7.8 of this paper the feasibility of a predictive neural network 

was demonstrated for identifying changes in the bridge deck system. This was done 

by treating the quarter span strain time histories as inputs to a neural network which 

outputted predicted Principal Components (PC’s) for the midspan strains.  By 
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taking the inverse PCA transformation of these PC’s, the errors between the 

predicted strain time histories and those output from the finite element model were 

computed. It was found these errors could be used to detect reductions in stiffness 

(simulated damage) as low as 2%. 

 A similar strategy is now employed on a set of strain time histories recorded 

on the composite bridge decks corresponding to typical 2-axle traffic. The strains 

recorded by gage 8 were used as inputs for a series of neural networks to predict 

strains from gages 6, 9, and 11. Training was done on data recorded during 

December 2003. These neural networks were then tested on the data recorded 

during 2004. In this exercise (Fig. 8.37), two sets of time histories were compared 

to the recorded data. The first is the time history reconstructed from the PC’s using 

the inverse PCA transformation learned on the training data. Errors at this level are 

indicative of new features now found in the test data that were not present during 

training. The second comparison is between the recorded data and the data 

reconstructed from the Principal Components output by each of the neural networks 

using the same sets of inverse PCA transformations. Assuming the first set of errors 

remains small, then errors here result from changes in the mapping learned by the 

neural networks during training. 

 For the example of the simulation data analyzed in Section 7.8, when 

damage was simulated by reducing the value of Young’s Modulus for select 

elements in the finite element mesh, the amplitude of the strains increased, but the 

overall shape of the time histories remained unchanged. Consequently, the error in 
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the PCA reconstruction data remained constant while the error from the 

reconstructed PC’s output from the neural network increased. The same logic is 

now applied to the measured data. 
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8.4.1 Data Cleansing 

Between December 1 and December 31, 2003, a total of 3,621 vehicles 

were stored in which the peak strains recorded by strain gage #11 were between 

8x10-5 and 1.3x10-4. In an effort to optimize the network performance, a cleansed 

data subset was created by examining each of the strain time histories looking for 

multiple vehicles crossing within the same 10-second time history (Fig’s. 8.38 and 

8.39), vehicles moving from East to West (Fig’s. 8.40 and 8.41), and for 3 or more 

axle vehicles (Fig’s. 8.42 and 8.43). If such an event was noted, the record was 

discarded and not included into the sorted data.  Of the 3,621 total traffic patterns 

recorded, 2,629 were deemed useable for network training and validation. 1000 of 

these patterns were randomly selected and used for training and validation (700 and 

300, respectively) while the remaining records (1,629) served as a test set to assess 

the trained network’s performance. 

 This process was done using a peak detection program written in Matlab 

(see section 6.1 for more details). As only time histories corresponding to a single 

2-axle vehicle were used if two or more peaks (axles) were found in a time history, 

the record was discarded for reasons one and three above. To detect vehicles 

crossing the bridge decks in the wrong direction, the instants in time when the front 

axle crosses gages 8 (quarter span) and 11 (middle span) were found. For vehicle 

moving in the desired direction (West to East), the arrival time at gages 8 will be 

less than gage 11. Records for which this was not case were discarded. Once the 

data was sorted in Matlab, it was hand sorted one time to look for unusable records 
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which were missed. This last manual sorting step was done to ensure the training 

data was as clean as possible. 

 

  

 

 

Figure 8.36: UCSD Campus Bus and Pick-up Truck Recorded Crossing Bridge-

Decks 
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Figure 8.37: Channel 6, 8, 9 , and 11 (top to bottom) Strain Time Histories for 

UCSD Campus Bus and Pick-up Truck Recorded Crossing Bridge-Decks. 
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Figure 8.38: UCSD Campus Bus Crossing Bridge Decks from East to West.
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Figure 8.39: Channel 6, 8, 9 , and 11 (top to bottom) Strain Time Histories for 

Vehicle Crossing Bridge Decks from East to West 
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Figure 8.40: 3-Axle Truck Crossing Bridge Decks
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Figure 8.41: Channel 6, 8, 9 , and 11 (top to bottom) Strain Time Histories for 3-

Axle Vehicle 
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8.4.2 Feature Reduction using Principal Component Analysis 

Prior to applying the recorded strain time histories to the neural networks, 

Principal Component Analysis was employed for feature reduction. This was done 

following the procedures detailed in Sections 7.8 and 8.1.1. For each time history, 

the instants in time when the front axle moves onto and the rear axle moves off of 

the unsupported portion of the bridge decks (Fig’s. 8.4 and 8.5) were found. In the 

typical strain time histories shown in Figures 8.44 – 8.47, these are indicated with 

the filled squares in the upper plots. These portions of the strain time histories were 

cut out and resampled such that each was composed of exactly 200 points (middle 

two plots in Fig’s. 8.44 – 8.47). Finally, PCA was applied to these resampled time 

histories. Only those PC’s which preserved 99.0% of the original variance in the 

data were used. For gages 6 and 9, eight Principal Components were used while for 

gages 8 and 11 nine were required. The normalized PC’s for the sample records are 

shown in the bottom plots in Fig’s. 8.44 – 8.47. Figure 8.48 is a plot of Eigenvalue 

numbers versus the eignevalues for the training data for the four gages. In Figure 

8.49, the percent variance is plotted against the number of employed PC’s. It was 

from these plots the number of Principal Components used for training (and 

consequently testing) were selected. Finally, the first five Principal Components are 

plotted for each of the four strain gages (Fig’s. 8.50 – 8.53). 
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Figure 8.42: Channel 6 Strain Time Histories and Principal Components for 

Typical Training Pattern 
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Figure 8.43: Channel 8 Strain Time Histories and Principal Components for 

Typical Training Pattern 
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Figure 8.44: Channel 9 Strain Time Histories and Principal Components for 

Typical Training Pattern 
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Figure 8.45: Channel 11 Strain Time Histories and Principal Components for 

Typical Training Pattern 
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Figure 8.46: Resulting Eigenvalues from PCA of Training Data for Strain Gage 6, 

8, 9, and 11 (from Top to Bottom) 
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Figure 8.47: Percent Variance versus Number of  Employed PC’s for Strain Gage 

6, 8, 9, and 11 (from Top to Bottom) Training Data  
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Figure 8.48: The first 5 Principal Components for Strain Gage 6
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Figure 8.49: The first 5 Principal Components for Strain Gage 8
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Figure 8.50: The first 5 Principal Components for Strain Gage 9
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Figure 8.51: The first 5 Principal Components for Strain Gage 11 
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8.4.3 Strain Reconstruction from Principal Components 

Following the flowchart in Fig. 8.37, the first comparison with the recorded 

strains is made with the strain time histories reconstructed using the inverse PCA 

transformation. This was done on the training data as well as the testing data from 

2003 and 2004. The normalized errors for the training data is plotted in Fig. 8.54 

along with the histograms of the errors in Fig. 8.55. Next, the errors and histograms 

for the test data recorded in 2003 were calculated and are plotted in Fig’s. 8.56 and 

8.57. These two sets of data form the baseline for which errors from future data is 

compared to check for variations in the ability of the PCA transformation to 

represent the data. This was done with the test data from 2004 and is plotted in 

Fig’s. 8.58 - 8.60. The mean errors, standard deviations, and maximum errors are 

summarized in Tables 8.2 – 8.4. 

