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Abstract

Ultraproducts of O-Minimal Structures

by

Alexander David Rennet

Doctor of Philosophy in Logic and the Methodology of Science

University of California, Berkeley

Professor Thomas Scanlon, Chair

There are three main parts to this thesis, all centred around ultraproducts of o-minimal
structures.

In the first part we investigate (for a fixed first-order language L) what we call the
L-theory of o-minimality. It is the theory To-min

L consisting of those L-sentences true in all
o-minimal L-structures. We find that when L expands LRCF by at least one new function or
relation symbol, To-min

L is not recursively axiomatizable. In particular, for any recursive list of
axioms Λ which is consistent with To-min

L , we find that there are locally o-minimal, definably
complete structures satisfying Λ which are not elementarily equivalent to an ultraproduct of
o-minimal structures. We call the latter sort of structures pseudo-o-minimal.

In the second part we investigate uniform finiteness and cell decomposition in the
pseudo-o-minimal setting. To do this, we introduce the notion of a pseudo-o-minimal struc-
ture tallying a discrete definable set. Investigating this notion, we answer some questions
of uniqueness and existence. Finally, we show that under certain assumptions about the
discrete definable sets that a given pseudo-o-minimal structure can tally, we have a ver-
sion of uniform finiteness, at least in the planar case. This is the first step towards a cell
decomposition theorem in this setting.

In the final section, we look into two classes of examples of ultraproducts of o-minimal
structures. For the first class, we note the o-minimality of a certain subset of these structures,
and show the non-o-minimality of another. In particular, we derive the o-minimality of a
new structure related to Rexp. The second class is relatively intractable, but we discuss its
relation to an important open problem in o-minimality.
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Introduction

This dissertation is in the area of o-minimality, a branch of model theory and mathematical
logic with ties to real analysis and real algebraic geometry. The research contained herein is
focused on certain weakenings of o-minimality; namely first-order properties which can be
said to hold in all o-minimal structures, such as local o-minimality and definable completeness
(see below, or Definitions 1.5.1 and 1.5.3).

O-minimality can be thought of as a generalization of the study of the geometry of the
semialgebraic sets.1 In model theory generally and especially in o-minimality, the objects
of primary consideration are the definable sets in a structure.2 From this point of view, the
semialgebraic sets are just the definable sets in one of the simplest o-minimal structures: the
real field. A structure R is o-minimal just if every definable set in R1 is a finite union of
points and intervals (as the semialgebraic sets in R1 are). Thus, the real field is an o-minimal
structure since the definable sets in R1 are just the zero- and positivity sets of polynomials
(i.e finite unions of points and intervals.)3 One of the most fundamental consequences of
o-minimality is that definable sets in any ambient dimension can be shown to have finitely
many (definably) connected components.4

Lou van den Dries states in the preface to his now classic [vdD98-a] that his aim
was “...to show that o-minimal structures provide an excellent framework for developing
tame topology, or topologie modérée, as outlined in Grothendieck’s prophetic ‘Esquisse d’un
Programme’ of 1984.” Since o-minimal structures seem to provide such a good framework
for tame topology, it is natural to wonder what o-minimal structures exist. Thus, one of
the major research areas in o-minimality is to classify various structures as either o-minimal
or something weaker, thereby producing further tame or somewhat tame geometries. For

1Recall that the semialgebraic sets, defined in analogy with the algebraic sets are the class of sets defined
by zero- and positivity-sets of systems of polynomials, closed under projection, complement, closure, union
and intersection.

2A structure is a set together with language, consisting of a family of operations (e.g. addition, multipli-
cation etc.) and relations (e.g. ordering, sharing an edge in a graph, an equivalence relation). In a structure,
the definable sets are those sets that can be picked out by statements built up from logical symbols (like ‘∧’,
‘∨’, ‘∃’, and variables like ‘x, y, z, ...’) and the functions and relations in the language.

3This is by Tarski’s Theorem (elimination of quantifiers for the real field), which is also known as the
Seidenberg-Tarski Theorem (that the class of semi-algebraic sets is closed under projection).

4Often in model theory, since the definable sets are our objects of investigation, a condition such as
connectedness, needs to be weakened to involve only definable sets. In this instance, a set A is definably
connected if there are no two definable disjoint open sets whose union contains A.
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instance, Wilkie [Wi99] showed that the structure of the real field together with the real
exponential function is o-minimal, and thus that the class of exponential varieties (those
constructed from zero- and positivity-sets of exponential polynomials5), share the same sorts
of tameness results which hold for semialgebraic sets. As an aside, it is interesting to note
that the decidability6 of this structure was shown in [MW95] to be equivalent to a (weakened)
version of the deep and as-of-now intractible number-theoretic conjecture of Schanuel.7

In this thesis, our primary object of consideration will be the class Ko-min
L

of all o-
minimal structures (in a fixed language L). In particular, we will be concerned with the set
of (first-order) statements that are true of all structures in Ko-min

L
; this set is called the theory

of o-minimality (for that language), and we denote it T o-min
L

. There are models of To-min
L

which are not o-minimal, so the property of being a model of To-min
L is indeed a weakening

of o-minimality. Understanding the theory To-min
L and what it says about its models will be

our specific focus. In particular, we will investigate the axiomatizability of To-min
L .8

In [Ax68], Ax proved that the theory of finite fields, consisting of all those sentences
in the language of fields which are true in all finite fields, is recursively axiomatizable. He
showed first that the infinite fields which are models of this theory, called pseudofinite fields,
are precisely those fields which are perfect, pseudoalgebraically closed and have an algebraic
extension of each degree. And second, he showed that these properties are all first-order
definable by recursive axiom schemas.

Another positive result along the same lines comes from pseudofinite linear orderings :
the theory of finite orderings is axiomatized by the statements that the ordering is discrete
and has a first and last element (see [Va01]). A linear ordering is elementarily equivalent to
an ultraproduct of finite linear orderings if and only if it is finite or has order type ω+L⋅Z+ω∗
for some linear order L.

All three of these cases fall into the following general framework: fix a language L, let
K be a class of L-structures and let TK be the theory consisting of those L-sentences which
are true in all models M ∈ K.

In recent work by Fornasiero [Fo10] and Schoutens [Sch12], they ask whether or not
certain first-order axioms are enough to axiomatize the theory of o-minimality (again, in
a fixed language). Any such axioms, necessarily, will have to weaken the statement of
o-minimality (since they have to be true in all o-minimal structures). Many weakenings
of o-minimality, such as weak o-minimality ([MMS00]), quasi-o-minimality ([BPW00]), d-

5An exponential polynomial is a function P (X) of the form p(X,eX) for p an ordinary polynomial, and
X a tuple of variables X1, ...,Xn.

6A structure is decidable, if there is an algorithm which can determine for any statement in the language
of that structure, whether it is true of that structure or not.

7Schanuel’s Conjecture states that given any n complex numbers z1, ..., zn, which are linearly independent
over Q, Q(z1, ..., zn, e

z1 , ..., ezn) has transcendence degree at least n over Q.
8A theory is axiomatized by a set of statements if every true statement of the theory follows from one

of the axioms. An axiomatization is generally only helpful if it can be listed in some recursive fashion.
For example, the set of all true statements in a theory, i.e. the whole theory itself, is an axiomatization
technically, but generally there would not be a recursive way to list them. Thus, we restrict our search to
recursive axiomatizations.
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minimality ([Mi05]), o-minimal open core ([DMS09]) etc., have been studied in the literature
(for more, see [vdD98-b, TV09, Mi01, Fo10]). However, since we are trying to write down
an axiomatization, we are only interested in the first-order weakenings, and those which are
true in all o-minimal structures.

Two weakenings in particular are of this form and are thus of interest to us: local
o-minimality (that for every definable subset of the line, and every point, there is a neigh-
bourhood of that point where the definable set is a finite union of points and intervals)9) and
definable completeness (that every bounded definable subset of the line has a supremum).

Structures satisfying both of these properties have particularly nice definable sets: every
definable A ⊆ R1 has a discrete boundary which first, has no accumulation points in the
topology on R, and second, is either finite, or has order-type ω + L ⋅ Z + ω∗ for some linear
order L. That LOM and DC are expressible by first-order axiom schemas is an easy lemma,
and it is clear that they are true in all o-minimal structures. Because of these two facts,
these properties are a starting point to look for a recursive axiomatization of o-minimality.

With the successful examples of axiomatizations in other areas of model theory, like
the theories of finite orderings and finite fields, in our mind, it would not be unreasonable
to think that LOM+DC or something extending LOM+DC slightly might be enough to
axiomatize To-min. The fact that there are no LOM+DC structures in the literature which
are not ultraproducts of o-minimal structures (or actually o-minimal) also gives us good
reason to believe or intuitions for believing that LOM+DC might be sufficient.

One of the main results of this dissertation is the discovery that the project of ax-
iomatizing To-min is actually impossible, at least when the language extends the language
of ordered fields by at least one new function or relation symbol. In fact, any reasonable
(i.e. recursive) list of axioms in such a language will be insufficient to axiomatize the theory
T o-min (see Theorem 2.4.1.)

A classic model theoretic theorem tells us that a structure M satisfies T o-min if and
only if M is (elementarily equivalent10 to) an ultraproduct of a set (Mi)i∈I of o-minimal
structures. An ultraproduct of an indexed set (Mi)i∈I of structures is a new structure M
which in some sense ‘averages’ the index structures: M has a (first-order) property P if
and only if ‘most’ index models Mi have P . Thus, M will have only those properties that
there is a ‘consensus’ among the Mi about. Using this model-theoretic theorem, this result
implies that ultraproducts of o-minimal expansions of fields are irreducibly more complicated
(from the first-order perspective) than locally o-minimal (LOM), definably complete (DC)
expansions of fields. In particular, there are LOM+DC expansions of fields which are not

9If we strenthen this by allowing the point to possibly be ±∞, we get a property that Schoutens calls type
completeness in [Sch12]. Local o-minimality, though prima facie weaker, is only weaker if the structure in
question does not have a multiplicative group structure, which will not be the case for us, as we will always
assume we have a field structure. Nonetheless, it seems to be worth including in the general definition to keep
local o-minimality more in line with o-minimality, and since this stronger version is true in all o-minimal
structures. Thus, we will define it in this stronger fashion later.

10A structure is elementarily equivalent to another if they both satisfy the exact same first-order state-
ments.
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ultraproducts, and for any recursive extension Λ of the axioms LOM and DC, there will be
structures satisfying Λ, but which are also not ultraproducts.

This result points us in the direction of studying the models of To-min themselves, instead
of trying to reduce them down to certain simple properties they have and studying what
is true in those structures.11 In particular, after this, we move on to study ultra-o-minimal
and pseudo-o-minimal structures (our names for ultraproducts of o-minimal structures, and
general models of To-min, respectively).

In this vein, the next goal is to prove a weakened version of an o-minimal tameness
property: Uniform Finiteness. Uniform finiteness is an important step along the way to
proving further tameness results, and in particular, the higher dimensional generalization of
the property of o-minimality, the Cell Decomposition Theorem. The latter gives us a way
to decompose definable sets in higher dimensions - not into intervals and points, as in one
ambient dimension, but to higher dimensional analogues, called cells. These two pieces of
‘machinery’ have been used in one guise or another to prove many of the tameness properties
that o-minimal structres enjoy.

Uniform Finiteness states that a definable set in ambient dimension m + 1 which has
finite fibres has a uniform bound N on the size of all of its fibres. Now, since definable
discrete sets in pseudo-o-minimal structures can be infinite, there is certainly no hope that
a set with discrete fibres will have a finite bound. Thus, any analogue we hope to prove will
have to generalize ‘finite’ in some way. To do this, we introduce a notion of ‘counting’, or
as we call it ‘tallying’12 for discrete (possibly infinite) definable sets. The idea is to use a
naturally occuring object, called an integer part, which all real closed fields have, to provide
a ‘number system’ to use to ‘tally’ the discrete definable sets. The intuition here is that
what we are missing from the o-minimal context is a way to tell two discrete sets apart
based on something like cardinality. After defining our notion of the tally of a discrete
set, we investigate some of their general properties, and in particular, show some forms of
uniqueness which they enjoy, and which make our notion more intuitive. Finally, under
the assumption that every discrete definable set can be tallied, and a further assumption
about tallies, we are able to conclude a discrete analogue of Uniform Finiteness, at least in
2 ambient dimensions: if a definable set in two ambient dimensions has discrete fibres, then
there is a single ‘number’ (in an integer part) which bounds the tallies of all the fibres of the
set. We note here that proving a higher dimensional version would go hand-in-hand with
proving a full blown Cell Decomposition-like theorem, which we save for future work.

At this point in the thesis we will have first looked at LOM+DC structures, the weakest
we will consider, and we showed that they were in fact quite weak - weaker than pseudo-
o-minimal structures. Then we proved a weakened tameness result for (some) pseudo-o-
minimal structures. Following this, we look at ultra-o-minimal structures.

Ultra-o-minimal structures have all their tameness on display, in some sense: anything
that is true in o-minimal structures will have a fairly immediate ultraproduct version: for

11We are not suggesting that the study of LOM+DC structures is not interesting in itself, of course.
12This is done to avoid our terminology clashing with ‘countable’ and ‘uncountable’.
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instance, the notion of tallies for pseudo-o-minimal structures, itself an analogue of counting
finite sets, has a canonical, simpler version in ultraproducts: there is a canonical integer
part, the hypernatural numbers, consisting of ultraproducts of natural numbers, which we
can use to count any discrete set: since any discrete definable set in an ultra-o-minimal
structure is just an ultraproduct of finite sets, and since each such set has a finite, natural
number cardinality, the ultraproduct of these cardinalities will be the cardinality of the given
discrete set.13 Thus, a uniform bound on the size of the discrete fibres in a family of definable
discrete sets is just the ultraproduct of the uniform bounds obtained in the index o-minimal
models. Similarly, we can say that a cell decomposition in an ultra-o-minimal structure is
just an ultraproduct of individual cell decompositions in the index models.14

Thus, instead of spending time recording all of the properties that hold as an ultraprod-
uct of properties that hold in the index models, we instead focus on investigating examples of
ultra-o-minimal structures. Since ultra-o-minimal structures can either be o-minimal or fail
to be o-minimal, the project we set out to contribute to is to determine which ultraproducts
are o-minimal and which are not.

We consider two families of examples: one given by ultraproducts of polynomials, which
we call pseudopolynomials, and the other given by ultraproducts of iterates of functions
(given a hypernatural number N there is a natural way to define the ‘N th’ iterate of a given
function). In the second case, we run into roadblocks quite early, as these functions end up
being closely related to algebraic dynamics; an area which is quite new and quite open at
the moment. Thus, even relatively simple examples involving only polynomials or rational
functions cause trouble.

An example in this latter family which has a (much) longer-term target on it is the case
of an infinite iterate of the exponential function. The exponential function is a key function
in the study of o-minimality; the real field extended by it is o-minimal (and hence there are
many other such examples), and in particular, there is a stark dichotomy for the growth of
functions definable in o-minimal structures: in a given structure, either they are all eventually
bounded by some power function, or else the structure defines the exponential function (and
hence also the logarithm, and many other functions.) Showing that an infinite iterate of the
exponential function was o-minimal would answer a long-standing open question from the
time that the above growth dichotomy was first proved: are there any o-minimal structures
which define a function which eventually bounds any (finite!) iterate of the exponential
function (sometimes referred to as a superexponential function)? We will note that this is a
very difficult problem to approach.