From inspection of the 2004 errors, there appears to be a deviation in the 

mean error in each of the 4 channels during the summer months (end of June 

through August). The errors from the 2004 were averaged using 100 points and are 

plotted in Fig. 8.61. Within these plots, the increased error during the summer 

months becomes more pronounced. However, it is unclear whether this is the result 

of a change in the bridge response or is due to the scarcity of data available during 

the summer months.  As previously mentioned, the campus shuttle buses (which 

form the bulk of the recorded data) do not operate during this period. From Figure 

8.62, it can be seen that during the months of July and August only 4% of the 

records recorded in the other months were observed. 
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Figure 8.52: Scatter Plot of Normalized Errors for Reconstructed Channel 6, 8, 9, 

and 11 Training Strains (Top to Bottom) 



 

 

398

 

 

 

 

Figure 8.53: Normalized Error Distributions for Reconstructed Training Strain 

Time Histories from Gages 6, 8, 9, 11 (Top to Bottom) 
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Figure 8.54: Scatter Plots of Normalized Errors for Reconstructed 2003 Test Data - 

Strain Gages 6, 8, 9, 11 (Top to Bottom) 
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Figure 8.55: Distributions of Normalized Errors for Reconstructed 2003 Test Data - 

Strain Gages 6, 8, 9, 11 (Top to Bottom) 
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Figure 8.56: Scatter Plots of Normalized Errors for Reconstructed 2004 Test Data - 

Strain Gages 6, 8, 9, 11 (Top to Bottom) 
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Figure 8.57: Normalized Errors for Reconstructed 2004 Test Data - Strain Gages 6, 

8, 9, 11 (Top to Bottom) versus Date Recorded
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Figure 8.58: Distributions of Normalized Errors for Reconstructed 2004 Test Data - 

Strain Gages 6, 8, 9, 11 (Top to Bottom) 
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Figure 8.59: Averaged Normalized Errors for Reconstructed 2004 Test Data - 

Strain Gages 6, 8, 9, 11 (Top to Bottom) versus Date Recorded  
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Figure 8.60: Number of Available 2004 Testing Records 

 

 

Table 8.2: Mean, Standard Deviation, and Maximum Normalized Error for 

Reconstructed Strain Data 

 
 Mean Standard Deviation Maximum 

Strain Gage 6 1.262 x10-4 9.324 x10-4 1.465 x10-3 
Strain Gage 8 1.182 x10-4 9.168 x10-4 1.272 x10-3 
Strain Gage 9 1.268 x10-4 8.282 x10-4 1.528 x10-3 
Strain Gage 11 1.242 x10-4 8.854 x10-4 9.472 x10-4 
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Table 8.3: Mean, Standard Deviation, and Maximum Normalized Error for 

Reconstructed 2003 Testing Data 

 
 Mean Standard Deviation Maximum 

Strain Gage 6 1.025 x10-4 1.043 x10-4 2.733 x10-3 
Strain Gage 8 1.190 x10-4 9.620 x10-5 2.181 x10-3 
Strain Gage 9 1.346 x10-4 1.434 x10-4 2.852 x10-3 
Strain Gage 11 1.249 x10-4 9.850 x10-5 1.586 x10-3 

 
 
 
 
 

Table 8.4: Mean, Standard Deviation, and Maximum Normalized Error for 

Reconstructed 2004 Testing Data 

 
 Mean Standard Deviation Maximum 

Strain Gage 6 1.253 x10-4 1.225 x10-4 3.647 x10-3 
Strain Gage 8 1.332 x10-4 1.215 x10-4 4.667 x10-3 
Strain Gage 9 1.830 x10-4 1.056 x10-4 4.098 x10-3 
Strain Gage 11 1.398 x10-4 1.212 x10-4 1.586 x10-3 

 

 

8.4.4 Neural Network Training 

 Using the 1000 traffic scenarios described in Section 8.4.1, three neural 

networks were trained to use the PC’s extracted from channel 8 strain time histories 

to predict strains for channels 6, 9, and 11 (each neural network is responsible for 

one target gage). The training curves for these three neural networks are shown in 

Fig’s. 8.63 – 8.65. Optimal training cycles for each of the networks are reported in 

Table 8.5. 
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Figure 8.61: Neural Network Training Curve for Predicting Channel 6 Strains 
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Figure 8.62: Neural Network Training Curve for Predicting Channel 9 Strains 
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Figure 8.63: Neural Network Training Curve for Predicting Channel 11 Strains 

 

 

Table 8.5: Optimal Training Cycle for Each Neural Network 

Target Optimal Training Cycle 

Strain Gage 6 543 

Strain Gage 9 279 

Strain Gage 11 567 
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8.4.5 Application of Neural Network to Typical 2-Axle Traffic Test Data 

8.4.5.1 Normalized Errors between Predicted and Measured Testbed Strains 

for 2003 Test Data 

 The series of neural networks were applied to the set of Principal 

Components derived from the 1,629 records in the 2003 test data. The normalized 

errors between the measured and predicted strains were calculated (Fig. 8.66). 

Histograms of these errors are plotted in Fig. 8.67 and the mean error, standard 

deviation, and maximum error are included in Table 8.6. 
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Figure 8.64: Normalized Error for Predicted Channel 6, 9 , 11 (Top to Bottom) 

Strains Recorded During December 2003 
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Figure 8.65: Normalized Error Distributions for Predicted Channel 6, 9 , 11 (Top to 

Bottom) Strains Recorded During December 2003 
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8.4.5.2 Normalized Errors between Predicted and Measured Testbed Strains 

for 2004 Test Data 

 As with the aforementioned 2003 testing data, the 39,062 scenarios in the 

2004 testing data set were analyzed using the trained neural networks. Again, the 

normalized errors were calculated for each target sensor and plotted in Fig’s. 8.68 – 

8.70 along with histograms of the errors in Fig. 8.71. A 100-point average was 

formed for each of the strain gage errors and are plotted in Fig’s. 8.72 – 8.74 along 

with the histograms in Fig. 8.75. As with the errors formed from the previous 

reconstruction data the largest errors are during the summer months. The mean 

error, standard deviation, and maximum error are included in Table 8.7. Through 

comparison with the original reconstruction data the mean errors are 4.4 to 5.2 

times larger. 
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Figure 8.69: Histograms of Normalized RMS Errors for Channels 6 (top), 9 

(middle), and 11 (bottom) 
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Figure 8.73: Histograms of 100-Point Mean Normalized RMS Errors for Channels 

6 (top), 9 (middle), and 11 (bottom) 
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Table 8.6: Mean, Standard Deviation, and Maximum Normalized Error for 
Predicted Strains from 2003 Testing Data 

 
 Mean Standard Deviation Maximum 

Strain Gage 6 4.790 x10-4 3.589 x10-4 5.102 x10-3 
Strain Gage 9 5.787 x10-4 3.937 x10-4 5.482 x10-3 
Strain Gage 11 4.496 x10-4 3.502 x10-5 6.735 x10-3 

 
 
 
 

Table 8.7: Mean, Standard Deviation, and Maximum Normalized Error for 
Predicted Strains from 2004 Testing Data 

 
 Mean Standard Deviation Maximum 

Strain Gage 6 6.887 x10-4 4.547 x10-4 7.986 x10-3 
Strain Gage 9 8.088 x10-4 5.038 x10-4 7.035 x10-3 
Strain Gage 11 6.418 x10-4 3.710 x10-4 7.985 x10-3 

 

 

The normalized errors for the predicted and reconstructed strains were 

averaged by month and are plotted in 8.76 and 8.77. In comparing these two sets of 

figures, it can be seen that all of the data follows the same trend. In addition, the 

averaged monthly errors in the predicted data is three to four times higher than 

those from the original reconstructed data. Again, the increase in error during the 

summer months is very pronounced. The average monthly errors for the predicted 

and reconstructed errors are summarized in Table 8.7. Histograms of the monthly 

errors are plotted in Figure 8.78 for the predicted data and in Fig. 8.79 for the 

reconstructed data. 
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Figure 8.74: Average Monthly Normalized Error for Predicted Strains 

 

 

Figure 8.75: Average Monthly Normalized Error for Reconstructed Strains 
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Table 8.8: Average Monthly Errors for Predicted and Reconstructed Data 

Average Monthly Normalized Error 
Predicted Strains From 
Neural Network (x10-4) 

Reconstructed Strains from Principal 
Components (x10-4) 

Month 
(2004) 

Ch. 6 Ch. 9 Ch. 11 Ch. 6 Ch. 8 Ch. 9 Ch. 11 
1 4.78 5.72 4.81 1.17 1.12 1.41 1.20 
2 5.16 6.22 5.37 1.19 1.05 1.53 1.21 
3 5.32 6.79 5.82 1.26 1.16 1.66 1.19 
4 7.95 9.26 6.43 1.89 1.35 2.00 1.40 
5 9.74 8.99 6.61 1.99 1.41 2.03 1.42 
6 8.72 9.29 6.99 1.76 1.44 1.86 1.53 
7 10.10 12.98 10.15 2.93 2.38 3.02 3.21 
8 11.04 13.62 12.09 3.42 3.23 3.48 3.57 
9 7.24 9.46 7.93 1.48 1.60 1.93 1.73 
10 7.79 9.79 7.24 1.46 1.56 2.03 1.59 
11 6.78 8.58 7.30 1.53 1.41 2.04 1.44 
12 6.61 8.02 7.33 1.55 1.41 1.95 1.42 
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Figure 8.76: Normalized Errors Distributions of Gage 6 Predicted Strains by 

Month. 
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Figure 8.77: Normalized Errors Distributions of Gage 6 Reconstructed Strains by 

Month. 
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8.4.5.3 Reconstructed Strain Time Histories for Typical Median Normalized 

Errors 

To visualize the quality of the match between the recorded strain time 

histories and those reconstructed from the neural network outputs, the time 

histories corresponding to the median monthly error in channel 6 were plotted for 

January, March, May, August, and November (Fig’s. 8.80 – 8.84). In these figures 

for each of the 4 strain gages, the original recorded time history is plotted (solid 

gray line) along with the time history reconstructed using the inverse PCA 

transformation on the extracted PC’s (dashed black line). For gages 6, 9, and 11, 

the strain time histories reconstructed from the neural network outputs are shown 

with the solid black line. 

Within these figures, the correspondence between the recorded strains and 

those constructed from the inverse PCA transformation are excellent. However, in 

all of the channel 6, 9, and 11 data there are small errors between the recorded data 

and the strains reconstructed from the neural network output. This error takes on 

two forms. The first is associated with differences in the peak strains. For example, 

in the data from January (Fig. 8.80), the peak strain for gage 11 is closer to the 

measured value than the corresponding values from gages 6 and 9. However, in the 

data from March (Fig. 8.81), the peak strain for gage 6 is closest and the values for 

gages 9 and 11 are off. In this data, the difference for gage 11 is approximately one-

half of that from gage 9. The explanation lies in the data used as input for the 

neural network. By only using the data from one strain gage, it is not possible to 
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determine where in the North-South direction the vehicle crosses the bridge decks. 

Therefore, a vehicle crossing close to the curb on the South side of decks will 

generate larger strains in gage 6 and smaller strains in gage 9 than the same vehicle 

traveling more towards the center of the roadway. This could be addressed in the 

neural network with the addition of a second camera capable of capturing the exact 

position of the vehicles on the bridge decks. Another possibility is to examine the 

distribution of peak strains recorded by the 16 sensors. For now, this is probably 

the best method as it would allow for making more refined analyses on the existing 

data. 

The second source of error is associated with the manner in which the 

orginal time histories have been normalized (resampled to 200 points) prior to the 

application of Principal Component Analysis for feature reduction. As explained in 

Section 8.4.2, the resampled time history starts when the front axle first begins to 

cross the bridge decks and ends when the rear axles pass off of the decks. Small 

errors in locating these points in the strain data causes shifts between the recorded 

and predicted strains (channel 9 strain in Fig. 8.84). 
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Figure 8.78: Strain Time Histories Associated with the Median Normalized Error 

for the Sorted January Data (sorted using Normalized Errors for Channel 6 data) 
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Figure 8.79: Strain Time Histories Associated with the Median Normalized Error 

for the Sorted March Data (sorted using Normalized Errors for Channel 6 data) 
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Figure 8.80: Strain Time Histories Associated with the Median Normalized Error 

for the Sorted May Data (sorted using Normalized Errors for Channel 6 data) 
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Figure 8.81: Strain Time Histories Associated with the Median Normalized Error 

for the Sorted August Data (sorted using Normalized Errors for Channel 6 data) 
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Figure 8.82: Strain Time Histories Associated with the Median Normalized Error 

for the Sorted November Data (sorted using Normalized Errors for Channel 6 data) 
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8.4.5.4 Reconstructed Strain Time Histories for Outliers in the Normalized 

Errors  

 To visualize the differences between the recorded strains and those 

reconstructed from the original PCA transformation and from the neural network, 

four outliers were selected from the channel 6 normalized errors (Fig. 8.85). The 

corresponding errors from gages 9 and 11 are also indicated in this figure. For each 

of these outliers (Fig’s. 8.86 – 8.89), the original recorded data from the four gages 

is shown (solid gray line) along with time histories reconstructed from the PC’s 

extracted in the original PCA transformation (black dashed line). For gages 6, 9, 

and 11, the reconstructed time histories from the neural network output are shown 

with the solid black line. 

 From visual inspection of the data in Figure 8.86, the errors indicate 

problems with the original PCA transformation, which is due to new features not 

present in the training data. In this case, the new features are due to the added tail at 

the end of the time history. This tail is caused by the misidentification of the time 

instant in which the rear axle moves off of the bridge decks. Comparison of the 

original and reconstructed data shows similar problems with the data recorded by 

sensors 6 and 9. Because of the problems with feature extraction on the neural 

network input, all of the outputs are incorrect. Similar problems are visible in the 

data in Figure 8.87. This time, the input data is correct, but the normalization 

process for the target data failed hence the large errors between the measured and 

predicted strains. For the data in Figures 8.88 and 8.89, there is a fair level of error 
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in the reconstructed data, but primarily the problems are with the histories output 

from the neural networks. It appears the data normalization process was 

successfully applied to all of the data; therefore, the error should be attributed to a 

change in the system response. 
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Figure 8.83: Randomly Selected Outliers from Strain Gage 6 Data with 

Corresponding Normalized Errors from Strain Gages 9 and 11.
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Figure 8.84: Strain Time Histories Associated with the First Outlier
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Figure 8.85: Strain Time Histories Associated with the Second Outlier 
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Figure 8.86: Strain Time Histories Associated with the Third Outlier 
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Figure 8.87: Strain Time Histories Associated with the Fourth Outlier 
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8.5 Summary 

Speeds and then wheelbases were calculated using the recorded strain time 

histories in the labeled data subset from the composite bridge-decks. By using the 

labeled data, it was possible to focus on vehicles with constant wheelbases, which 

provided an error check in the calculated axle spacing by plotting histograms of the 

wheelbases for the different vehicle types. Next, peak axle strains recorded over the 

period of time the monitoring system was operational were considered. The 

numbers and distributions of vehicles crossing over the bridge decks were 

examined. This information allows for accurately modeling the probability 

distributions of traffic loads, which without this more detailed load data is typically 

modeled with random distributions. 

The same predictive neural networks used in Chapter 7 for damage 

detection on the finite element model data were employed on the recorded data 

from the composite decks to look for changes in the response of the bridge-decks. 

This was done by considering only 2-axle traffic with peak strains typical of 

campus buses.  The data from strain gage 8 was used as input, and three neural 

networks were constructed to predict strains in neighboring gages 6, 9, and 11. 

These three neural networks were trained using 1000 patterns recorded in 

December 2003 and tested on all similar records recorded during 2004 (over 39,000 

time histories). Principal Component Analysis was again used for feature reduction 

and cut the number of features input and output by the neural network from 2000 

(each time step being a feature) to 9 or fewer. In addition to comparing the error 
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between the measured and predicted (from neural network) strains, a second 

comparison was done with strain time histories reconstructed using the inverse 

Principal Component Analysis transformation applied to the extracted PC’s. In 

general, there was very good correlation between the measured strains and those 

predicted by the neural networks and reconstructed using the inverse PCA 

transformation. One notable result was an increase in both errors during the 

summer months (where traffic patterns are quite different compared to the rest of 

the year). 
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9 UCSD Bridge Testbed for Health Monitoring Technologies  
 

Borrowing on lessons learned from monitoring of the UCSD composite 

bridge-deck panels (Chapter 3), a second bridge testbed is established. It is 

envisioned that this testbed (the Voigt Drive / Interstate-5 Overcrossing) will 

become a live laboratory for structural health monitoring technologies, and will be 

part of the Powell Laboratory activities as a convenient field environment. This 

two-lane bridge (measuring nearly 300 feet in length) is a skewed, single-column 

bent, 4-span, reinforced concrete box girder structure (Figs. 9.1-9.3), located just 

East of the UCSD campus. The construction style is typical of a large number of 

Caltrans’ overpasses. This particular bridge was chosen due to its proximity to the 

campus, which was and still is an important consideration for developing and 

employing a hereto untested system. As usual, difficulties were encountered during 

the initial installation and required frequent trips back-and-forth between the bridge 

and the campus laboratories. Preliminary data was finally collected for 

demonstration purposes, as discussed herein. 

An additional benefit with this bridge is the access provided into two of the 

bridge cells through manholes located in each of the spans (Fig. 9.2). This access 

into the interior of the bridge made it possible to install all of the sensors and data 

acquisition hardware within the bridge, thereby simplifying the installation and 

reducing the necessary permissions required for installation as the internal sensor 

network posed no risk to traffic on or below the overcrossing. With conventional 

monitoring systems, where sensors are installed on the exterior of the structure, 
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great care must be taken to ensure none of the hardware (sensors, cabling …) 

detaches from the bridge and ends up in the traffic below.  

 

 

 

Figure 9.1a: Elevation View of Voigt Drive / I-5 Overcrossing Taken from South-

West side of the Bridge 

 

 

32.72 ft. 30.98 ft.