Coming back to the first family of examples, ultraproducts of polynomials, we may
think on first glace that they are very innocuous. The first intuition one might have is
that these ought to all be o-minimal. However it will end up that there are some easy and
quick non-o-minimal examples; and that these are not just side cases: if f is any function

13This observation that ultra-o-minimal structures have this property was the original motivation to try
to generalize it to pseudo-o-minimal structures.

14There is actually some subtlety here, but we do not explore this in this dissertation.
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which is non-o-minimal, and we take an ultraproduct of polynomials that approximates f
in a certain way, then the resulting pseudopolynomial will not be o-minimal. In addition
to proving this negative result, one of the most important positive examples we are able to
derive is that of the ultraproduct of the Taylor polynomials for the exponential function.
The resulting pseudopolynomial is (up to an infinitesimal) equal to exp on the non-infinite
elements of our ultraproduct, but eventually the two split off from each other. This is an
example that has not appeared in the literature. There is a certain dearth of examples of
interesting ultra- and pseudo-o-minimal structures, as we mentioned earlier. This structure
seems to indicate that there are a number of interesting examples that should be investigated.

In the first Chapter, we introduce the necessary model theory, including ultraproducts,
o-minimality, as well as LOM, DC, pseudo-o-minimality, ultra-o-minimality, and some of the
basic relationships that these notions share.

Most of Chapter 2 is spent setting up and proving the first main fact of this thesis:

Theorem 1 (Theorem 2.4.1): Given any language L extending the language RCF by at least
one new function or relation symbol and any recursively enumerable list Λ of L-sentences,
either To-min ∪RCF ∪Λ is inconsistent or there is some model M⊧ T o-min ∪RCF ∪Λ which
is not pseudo-o-minimal.

In Chapter 3, some time is spent discussing various properties that definable ‘counting’
functions might have. In particular, after two versions of this concept are discarded, a third,
the notion of a tally is then defined. Some questions about tallies are answered, before
proving a Uniform Pseudofiniteness result:

Theorem 2 (Theorem 3.5.1): Let R be pseudo-o-minimal, and N be a fixed nn-part for R.
If X ⊂ R2 is definable and has that for all r ∈ R the fibre Xr of X above r is discrete, then
assuming (Tally) and (Unbounded Tally) (see Section 3.5) we can find α ∈ N such that
for every r, the fibre Xr has tally ≤ α, and some fibre has tally equal to α. Futhermore, we
can determine, for any pair of elements z, z′ ∈X, whether they have the same tally according
to the tally of their respective fibres of X.

The final section is spent dealing with a problem that tallies have, and a new, weaker
concept is introduced: approximate tallies. I use these to prove a slightly weaker Uniform
Pseudofiniteness result than the previous one, which has the advantage of assuming less
about our structure.

In the final chapter, two families of ultra-o-minimal structures are considered: what we
call pseudopolynomials, and pseudodynamical functions. We are able to prove that some
examples of the first kind, and in particular, all those which are Pfaffian (see Definition
4.2.3) over an ultra-o-minimal structure are in fact o-minimal. This includes the function
ẽxp (defined below). Along the way, we are also able to rule out a whole family of examples
from being o-minimal:

Theorem 3 (Lemma 4.2.2, Corollary 4.2.1 and Theorem 4.2.1):

ix



● If R is an ultraproduct of o-minimal expansions of a real closed field, then its expansion
by a family of Pfaffian functions is also o-minimal.

● (R, ẽxp) is o-minimal, where ẽxp = ∏n∈N Tn/U and Tn ∼ exp is the nth Taylor polynomial
for exp.

● If f is a function such that (R, f) is not o-minimal, and if f̃ is some pseudopolynomial
approximation of f (see Definition 4.2.2), then (R, f̃) is not o-minimal.

Afterwards we dicuss the problems we ran into while trying to study functions of the
second kind, and point to directions for future research.
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Chapter 1

The Basics
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1.1 Model Theoretic Preliminaries

Some standard references for this material, and model theory in general are [Ma02], [Hod98]
and [Poi00].

Definition 1.1.1:

● The complete L-theory ofM is the set Th(M) ∶= {ϕ ∣ M ⊧ ϕ}, the set of sentences
true in M.

● If K is a class of L-structures, then we define

TK = ⋂
M∈K

Th(M)

That is, TK is the set consisting of the sentences true in all the structures in K.

● If M is an L-structure, and ϕ(x; b) is an L formula, with b ∈ Mn, then the set

ϕ(M; b) = {a ∈ Mm ∣ M ⊧ ϕ(a; b)}

is the solution set of ϕ in M, or the set defined by ϕ. We will often omit the
(implicit) parameters and just write ϕ(M).

● We say that a subset X ⊆Mm is definable with parameters b ∈ M if there is some
formula ϕ such that X = ϕ(M; b). When b is empty, we will say that X is ∅-definable
or 0-definable, and when ignoring the issue of parameters, we will simply say that X
is definable in M.

● Def(M) is the class of all definable sets in M (of any arity), and we let Defn(M) be
the class of definable sets in Mn.

⋅ Later, we will see that there is a notion of dimension on the sets in Def(M) for
the particular structures M that we will consider. We will be interested in the
0-dimensional sets definable in M specifically, and we will write Def0(M) for the
class of 0-dimensional definable sets in M (of any arity). This notation does not
clash with the above since we do not need a notation for the definable subsets of
M0.

● IfM is an L-structure and X ⊆Mn is a non-empty subset, then we define the following
language L′, and the L′-structure Xind: L′ consists of a single relation symbol Rϕ of
arity k for each formula ϕ(x) in k variables, where k =m ⋅ n for some m; then, we let
Xind have universe X, together with the interpretations RXind

ϕ = Xm ∩ ϕ(M). We call
Xind the induced structure on the definable set X.
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1.2 Ultraproducts

Definition 1.2.1: Let I be an infinite set. A filter F on I is a set of subsets of I, i.e
F ⊆ P(I), such that:

● if X ∈ F and Y ⊃X, then Y ∈ F .

● if X,Y ∈ F , then X ∩ Y ∈ F .

● I ∈ F ,∅ ∉ F .

F is an ultrafilter if in addition, F satisfies:

● for all X ⊆ I, exactly one of X or I −X is in F .

A filter is in a rough sense, a notion of when a subset of I is “most” of I. Thought of in
this slightly vague way, the axioms state about elements of a filter F , that “if X is most of
I, and Y contains X, then Y is also most of I”, that “if X and Y are both most of I, then
they overlap on a set that is also most of I”, that “the empty set is not most of I”, and that
“I itself is most of I”. An ultrafilter is an extension of this notion: it says furthermore that
“if X is not most of I, then its complement is”. (Note that the filter axiom for intersections
implies the converse: “if X is most of I, then the complement is not”.)

A filter is principal if it contains some finite set, or equivalently, if it contains a
singleton. We will generally be assuming in what follows that our ultrafilters are non-
principal.1

From now on, we will write ultrafilters using U ,V ,W, ....
Importantly, any filter F can be extended, by Zorn’s Lemma, to an ultrafilter U . In a

sense, extending a filter to an ultrafilter is a matter of, for every X, deciding whether X or
its complement should be “most of I, according to U”, in a way consistent with the choices
already made. Since, if F is not already an ultrafilter, there will be many consistent ways
of doing this, there will be many different ultrafilters extending a given filter F .

One of the most important filters is the Frechet filter consisting of all the cofinite sub-
sets of I. Every ultrafilter U on I extends this filter (that is, every ultrafilter will contain all
of the cofinite subsets of I).

Now, given an ultrafilter U on a set I, we can define ultraproducts :

Definition 1.2.2: Suppose that (Mi)i∈I is an I-indexed family of L-structures. Let MI be
the product ∏i∈IMi consisting of all the I-indexed sequences of elements (mi)i∈I from the
Mi. And then define ∏i∈IMi/U = MI/U , the ultraproduct of the Mi modulo U to be

1Later on, when we consider ultraproducts of o-minimal structures, we do not mean omit the principal
ultraproducts - they will just be trivial examples, in that they will always just be some particular o-minimal
structure.
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the L-structure with universe the quotient ofMI by the following equivalence relation, where
x, y ∈ MI :

x ∼U y⇔ {i ∈ I ∣ xi = yi} ∈ U

and where for each function symbol f , relation symbol R and constant symbol c in L, we
define

fM
I/U([x]U) to be [(fMi(xi))i∈I]U

RM
I/U([x]U) ⇔ {i ∈ I ∣ Mi ⊧ R(xi)} ∈ U

and
cM

I/U = [(cMi)i∈I]U

We say that an ultraproduct is an ultrapower, and we write MU , if Mi = N for all i ∈ I,
for some fixed structure N .

It is straightforward to check that these are well defined and so give us an L-structure.

The most important theorem about ultraproducts for us (though there will be other
important theorems to come later) is Los’ Theorem. It says, essentially, that truth in an
ultraproduct is determined by “consensus” among the index models.

Theorem 1.2.1 (Los’ Theorem): If (Mi)i∈I is an I-indexed family of L-structures for I
some infinite set, and U is an ultrafilter on I, then for any L-sentence ϕ,

∏
i∈I

Mi/U ⊧ ϕ ⇔ {i ∈ I ∣ Mi ⊧ ϕ} ∈ U

In particular, an ultrapower MU is elementarily equivalent to M.

To fill out the earlier analogy, Los’ Theorem tells us that when U -most index models
Mi agree on a sentence ϕ, then that forces the ultraproduct to believe that ϕ is true as well.
When {i ∈ I ∣ Mi ⊧ ϕ} ∈ U , we will say “U -most Mi model ϕ”.

1.3 Some Topological Notation and a Lemma

Let R be an expansion of a dense linear ordering (without endpoints).

We denote R∪{±∞} by R±∞, the positive elements of R by R>0, and the non-negative
elements by R≥0.

For the rest of the section, let X ⊆ Rn = Rm × Rk, Y ⊆ R be definable, x ∈ Rn, y ∈ R,
z ∈ Rk and r ∈ R≥0 ∪ {+∞}.

Notation:

4



● The symbol (a, b) means the open interval between a and b, while the symbols [a, b] and
⟨a, b⟩ mean the closed interval between a and b, and the point with coordinates a and b
in R2, respectively.

● In general, we denote the set of elements of Y less than y by:

Y<y = {z ∈ Y ∣ z < y} = Y ∩ (−∞, y)

And similarly for Y≤y, Y>y and Y≥y.

● We say that Br(x) is the (open) box of radius r, centred at x:

Br(x) = (x1 − r, x1 + r) × ... × (xn − r, xn + r) ⊆ R
n

● We write Xx to denote the fibre of X above x ∈ Rm:

Xx = {y ∈ Rm ∣ ⟨x, y⟩ ∈X}

And we write X[z] for the set X ∩ ({z} ×Rk).2

● The interior, closure and complement of X in R, written int(X), cl(X) and Xc re-
spectively, are the ordinary topological interior, closure and complement of X, and in
particular can be defined by

int(X) = {x ∈ Rn ∣ ∃r ∈ R>0 Br(x) ⊆X}

cl(X) = {x ∈ Rn ∣ ∀r ∈ R>0 Br(x) ∩X ≠ ∅}

and Xc = {x ∈ Rn ∣ x ∉X}

● The boundary of X, bdR(X), is the set clR(X) − intR(X), and the frontier of a set
X, ∂RX is clR(X) −X.

● We write acc(X) for the set of accumulation points of X in R. That is,

acc(X) = {x ∈ Rn ∣ ∀r ∈ R>0 ∃y ≠ x ∈ R
n y ∈ Br(x) ∩X}

Thus, we say that a point is an accumulation point of X if x ∈ acc(X).

Note first that since X and Y are definable, all of the above sets are definable as well
(possibly with a parameter r).

We say that a set X is discrete if for every x ∈ X, there is an r ∈ R>0 such that
Br(x) ∩ X = {x}; we say that X is bounded if there is an r ∈ R>0 and x ∈ Rn such that
X ⊆ Br(x); and finally, we say that X is closed if X = cl(X). Furthermore, if x ∈ acc(X),

2Sometimes in the literature, these two notations are reversed.
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then for any open set U containing x, it must be the case that U ∩X is infinite (otherwise,
since R is a dense ordering, we could shrink U to avoid the finitely many points away from x.)

It is trivial to see that a closed set contains all of its accumulation points, and that
the closure of a set is just the union of the set and the set’s accumulation points. That is,
cl(X) =X ∪ acc(X), for all X, and that a set X is closed just if X ∪ acc(X) =X.

First a lemma relating some of definitions from the previous section:

Lemma 1.3.1: If X is discrete and closed, then acc(X) is empty.

Proof. Suppose for contradiction that x ∈ acc(X). Then for any ball of radius r > 0 centered
at x, that ball intersects X −{x}. This would contradict the discreteness of X if x ∈X. But
x ∈X since X is closed; contradiction. ∎

One should note that these definitions are really just specializations of the ordinary
topological notions of closure, complement, interior, etc. to the particular case of the product
topology of the interval topology on a (dense) linearly ordered topological space; namely that
of R.

In particular, we should note here that an interval is not just any convex set in R: it
is specifically a non-empty set of the form {x ∈ R ∣ a ⊲ x ⊲ b} with ‘⊲’ standing for either ‘<’
or ‘≤’, and a and b elements of R±∞. In particular, a set like {x ∈ Q ∣ x2 < 2 ∧ x > 0} would
not be an ‘interval’ in Q in this sense. Note that intervals are thus clearly definable sets.
Furthermore, note that an interval could be all of R, or even just single point {x} (in the
latter case, if a = b ≠ ±∞).

Definition 1.3.1:

● We say that X is connected, if there is no pair of open sets U and V such that
U ∩V = ∅ and X ⊆ U ∪V . However, we will almost never use this ordinary topological
notion; instead, we will use the following definable analogue:

● We say that X is definably connected if there is no pair of definable open sets U
and V which disconnect X. We say that X ′ ⊆ X is a definably connected component
of X if it is a maximal subset of X which is definably connected.

● If we say that a set is connected, we implicitly mean definably connected.

Finally, we will mention projections and definable functions:

Notation:

● Let f ∶ Rn →Rm. Then we write Γ(f) for the graph of f . That is, for the subset:

Γ(f) = {⟨x, y⟩ ∈ Rn ×Rm ∣ f(x) = y}.

● We say that a function f is definable in R just when Γ(f) is definable.
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● We will use πm+km or πnm when n =m+k to denote the projection map Rm+k →Rm onto
the first m coordinates. Usually we will drop the superscript and just write πm or both
the super- and subscripts and just write π if these are clear from context.