 

Figure 9.1b: Elevation View of Voigt Drive / I-5 Overcrossing 
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3.34 ft. 8.34 ft. 13.66 ft. 8.66 ft.

8.25 ft.
15.75 ft. 20.00 ft.

20.00 ft.

53.00 ft. 50.00 ft.95.00 ft. 95.00 ft.  

Figure 9.2: Plan View of Voigt Drive / I-5 Overcrossing 
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Figure 9.3: Cross Section of Voigt Drive / I-5 Overcrossing 

 

9.1 Structural Health Monitoring System 

The proposed testbed for the I-5 overcrossing calls for the installation of an 

array of sensors inside and around the bridge when completed.  Installed sensor 

types will include accelerometers, fiber optic strain gages, electrical resistance 

strain gages, thermocouples, thermisters, humidity probes, magnetometers, etc…  

The dynamic sensors will be utilized to capture the bridge’s vertical, horizontal, 
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and torsional dynamic response while the environmental sensors will be used to 

correlate dynamic response characteristics with environmental factors (such as 

temperature and relative humidity) and to monitor sensor response with 

temperature [Worden et al., 2005]. In addition, digital cameras are to be installed to 

record traffic passing over as well as under the bridge.  The overall structural 

monitoring system architecture is detailed in Figure 9.4. 

9.1.1 Initial Dynamic Monitoring Configuration 

The initial installation described in this paper consists of a relatively simple 

configuration involving a total of 29 dynamic sensors. As only a limited number of 

sensors were to be installed in this phase, it was decided to focus on a single bridge 

cell, in this case the Northern most cell (Fig. 9.5).  This one was chosen for its 

convenient access through manholes located in the sidewalk on the North side of 

the bridge (Fig. 9.2). The setup is composed of 20 capacitive accelerometers, 

spaced 15-feet apart, to measure the vertical response along the length of the bridge 

(Figs 9.6-9.8). Eight of these sensors are PCB Model 3801 ±3g accelerometers and 

the remaining twelve are Crossbow CXL01LF1 ±1g sensors. In addition, 8 TML 

general purpose foil strain gages (Fig.9.9) were installed at the bottom of the 

interior girder (Fig. 9.10) to monitor the local response of the bridge at the middle 

of each span as well as at the quarter points of the middle two spans. One 

thermocouple was attached to the interior girder of the Western span. 
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Figure 9.5: Interior of Northern-Most Cell of Voigt Bridge 

 

 

 

9 10 1 11 12 13 2 3 4 5 6 7 814 15 16 17 18 19 20

PCB 3801 
Accelerometer

Crossbow CXL01LF1 
Accelerometer

9 10 1 11 12 13 2 3 4 5 6 7 814 15 16 17 18 19 20

PCB 3801 
Accelerometer
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Accelerometer

 

Figure 9.6: Location of 20 Capacitive Accelerometers 
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PCB 3801 
Installation 

Location

 
 

Figure 9.7: Installation details for PCB Model 3801 Capacitive Accelerometers 

 

 

Crossbow 
CXL01LF1 
Installation 

Location

 

 

Figure 9.8: Installation details for Crossbow Model CXL01LF1 Capacitive 

Accelerometers 

 

 

1 3 42 86 75

 

Figure 9.9: Locations of Electrical Resistance Strain Gages 
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Location of 
Strain Gages

 

Figure 9.10: Location of Strain Gages, Installed on the Interior Girder (left) and 

Strain Gage 1 (right) Installed in Western-most Span of the Bridge 

 

 

9.1.2 Environmental Monitoring 

For measuring ambient air temperature, relative humidity, and temperature 

of the bridge elements, an array of environmental sensors are to be installed inside 

the Northern-most bridge-cell. To record the temperature of the structural elements 

of the bridge (i.e. superstructure girders), thermocouples are being attached to the 

interior girder. For this application, Omega “Cement-On” model CO-T’s (Fig. 

9.11a) are used. These are an economical fast response thermocouple for surface 

temperature measurements with a nominal operational temperature range of -190 to 

205°C (-310 to 401°F). Temperature measurements will be important for assessing 

the long-term performance of the sensors and determine whether further 

temperature compensation will be required. 
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Figure 9.11a: Omega model CO-T 

“Cement-On” Thermocouple 

Figure 9.11b: Analog Devices 

AD595AQ Thermocouple Amplifier 

 

 

To measure the voltage generated by the thermocouple (known as the 

Seebeck voltage), it is not possible to connect the thermocouple directly to the 

measurement system, as connecting the thermocouple wires to the measurement 

system creates additional thermoelectric circuits. Therefore it is necessary to utilize 

signal conditioning for each thermocouple.  In this application, an Analog Device 

AD595AQ monolithic thermocouple amplifier with cold junction compensation is 

soldered to a circuit board and then coated with epoxy and silicon (Fig. 9.11b) for 

weatherproofing. In addition to supplying the required signal conditioning, these 

units can also provide amplification, raising the output voltage from a few mili-

volts to ± 10 volts, allowing for long cable runs. For bridge monitoring, it is 

advantageous to place the conditioning units near the sensors to allow for making 
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the majority of the cable runs with conventional shielded cables, rather than 

thermocouple wire, thereby reducing cabling costs by over 50%. 

To measure the relative humidity and air temperature, dual purpose sensors 

like the Pace Scientific Temperature/RH sensors (Fig. 9.12) are readily available. 

This is a precision relative humidity and temperature probe, which outputs an 

analog output easily measured with standard data acquisition hardware. Another 

advantage is it does not require any signal conditioning, just a 5 vdc excitation at 2 

ma.  

The humidity output from the sensor is typically 0.8 vdc at 0% Relative 

Humidity (RH) and 3.9 vdc at 100% RH. To convert from measured voltage to 

percent relative humidity, linear scaling is performed with ± 2% RH accuracy from 

0 – 95% RH. Temperature compensation for the RH measurements is similarly 

performed. 

 

 

Figure 9.12: Pace Scientific Temperature / Relative Humidity Probe 
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9.2 Data Acquisition 

Data from the sensors will be collected on the bridge, using a local data 

acquisition system, housed within the Northwest corner of the bridge. It is 

important that this equipment be located within the wireless Internet cloud that will 

be created at the bridge site. Using a Linksys Wet11B wireless Ethernet bridge with 

an external antenna mounted on the bridge guard rail, the campus wireless 

connection is converted to a standard wired Internet connection, which can then 

passed to the data acquisition system. Once the data is acquired, it will be streamed 

using the wireless Internet connection back to the SERF building (Fig. 9.14) for 

further analysis and archiving. 

The current system (Fig. 9.13) is built around a National Instruments 

PXI/SCXI combination chassis with an embedded PXI-8186 real-time controller 

(with dual-boot capabilities – Windows XP and a real time operating system). For 

standalone bridge monitoring operation, the data acquisition, local data processing, 

and data transmission codes are embedded on the PXI controller so they start 

automatically when the system boots, thereby requiring no human interaction. A NI 

PXI-6031E (16-bit A/D, 32 differential inputs, 100 kS/s maximum multiplexed 

sampling rate) board is currently being used for acquiring signals from the 

accelerometers and environmental sensors, while a SCXI-1520 8-channel universal 

strain gauge input module is utilized for the eight strain gages’ conditioning and 

acquisition. With the current data acquisition boards, the system is easily expanded 

to support over 250 channels. Further, if additional sensors types are needed, which 
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have their own requirements (signal conditioning, higher sampling rates) this too is 

easily managed. For example, to study vehicle/structure interaction, piezoelectric 

accelerometers are better suited than the capacitive ones currently installed in the 

bridge. In this case, the ICP signal conditioning can be handled using 8-channel 

PXI-4472B dynamic signal conditioning modules. 
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Figure 9.13: Current Data/Image Acquisition System: 1. PXI/SCXI Combination 
Chassis, 2. PXI-8186 Controller, 3. IEEE 1394 Interface, 4. PXI-6031E Data 
Acquisition Board, 5. SCXI-1520 Strain Gage Input Module, 6. Strain Gage 

Terminal Strip, 7. DC Power Supplies for Capacitive Accelerometers, 8. SCB-100 
Connector Block. 
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9.3 Image Acquisition 

Two Sony XCD-X710CR IEEE 1394 digital color cameras are being 

installed on light posts at either end of the bridge (Fig. 9.15).  These cameras will 

be positioned in a manner in which they are capable of monitoring traffic crossing 

over as well as under the bridge. This allows for correlating the bridge response 

with the responsible vehicles. The Sony cameras are capable of 800,000 pixel 

resolution with a maximum 30 frames per second sample-rate. These cameras are 

connected to the data acquisition computer via fiber optic cables.  Fiber-optic 

technologies were utilized to allow for longer cable runs (upwards of one-mile) 

than are possible with typical analog and digital cameras. Using National 

Instruments’ LabVIEW software, images are to be acquired from each camera at 5 

frames-per-second and time stamped using the data acquisition clock. By building 

the image acquisition directly into the data acquisition program, highly accurate 

synchronization between the dynamic sensors and cameras is achieved (much better 

than those experienced with the network camera installed in the composite bridge-

deck testbed, described in Chapter 3). The XCD-X710CR cameras use a CCD with 

a color mask (commonly known as a “Bayer filter”), which allows the camera to 

output a “raw color” image as an 8 or 10-bit monochrome image.   

To best utilize the limited bandwidth available, the output from the cameras 

will be streamed to the archiving database in the original monochrome (Bayer) 

format. Once received by the archiving/analysis computers, the Bayer images (Fig. 

9.16a) are decoded to produce uncompressed color images (Fig. 9.16b), which are 
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then passed to the image analysis algorithms. The major advantage is that Bayer-

encoded images are 1/3 the size of the same color image. Feature extraction can 

then be performed on the archived images to extract useful information related to 

vehicle properties of traffic passing over/under the bridge.  

The selection and final placement of the employed cameras were done with 

the assistance of Professor Mohan Trivedi and Dr. Tarak Gandhi. The simultaneous 

data / image acquisition and image compression were created in collaboration with 

Jeff Ploetner. 

 



  

 

458

 

Fi
gu

re
 9

.1
4:

 D
at

a 
St

re
am

in
g 

Pa
th

 fr
om

 V
oi

gt
 B

rid
ge

 T
o 

SE
R

F 
B

ui
ld

in
g 

an
d 

Sa
n 

D
ie

go
 S

up
er

co
m

pu
te

r C
en

te
r 



  

 

459

Camera Locations

 

Figure 9.15: Locations of IEEE 1394 Color Cameras 

 

  

Figure 9.16a: Original Bayer-encoded 

Image 

Figure 9.16b: Decoded Color Image 
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9.4 Internet Connectivity 

For streaming all of the data from the bridge, a wireless Internet cloud was 

created by utilizing an existing wired UCSD Internet connection located in the 

UCSD Mail Services building (Fig. 9.14).  A strong Internet connection has been 

established on the bridge by installing a wireless router in Southeast corner of the 

Mail Services Building (approximately 60 meters from the bridge). A Linksys 

Wet11 wireless Ethernet bridge with external antenna is being set up to bring the 

wireless Internet connection to the data/image acquisition computer located inside 

the bridge. 

9.5 Data Transmission 

For the developing monitoring system, a data acquisition program has been 

developed to sample the analog signals from the accelerometers, environmental 

sensors, and strain gages at a rate of 1000 Hz. Once digitized, the signals are  

placed in a circular buffer.  After a predetermined number of samples have been 

acquired in the buffer, the data is written to disk as a text file in ASCII format.  A 

java-based data transmission program opens the file and streams the data (using 

TCP protocols) to the SERF building for archiving (Fig. 9.14).  Upon confirmation 

of successful transmission, the data is deleted from the acquisition computer.  

Should the Internet connection temporarily go down, no data will be lost as the 

system will continue to acquire data and write it to disk on the local hard drive. 

Once the connection is restored, the streaming program automatically resumes 

sending the data. A Java-based loader program has been written to connect from 
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campus to the field computer and read the streamed data, perform basic signal 

processing, and archive the data within a DB2 database. 

Due to bandwidth limitations, it will be impossible to continuously stream 

all of the images acquired by both cameras. Performing image compression prior to 

transmitting the images was deemed unsuitable as it would worsen the quality of 

the results from the image processing algorithms, and local processing was also 

discarded due to the burden that would be placed on the data acquisition 

computer’s processor. Therefore, it was decided to use a trigger, generated by the 

analog sensors, to tag images with vehicles crossing the bridge.  Only these tagged 

images will be transmitted.  

9.6 Remote Access 

Remote access to the data acquisition computer is provided using Windows 

Remote Desktop Connection and National Instruments LabVIEW webserver. 

Through the webserver, small changes can be made to the data acquisition 

parameters (for example, changing sample rates, sensor calibration constants, 

buffer size …).  To make changes to the data acquisition program, including 

overwriting the current version, Windows Remote Desktop Control will be utilized.  

To access the data acquisition computer on the bridge, both of the 

previously mentioned programs require the system to be operating properly. Should 

the acquisition computer crash and access become unavailable, a Data Probe iBoot 

network attached remote power controller is installed with the PXI controller (Fig. 

9.4).  This device allows authorized users to cycle the power on the controller, 
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rebooting and restoring the system. To ensure proper authorization, access is 

restricted to users with registered IP addresses. 

9.7 Shakedown Test Performed on January 7, 2006 

9.7.1 Test Setup 

On January 7, 2006, a test was made with the twenty installed 

accelerometers (Fig. 9.6) and the two Bayer cameras.  In this experiment, the 

cameras had not yet been permanently installed onto the light posts. Therefore, they 

were placed on tripods and placed on the sidewalk, near the data acquisition 

computer. The cameras were connected to directly to the data/image acquisition 

computer (through the open manhole in the sidewalk) using only firewire cables.  

As the cable runs for the cameras were under twenty feet, the optical repeaters to 

convert from firewire (IEEE-1394) to fiber optic (1394b) cable were not necessary. 

One of the cameras was set on the sidewalk and angled to capture traffic crossing 

over the bridge while the second one was attached to the safety fence and 

monitored traffic passing under the bridge on Interstate-5 (Fig. 9.17). 

Prior to conducting this test, the pathway between the motherboard and hard 

drive on the PXI-8186 controller installed in the bridge shorted out and an alternate 

controller and chassis were used. The PXI-6031E data acquisition board and PXI-

8252 IEEE-1394 interface board were removed from the PXI/SCXI chassis and 

installed into a smaller 4-slot PXI-1031 chassis. This new system was configured in 

the laboratory and then set inside the bridge (Fig. 9.18). Within Figure 9.18, the 
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PXI-1031 is located on the bottom right side of the picture while the DC power 

supplies for the capacitive accelerometers are mounted on the rack (left side) along 

with the original PXI/SCXI combination chassis. Because of very low signal-to-

noise ratios, the strain gages were not used in this test. Debugging of these gages is 

ongoing and the replacement with / inclusion of piezoelectric and fiber optic strain 

gages is being explored. 
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Figure 9.17: Location of the 2 Bayer Cameras 



  

 

465

 

Figure 9.18: Data/Image Acquisition Hardware Installed within Bridge. 

 

9.7.2 Data/Image Acquisition 

 Great care was taken in selecting the date and time of day to conduct this 

test. It was decided the best time to run the experiment was on a weekend during a 

campus holiday when traffic was expected to be at a minimum. This allowed for 

measuring the bridge response for individual vehicles rather than with multiple 

vehicles crossing simultaneously, as is usually the case. During the 33 minutes the 

system was recording data, 128 vehicles were captured. The number and types of 

vehicles are summarized in Table 9.1. Of particular interest in this data set are the 
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three large vehicles. These were a garbage truck heading east and two westbound 

campus shuttle buses. 

 

Table 9.1: Summary of Vehicles Recorded Crossing the Bridge 

Vehicle Type 
Number Traveling 

West Bound 
Number Traveling 

East Bound 
Total Number 

Crossing Bridge 

Car 40 36 76 

SUV 16 17 33 

Van 3 4 7 

Pickup Truck 5 4 9 

Large Vehicle 2 1 3 

 

In this experiment, accelerations were recorded using a 1000 Hz sampling 

rate and images were captured with a nominal 4 Hz acquisition rate.  In total, 8167 

images were recorded by each of the cameras. Samples of the recorded images 

from both of the cameras are shown in Fig. 9.19. 
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Figure 9.19: Sample of Images Recorded by Bayer Cameras 
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9.7.3 Qualitative Data Analysis 

9.7.3.1 Ambient Vibration Analysis 

 A preliminary, and somewhat qualitative, analysis of the recorded data was 

performed and the results are presented herein. First, the response of the bridge 

subject to ambient loading conditions was considered by investigating 

measurements taken when no vehicles were crossing the bridge. Even during the 

relative calm of the weekend, this proved surprisingly difficult. From Figure 9.20, 

it can be seen that during the thirty plus minutes it took to conduct this experiment, 

128 vehicles were captured. This makes for approximately one vehicle every 15 

seconds. 