The projection maps are all definable:

Γ(πm+km ) = {⟨x, y, z⟩ ∣ x, z ∈ Rm, y ∈ Rk ∧ x = z}

This points out that there is a correspondence between projections and the existential
quantifier, showing that the result of applying it to any definable set X will be definable:

πm+km (X) = {x ∈ Rm ∣ ∃y ∈ Rk ⟨x, y⟩ ∈X}

Though in general, if X is definable, and f is a definable map, then the image f(X) is clearly
definable already:

f(X) = {y ∈ Rm ∣ ∃x ∈ Rn f(x) = y}

1.4 O-Minimality

We include in this section summaries of and defintions of various pieces from the general
theory of o-minimality that will either be used, or touched on later in this thesis. The book
[vdD98-a] is classic, and is one of many good references for the general theory of o-minimality;
we will cite it frequently.

Definition 1.4.1: R is o-minimal if every one-variable definable set is a finite union of
intervals.3

The definition of o-minimality is equivalent to the assertion that one-variable definable
sets have finitely many definably connected components. And in fact, the Cell Decomposition
Theorem for o-minimal structures (see below) implies that a definable set in any number
of variables is just a union of finitely many simple definable sets called cells. The easy fact
that cells are definably connected implies the stronger statement that all definable sets have
finitely many definably connected components.

Definition 1.4.2 ([vdD98-a], Definitions 4.2.3,10): Let ⟨i1, .., im⟩ ∈ 2m. An ⟨i1, ..., im⟩-cell
is a definable subset of Rm obtained by induction on m as follows:

(i) A ⟨0⟩-cell is a singleton {x} (i.e a point), and a (⟨1⟩-cell is an open interval in R1.

(ii) Now suppose that the ⟨i1, ..., im−1⟩-cells have already been defined.

⋅ Then an ⟨i1, ..., im−1,0⟩-cell is the graph of a continuous function on any ⟨i1, ..., im−1⟩-
cell X,

3This compact statement assumes our provisio that singletons are closed intervals of radius 0. If the
reader is unhappy with this, then the statement becomes “... is a finite union of points and open intervals.”
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⋅ and an ⟨i1, ..., im−1,1⟩-cell is an ‘interval’ between two continous functions f and g on
an ⟨i1, ..., im−1⟩-cell X, with f < g on X, i.e. a set of the form

(f, g) ∶= {⟨x, y⟩ ∈ R(m−1)+1 ∣ x ∈X ∧ f(x) < y < g(x)}.

We also define a decomposition D of Rm: it is a partition of Rm into finitely many cells
satisfying a projection hypothesis. It is defined by induction on m as well:

(i) a decomposition D of R1 is a partititon of R1 into points (singletons, really) and in-
tervals of the following form (where a1 < ... < ak):

{(−∞, a1),{a1}, (a1, a2),{a2}, ...,{ak}, (ak,∞)}

(ii) a decomposition of Rm is a finite partition of Rm into cells C such that the set of
projections onto the first m−1 coordinates {π(C) ∣ C ∈ D} is a decomposition of Rm−1.

We also say that a decomposition D of Rm is compatible with a definable set A if
every element of D is either contained in A, or disjoint from A.

We commented before this definition that cells were always definably connected. This
is an easy fact; but what else is true is that every cell (in any given fixed ambient dimension
m) is homeomorphic to an open cell in Rk for some 1 ≤ k ≤ m.4 In particular, every open
cell is homeomorphic to an open box in its ambient space. See [vdD98-a] for more details.

Theorem 1.4.1 (Cell Decomposition ([vdD98-a], Theorem 3.2.11)):

(I)n Given any definable sets A1, ...,Ak ⊆ Rm, there is a decomposition of Rm compatible
with each of A1, ...,Ak.

(II)n For each definable function f ∶ A → R, A ⊆ Rm, there is a decomposition D of Rm

such that the restriction f ↾ B ∶ B → R is continuous, for each (cell) B ∈ D with
B ⊆ A.

The statement (I)1 is just a restatement of o-minimality (justifying calling this theorem
a generalization to higher dimensions of the definition of o-minimality), and the statement
(II)1 is a consequence of the following theorem:

Theorem 1.4.2 (Monotonicity Theorem): Let f ∶ I ⊆ R → R be definable for some interval
I. Then there is a decomposition of R compatible with I such that on each subinterval where
f is defined, it is continous, and either constant or strictly monotone.

Other important results that we will use or reference are collected in the following
theorem. We note that many of them are direct or nearly direct consequences of the Cell
Decomposition theorem.

4Naming our set X, and letting X be an ⟨i1, ..., im⟩-cell, we just project onto the set of coordinates j
such that ij = 1.
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Theorem 1.4.3:

1. Uniform Finiteness ([vdD98-a], Theorem 3.2.13): Every definable set X ⊆ Rm+1 whose
fibres Xx over elements x ∈ Rm are finite, have a uniform finite bound on their cardi-
nality. That is, there is a natural number N such that no fibre of X has cardinality
greater than N .

2. “Strong” O-Minimality: If R is o-minimal, then every model of Th(R) is as well.5

3. Definability of Skolem Functions ([vdD98-a], Proposition 6.1.2.i): Assuming that R
expands an ordered group, if S ⊆ Rm+n is definable and π is the projection onto Rm,
then there is a definable map f ∶ π(S) → Rn such that Γ(f) ⊆ S.6

4. Curve Selection ([vdD98-a], Corollary 6.1.5): Assuming that R expands an ordered
group, we have that if X is definable, and a ∈ cl(X) − X, then there is a definable
continuous injective map, γ ∶ (0, t) →X, for some t ∈ R>0 such that limt→0 γ(t) = a.

5. Dimension ([vdD98-a], Chapter 4): We can define a dimension on the cells in a natural
way: if X is an ⟨i1, . . . , in⟩ cell, then dim(X) ∶= ∑

n
j=1 ij. Using this we can then define

the dimension of a definable set X to be the largest dimension of a cell contained in
it.7

6. ([vdD98-a], Propositions 1.4.2 and 1.4.6): If an o-minimal structure R expands an
ordered group, then it expands an ordered divisble abelian group; if R expands an ordered
ring, then it expands a real closed field.

7. Growth Dichotomy ([Mi94]): If R expands a real closed field, then either every R-
definable one-variable function f is eventually bounded by some power function x↦ xN ,
or R defines the exponential function. Structures of the former type are called power-
bounded.8,9

1.5 Introduction to LOM, DC, and

Pseudo-O-Minimality

In what follows, R is still an expansion of a dense linear ordering (without endpoints).

5This is an almost direct consequence of uniform finiteness and definability of Skolem functions (below).
6This is just a geometrical equivalent of the ordinary statement of definable Skolem functions.
7This, as it is classically developed, relies on cell decomposition. In weakenings of o-minimal structures,

there is often still a dimension available to us, though sometimes we have to just through more hoops to get
it.

8If the universe of R is the reals, then a power function just means an ordinary polynomial. In general,
if R has infinite elements, then we need to take into account infinite N such that xN is definable. (The set
of such N is called the field of exponents of R in the literature.)

9Also note that there is a version of this for expansions of groups: see [MS98].
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There are many ways in which we could weaken o-minimality. However, a fairly natural
weakening, and a starting point for us is to “localize” o-minimality as follows (note that this
notion was first introduced, or at least given this name, by Toffalori and Vozoris in [TV09]):

Definition 1.5.1: A linearly ordered structure R = (R,<, ...) is locally o-minimal (LOM)
if for every one-variable definable set, X, and every element x ∈ R, there is some interval
(a, b) ∋ x such that X ∩ (a, b) is a finite union of intervals.

Local o-minimality on its own, unlike o-minimality, is not strong enough to rule out
certain ‘bad’ behaviour:

Example 1.5.1: Consider (R,+,<, sin,0). In [MMS00], it is shown that this is locally o-
minimal. Note that this structure is not o-minimal, since it defines an infinite discrete set

{z ∈ R ∣ sin(z) = 0}

However, a locally o-minimal field cannot define an unbounded subset of the line, such
as the above.

Lemma 1.5.1: Suppose that R is an expansion of a locally o-minimal ordered field. Then
no unbounded discrete subset of R is definable.

Proof. Suppose that Z is a non-empty, definable, unbounded discrete set. Then for any
c ∈ R, we have that Z>c has infinitely many connected components (each given by a point of
Z). Then because we have the field structure, we can define the new set 1/Z = {1/z ∣ z ∈ Z≠0}.
Since Z was unbounded, we have that for each interval (a, b) containing 0, (a, b)∩1/Z is not
a finite union of points and intervals. But this contradicts local o-minimality. ∎

Following Schoutens, we will from now on take local o-minimality to be the stronger
statement where we have “... x ∈ R±∞ ...”. This modification rules out definable discrete
sets which are unbounded. As we just noted, having or not having this strengthening is
inconsequential if we are working in an expansion of an ordered field, but we believe that it
was an oversight not to include this strenthening in the original statement:10 in particular,
the stronger version, as we will see, is a first-order consequence of o-minimality in any
language.

Now, the non-existence of unbounded definable discrete sets draws our attention also
to the potential definability of definable discrete sets with no greatest element (this could
either be the result of an accumulation point, or a cut in the ordering, not of course, of
unboundedness). The following weakening of o-minimality potentially allows such sets:

Definition 1.5.2: Let R be an expansion of a dense ordered structure with no endpoints.
We say that R is weakly o-minimal if every definable set X ⊆ R is a finite union of points
and convex sets.11

10Perhaps the weaker version should have been given a different name.
11A set X is convex, just if for all x, z ∈X, if y ∈ R satisfies x < y < z, then y ∈X.
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There are weakly o-minimal structures which are not o-minimal, and there are locally
o-minimal fields which are weakly o-minimal, but not o-minimal. (See [TV09] for examples.)
Such structures cannot have an unbounded discrete set, but they can have discrete sets
that have no greatest element. Every weakly o-minimal structure satisfies LOM, by [TV09],
Proposition 2.2:

Lemma 1.5.2: Every weakly o-minimal structure is locally o-minimal.

Thus, a second property that we might consider in order to rule out these cousins of
unbounded discrete sets - discrete sets that are contained in convex definable sets which are
not intervals - and hence rule out weakly o-minimal structures, is the following:

Definition 1.5.3: R is definably complete (DC) if for every non-empty definable set
X ⊆ R, if X is bounded, then sup(X) and inf(X) exist in R (and are definable).

Lemma 1.5.3: If R is definably complete and weakly o-minimal, then R is o-minimal.

Proof. By weak o-minimality, every one variable definable set is a finite union of points and
convex sets, but every convex definable set in R, by DC, has a supremum in R. Thus every
convex definable set in R is an interval. ∎

So, DC rules out certain sorts of sets, but like LOM, DC is not alone enough to rule
out certain kinds of bad behaviour, even with the field structure:

Example 1.5.2: Consider an expansion of a real closed field R which satisfies DC. Now
add a predicate to R for a dense substructure Q of R. Then (R,Q) satisfies DC, but of
course, is not locally o-minimal.12

As we mentioned in the previous section, pair of classic results on o-minimal structures
is that if an o-minimal structure expands an ordered group, then it is an ordered divisible
abelian group (i.e a Q-vector space), and if it expands an ordered ring, then it is an expansion
of a real closed field. Similarly, LOM+DC rings are real closed, and this will focus our
attention on LOM+DC expansions of real closed fields:

Lemma 1.5.4: If R is LOM+DC and expands an ordered ring, then it is real closed.

Proof. This follows from Proposition 2.5 in [Mi01]. ∎

The combination of LOM, DC (LOM+DC from now on) and the field structure leads
to many nice properties, many of which Fornasiero outlines in [Fo10] and Schoutens dis-
cusses in [Sch12]. This includes a version of the o-minimal Monotonicity Theorem, and a
weakened, and slightly tentative version of Cell Decomposition. In fact, many analogues
of theorems true about o-minimal structures carry over to LOM+DC fields. This includes

12See the original paper [vdD98-b] for the details of how the theory of (R,Q) models DC and, incidentally,
uniform finiteness.
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definable Skolem functions, definable choice, a notion of dimension, etc. In the last section
of this chapter we repeat the details of some of these (see [Fo10] for further details).

However, as the reader surely expects by this point, and as we mentioned in the In-
troduction, LOM+DC fields do not have to be o-minimal (from now on, R will denote the
usual real closed field structure on R).

Example 1.5.3: For n ∈ N, let Rn = (R, Pn), where Pn = {1, ..., n} ⊆ N. Then letting U be
a non-principal ultrafilter on N, define R = ∏n∈NRn/U = (RN/U , P ). R is an ultraproduct of
o-minimal structures which is not o-minimal.

Proof. This is straightforward. Since in each index model, the predicate Pn picks out a
discrete set of size > n−1, we know two things by Los’ Theorem: the set P must be discrete,
and contain > n − 1 elements for every n ∈ N. That is, P must be an infinite discrete
(definable) set, which is impossible in an o-minimal structure. ∎

The previous example is typical of LOM+DC structures that have been given in the
literature, in that it is really an ultraproduct of o-minimal structures. In fact, there seem be
to no examples of LOM+DC fields in the literature that are not ultraproducts of o-minimal
structures.

Now, a key difference that o-minimality has from LOM and DC is that even though they
are both elementary properties (see the following definition), o-minimality is not first-order
(again, see below), while the others are. Even though the following are basic definitions
from model theory that we might have taken for granted, we record them due to there being
some confusion about the difference between uses of “first-order” and “elementary”. The
following are the defintions that we will use.

Definition 1.5.4:

● A property P of L-structures which are models of a theory T is first-order if there is a
set of sentences, or schema of sentences, S, such that an L-structure M has property P
if and only if M⊧ σ for all σ ∈ S.

● P is elementary if the class of L-structures with property P is closed under elementary
equivalence. (i.e if M≡N then M has P if and only if N does too.)

As I just mentioned, the statement of o-minimality is not first-order. That is, there is
no first-order axiom schema that holds if and only if a structure is o-minimal. If there were,
Los’ Theorem would imply that all ultraproducts of o-minimal structures would themselves
be o-minimal. However o-minimality is elementary (see [KPS86]):

Theorem 1.5.1: If M and N are L-structures, for some language L extending {<}, M is
o-minimal, and M≡N , then N is also o-minimal.
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Unlike o-minimality, LOM is first-order:

Lemma 1.5.5: LOM is equivalent to following the axiom schema, where R is a model:

LOMϕ∈L, ∶ ∀c ∀x ∃a < x < b such that ϕ(R, c) ∩ (a, b) is one of the following eight sets:

∅,{x}, (a, x), (x, b), (a, x], [x, b), (a, x) ∪ (x, b), or (a, b)

Definable completeness is also first-order:

Lemma 1.5.6: Definable completeness is equivalent to the following schema:

DCϕ∈L ∶ ∀c ∃r > 0 ∀x(x ∈ ϕ(R, c) → −r < x < r)

Ð→ ∃!s [∀x (x ∈ ϕ(R, c) → x ≤ s) ∧ ∀y (∀x(x ∈ ϕ(R, c) → y > x) → s ≤ y)]

Thus, what we have noted is that LOM+DC is first-order, and that all the examples so
far constructed have been ultraproducts. This leads one to wonder whether all LOM+DC
fields are (at least elmentarily equivalent to) ultraproducts of o-minimal structures. Thus,
we will make the following definition:

Definition 1.5.5: A structure R is pseudo-o-minimal if it is elementarily equivalent to
an ultraproduct of o-minimal structures.