 

Figure 9.20: Relative Time (from Start of Test) for Each Vehicle Crossing 

 

Two periods were selected and analyzed. The first was a 64 second period 

(from t = 1761 to 1825 sec), which was the longest duration recorded with no 

vehicles crossing the bridge. Acceleration time histories recorded by the PCB 
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accelerometers (channels 1-8 in Fig. 9.6) are shown in Figure 9.21 along with the 

corresponding Fourier Amplitude Spectra (FAS) from all 20 accelerometers in Fig. 

9.22. While many modes (at least 10) are present in this data, the lack of a suitable 

number of similar records makes it virtually impossible to perform the necessary 

averaging to do a modal extraction. 
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Figure 9.21: Ambient Vibration Acceleration Time Histories (Channels 1-8) 



  

 

471

 

Figure 9.22: Fourier Amplitude Spectra from 65-Second Ambient Acceleration 

Time Histories 
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Figure 9.23: Fourier Amplitude Spectra from 30-Second Ambient Acceleration 

Time Histories 
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 9.7.3.2 Traffic Induced Vibrations 

   Next the response of the bridge was analyzed for traffic induced vibrations. 

Two sets of images (taken when the vehicle passes over accelerometers 1, 3, 6, and 

8) are shown for a Westbound and Eastbound car (Fig. 9.24). The corresponding 

Channel 1-8 acceleration time histories are shown in Fig’s. 9.25 and 9.26. From 

these figures it is observed that each span only demonstrates a strong response 

while the vehicle is located on that span. Next, two sets of time histories, each 400-

seconds long, are plotted in Figures 9.27 and 9.28. A spectrogram of the data in 

Fig. 9.28 was generated using a Short Time Fourier Transform (STFT) and is 

shown in Figure 9.29. Of particular interest are the large amplitudes at high 

frequencies (specifically at 225 Hz in Channels 1 and 6 and 425 Hz in Channel 3). 

As these frequencies are well out of the dynamic ranges of the PCB 3801 and 

Crossbow CXL01lF1 accelerometers, it was decided to instead focus on the low 

frequency dynamics of the structure (Fig’s. 9.30 and 9.31). To remove the high 

frequency content from the time histories, an anti-aliasing lowpass (FIR) filter was 

applied to the data. Next, the data was decimated to change the time increment 

from 0.001 seconds to 0.005 seconds. These operations were performed using the 

“resample” function in Matlab. The original channel 1-8 acceleration time histories 

(Fig. 9.32) and resampled time histories (Fig. 9.33) are shown for a typical 

westbound car. The corresponding Fourier Amplitude Spectra are shown in Fig. 

9.34.  
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Figure 9.24: Recorded Images for 2 Typical Cars Taken when the Vehicle Reaches 

Channels 8, 6, 3, 1 (Top to Bottom). 
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Figure 9.25: Channel 1-8 Acceleration Time Histories for the West-Bound car in 

Fig. 9.23 
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Figure 9.26: Channel 1-8 Acceleration Time Histories for the East-Bound car in 

Fig. 9.23 
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Figure 9.27: Acceleration Time Histories for Channels 1, 3, 6, 8 (Fig. 9.6) 
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Figure 9.28: Channel 1, 3, 6, 8 Acceleration Time Histories 
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Figure 9.29: Spectrogram of Channel 1, 3, 6, 8 Acceleration Time Histories  
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Figure 9.30: Low Frequency Range of Spectrogram (0 – 30 Hz) for Channels 1, 3, 

6, 8 
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Figure 9.31: Spectrograms of Channel 1, 3, 6, 8 Acceleration Time Histories (top to 

bottom) 
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Figure 9.34: Fourier Amplitude Spectra (FAS) for a Typical Westbound Car  
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A second traffic case was also considered. Based on the spectrograms, an 

anomaly in the bridge response was observed at approximately t = 1290 sec. From 

the recorded video, this was found to be a garbage truck (Fig. 9.19) moving east on 

the bridge and a small SUV traveling westbound. The original acceleration time 

histories along with the resampled data are shown in Figures 9.35 and 9.36, 

respectively. The corresponding Fourier Amplitude Spectra is included in Fig. 9.37. 

From the Fourier Amplitude Spectra, the traffic induced vibrations (forced 

vibration) is evident in the broad bands being excited, rather than simply vibrating 

at only a few natural frequencies. Also worth noting is the disruption in the bridge 

response while the garbage truck travels along the overcrossing. Under normal 

loading conditions (ambient as well as smaller vehicular loads), a very strong and 

prominent response at approximately 6.0 Hz is observed. However, when the 

garbage truck passes over the bridge, the amplitude of this frequency diminishes in 

favor of others (Fig. 9.31). Once the truck moves off the bridge, the 6 Hz signal 

quickly resumes.  
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Figure 9.37: Fourier Amplitude Spectra of 20 Accelerometers Under Loading from 

Garbage Truck  
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9.8 Summary 
Capitalizing on lessons learned from the composite bridge decks, a second 

bridge testbed has been established on the Voigt Drive / Interstate-5 overcrossing, 

located next to the UCSD campus, for further testing of health monitoring 

technologies. This new continuous monitoring system is built around an easily 

expanded system supporting over 250 channels of sensor data and 3 cameras. Of 

particular interest is the integration of the image acquisition into the data 

acquisition computer thereby providing hardware synchronization between the 

sensors and cameras. A shakedown test was performed on the system using the 

initial sensor array composed of twenty capacitive accelerometers and two color 

cameras.  Time-synchronized video and acceleration were recorded continuously 

over a thirty minute period, during which time 128 vehicles were captured crossing 

the bridge.  This data is suitable for performing system identification for 

determining natural frequencies, mode shapes, and damping ratios as well as for 

exploring the dynamic response associated with vehicle/structure interaction. This 

system will soon be made available to collaborators from UCSD and abroad for 

testing new sensor types, data acquisition/transmission methods, and data mining 

strategies. 
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10 Summary and Conclusions 

 This section starts with a summary of conducted investigations followed by 

a concise list of dissertation contributions. In Chapter 2, elements composing a 

state of the art structural monitoring system have been detailed. First, an overview 

of the dynamic and environmental sensors available for a heterogeneous sensor 

array was presented. For continuous monitoring applications, where data logging is 

not practical, PC-based data/image acquisition has been addressed, and a key issue 

of data/image synchronization was noted. Data transmission protocols for 

streaming data from a remote bridge site to more suitable location were explored. 

Finally, since simply storing acquired data as a series of a text files is not a viable 

option in post-processing data analysis, issues related to database systems were 

discussed. 

 A research testbed for applying the aforementioned structural monitoring 

framework was established and described in Chapter 3. Pc-based data acquisition 

was employed along with a network camera for continuous monitoring of a series 

of instrumented composite bridge-decks. Over a three-year period, time 

synchronized video and strain data have been recorded and archived in a series of 

databases, and made available for on-line querying. The continuously recorded data 

was post processed and separated into 439,654 discrete events, each composed of a 

ten-second strain time history and 40 images of a vehicle crossing the bridge decks. 

Local processing potential for data reduction and event detection was demonstrated 



 491

with the peak hourly strain database established for the 2-channel monitoring 

system. 

 Several demonstration applications have been made with this testbed. First, 

image processing and feature extraction were performed on the video data recorded 

from the composite bridge decks (Chapter 4). For each of the aforementioned strain 

time histories, image processing was used to extract the picture most clearly 

showing the vehicle crossing the bridge decks, thereby making it possible to sort 

and bin the time histories by vehicle type. This operation allowed for examining the 

distribution of vehicles crossing the decks, useful for studying probability 

distributions of traffic loads and their effects (e.g., strains). Further, by sorting and 

binning the recorded traffic, a unique data set was established in which the 

measured bridge response and images corresponding to the loads (passing traffic) 

are both available. This data is extremely useful for applying artificial intelligence 

algorithms for vehicle classification and property estimation as well as for 

monitoring for changes in the bridge system response over time. 