The following straightforward consequence of o-minimality has a straightforward ana-
logue in pseudo-o-minimal structures:

Lemma 1.5.7: If R is an o-minimal structure, and A ⊊ Rn is a discrete definable set, then
A is finite.

Lemma 1.5.8: Let R be a pseudo-o-minimal expansion of a real closed field. If X ⊊ Rn is
definable and discrete, then the reduct of Xind to {<} is pseudofinite (that is, elementarily
equivalent to an ultraproduct of finite orderings).

Proof. We may assume that R ≡ S = ∏i∈I Si/U and assume that X ⊆ Rn is definable by ϕ(x),
and is discrete. Then ϕ(S) is discrete, and so by Los’ Theorem, in U -most index models,
ϕ(Si) is also discrete. But a discrete set in an o-minimal structure is finite by Lemma 1.5.7.
Thus, in U -most index models ϕ(Si) is finite, so the reduct of Xind to {<} is elementarily
equivalent to their ultraproduct (themselves considered only in the language {<}). ∎

Finally, before moving on, we collect one more result:

Lemma 1.5.9: If R is a pseudo-o-minimal ordered ring, then R is LOM and DC; hence it
is also an expansion of a real closed field.
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Proof. The first statement follows by simply noting that LOM and DC are both first-order
(by Lemmas 1.5.5 and 1.5.6, respectively), and thus are true in ultraproducts of structures
where they hold, by Los’ Theorem.

Next, since LOM+DC fields are real closed (by Lemma 1.5.4), R is real closed too.
Alternately we could derive R being real closed from Los’ Theorem as well, since R is

elementarily equivalent to an ultraproduct of real closed fields, and the axioms for real closed
fields are recursively axiomatizable (in fact the class of fields is finitely axiomatizable). ∎

1.6 Definable Sets in LOM+DC and

Pseudo-O-Minimal Fields

Unless otherwise specified, R is an expansion of a real closed field satisfying LOM+DC in
this section.

First a topological lemma:

Lemma 1.6.1: Discrete definable subsets of R have no accumulation points, and hence are
closed.

Proof. By Lemma 1.3.1, if we show that a discrete definable subset X ⊆ R has no accumu-
lation points, then it must be closed.

So suppose that x is an accumulation point of X. Let (a, b) be an interval containing
x. Then since x is an accumulation point, X ∩ (a, b) contains infinitely many points. But
since X contains no intervals, this is impossible by local o-minimality. ∎

Using this, we show the discrete definable sets in R are closed and bounded:

Lemma 1.6.2: Every discrete definable set X ⊆ R is closed and bounded.

Proof. By Lemma 1.6.1, X is closed, and by Lemma 1.5.1, X cannot be unbounded. ∎

The characterization of Lemma 1.6.2 is equivalent to other possible characterizations:

Lemma 1.6.3: The following are equivalent, for any non-empty definable X ⊆ R:

a. X is discrete.

b. X is discrete, and has a first and last element, and every element of X except the first
and last has an immediate predecessor and successor.

c. The structure (X,<R) is a pseudofinite ordering.13

13The followin proof, with a couple of modifications will actually work in any linearly ordered LOM+DC
structure.
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Proof. (1.⇒ 2.)
Since X is discrete and closed, X has no accumulation points, by Lemma 1.3.1.
Since X is bounded, the definable completeness of R implies that it has a supremum in

R. That is, there is some element x = sup(X) ∈ R, such that if X had no greatest element,
then x would be an accumulation point, which is impossible. Thus, it has a greatest element.
Similarly, it has a least element.

Now, the existence of successors and predecessors can be seen by noting that if x ∈
R, X>x must have a first element (if it is non-empty), and X<x must have a last element
(similarly, if it is non-empty). This is true since X>x and X<x are both definable discrete
sets, and hence closed and bounded by 1.6.2; thus the observations of the previous paragraph
hold for them as well. ◻

(2.⇒ 1.)
This is trivial. ◻
(2.⇔ 3.)
In [Va01], it is demonstrated that the orderings (elementarily equivalent to) ultraprod-

ucts of finite orderings are exactly the orderings which satisfy condition 2 above. It is shown
that an ordering elementarily equivalent to an ultraproduct of finite orderings is completely
determined (up to elementary equivalence) by its order type, and that the order type of any
such structure is always ω +L ⋅Z+ω∗, where ω∗ is a reversed copy of ω and L is some linear
ordering.

It is clear that a set X satisfying condition 2. has this order type for some set L, and
vice versa. ◻ ∎

Since such sets always have a least and greatest elment, and all but the first and last
elements have an immediate successor and predecessor, we make the following definitions:

Definition 1.6.1: Suppose that P is non-empty and discrete.

● Let λP and γP be the least and greatest elements of P , respectively.

● For p ∈ P , if p ≠ γP , let sP (p) be the next element of P , and if p ≠ λP , let pP (p) be the
previous element of P .

We note now that a converse of Lemma 1.6.2 is true as well:

Lemma 1.6.4: If for every definable non-empty, proper subset X ⊊ R, we have that bd(X)
is a non-empty dcb with a least and a greatest element (possibly identical), then R satisfies
LOM+DC.

Proof. Suppose that X ⊆ R is definable, and bounded above. In order for DC to hold, we
need only show that X has a supremum in R. But, by the definition of bd(X), its greatest
element is certainly the supremum of X.

Before we show that LOM follows, note the following claim:
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Claim: For every non-empty, definable proper subset X ⊊ R, every element of bd(X) has
a unique successor and predecessor (except the least and greatest elements, respectively.)

Let x ∈ bd(X) be a non-least element, if such an element exists, and consider the set
bd(X)<x: this set is definable, and since it equals its own boundary, it is the boundary of a
definable set; and so by assumption, it has a greatest element. This element is the unique
predeccessor of x in bd(X). Similarly, we can determine the unique successor of x (this time
if x is not the greatest element of bd(X)).

Returning to the proof of the lemma, we continue by showing LOM. Let X ⊊ R be
non-empty and definable, let r ∈ R, and consider bd(X≤r): if this set has a greatest element
less than r, define a to be that element. If the greatest element is r, define a to be the
predeccessor of r in bd(X≤r), if it exists. If no such element exists, then bd(X≤r) ⊆ {r}, and
thus (−∞, r) ⊆X or X<r = ∅; and we can then define a to be r−1. Similarly, if bd(X≥r) ⊆ {r},
define b to be r+1, and otherwise define b to be the least element of bd(X≥r)>r. By choosing
a and b in this way, we have ensured that X ∩ (a, b) has at most two components, and since
r ∈ R was arbitrary, LOM follows. ∎

Now, for higher dimensional sets, we can prove the analogue of Lemma 1.6.2:

Lemma 1.6.5: Every discrete definable set X ⊆ Rn is closed and bounded.

But before proving this, another lemma is necessary:

Lemma 1.6.6: For X ⊆ Rn definable, if for every y ∈ R, for every coordinate choice, the
sets Xy, and all of the projections πni (X), for 1 ≤ i ≤ n are discrete, closed and bounded, then
X discrete, closed and bounded.

This lemma will itself follow from the following more general statement:

Lemma 1.6.7: Let P be a definable discrete, closed and bounded subset of R, and suppose
that (X(p))p∈P is a definable family of discrete, closed and bounded subsets of Rn. Then
X ′ = ⋃p∈P (X(p)) is discrete, closed, and bounded as well.

Proof. Let X ′(p) ∶= ⋃q≤p;q∈P (X(q)), for p ∈ P . Since (X(p))p∈P is a definable family,
(X ′(p))p∈P is a definable family as well. Thus, we may define the set

Q ∶= {p ∈ P ∣ X ′(p) is bounded}.

Since it is a definable set in R, and is a subset of P , it is discrete, closed and bounded.
Also, since X ′(λP ) is discrete, closed and bounded, we know that Q is non-empty. Then γQ
exists; if it is not equal to γP , then sP (γQ) exists, and we have that X ′(γQ) is bounded,
but X ′(sP (γQ)) is not. But then since X ′(sP (γQ)) =X ′(γQ)∪X(sP (γQ)), we would have
that X(sP (γQ)) is unbounded. But no X(p) is unbounded by assumption, so this is a
contradiction. ∎
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Proof of Lemma 1.6.6. We have finitely many discrete sets P1 = πn1 (X), ..., Pn = πnn(X),
the projections of X onto each coordinate. Let us assume that after translating each Pi
appropriately, we have that γP1 < λP2, ... γPn−1 < λPn. Then, letting P = P1 ∪ ... ∪ Pn, we
have another definable dcb set. Furthermore, if x ∈ X, then there is some coordinate, say
the ith, such that for some y ∈ R, x ∈Xy, and thus, x ∈ ⋃p∈P Xp. Apply Lemma 1.6.7. ∎

Proof of Lemma 1.6.5. Suppose X ⊆ Rn was a discrete definable set with either (a) a pro-
jection onto some coordinate which was not dcb, or (b) a fibre above an element in some
coordinate which was not dcb. If we can eliminate these possibilities, then Lemma 1.6.6
would apply.

We can rule out case (a) immediately, since the images of definable maps (and in
particular, projection maps) are definable: because of this, πi(X) is a definable subset of R,
so Lemma 1.6.2 implies that it is dcb.

Now, we proceed by induction. In the base case, where n = 2, if there were y ∈ R
such that in either coordinate Xy were not dcb, then we would also have that the projection
of the fibre onto the other coordinate, X[y] ⊆ R was a definable subset of R that was not
dcb, a contradiction, by Lemma 1.6.2 again. In the higher dimensional case, we note that
Xy ⊆ Rn−1 and appeal to the inductive assumption. ∎

1.7 Some Analogues From O-Minimality

In the papers [Fo10], and [Sch12], Fornasiero and Schoutens each study various weakenings of
o-minimality, including LOM+DC structures. We record here a few analogues of o-minimal
results from these two papers that we will use freely later. There are many other results,
many of them fairly fundamental, that are collected in these two papers. The ones that
follow below are ones that will be explicitly used, and were not already mentioned in the
previous sections.

Fact 1.7.1:

● (Monotonicity Theorem for LOM+DC Structures - [Fo10], Theorem 6.3): We have the
same Monotonicity theorem here, except that instead of having a partition

{(−∞, a1),{a1}, (a1, a2), ...,{ak}, (ak,∞)}

for k finite such that f is continuous and constant or strictly monotone on each open
interval, we instead have a discrete definable set D such that f is continous and con-
stant or strictly monotone on each open interval (d, sD(d)) for d ∈D, and on (−∞, λD)
and (γD,∞).14

● (Definable Skolem Functions - [Fo10], Lemma 6.16) - LOM+DC structures have de-
finable Skolem functions.

14The proof is a straightforward adaptation of the o-minimal proof.
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● (Dimension - [DMS09]) - Assuming R expands an ordered group, we have a notion of
dimension for definable subsets of Rm such that the discrete definable sets are dimen-
sion 0, and the open definable sets are exactly the m-dimensional sets: the dimension
of X ⊆ Rm is the greatest element d of {−∞,0,1, ...,m} such that the projection onto
some d-dimensional (in the ordinary sense) coordinate hyperplane of a rotation (by an
element of R) of X has non-empty interior.15

● (Growth Dichotomy - [Fo10], Theorem 6.20): the same statement as for o-minimal
structures holds.16

1.8 Everything We Need to Know About PA

In this final preliminary section, we review facts about the theory PA which we will need in
Chapter 2.

Definition 1.8.1:

● The theory of Peano Arithmetic (PA), is the LPA = {0,1, S,<,+, ⋅}-theory consisting
of the following axioms, where N is a purported model of the axioms:

● (N ,+N , ⋅N ,<N ,0N ,1N ) is a commutative linearly-ordered semiring with additive
identity 0N , multiplicative identity 1N and annihiliator 0N with 0N <N 1N .

● ∀x S(x) = x + 1 > x17

● Indϕ(x,y)∈L ∶ ∀y (ϕ(0, y) ∧ ∀x (ϕ(x, y) → ϕ(S(x), y))) → ∀x ϕ(x, y)

● We call the L-theory Th(N) the full theory of arithmetic. It is, by definition a
complete theory, and has PA as a proper subtheory.

The most important theorem for us about PA is Gödel’s Second Incompleteness Theo-
rem:

Theorem 1.8.1 (Gödel’s Second Incompleteness Theorem): If T is a consistent, recursively
axiomatizable L-theory for a language L ⊇ LPA, and if T extends PA, then T does not entail
Con(T).

See the discussion below (i.e. after Corollary 1.8.1) for the definition of “Con(T)”. In
order to use a slight modification of this theorem, first we need a couple of definitions:

Definition 1.8.2:

15We will mainly be concerned with discrete sets in what follows, so getting into the details of the
consequences of this will not be important here.

16And Fornaseiro notes that the proof works almost verbatim.
17Or, we could have said more generally that SN is an injective map from N with image N − {0}.
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● An L-structure N is interpretable in an L-structure M if there is a definable set
X ⊆Mn and a definable equivalence relation E such that N is isomorphic to X/E and
all the structure on N is definable on X/E in M.18

● Given an L-theory T, and an L′-theory S, we say that T interprets S if for every
M⊧ T, there is N ⊧ S such that M interprets N .

Now, Gödel’s Incompleteness Theorem can be slightly modified by noting that if a
model M of a theory T interprets a model N of PA, then one can run the proof of the
Incompleteness Theorem in M inside the interpreted model N . See [Be10] for a discussion
of interpretability and the Incompleteness Theorems. This gives us:

Theorem 1.8.2: If T is a consistent, recursively axiomatizable theory, such that T interprets
PA, then T does not entail Con(T).

In particular, a direct model theoretic consequence of this, which we will employ, is the
following:

Corollary 1.8.1: For such a theory T, T + ¬Con(T) is consistent, and thus has a model.

In addition to using the Incompleteness Theorem, we will need to understand a little
bit about how it is proved. In particular, one of the main components of the proof is Gödel
coding. Gödel coding uses elements of N (or later, some other model of PA) to code sentences
of L. There are many different ways in which one could code the formulas of L using natural
numbers and their arithmetic properties, but abstractly what the process of coding gives us
is ([Ka91], p.37) an injection ϕ→ ⌜ϕ⌝ taking formulas (strings of symbols from the language)
to natural numbers, with the following properties:

(a) it is computable;

(b) its image is a computable subset of N;

(c) and its inverse is also computable (i.e. we can go from a code ⌜ϕ⌝ to the formula ϕ
computably.)

In addition to this, we need a uniform way of coding finite length sequences of natural
numbers (and thus formulas). The existence of a coding of finite sequences uniform in their
length is called “Gödel’s Lemma” ([Ka91, Lemma 3.2]) which states that there is a ∆0

formula19 which accomplishes this uniform coding.20 That this can be accomplished with

18This is equivalent to other standard definitions of interpretability.
19A formula is ∆0 if any quantifiers which appear in the formula are bounded. That is, instead of the bare

quantification “∀x (...)” appearing in the formula, we would always have, for some L-term t, “∀x < t (...)”
etc. (Recall that a term is a well-formed string of variables, constants and function symbols from the language
L.)

20Precisely, it states that there is a ∆0 formula θ(x, y, z) such that N ⊧ ∀x, y ∃!z θ(x, y, z) such that for
all k ∈ N, and all z0, ..., zk−1 ∈ N, there is x ∈ N such that for all i < k,N ⊧ θ(x, i, zi).
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a ∆0 formula will be important for us later (see Lemma 1.8.1). With these two pieces in
hand, we would then define a Σ1 provability formula21 prov(⌜ϕ⌝) which expresses that “the
sentence ϕ is provable in T” in T. It need only satisfy the following three conditions:

(a) T ⊢ ϕ⇒ T ⊢ prov(⌜ϕ⌝)

(b) T ⊢ prov(⌜ϕ→ ψ⌝) → (prov(⌜ϕ⌝) → prov(⌜ψ⌝))

(c) T ⊢ prov(⌜ϕ⌝) → prov(⌜prov(⌜ϕ⌝)⌝)

Using prov, we can write down the statements Con(T) and ¬Con(T) as “¬prov(0 = 1)”
and “prov(0 = 1)” respectively. It is a short exercise to show that in a theory T which has
coding and a provability predicate (for which it is enough to extend PA), T does not entail
Con(T).

Now, since all of the coding can be accomplished with relatively simple formulas, we
actually have the extension of coding, Gödel coding, and a provability predicate to non-
standard models of PA. In particular, the coding is ∆0, and this leads us to one last fact
that we need:

Lemma 1.8.1: [Ka91, Theorem 2.7] Let N0 be an initial segment22 of N . Then N0 is a
∆0-elementary substructure.23

In particular, if T is consistent and extends PA, then if N ⊧ ¬Con(T), or precisely,
if N ⊧ prov(⌜0 = 1⌝), α ∈ N0 is a code for prov(⌜0 = 1⌝), then N0 ⊧ prov(⌜0 = 1⌝), and in
particular N0 ⊧ ¬Con(T). This implies that since PA + ¬Con(T) is consistent, any code for
a proof of 0 = 1 must be a non-standard element. That is, such an α as above would have
to be non-standard (i.e. satisfy α > n for all n ∈ N). If it were not, then since N is an initial
segment of every model of PA, and hence of T, ([Ka91], Theorem 2.2) we would have that
N ⊧ ¬Con(T) by the above Lemma, and could conclude that PA was inconsistent.

21A formula is Σ1 if it consists of a ∆0 formula with a block of existential quantifiers at the beginning.
22That is, for all x ∈ N0 and for all y ∈ N , (N ⊧ y < x) ⇒ (y ∈ N0)
23That is, whenever a ∈ N0 and ϕ(x) ∈ ∆0, then (N0 ⊧ ϕ(a)) ⇔ (N ⊧ ϕ(a)).
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Chapter 2

The Non-Axiomatizability of
O-Minimality
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2.1 Introduction

In this short chapter, we will show that for languages extending the language of ordered fields
by at least one new non-constant symbol, o-minimality is not (recursively) axiomatizable
(see Definition 2.2.2 below). That is, that in each fixed language L properly extending the
language of ordered fields, there is no recursive axiomatization of To-min, the set of all L-
sentences true in all o-minimal L-structures. This is the opposite of the situation for the
class of finite fields and the class of finite orderings, as I discuss below. In order to prove this,
I will construct a model of a purported axiomatization which could not be (elementarily)
equivalent to an ultraproduct of o-minimal structures. (See the discuss after Theorem 2.2.1
for details on the connection between ultraproducts and axiomatizations.)
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2.2 Axiomatizations

Recall the following definitions (these are basic in model theory, but we record them here
for maximum clarity):

Definition 2.2.1:

a. For an L-theory T, a subset S ⊆ T is said to be an axiomatization of T if S and T
have exactly the same set of models. T is finitely axiomatizable if there is a single
L-sentence ϕ such that M⊧ T if and only if M⊧ ϕ.1

b. T is recursively axiomatizable if L is a recursive language, and there is a recursive
axiomatization S of T.

c. T is decidable if there is an algorithm which decides for any L-sentence ϕ, whether T ⊢ ϕ
or T ⊬ ϕ

Note that if T is recursively axiomatizable and complete, then T is decidable.

Example 2.2.1:

1. The theory of groups is undecidable. [No55]

2. The theory of (Q,+, ⋅) is undecidable. [Ro49]

3. The theory PA, of Peano Arithmetic (see Definition 1.8.1 below), a proper subtheory of
the complete theory of (N,+, ⋅,<) is undecidable, despite being recursively axiomatizable.
Furthermore, every consistent extension of PA is undecidable.

4. The theories of Real Closed Fields, of Euclidean geometry2 and many others are all
decidable by work of Alfred Tarski. See [Ta51] for the first two mentioned.

5. Presburger Arithmetic, the theory of the structure (N,+,<) is decidable. [Pr29]

A natural extension of these notions is the following, where we recall that for a class
K of L-structures, the first-order theory of K, TK, is the set of L-sentences true in all
elements of K:

Definition 2.2.2:

1Of course, any theory T can be axiomatized trivially by just taking S = T. However, if T is not decidable
(definition follows in the body text), then there will be no such recursive listing and hence no reasonable
listing that we can get our hands on; this is why we care about recursive or finite axiomatizations.

2The theory of Euclidean Geometry is equivalent to the theory of Real Closed Fields as long as the axiom
of (definable) completeness is assumed. Without completeness, i.e. the theory of ruler-and-compass con-
structions, or the theory of Pythagorean numbers, things are more complicated, and probably undecidable.
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a. A class K of L-structures is axiomatizable if there is a set T of L-sentences such that
a structure M is in K if and only if M⊧ T .3

b. K is finitely axiomatizable if it is axiomatizable by a single L-sentence.4

c. Similarly, K is recursive if there is a recursive axiomatization of TK, and K is decidable
if TK is decidable.

Now, consider the following classic model-theoretic theorems relating axiomatizability
to ultraproducts, and ultraproducts to elementary equivalence:

Theorem 2.2.1: [Hod98, Corollary 8.5.13] K is axiomatizable if and only if K is closed
under ultraproducts, and ultraroots.5,6

Theorem 2.2.2: [Sh71](Keisler-Shelah Theorem) Two L-structures A and B are elemen-
tarily equivalent if and only if there is an ultrafilter U on a set I such that AU ≅ BU .7

These two can be combined to give us the following corollary:

Corollary 2.2.1: If K is a class of L-structures, then N ⊧ TK if and only if N is elemen-
tarily equivalent to an ultraproduct of elements of K.

Example 2.2.2 (Pseudofinite Fields):

In [Ax68], Ax proves that the theory of finite fields is decidable, and in particular,
recursively axiomatizable. More precisely, he shows that the first-order theory of finite fields
- all those statements true in any finite field - can be axiomatized by the following list (where
F is a proposed model of the axioms):

● F is a field.

● F is perfect.8

● F is either finite, or pseudoalgebraically closed.9

3This is equivalent to saying that K is an elementary class.
4This is equivalent to saying that K is a basic elementary class.
5K is closed under ultraroots if whenever there is an ultrafilter U on a set I and AU ∈ K, then A is in K

as well.
6Note also that our classes K will be assumed to be closed under isomorphism.
7That is, there is an ultrafilter, so that A and B have isomorphic ultrapowers with respect to U .
8There are many equivalent characterizations. A couple definitions are: “Every algebraic extension of

F is separable”, and “The separable closure is algebraically closed”. But an equivalent definition with an
obvious first-order schema is that “the Frobenius map is always onto”, or in other words, either an element
is 0, or has a pth root for every p. That is, Fp∈N ∶ (p = 0) → (∀y ∃x xp = y)

9Pseudoalgebraically closed means that every (absolutely irreducible) variety defined in a model F has
an F-valued point. See [Ax68, Lemma 1, §7] for first-order statements BD,M,N for D,M,N ∈ N such that
F is pseudoalgebraically closed if and only if F ⊧ BD,M,N for all D,M,N . Thus, this axiom schema would
say that ∣F∣ ≤ N ∨F ⊧ BD,M,N .
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● F has exactly one algebraic extension of each degree.10

This shows that the the perfect, pseudo-algebraically closed fields with one extension
of each degree, are precisely the infinite models of the theory of finite fields. In the language
of Definition 2.2.2 and Corollary 2.2.1, letting K = {F ∣ F a finite field}, we can see that the
theory TK is, by Ax’s result, axiomatized by the above list of axioms. Thus, by Corollary
2.2.1, a field F is elementarily equivalent to an ultraproduct of finite fields, or is a pseudofi-
nite field, if and only if it is a model of the above theory.

This is a complete first-order characterization of what it means to be an ultraproduct
of finite fields, and at least prima facie seems quite surprising. And it might lead us to hope
for an axiomatization of the class of o-minimal structures. In the same vein, the following is
another, though perhaps less surprising example of this same phenomenon:

Example 2.2.3 (Pseudofinite Orderings):

Recall from the proof of Lemma 1.6.3 that the class of pseudofinite orderings are the
orderings which are elementarily eqiuvalent to an ultraproduct of finite orderings. They can
be characterized as exactly the models of the theory of linear orderings which are finite, or
of the form ω +L ⋅Z + ω∗.11 In turn, this theory (see [Va01]) can be axiomatized exactly by
the following axioms (where (D,<) is a proposed model of the axioms):

● D is a linear ordering.12

● D has a first and last element.13

● D is discrete.14

Thus, with K the class of finite linear orderings, we have that the theory TK, the theory
of finite orderings, is exactly axiomatized by a recursive list of axioms (in fact, it is finitely
axiomatizable since we can take the conjunction of all the axioms listed).

These examples all lead us to the following question:

Question: Which classes K have recursively axiomatizable theories, TK? That is, for which
classes K, are models elementarily equivalent to an ultraproduct of models from K reducible
to models of a recursive theory?

10See [Ax67, Theorem 5, §4] for a statement Cn, for n ∈ N such that the field F has precisely one algebaic
extension of degree n if and only if F ⊧ Cn.

11Where ω is a reverse ordered copy of ω.
12That is, ∀x, y, z (x /< x ∧ (x < y → y /< x) ∧ [(x < y ∧ y < z) → x < z]).
13i.e. the statement ∃!x ∀y (x < y∨x = y), and the similar statement for a greatest element. We will refer

to these unique elements as λD and γD.
14i.e. ∀x ≠ γD ∃y > x ∀z > x (z > y ∨ z = y), to say that each element except the last has an immediate

successor, and ∀x ≠ λD ∃y < x ∀z < x (z < y ∨ z = y) to stipulate immediate predecessors for every element
except the first.
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2.3 Purported Axiomatizations of O-Minimality

In [Fo10] and [Sch12], two proposals are made for possible axiomatizations of the first-order
theory of o-minimality. That is, for axiomatizations that would reduce ultraproducts of o-
minimal structures to models of a recursive theory.

For a fixed language L, we will write T o-min
L

for the theory

⋂
M o-minimal

ThL(M)

i.e. the set of L-sentences true in all o-minimal L-structures. We will drop ‘L’ in general, as
it should be clear from context. In this chapter we will assume that L expands the language
of real closed fields, and that the theories we discuss all expand RCF. This of course, will
leave an open problem; we mention this in the final subsection.

A first proposal is that of the axioms for fields together with the schemas of local o-
minimality (LOM) and definable completeness (DC).15 Since LOM, DC, and the field axioms
are all first-order statements, we know that since they are true in ultraproducts of o-minimal
structures (see Lemma 1.5.9), these schemas must be in, or implied by any purported ax-
iomatization.

Part of the intuition behind the suggestion that LOM+DC is enough to axiomatize
T o-min its that there are no LOM+DC fields in the literature which are not ultraproducts
of o-minimal structures (or actually o-minimal). For this reason, it has been difficult to see
how these two notions could come apart.

Another proposal for an axiomatization considers the addition of a further axiom
schema.

Definition 2.3.1: The Discrete Pigeonhole Principle (dPHP) is the statement that for
any (definable) discrete set in a LOM+DC structure, and any definable selfmap of that set,
if it is injective, it is surjective as well.

This of course, generalizes the ordinary finite Pigeonhole Principle, which is the same
statement, but for finite sets. It can be written as an axiom schema as follows:

(dPHP)ϕ,ψ∈L ∶ [ϕ is discrete ∧ ψ defines an injective selfmap on ϕ] → ψ is surjective

15By slightly strengthening the axiom schema (LOM) to hold ‘at infinity’ (i.e. for all definable sets
X, LOM holds, but also, there are infinite intervals at +∞ and −∞ which intersect X in a finite union
of points and intervals), we can eliminate the assumption of a field (and instead only work with a group).
That is, instead of appealing to the field structure to obtain the boundedness of discrete sets, we could have
strengthened the axiom LOM. Schoutens make this slightly more general proposal. He refers to the extended
definition of LOM as type completeness (see [Sch12]). All that being said, his proposal will certainly fail if
my slightly less general proposal fails.
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And this can be rewritten as first-order schema as:

(dPHP)ϕ,ψ∈L ∶ ∀c, d ([∀x (ϕ(x, c) → ∃r > 0 ∃!z (z ∈ Br(x) ∧ ϕ(z))] ∧

[∀x (ϕ(x, c) → ∃!y (ψ(x, y, d))] ∧ [∀x ≠ x′ ([∃y, y′ (ψ(x, y, d) ∧ ψ(x′, y′, d))] → y ≠ y′)] ∧

[∀x, y (ψ(x, y, d) → (ϕ(x, c) ∧ ϕ(y, c)))] ∧ [(∀x, y (ψ(x, y, d) → (ϕ(x, c) ∧ ϕ(y, c)))])

Ð→ [∀y (ϕ(y, c) → ∃x (ϕ(x, c) ∧ ψ(x, y, d))]

Importantly, dPHP (i.e. the schema (dPHP)ϕ,ψ for all ϕ,ψ ∈ L) is true in pseudo-o-
minimal structures (i.e. not only is it first-order, but it is true in o-minimal structures):

Lemma 2.3.1: If R is pseudo-o-minimal, then R ⊧ dPHP .

Proof. By the above, as dPHP is elementary, it is sufficient to prove the statement for R an
ultraproduct of o-minimal structures. So suppose that we have a definable, discrete, closed
and bounded set A, and a definable self-map f ∶ A→ A in R = ∏i∈IRi/U , with Ri o-minimal.
By Lemma 1.5.8, we know that A is pseudofinite, so we may write it as A = ∏i∈I Ai/U ,
and thus, Γ(f) = ∏i∈I Γ(fi)/U . Thus, in U -most index models, Ai is a finite set, and fi is
an injective self-map of Ai. But then by the ordinary Pigeonhole Principle, U -most fi are
surjective, so f is too. ∎

It is still open whether or not dPHP follows from LOM+DC or not (that is, whether
or not any LOM+DC field must also satisfy dPHP) though it is clear that any purported
axiomatization of o-minimality must either contain or imply dPHP by the above Lemma.
Schoutens [Sch12] remarks that adding the dPHP may be necessary, and that it would of
course be necessary if it were not a consequence of LOM+DC.

We will show in Section 2.4, that not only do these proposals fail, but any recursive
axiomatization will fail. That is, no (recursive) list of axioms could possibly capture all the
consequences of being o-minimal.