 As traffic passing over the bridge decks only traveled at relatively low 

speeds (majority at or under the speed limit of 25 MPH), it was not possible to train 

neural networks on the recorded data for vehicle property (speed, wheelbase, axle 

weights) estimation. Also, vehicle induced strain data taken from a damaged state 

of the bridge decks was not available, and damaging the decks was not a 

possibility. Consequently, a computational model of the bridge decks was created 

to provide strain time histories similar to those recorded on the actual system 
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(Chapter 5). Good results were obtained using a pilot one-dimensional finite 

element model in which the interaction between the structure and vehicle were 

ignored (instead traffic was modeled as a series of moving loads). The generation 

of the finite element input and load files was implemented into Matlab which 

allowed for efficient generation and execution of the large numbers of runs 

(thousands) necessary for the conducted parametric studies and neural network 

training. 

 The strain time histories generated from the finite element model were used 

for vehicle property estimation and damage detection. These operations were first 

done using the peak axle strains (Chapter 6) and then later with neural networks 

(Chapter 7). The use of peak middle and quarter span strains allowed for 

calculating vehicle speed and wheelbase with moderate accuracies. Excellent 

results were obtained using neural networks, even under random traffic loading. 

With the neural networks, different methods of feature reduction were explored 

(including peak axle strains and principal component analysis). It was found that 

using peak axle strains (along with the corresponding time at which these strains 

occur) as inputs gave the best results, and accuracies under random traffic loading 

of 0.42 MPH for speeds, 0.17 ft for wheelbases, 0.07 kips for front axle weights, 

and 0.13 kips for rear axle weights were achieved.  

For damage detection, good results were obtained using data generated by a 

single vehicle type and the peak axle strains from 16 locations along the length of 

the finite element model.  For the more difficult and realistic scenario of random 
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traffic loading, neural networks had to be employed. Neural networks were able to 

detect and classify the level of damage, with 90% accuracy, even when damage 

was allowed to occur in simultaneous locations. By training separate networks to 

monitor each damage zone and combining the output from each, the amount of 

training data required is vastly less than using a single network (which requires 

many more damage scenarios). However, as with all supervised learning 

techniques, the more refined the classification levels, the more data required for 

network training. Therefore, an alternate method of damage detection was explored 

which did not require any training data from the damaged state of the structure (a 

big advantage when applying the detection methods to real data). This new method 

used strain time histories from one location on the FE model of the bridge decks to 

train a neural network to predict an associated time history at another location. 

Principal Component Analysis was employed to reduce the number of features in 

the each of the input and target strain time histories from 4000 to less than 10. As 

the neural network is trained using data exclusively from the undamaged state 

when damage occurs, the error between predicted and measured (generated) strains 

within these damaged regions increases. A normalized error was utilized providing 

correlation between the percent reduction in stiffness (level of damage) and the 

difference in the predicted and observed strains, even under random traffic loading. 

Ultimately, changes in stiffness as low as 2% could be consistently detected, 

providing a significant improvement over the previously employed methods.  

Again, as this method does not require data from the damaged structure and can be 
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trained using random traffic patterns, it is easily implemented on actual data from 

the composite bridge decks. 

Speeds and then wheelbases were calculated using the recorded strain time 

histories in the labeled data subset from the composite bridge-decks (Chapter 8). 

By using the labeled data, it was possible to focus on vehicles with constant 

wheelbases, which provided an error check in the calculated wheelbases by plotting 

histograms of the wheelbases for the different vehicle types. Next, the peak axle 

strains recorded over the period of time the monitoring system was operational 

were considered. The numbers and distributions of vehicles crossing over the 

bridge decks were examined. This information allows for accurately modeling the 

probability distributions of traffic loads, which without this more detailed load data 

is typically modeled with random distributions. 

The same predictive neural networks used in Chapter 7 for damage 

detection on the finite element model data were employed on the recorded data 

from the composite decks to look for changes in the response of the bridge-decks 

(Chapter 8). This was done by considering only 2-axle traffic with peak strains 

typical of campus buses.  The data from strain gage 8 was used as input, and three 

neural networks were constructed to predict strains in neighboring gages 6, 9, and 

11. These three neural networks were trained using 1000 patterns recorded in 

December 2003 and tested on all similar records recorded during 2004 (over 39,000 

time histories). Principal Component Analysis was again used for feature reduction 

and cut the number of features input and output by the neural network from 2000 
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(each time step being a feature) to 9 or fewer. In addition to comparing the error 

between the measured and predicted (from neural network) strains, a second 

comparison was done with strain time histories reconstructed using the inverse 

Principal Component Analysis transformation applied to the extracted PC’s. In 

general, there was very good correlation between the measured strains and those 

predicted by the neural networks and reconstructed using the inverse PCA 

transformation.  

Capitalizing on lessons learned from the composite bridge decks, a second 

bridge testbed has been established on the Voigt Drive / Interstate-5 overcrossing, 

located next to the UCSD campus, for further testing of health monitoring 

technologies (Chapter 9). This new continuous monitoring system is built around 

an easily expanded system supporting over 250 channels of sensor data and 3 

cameras. Of particular interest is the integration of the image acquisition into the 

data acquisition computer thereby providing hardware synchronization between the 

sensors and cameras. A shakedown test was performed on the system using the 

initial sensor array composed of twenty capacitive accelerometers and two color 

cameras.  Time-synchronized video and acceleration were recorded continuously 

over a thirty minute period, during which time 128 vehicles were captured crossing 

the bridge.  This data is suitable for performing system identification for 

determining natural frequencies, mode shapes, and damping ratios as well as for 

exploring the dynamic response associated with vehicle/structure interaction. This 

system will soon be made available to collaborators from UCSD and abroad for 
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testing new sensor types, data acquisition/transmission methods, and data mining 

strategies. 

10.1 Key Contributions / Findings from this Research  

• An integrated system for structural health monitoring has been developed 

and is ready for deployment at the 1000’s of heterogeneous sensors level. 

This system handles all tasks of monitoring, including data acquisition, data 

transmission, data archiving, and database querying. In doing so, the 

following was developed and integrate: 

1. A scalable data acquisition systems, such as the one employed on 

the Voigt Bridge testbed (Chapter 9), capable of acquiring data from 

a large number of diverse sensors. 

2. A TCP/IP streaming program which is robust enough of handle 

variable network speeds and network outages. This program has to 

be separate from the data acquisition programs (to prevent crashing 

during network outages) but still able to access the flow of data 

coming from the acquisition buffers. 

3. A data loader program to buffer the incoming data streams and to 

upload the data to the database systems. 

4. Methods for synchronizing data from the multitude of sensors and 

cameras. 

5. Expandable databases to manage the flow of data coming from the 

bridges and to make all of the data accessible for analysis. Further 
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derived data from analyses must be capable of being stored into the 

databases. 

This framework has been implemented and tested on the composite bridge-

deck panels and Voigt Drive / Interstate-5 overcrossing testbeds. 

• The acquisition and use of time synchronized sensor plus video data has 

been pioneered. Now, in addition to being able to monitor the response of 

the structure using recorded video, it is possible to define the loads acting 

on the structure. 

• An archived and available database containing over 25,000 sets of traffic 

induced strain time histories with video have been recorded over a three 

year period.  This data set is composed of peak hourly strain time histories 

(and video) recorded from two strain gages installed on the bridge-deck 

panels testbed and contains a wide range of vehicle types, from passenger 

cars to 5-axle truck and trailers. 

• An available database containing approximately 500,000 sets of 

synchronized traffic induced strain time histories with video have been 

recorded over a one year period.  This data set contains the recorded strain 

time histories (and video) from sixteen strain gages for every vehicle 

passing over the composite bridge-deck panels testbed during the time span 

the monitoring system was operational. 

• Using the extracted features from image processing performed on recorded 

video, a unique data set of 7,561 records was established in which traffic 
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was binned into 57 vehicle types. This data, recorded over a one year 

period, is ideal for supervised learning algorithms in that the tedious and 

time consuming task of data labeling and data cleansing has already been 

performed. Within this data set, data from two strain gages along with the 

time synchronized video is made available. This data has many uses in 

video analysis alone, sensor analysis alone, or in data fusion. Potential 

applications for this data include vehicle property estimation, traffic 

classification, and damage detection.  

• A second dataset of 4,863 labeled traffic induced strains and video has been 

created from all the traffic passing by in a one-week period. Here, data from 

sixteen strain gages along with video is made available. This data is 

particularly useful for vehicle classification and vehicle property estimation. 

• All of this sorted and cleansed strain data with video (along with the 

original data) is made available on-line for querying and browsing. For 

researchers interested in utilizing the data, upon request, it can be shipped to 

them on an external hard drive. 

• Within the numerical simulation framework, it has been shown that neural 

networks performed satisfactorily in providing highly accurate estimates of 

vehicle speeds, wheelbases, and axle weights. 