Recall (from Theorem 1.5.1) that o-minimality is an ‘elementary’ property in the sense
of being preserved under elementary equivalence. But notice that the first-order L-theory of
o-minimality being axiomatizable is a very different statement: it would say that the set of
sentences which are true in all o-minimal L-structures is (recursively) axiomatizable. Being
preserved by elementary equivalence is similar but weaker: as Example 1.5.3 shows, there
are certainly structures elementarily equivalent to an ultraproduct of o-minimal sructures
which are not o-minimal. We reiterate this, as unfortunately, there is a bit of a terminological
overlap in the literature: sometimes authors use ‘first-order’ synonymously with ‘elementary’;
here we have made sure to split them apart.
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2.4 The Non-Axiomatizability of O-Minimality

In this subsection, we will demonstrate that there is no recursive axiomatization of o-
minimality. For the entirety, let Λ be some recursive list of sentences in a language L
extending LRCF (N), the language of real closed fields extended by a new unary predicate,
such that every axiom ϕ ∈ Λ is true in all ultraproducts of o-minimal L-structures, and that
in Λ, N is asserted to be discrete. That is, Λ is a purported (recursive) axiomatization of
o-minimality, in which, without loss of generality, N is interpreted as a unary discrete set.16

Finally, before stating the theorem, we need a simple definition:

Definition 2.4.1: Let ϕ(z) be a one-variable formula in L(N,α,µ) (where N is a new unary
predicate, and α and µ are new ternary predicates). We fix a new variable x not occuring in
ϕ, and define ϕ≤x(z) as follows:

Whenever “N(t)” appears in ϕ, for some L-term t, replace it with “N(t) ∧ t ≤ x”.17

Also, let PA be the relational theory of Peano Arithmetic. That is, we consider PA in
a language with relation symbols (only) for addition, multiplication and ordering. Note that
this is essentially equivalent to the usual theory PA in a language with function symbols
for addition, multiplication, and successor, in that a model of relational PA, can be defini-
tionally expanded to a model of ordinary PA, and vice versa. The main difference is that a
substructure of a model of relational PA can be finite.

Theorem 2.4.1: There are LOM+DC+Λ structures which are not pseudo-o-minimal. Hence
LOM+DC+Λ is not an axiomatization of o-minimality.

Corollary 2.4.1: There are LOM+DC+Λ′ structures which are not pseudo-o-minimal, for
Λ′ any recursive list of axioms in any language L′ extending LRCF by at least one new
predicate or function symbol which is consistent with To-min

L′ ∪RCF.

The corollary follows from the theorem by noting that if L′ extends LRCF by any new
predicate or function symbol, then we can expand a model of one of the counterexamples
constructed in the proof of the theorem to a counterexample for Λ′.

Proof. Extend L by two ternary predicate symbols α and µ, and let T be the L-theory con-
sisting of the following informally stated, but nonetheless first-order axiom schemas (where
(R,+,×,<,0,1,N,α,µ, ...) is a model of the axioms):

(I) R ∶= (R,+,×,<,0,1) ⊧ RCF

(II) (N,α,µ,<↾ N,0,1) ⊧ PA

16Any non-o-minimal model of the L′-theory of o-minimality for some L′ extending the language of real
closed fields will define some new unary discrete set, so models of L′ can be definitionally expanded to a
model of a language L′(N). Thus, our assumption involves no real loss of generality.

17Note that in particular, t is forced to be non-negative.
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(III) α = +↾ N and µ = ×↾ N

(IV) (LOM +DC)ϕ(z)∈L ∶ (R,N,α,µ) ⊧ ∀x > 0 “if ϕ≤x(R) is a proper, non-empty subset
of R, then bd(ϕ≤x(R)) is discrete, closed and bounded and has a least and a greatest
element (possibly identical)”

(V) (Λ)ψ∈Λ ∶ (R,N,α,µ) ⊧ ∀x ψ≤x

Unpacking this a bit, (I) contains all of the standard axioms for real closed fields. (II)
states that all of the axioms of PA hold where all the quantifiers are relativized to the predi-
cate N (i.e. instead of “∀x (...)”, we have “∀x (N(x) → ...)” etc.), and where “+” is replaced
by α, and “×” is replaced by µ. (III) asserts that α and µ are strictly subsets of N3. (IV)
ensures that when the model N of PA is restricted to any initial segment, the set defined by
ϕ in R with this initial segment of N has a discrete, closed and bounded boundary with (if
non-empty) least and greatest elements. And finally, (V) forces every axiom in Λ to hold in
R with N again restricted to any fixed initial segment.

We will show that not only does T have a model, but we will then show that there is a
model of T with a reduct that satisfies LOM+DC+RCF+Λ but which could not possibly be
an ultraproduct of o-minimal structures. Note: we are not claiming that any model
of T is LOM+DC: we will obtain LOM+DC structures from certain reducts of
models of T.

In order to accomplish this, we first note that T is consistent. To see this, observe
that the real field, R = (R,+,×,<,0,1) with an added predicate for N together with its usual
addition and multiplication is a model of T. for (I), (II) and (III), this is clear; now for (IV)
and (V) we can see that for any r ∈ R, N≤r is a finite initial segment of N, so this subset was
definable inside R already; indeed, the partial ternary subsets corresponding to restricted
multiplication and addition (i.e. the interpretations of µ and α respectively) on this ini-
tial segment could already be defined in R by the graphs of the restricted multiplication
and addition functions on this initial segment. Thus, (R,N≤r) is just a definitional expan-
sion18 of R. Now, since R is o-minimal, (R,N≤r) satisfies all the first-order consquences of
o-minimality; in particular, it satisfies LOM+DC+RCF+Λ. To derive this consequence, we
note that in the side case where ϕ(x) ∈ L(x) does not have N(t) occuring for any term t, then
ϕ≤x((R,N)) = ϕ((R,N)) = ϕ(R), and since Λ is a purported axiomatization of o-minimality
for L, any such statement would be true in all o-minimal L-structures. In particular, the
latter must be a finite union of points and intervals in R by o-minimality, and so have finite
boundary (and in particular, have discrete, closed, bounded boundary with least and great-
est element). Thus, (R,N) ⊧ T, so the theory T is consistent.

18If M and N are L and L′ structures respectively, which have equal underlying sets, and any definable
set in M is definable in N and vice versa, then we say that M and N are definitionally equivalent, or that
one is a definitional expansion of the other.
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However, since a model of T interprets a model of PA (in fact, it defines one), Corollary
1.8.1 applies; so we can conclude that T + ¬Con(T) is also consistent. That is, there is a
model (R,N) of T + ¬Con(T). In particular, N has a code, say the element α ∈ N , for a
proof of ¬Con(T).

But then, letting α < x ∈ R be sufficiently large, we have that the code for the proof of
¬Con(T) and the codes for any symbols occuring in its proof are contained in N≤x. Since
(R,N) satisfies (IV), we have that in (R,N≤x), the boundary of every non-empty definable
proper subset of the line is discrete closed and bounded, and (if non-empty) has a least
and greatest element; thus by Lemma 1.6.4, (R,N≤x) satisfies LOM+DC. And since (R,N)
satisfies (V), (R,N≤x) satisfies Λ. Finally, since N≤x is an initial segment of a model N of PA
with bounded portions of addition and multiplication, it is a ∆0-elementary substructure of
N (by Lemma 1.8.1). Since α < x and x is sufficiently large in N , and since α being a code
for a proof of 0 = 1 in T is a ∆0-property of α ∈ N≤x, we have that N≤x ⊧ ¬Con(T).

But (R,N≤x) could not possibly be pseudo-o-minimal. Suppose for contradiction that
it was elementarily equivalent to an ultraproduct of o-minimal structures:

(R,N≤x) ≡ (S,M) =∏
i∈I

(Si,Mi)/U

with U a non-principal ultrafilter on I, and U -most (Si,Mi) o-minimal. Then we would
have (S,M) ⊧ ¬Con(T) by elementary equivalence. But since M is discrete, U -most of
the sets Mi must be discrete by Los’ Theorem. And since U -most index models (Si,Mi)
are o-minimal, U -most Mi must then be finite, being discrete and definable (see Lemma
1.5.7). Since N≤x is an initial segment of a model of PA, so is M. Since U -most of the
Mi are finite, U -most of them are finite initial segments; but being a finite initial segment
is the same as being isomorphic to the structure Nn consisting, for some n ∈ N, of the
first n elements of N, together with the graphs of addition, multiplication, and ordering
restricted to this set. That is, U -most Mi are isomorphic, for some ni to the structure
Nni = ({0,1, ..., ni}, α ↾ Nni , µ ↾ Nni ,<↾ Nni).

Finally, M ⊧ ¬Con(T), so there is α ∈ M such that α is a code for a proof of 0 = 1 in
T. But then for an index i such that (Si,Mi) is o-minimal, and Mi is isomorphic to some
Nni as above, then the i-th coordinate of α, i.e. the element αi ∈ Mi, must be a code for
a proof of 0 = 1 in T as well. But this implies that there is a standard code for the proof
of ¬Con(T) (by the same observation we made after Lemma 1.8.1). From the existence of
a standard code for a proof we could recover an actual proof of ¬Con(T). Hence, T would
actually be inconsistent, a contradiction. ∎
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2.4.1 An Open Problem

As we mentioned when we introduced To-min
L , we have left an open problem: if L does not

expand the language of real closed fields, we do not know the answer to whether or not To-min
L

is recursively axiomatizable. It is possible that without the field structure being around to
induce (an initial segment of) the ordinary semiring structure of a model of PA onto a
definable subset, that LOM+DC(+dPHP) might be enough to axiomatize o-minimality.
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Chapter 3

Tallies and Uniform Pseudofiniteness
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3.1 Introduction

Cell decomposition in the o-minimal setting is a generalization of the definition of o-minimality
to higher dimensions. Recall that it tells us that we can obtain, for any definable set(s), a
decomposition, or partition of the ambient space which is compatible with the given set(s),
and which consists of a finite disjoint union of cells.1 A fundamentally important step along
the way to proving the o-minimal cell decomposition theorem is proving uniform finiteness
(see Part 1 of Theorem 1.4.3). Though as we mentioned, it goes hand-in-hand with proving
Cell Decomposition, it has also been shown to imply o-minimality or o-minimal open core
together with other tameness conditions, and can be characterized as an ‘elimination of the
∃∞x quantifier’. That is, it can be seen as a strong and important component of o-minimality
itself.2 See [DMS09] for more on this.

In this chapter we will be concerned with proving a version of uniform finiteness for
LOM+DC+dPHP, though non-o-minimal, expansions of real closed fields. Some statements
may only hold for pseudo-o-minimal structures or for ultra-o-minimal structures, and some
results are digressions from the main track, but the goal will be to generalize uniform finite-
ness in a reasonable way to the pseudo-o-minimal setting.

We will only, in the end, prove the statement of what we will call Uniform Pseudofinite-
ness in the planar case. (Though we will have an easy general-dimension version in a slightly
weaker setting.) We note here that it is likely the case that as in the o-minimal setting, a
proof of the higher ambient dimensional case would require that we simultaneously proved
a cell decomposition result.3

1See Theorem 1.4.1 for the full statement.
2Digressing slightly, I believe (though I am not willing to formally conjecture it at this point) that a

version of Uniform Finiteness in the LOM+DC+dPHP case is analogously quite strong in this same sense,
and could thus form part of a neccessarily non-recursive axiomatization of o-minimality, in the sense of
implying pseudo-o-minimality with some additional tameness results.

3We are willing to conjecture at this point, and should be able to work out soon, that there will be such
a full-blown Uniform Pseudofiniteness and Cell Decomposition result in the context we will work in.
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3.2 Definable Isomorphisms and Ordermorphisms

3.2.1 Definitions and Basic Facts

Fix an expansion of a real closed field R such that R ⊧ LOM+DC+dPHP. In particular,
everything that follows holds for pseudo-o-minimal structures.

For X ⊊ R discrete, infinite and definable, we use the following notation:4

Xini ∶= {x ∈X ∣ x = snX(λX) for some n ∈ N}

Xfin ∶= {x ∈X ∣ x = pnX(γX) for some n ∈ N}

Xmid ∶=X − (Xini ⊔Xfin)

Thus, Xini <Xmid <Xfin and X =Xini⊔Xmid⊔Xfin. Note that for any (infinite) definable
X ⊊ R these three sets are not definable in any LOM+DC expansion of R.

Definition 3.2.1: Let X,Y ⊆ R be two definable sets.

● X and Y are definably isomorphic,5 and we write [X] = [Y ] if there is a definable
bijection between X and Y . The relation [X] = [Y ] is an equivalence relation on
Def(R).

● If X and Y are discrete, we say that X and Y are definably ordermorphic, and
write [X]< = [Y ]<, if there is a definable (lexicographic) order-preserving bijection
between X and Y . The relation [X]< = [Y ]< is an equivalence relation on Def0(R).6

● We define an ordering on the [⋅]<-classes, by defining [X]< ≤ [Y ]< iff there is a defin-
able, order-preserving bijection from X onto a (not necessarily proper) initial segment
of Y .

Definable isomorphism and ordermorphism classes of infinite discrete sets can be seen
as generalizations of the finite cardinalities of finite sets. (This theme is elaborated on in
[Sch12] in the o-minimal setting, and in general in [KS00], and [Kr04].) In particular, it is
easy to show the following basic facts and analogues of statements about finite sets:

Fact 3.2.1:

4Below, “ini”, “mid”, and “fin” stand for ‘initial’, ‘middle’, and ‘final’ respectively.
5This terminology is perhaps unfortunate in that a definable isomorphism might be expected to somehow

preserve all the structure on the definable set. The terminology comes from [KS00], and we think it is at
least preferrable to the terminology of definable equivalence in [vdD98-a].

6Recall that this is the class of zero-dimensional definable sets (i.e. discrete sets in any ambient dimen-
sion).
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(a) [{x}] = [{x′}] and [{x}]< = [{x′}]< for any elements x,x′ ∈ R, and similarly for any two
finite sets of the same cardinality. In general, the [⋅]-class of a singleton is exactly the
set {{r} ∣ r ∈ R}.7

(b) For any two finite sets X and Y , if ∣X ∣ < ∣Y ∣, then [X]< < [Y ]<.

(c) [X]< < [Y ]< for any non-empty discrete sets X and Y with X finite and Y infinite.

(d) [X]<, [Y ]< < [X ⊔ Y ]< for any two disjoint, non-empty discrete sets X and Y .

Part (b) is a result of the following: in first-order logic, having n or less elements is
definable via the formula ∃≤nxϕ(x) for any given formula ϕ(x); using that together with the
ordering, we can then define the ith element of a given finite set (according to this ordering),
for any 1 ≤ i ≤ ∣X ∣. This is one of the key properties of finite cardinalities that we will have
in mind in later sections in this chapter.

We note that that there are always going to be more definable bijections than order-
preserving definable bijections (i.e. ordermorphisms). The proposition that follows below
clarifies this gap, in that it shows that a definable ordermorphism between two sets (or
onto an initial segment) is always unique.8 In some sense, this relationship is similar to the
relationship between cardinals and ordinals: there are many, many ordinals of any infinite
cardinality (there is a wealth of ordinals, for example, below the ordinal ε0, which is itself just
the beginning of the ordinals of size ℵ0.) Because there are more definable isomorphisms,
there are fewer [⋅]-classes than [⋅]<-classes, so the ordinals are playing the role of the [⋅]-
classes in this analogy.9 First, a lemma:

Lemma 3.2.1: Let X and Y be infinite discrete definable subsets of R. If f ∶ X → Y is a
definable ordermorphism, then the following are true:

(a) f−1 is also a (definable) ordermorphism.

(b) f(λX) = λY, f(γX) = γY .

(c) ∀x ∈X, x ≠ γX ⇒ f(sX(x)) = sY (f(x)) and x ≠ λX ⇒ f(pX(x)) = pY (f(x)).

Proof.
(a) is clear.
(b) If f(λX) > λY , then λX > f−1(λY ). But f−1(λY ) ∈ X, so this is an element less

than the least element of X, a contradiction. The preservation of greatest elements follows
similarly.

7It is worth noting here that this fact holds without the use of parameters by using the ordering. It is
not true in general structures, without parameters, that two definable finite sets of the same cardinality are
in definable bijection.

8Schoutens shows a slightly different statement in [Sch12]: if f is a monotone definable self-map of a set
X, then it is either the identity or an involution.

9We will not be keeping this analogy in mind in what follows, but we thought it worth mentioning.
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(c) Let x ∈ X − {γX}. Suppose that f(sX(x)) ≠ sY (f(x)), and in particular, without
loss of generality, that f(sX(x)) > sY (f(x)). Let x∗ = f−1(sY (f(x))).

Then obviously x∗ ≠ x, and since f(x∗) = sY (f(x)), we have that x∗ ≠ sX(x). Now
either x∗ < x, or x∗ > sX(x) (if such an element exists). In the first case, f(x∗) = sY (f(x)) <
f(x), a contradiction. And in the second case, x∗ > sX(x) > x, so f(x∗) = sY (f(x)) >
f(sX(x)), contradicting our assumption.

The second statement follows similarly. ∎

Proposition 3.2.1: Let X,Y ⊊ R be infinite discrete definable sets.

(a) The identity map on X is the unique definable orderautomorphism of X.

(b) If [X]< ≤ [Y ]<, then there is a unique ordermorphism f ∶ X → I ⊆ Y , with I an initial
segment of Y .

(c) If [X]< = [Y ]<, then there is a unique ordermorphism f ∶X → Y .

Proof.
(a) Since idX is a definable orderautomorphism, we will show that if f ∶ X → X is

another definable orderautomorphism, then f = idX . So suppose that they differ, and let
{x ∈ X ∣ idX(x) ≠ f(x)}. This is a discrete definable subset of X, and hence has a least
element, λ. Then by Lemma 3.2.1, part (a), we know that λ ≠ λX, so it has a predecessor.
Thus, since λ is minimal, we have that pX(λ) = idX(pX(λ)) = pX(λ) = f(pX(λ)). But by part
(b) of the lemma, we then know that f(sX(pX(λ))) = f(λ) = sX(f(pX(λ)) = sX(pX(λ)) = λ.
That is, f(λ) = λ, so f = idX at λ, contradicting the choice of λ as a place of disagreement
between idX and f . Thus, f = idX .

(b) Suppose that f and g were both definable ordermorphisms from X onto intial
segments, I and I ′ of Y , respectively. Since X is infinite, and f and g are bijections, I and
I ′ are both infinite as well.

Now consider g−1 ○ f ∶ X → I → g−1(I) ⊆ X. It is a definable injective, order-preserving
selfmap of X. By the dPHP, it is bijective, and thus, a definable ordermorphism. Part (a)
implies then that it is the identity map, and thus that g−1 ○ f = idX , which implies f = g.

Part (c) is similar. ∎

3.2.2 Discrete Over- and Under-spill

One lesson to take away is that even in any expanded language (where R remains LOM
+DC+dPHP), there is very little room to work with when defining order-preserving maps
between discrete definable sets. And in the case of automorphisms, the proposition says that
orderautomorphisms have to fix everything. This contrasts with the situation for definable
automorphisms: given any infinite discrete definable set X, there are infinitely many defin-
able automorphisms of X: for instance, one such infinite family is the family of shift maps
(ShnX)n∈N which are defined as the n-th iterate of the successor function on X, except on the
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last n elements, which they map to the initial n elements, in order. In general, there may be
many such definable permutations of a discrete infinite set which are not order-preserving.

This contrasts with a potential naive intuition about these sets: that if we take X
and define an automorphism which fixes Xini and Xfin, then it must in fact, fix an initial
segment and a final segment10 of Xmid. That is, we have no room to patch together a map
idXini

⊔ F ⊔ idXfin
with F ≠ idXmid

. This phenomenon of properties holding on infinite initial
or final segments of discrete sets spilling into the middle part of the set is an instance of
what we call discrete overspill and underspill.

Fact 3.2.2 (Discrete Over- and Under-spill): Let ϕ(x) be a one-variable formula, possibly
with parameters, in the language of R. Then if there is a definable subset of an infinite
discrete definable subset X with the property that ϕ(R) contains a subset Y which is cofinal
in Xmid, then it contains a subset Z which is coinitial in Xfin. Furthermore, if Y is not only
cofinal in Xmid, it contains a set (Xmid)>r for some r ∈Xmid, then Z is not only coinitial in
Xfin, but contains a set (Xfin)<s for some s ∈Xfin.

Proof. Consider the definable set Xϕ ∶= {x ∣ x ∈ X ∧ ϕ(x)}. Since it is a definable subset
of a discrete definable set, it is also discrete, and thus has a least and greatest element. In
particular, since it contains a cofinal subset of Xmid, we have that γXϕ ∈Xfin. We can easily
check that {pnX(γXϕ) ∣ n ∈ N} = (Xϕ)fin ⊊Xϕ is contained in Xfin and is a coinitial there.

The further strengthening is easy: if Y contains a set (Xmid)>r and yet Z did not contain
a set (Xfin)<s, then since Y ∪Z ⊆Xϕ, we have that Y ∪Z would have no least element greater
than r which was not in Xϕ. That is, [(Xϕ)c ∩ (Y ∪ Z)]>r, a discrete definable set, would
have no least element.

The situation for coinitiality is similar. ∎

In the next subsection, we present another application of this kind of reasoning to - at
least partially - answer the question of whether dPHP follows from LOM+DC.

3.2.3 Order-preserving Discrete Pigeonhole Principle

In this subsection we show that a weakening of the dPHP follows from LOM+DC.

Definition 3.2.2: The Order-preserving Discrete Pigeonhole Principle (OPdPHP)
is the statement that for every discrete definable set X ⊆ R, if f is a definable, order-
preserving self-map of X, then it is a bijection.11

Proposition 3.2.2: If R is an LOM+DC expansion of a field, then R satisfies the OPdPHP.

10An initial segment in the reverse order.
11Note that injectivity is implied by order-preservation, which puts the statement more obviously in line

with other variations on the PHP.
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Proof. Let f be as in the statement of the OPdPHP. By Proposition 3.2.1, if f were in fact
bijective, then f = idX . So it is enough to assume for contradiction that f ≠ idX . Thus, let
Z = {x ∈X ∣ f(x) ≠ x}.

Now, since f is order-preserving (i.e. x ≤ y iff f(x) ≤ f(y)), we have in particular that
x ≤ f(x) (take x = y in the definition). Thus, f(γ) = γ, and f(pX(γ)) = pX(γ), etc. That
is, f = idX on Xfin, and thus by Discrete Underspill, f = idX on a final segment of X. But
then let γ∗ be the greatest element of Z. In particular, f(γ∗) ≠ γ∗, so by order-preservation,
f(γ∗) > γ∗, and thus, f(γ∗) > γ (a contradiction) since for every x > γ∗, f(x) = x (if
f(γ∗) = f(x) = x for some x > γ∗, this would contradict the injectivity of f).

Thus f = idX , and in particular, f is bijective. ∎

3.2.4 Higher Dimensions

We can extend the notion of definable ordermorphism to definable discrete sets in higher
dimensions: a definable discrete set X ⊊ Rk can be decomposed into

X = ⊔
p∈π(X)

Xp

where π is the projection onto the first coordinate. So, we will define [⋅]< inductively on the
ambient k-dimensional sets in Def0(R) for k ≥ 2. But first, we define the collapse of a set:

Definition 3.2.3: Let X ⊊ R2 be infinite, definable and discrete, and write X = ⊔q∈π(X)Xq.
Define the collapse of X, written ↓X ⊊ R, to be the set defined as follows:

● for each q ∈ π(X), and y ∈Xq, define µ(q, y) ∶= (y−λXq) ∈ R>0 if ∣Xq ∣ ≠ 1, and let µ(q) = 1
otherwise. (µ is the height of y relative to the bottom of the fibre Xq.)

● If ∣Xq ∣ ≠ 1, let ε(q) ∶= (γXq − λXq) ∈ R>0. Otherwise, let ε(q) = 1. (ε is the total height of
the fibre Xq.)

● Define δ(q) ∶= (sπ(X)(q) − q) ∈ R>0 if q ≠ γπ(X). And let δ(γπ(X)) = 1. (δ is the width
between one fibre and the next.)

● Define ↓Xq, the collapse of the fibre Xq, to be the set

↓Xq ∶= {x ∈ R ∣ ∃y ∈Xq, x = q +
µ(q, y) ⋅ δ(q)

2 ⋅ ε(q)
}

Note that by definition, ↓Xq is a discrete definable set contained in the interval [q, q + δ(q)
2 ] =

[q, q +
sπ(X)(q)+q

2 ]; that is, the left half of the interval [q, sπ(X)(q)] (except if q = γπ(X), in
which case, it is contained in [q, q + 1/2].)

38



Finally, define ↓X to be the set {x ∈ R ∣ ∃q ∈ π(X), x ∈ ↓Xq}. The family ↓Xq is a
definable family, so ↓X is a definable set.12

Now, suppose that X is an infinite discrete definable subset of R3, and define the collapse
of X, ↓X, by taking the collapse of the fibre Xq, for each q ∈ π(X). This gives us a new
family (↓Xq)q∈π(X) ⊊ R2. We then define ↓X to be the collapse of this set. Defining the
collapse of a subset of higher dimension is done by repeatedly collapsing in the same way.
Finally, we define ↓X =X for X ⊊ R discrete and definable.

This gives us a way to compare ordermorphism classes of higher dimensional definable
discrete sets: we define, for X ⊊ Rk definable, [X]< ∶= [↓X]<. In particular, it brings our
defintions of [⋅] and [⋅]< more in line: the former is an equivalence relation on all definable
sets, and the latter is now equivalence relation on all discrete definable sets (instead of just
those in one ambient dimension). Furthermore, it preserves the lexicographical ordering of
X.

3.2.5 Potential Problems With Ordermorphism Classes

Definable ordermorphism (and definable isomorphism), are unfortunately, at least apparently
too weak to have all of the properties we might expect from a notion of ‘cardinality’. First
we will present a couple of potential problems, then below we give examples that (could
possibly) witness them:

Remark 3.2.1: Let X,Y, and Y be infinite discrete, definable sets in R (which is
LOM+DC+dPHP).

(a) (Non-Linearity of Ordermorphism Classes) Even though the ordering on [⋅]<-classes is
a quasi-order, it may not be linear. That is, it is possible some [⋅]<-classes may simply
be incomparable. This problem has a few restatements in terms of properties that an
abstract ‘cardinality’ notion might be expected to respect:

● If [X]< = [Y ]< and Y ⊊ Z, then it might not necessarily be the case that [X]< ≤ [Z]<,
or even [Y ]< ≤ [Z]<.

● In particular, if there is some definable injective map from X into a set Y , it is not
necessarily the case that [X]< ≤ [Y ]<.

● And if [X] = [Y ] (i.e. there is a definable bijection between two sets), then it is not
necessarily the case that [X]< = [Y ]<.

(b) (Potential Failure of Uniformization) If X is an infinite discrete definable set in ambient
dimension > 1, and thus of the form (Xq)q∈π(X), and if X has infinitely many infinite
fibres, such that the fibres are pairwise ordermorphism-equivalent (i.e. [Xp]< = [Xq]< for

12Intuitively, the collapse of a fibre Xq shrinks the fibre down, and places it between q and the successor
of q in π(X). Then the collapse of a set X is just the union of the collapse of all its fibres.
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all p, q ∈ P ), then it is does not seem to be necessary that with λ ∶= λπ(X), we have [X]< =
[π(X)×Xλ]<. This is actually a problem with [⋅] as well: there may not necessarily be a
way to uniformize from the existence of pairwise definable isomorphisms/ordermorphisms
to the existence of a single map.

Below we record the main idea of an example to illustrate problem (a). Though it
is inconclusive at this stage, it points to the kind of problem that could potentially occur,
and which seems quite likely to occur. We will show in the next section that strengthening
definable ordermorphisms to make them even more closely mimic the finite situation can
solve issue (a) and guarantee the uniformization desired in (b). In fact, we will address (b)
in this new context en route to the main theorem of this chapter.

Example 3.2.1: Let R be a LOM+DC+dPHP structure, and suppose that U ⊊ R1 is a
discrete subset which is not already definable in R, and in fact, has no R-definable infinite
subset. Furthermore, suppose that (R, U) is still LOM+DC+dPHP. Let

V ∶= {v ∈ R ∣ ∃u ∈ U v = (sU(u) + u)/2 ∨ v = γU + 1}.

Then V is clearly interdefinable with U in R, and hence not definable in R. Thus, (R, U, V )
is a definitional extension of (R, U), and so also LOM+DC+dPHP. Finally, define W =
U ∪ V = U ⊔ V in this structure.

Now suppose that F ∶ U →W is an ordermorphism onto an initial segment I of W . Then
clearly, the set I would have to be a proper subset of W , and in fact, we would have that F −1 ↾
U ∩ I mapped U onto a subset Uodd of U satisfying Uini ∩Uodd = {s2n

U (λU) ∣ n ∈ N}. Similarly,
F −1 ↾ V ∩ I would map V onto a subset Ueven satisfying Uini ∩Ueven = {s2n+1

U (λU) ∣ n ∈ N}.13

Clearly in this situation, some such Uodd or Ueven must be definable if F is, and such a set
could not already be definable in R, by choice of U . It seems very likely, though out of the
grasp of our current tools, that these sets cannot be definable in general.

It is certainly not always the case that a set Uodd (or Ueven) will fail to be definable
when U is definable. For example, if U is an end extension of the set N in R, then we can
define Ueven by {u ∈ U ∣ u/2 ∈ U} (and similarly with Uodd, and many other subsets of U).
However, this does not seem likely to be the situation in general.

3.3 Tallies

Now, we specialize the notion of definable ordermorphism that we introduced in the previous
section.

Definition 3.3.1: Let K be an ordered field.

13We are thinking of λU as the 1st element of U instead of as the 0th.