• A neural network-based damage detection methodology has been 

constructed, verified on the numerically simulated data, and tested on the 

recorded data. Strain time histories from one location (sensor) on the 
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structure are used as inputs for neural networks, which then predict strains 

at neighboring locations. The error between these predicted and strains and 

the actual values is monitored. With this method, all of the network training 

is done with data from the undamaged structure; therefore, when damage 

occurs, the mappings employed by the neural networks are no longer valid. 

Consequently, the error between the predicted and measured strains increase 

and the magnitude of the error is utilized for assessing the extent of the 

damage. This method was tested on the simulated data from the finite 

element model with outstanding results. 

• The developed integrated monitoring framework has been implemented on 

the Voigt Drive / Interstate-5 overcrossing testbed. While the initial 

installation incorporates approximately 30 sensors, this number is expected 

to quickly grow, and the system is ready to handle thousand-level sensor 

arrays. 

• A key feature of this full-scale, state-of-the-art bridge testbed is the open 

atmosphere encouraging collaboration with researchers who are interested 

in the data collected by the pilot sensor array as well as those who have 

additional sensors to install on the bridge. Current collaborators include: 

1. Professors Kincho Law (Stanford University) and Jerome Lynch 

(University of Michigan) for wireless data acquisition/transmission 

in which side-by-side comparisons with the wired sensors will be 

made. 
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2. Professor Magda El Zarki (University of California, Irvine) for data 

transmission over power lines. 

3. Professor Mohan Trivedi (University of California, San Diego) for 

image acquisition, image analysis, and assistance in finalizing the 

camera types and locations. 

4. Professor Ramesh Rao (University of California, San Diego) for air 

quality and airborne hazard monitoring. 

• The currently installed sensor network on the Voigt Bridge testbed provides 

data suitable for performing system identification as well as for exploring 

vehicle/structure dynamics. Amongst other possibilities, this data is 

applicable for: 

1. Determining resonant frequencies, damping ratios, and mode 

shapes. Changes in these values will be tracked against changes in 

the environment, including ambient air temperature, temperature of 

the structural components, and relative humidity. 

2. Calibrating and updating finite element models based on measured 

data and extracted features [Feng et al., 2004; Feng and Bahng, 

1999]. 

3. Development and testing of local processing and on-site analysis 

algorithms with applications in data reduction and event detection. 

• From the data recorded in the system shakedown test performed on January 

7, 2006, the following observations were made: 
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1. Traffic passing underneath the bridge was observed to cause 

vibrations with amplitudes comparable to those from traffic crossing 

on the bridge. This phenomenon along with possible implications 

for fatigue analysis will need to be studied further. 

2. Under low level excitation (from cars and other passenger vehicles), 

traffic induced vibrations were confined to the span the vehicle was 

on, and the bridge vibrates predominantly at its resonant 

frequencies. 

3. When a large vehicle (campus shuttle bus or large truck) passes over 

the overcrossing, the bridge vibrates at forced frequencies. Large 

vibrations were also observed in neighboring spans, not just the one 

the vehicle is situated on. When these vehicles move off of the 

bridge, the bridge quickly returns to the preferred resonant 

frequencies (free vibration). 
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Appendix 1: Fifty Seven Vehicle Type Images for 2-Channel 
Database (Prepared in Collaboration with Kendra Oliver) 
 

Vehicle Type Typical Vehicle Image 
TRUCKS 

Alliant Trucks 

 

Arrowhead Trucks 

 

Chemical Gas Trucks 

 

Coca-Cola Truck Type 1 

 

Coca-Cola Truck Type 2 

 

Concrete Mixer Trucks 

 

Family Tree Trucks 

 

FedEx Trucks 
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Gardening Trucks 

 

Green Garbage Trucks 

 

Red & Black Garbage 
Trucks 

 

Tan Garbage Trucks 

 

Krispy Kreme Trucks 

 

L & C Trucks 

 

Lift Truck 

 

McLane Trucks 

 

Medium White Trucks 
Type 1 
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Medium White Trucks 
Type 2 

 

Medium White Trucks 
Type 3 

 

Multifoods Trucks 

 

Pacific Waste Trucks 2 

 

Pepsi Trucks 

 

Ryder Trucks 

 

Service Pick-up Trucks 

 

Service Vans 

 

Small White Trucks 
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Sygma Truck 

 

Sysco Trucks Type 1 

 

Sysco Trucks Type 2 

 

Tank Trucks 

 

Tortilla Trucks 

 

UPS Trucks 

 

US Trucks Type 1 

 

US Trucks Type 2 

 

Vistar/VSA Trucks 
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Vehicle Type Typical Vehicle Image 
Buses 

UCSD Bus Type 2 

 

UCSD Bus Type 5 

 

UCSD Bus Type 6 

 

UCSD Bus Type 7 

 

UCSD Bus Type 8 

 

Trucks, Type 134 

 

Trucks, Type 135 

 

Other Trucks 
 

Picture Varies with Truck Type 
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UCSD Bus Type 9 

 

Other Buses 

 
 

Vehicle Type Typical Vehicle Image 
UCSD POLICE VEHICLES 

Police Cars 

 

Police SUVs 

 
 

Vehicle Type Typical Vehicle Image 
SMALL PERSONAL VEHICLES 

Cars 

 

Wagons 

 
 

Vehicle Type Typical Vehicle Image 
LARGE PERSONAL VEHICLES 

Vans 
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SUVs 

 

Pick-up Truck 

 
 

Vehicle Type Typical Vehicle Image 
UNIQUE VEHICLES 

Forklifts 

 

Golf Carts 

 

Unique 5 Axle Trucks 

 

Fire Trucks 

 

Other Unique Vehicles 
 

Picture Varies with Truck Type 
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Table Appendix 1: Vehicle Type Profiles 
 

Vehicle Type Number of 
Vehicles Recorded Number of Axles Axle Spacing 

TRUCKS 
Alliant Trucks 26 4 ~ 

Arrowhead 
Trucks 14 2  

Chemical Gas 
Trucks 10 2  

Coca-Cola 
Trucks Type 1 7 2  

Coca-Cola 
Trucks Type 2 8 3 ~ 

Concrete Mixer 
Trucks 14 3 ~ 

Family Tree 
Trucks 14 2  

FedEx Trucks 44 2  
Gardening 

Trucks 20 2 ~ 

Green Garbage 
Trucks 19 3  

Red & Black 
Garbage Trucks 108 3  

Tan Garbage 
Trucks 22 3  

Krispy Kreme 
Trucks 86 2  

L & C Trucks 18 2  
Lift Trucks 7 2  

McLane Trucks 113 5 ~ 
Medium White 
Trucks Type 1 42 2 ~ 

Medium White 
Trucks Type 2 21 2 ~ 

Medium White 
Trucks Type 3 34 2 ~ 

Multifoods 
Trucks 36 5 ~ 

Pacific Waste 
Trucks 2 6 3 ~ 
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Pepsi Trucks 19 3  
Ryder Trucks 40 2  

Service Pick-up 
Trucks 55 2  

Service Vans 29 2  
Small White 

Trucks 97 2 ~ 

Sygma Trucks 69 5 ~ 
Sysco Trucks 

Type 1 35 3 ~ 

Sysco Trucks 
Type 2 25 4 ~ 

Tank Trucks 6 2  
Tortilla Trucks 49 2  

UPS Trucks 3 2  
US Trucks 

Type 1 17 3 ~ 

US Trucks 
Type 2 26 4 ~ 

Vistar/VSA 
Trucks 44 5 ~ 

Trucks, Type 
134 61 2  

Trucks, Type 
135 15 2  

Other Trucks 527 Varies  
BUSES 

UCSD Buses 
Type 2 1 2  

UCSD Buses 
Type 5 497 2  

UCSD Buses 
Type 6 1 2  

UCSD Buses 
Type 7 10 2  

UCSD Buses 
Type 8 100 2  

UCSD Buses 
Type 9 1215 2  

Other Buses 44 Varies  
LARGE PERSONAL VEHICLES 

Vans 742 2  
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SUVs 418 2  
Pick-up Trucks 441 2  

UCSD POLICE VEHICLES 
Police Cars 488 2  

Police SUVs 103 2  
SMALL PERSONAL VEHICLES 

Cars 350 2  
Wagons 13 2  

UNIQUE VEHICLES 
Forklifts 11 2  

Golf Carts 4 2  
Unique 5-Axle 

Trucks 2 5  

Fire Trucks 9 Varies  
Other Unique 

Vehicles 33 Varies  

 
 = Identical 

~ = Similar 
 = Different 
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