40



● If Z is a subring such that every element of K has difference in absolute value at most 1
from a unique element of Z, then Z is called an integer part of K. (Note in particular
that 0 and 1 are in Z, that z ∈ Z if and only if z ± 1 ∈ Z, and thus that Z is a subring
of every integer part.)

● We call a subset of K of the form N = Z>0, where Z is an integer part, a (positive)
natural numbers part for K or nn-part for K.14

Morgues and Ressayre showed in [MR93] that every real closed field has an integer part,
so in particular, every real closed field has an nn-part as well. Note also that N is an nn-part
for a real closed field iff N ⊧ I∆0 (see [Shep64] for more on this.)

Definition 3.3.2: We say that I is an interval initial segment of an nn-part N if it is
the form N≤N for N ∈ N .15

For the rest of this section, let R be a LOM+DC+dPHP expansion of a real closed
field, as in previous sections.

Definition 3.3.3: Let X ⊊ Rk be a discrete definable subset.

● We say that R tallies X if [X]< = [I]< for some interval initial segment I = N≤N of
some nn-part N of R, where N ∈ N . Note in particular, that we are asking that I be
definable.

● We call N the tally of X.16

● For any x ∈ X, the image of x under a tallymorphism for X is called the tally of x
(in X).

● An ordermorphism f ∶ X → Y , for X and Y discrete definable sets, is a tallymor-
phism if f factors into f = c−1

Y ○ cX where cX ∶X → I, and cY ∶ Y → I are tallies of X
and Y respectively, each onto the same intial segment of the same nn-part.

● We write [X]t for the tallymorphism-class of X, in analogy with [⋅] and [⋅]<, and we
say that X and Y are tallymorphic, or have the same tally and write [X]t = [Y ]t
if there is a tallymorphism between them. It is easy to see that this also defines an
equivalence relation, but now on the class Def0,t(R), and we can again define a partial
order on tallymorphism classes by defining [X]t ≤ [Y ]t if there is a tallymorphism
between X and an initial segment of Y . If [X]t ≤ [Y ]t, we say that the tally of X
is less than or equal to the tally of Y .

14We use Z>0 since we are thinking of the least element of a discrete set as the ‘first’ element, not the
‘zeroth’. (This choice is not important - we could as easily have done it the other way.)

15This is as opposed to convex initial segments with no greatest element. In general, for R as in previous
sections, an interval initial segment of X is just a definable initial segment of X, which is always of the
form X≤x for some x ∈X. Interval initial segments of nn-parts are naturally models of I∆top

0 .
16We will see later that ‘the’ instead of ‘a’ is appropriate here.
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● It is easy to see that the map witnessing [X]t = [Y ]t is a tallymorphism, and that if
[X]t = [I]t = [Y ]t, then composing the first implied map with the inverse of the second,
we have a tallymorphism explicitly (and we will see that every equality of [⋅]t-classes
arises this way).

● If R tallies all the discrete definable subsets of any ambient dimension then we simply
say that R tallies (or can tally) its discrete definable sets, and in general, we
write Def0,t(R) for the class of all discrete definable sets that are tallied in R.

Note that the definition of tallies is really only important when R is not o-minimal: if
R is o-minimal, then every discrete definable set X is finite, and there is already a unique
natural number n (its ordinary cardinality), and there is a unique (and definable) order-
preserving bijective function taking the set to the initial segment N≤n. Thus:

From now on, we will assume that R is not o-minimal.

The main intuition behind considering tallymorphism classes or ordermorphism classes
over isomorphism classes is that each notion is successively stronger than the next in its
analogy with the way we might consider ‘counting’ finite sets. The notion of definable iso-
morphism captures the bare cardinality of a set, while ordermorphisms and tallymorphisms
are more specific to the (linearly) ordered context: finite sets (and now discrete sets in gen-
eral) are given to us with an induced ordering, and each of our notions tries to capture how
we might compare the size of two sets by comparing them one at a time, in order. Order-
morphisms compare the size of sets by matching them up one-by-one, starting with the first,
while tallymorphisms strengthen ordermorphisms by insisting that we compare the elements
of the two sets by ‘counting’ them with a set of ‘numbers’. Since in o-minimal structures,
we always have this stronger notion of counting our discrete sets, we know that some more
general version of this must be available to us in LOM+DC+dPHP expansions of real closed
fields. In future research we hope to show how we can see what we are doing more generally
in the context of Euler Characteristics and Grothendieck semirings, as Schoutens does with
definable isomorphisms in [Sch12].

3.3.1 Uniqueness

By Proposition 3.2.1, we can conclude the following almost immediately:

Proposition 3.3.1 (Uniqueness of Tallies, Part 1): Let X ⊊ Rk be an infinite discrete
definable set, and N an nn-part in R. Let f ∶ X → N≤N and g ∶ X → N≤M be definable
order-preserving bijections for some elements N,M ∈ N . Then f = g, and in particular,
N =M .

Proof. Suppose without loss of generality that N < N ≤M . Let i be the inclusion map from
the initial segment N ≤N into the initial segment N≤M , and define F ∶X →X by F = g−1○i○f .
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Then F is a definable, injective selfmap of the definable discrete (infinite) set X. Thus, by
dPHP, F is a bijection. So, i is too, and N =M . Finally, Proposition 3.2.1, Part 3 implies
that F is the identity map. Thus, idX = g−1 ○ idN≤N ○ f = g−1 ○ f , so g = f . ∎

Addressing problem (a) in Remark 3.2.1, we can say that tallymorphism classes (i.e.
classes of elements of Def0,t(R)) are linearly-ordered:17

Lemma 3.3.1 (Linear Ordering of Tallies): The [⋅]t-classes of elements of Def0,t(R) are
linearly ordered.

Proof. Let X,Y ∈ Def0,t(R), and let f, g be their tallymorphisms to initial segments N≤N

and M≤M of nn-parts N and M respectively. Since R is linearly ordered, and N ,M ⊊ R,
N ≤ M or M ≤ N as elements of R. But in particular, we also need that there is either a
tallymorphism of X onto an initial segment of Y or vice versa.

To conclude this, we use Theorem 3.3.1 below: we have either

(a) N≤N =M≤N and M > N ∈ M

or, (b) M≤M = N≤M and N >M ∈ N .

In particular, if we assume the former (without loss of generality), we have that f is a map
from X onto M≤N . But then the inclusion map i ∶ M≤N → M≤M is a definable injection,
and the composition F = g−1 ○ i ○ f ∶ X → g−1(M≤N) ⊆ Y is a tallymorphism onto an initial
segment of Y . ∎

We record a quick fact, and make two definitions before proving one of the main ‘unique-
ness’ results we need to know about tallies.

Fact 3.3.1: If N≤N is a definable interval initial segment in R, then every proper interval
initial segment of N≤N is definable (with parameters) in R: if M ∈ N≤N , then we just define
N≤M = {x ∈ N≤N ∣ x ≤M}.

Definition 3.3.4:

● Let X be a discrete definable subset of R1. We say that X is equally-spaced (with
spacing r) if r ∈ R>0 is such that sX(x) − x = r for all γX ≠ x ∈X.

● We say that a discrete definable set X ⊊ Rk, for k > 1, is equally-spaced (with
spacings r1, ..., rk) if it is ‘equally-spaced in every direction’ (with spacing ri in the
i-th coordinate direction). That is, if for all 1 ≤ i ≤ k, there are ri ∈ R>0 such that
each fibre Xq is equally-spaced with spacing ri, for all q ∈ πki (X), (where πki is the
projection onto the i-th coordinate).

17Of course there may be sets which R does not tally (more on that later). The difference from the
situation with ordermorphism classes, and the reason why this always works for sets which are tallied is that
there is a natural restriction of Def0(R) so that the [⋅]-classes are linearly ordered.
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● Given an interval initial segment I = N≤K of an nn-part N ⊊ R, we define the con-
vex definable hull of I, written ⟨I⟩, to be the union of all the definable sets (with
parameters) which extend I, and which are interval initial segments of nn-parts. In
particular, ⟨I⟩ will still have least element 1, and will extend the set obtained by the
closure of I under addition and multiplication. It is clear from this definition and the
fact that we just recorded above, that ⟨I⟩ is, in fact, an initial segment of some nn-part
for R.18

Theorem 3.3.1 (Uniqueness of Tallies, Part 2): Suppose R tallies a definable discrete set
X, say with tally N ∈ N , for some nn-part N . And suppose that R tallies another subset
Y , say with tally M ∈ M for some other nn-part M. Then with K = min(N,M), we have
N≤K = M≤K. That is, the two nn-parts N and M agree below K. In fact, they agree up to
the convex definable hull of N≤K in R.

Proof. Let N , M, X, Y , N , M and K be as in the statement. Let f ∶ X → N≤N and
g ∶ Y →M≤M be the implied tallies. Without loss of generality we may assume that N ≤M
(as elements of R), and thus that we must show that the initial segment M≤N of M is an
interval initial segment of N as well.

To this end, we first note that N is contained in both, by the definition of an nn-part.
Thus, if they differ, it must be at some infinite element α ∈ N . Suppose, without loss of
generality, that α ≤ N is in N , but α ∉ M. We may further suppose that there is a least
such α, by letting α be the least element of the following definable discrete set:

{n ∈ R ∣ n ∈ N≤N ∧ n ∉ M≤M}

(This set is definable since N≤N and M≤M , being images of definable maps, are both defin-
able.) But now, we have that α− 1 ∈ N , and N andM agree here by the choice of α. Thus,
α − 1 ∈ M, and thus α = (α − 1) + 1 ∈ M, since M is an nn-part, a contradiction.

Thus, N and M agree for all r ≤K = min(N,M).
Now, we finish by showing that N and M agree below L for all L ∈ ⟨N≤K⟩. First, we

note that ⟨N≤K⟩ ⊆ N : by the definition of ⟨⋅⟩, for each L ∈ ⟨N≤K⟩, since N≤K ⊊ N , we have
that N≤L is definable by Fact 3.3.1. Similarly, since N≤K ⊊M,M≤L is also definable for each
L ∈ ⟨N≤K⟩. By the previous part of the theorem, N and M then agree below L. ∎

The following is an easy consequence of the final observation in the proof of the previous
theorem:

Corollary 3.3.1: Let I ∈ Def0,t(R) be infinite (assuming such an element exists). Then ⟨I⟩
is equal to the union of ⟨J⟩ for all J ∈ Def0,t(R).

In particular, the theorem means that there is no need for more than one nn-part for
tallying sets in a given structure R: letting N be any nn-part which extends all of the convex

18Since it necessarily has no greatest element, ⟨I⟩ is of course not definable in R.
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definable hulls of all the tallied subsets of R, or equivalently, the convex definable hull of any
infinite tallied set, then any definable discrete subset of R which is tallied is in fact tallied
by a tallymorphism onto an interval initial segment of N . By fixing any such N , we can say
that R is tallying sets ‘only’ using N .

The proof also highlights why we use initial segments of nn-parts in the definition of
tallys instead of other discrete subsets: any two given discerete definable subsets of the line
could disagree even if they agree up to some point α. But this is not the case for nn-parts
since they are closed under x ↦ x + 1, and since there is nothing between the elements n
and n + 1 in an nn-part. That is, we are using the fact that initial segments of nn-parts
are equally-spaced with spacing 1. Of course, we could use other equally-spaced sets with a
different spacing to accomplish the same goal. However, if f ∶ X → I is a ordermorphism,
and I is equally-spaced, with spacing r, then we can define the set

I∗ ∶=
1

r
(I − λI) + 1 = {

1

r
(x − λI) + 1 ∣ x ∈ I}

Then I∗ is equally-spaced with spacing 1, and has λI∗ = 1. That is, I∗ is an interval initial
segment of some nn-part for R. Thus, if R can ‘tally’ a definable set X with respect to I,
for some equally-spaced set I, then it can tally X in the ordinary sense. An analogue of
Theorem 3.3.1 for equidistant sets can be proved immediately:

Corollary 3.3.2: If X and Y are two equally-spaced discrete, definable sets, both with
spacing r ∈ R>0, then letting λ = λX − λY , we have that X and Y + λ are equal for all
x < min(γX,γ(Y + λ)).

3.3.2 More on Problem (a)

We noted earlier in Lemma 3.3.1 that tallymorphism classes of tallied sets are linearly or-
dered, rectifying problem (a) with ordermorphism classes mentioned in Remark 3.2.1. How-
ever, in that remark, though the linearity of the equivalence classes was the main point,
there were three specific statements that made up problem (a), and whose analogues we now
mention. For the next Lemma and its two Corollaries, let X,Y , and Z be definable discrete
subsets of R (possibly in higher ambient dimension).

Proposition 3.3.2: If f ∶X → Y is a definable, injective map, and R tallies X and Y , then
[X]t ≤ [Y ]t.

Proof. Suppose we have maps g ∶X → N≤N and h ∶ Y → N≤M , for N,M ∈ N , for some nn-part
N of R. We first show that necessarily, N ≤M . So suppose that N >M for contradiction,
and note that we then have the inclusion map i ∶ N≤M → N≤N . So let H = g−1 ○ i ○h ∶ Y →X.
Then H is an ordermorphism onto a proper initial segment I ⊊ X (that is, [Y ]< ≤ [X]<).
Now, consider F = f ○H. Since f is a definable order-preserving map, and it is injective, so
it is still injective on the initial segment H(Y ) = I ⊊ X. Thus, F is an injective, definable
self-map of Y to itself, and by dPHP, it must be bijective. But then if F is bijective, f must
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be bijective too, since H is. Thus, letting x ∈ X − I, we have that there is some i ∈ I such
that f(x) = f(i), contradicting the injectivity of f .

Thus, N ≤ M . But then we have the inclusion map i ∶ N≤N → N≤M , and taking
h−1 ○ i ○ g, we get an ordermorphism of X onto the initial segment h−1(N≤N) of Y (and thus,
[X]t ≤ [Y ]t.) ∎

Corollary 3.3.3: If there is a definable bijection f ∶ X → Y , and R tallies X and Y , then
[X]t = [Y ]t.

Proof. This follows immediately from Proposition 3.3.2 and Lemma 3.3.1 by noting that the
assumption gives us an injective definable map f ∶ X → Y and another f−1 ∶ Y → X, and
thus [X]t ≤ [Y ]t and [Y ]t ≤ [X]t. ∎

Corollary 3.3.4: If [X]t ≤ [Y ]t, Y ⊊ Z, and R tallies all three sets, then [Y ]t ≤ [Z]t (and
thus, [X]t ≤ [Z]t as well).

Proof. The fact that [Y ]t ≤ [Z]t follows immediately from Proposition 3.3.2 since the inclu-
sion map Y ⊆ Z is injective. Now, we have [X]t ≤ [Y ]t and [Y ]t ≤ [Z]t, so we can compose
the implied maps to get a tallymorphism X → I ⊆ Z for I an initial segment. That is,
[X]t ≤ [Z]t. ∎

3.4 When Can We Tally Sets?

3.4.1 Canonical Tallies in Ultra-O-Minimal Structures

First of all, the situation is completely clear and as nice as we could ask for if R is actually
ultra-o-minimal: then if R can tally a set, it neccessarily tallies it in the nn-part N∗. That
is, we have a canonical tally for any given discrete, definable set in an ultraproduct (or an
expansion):

Proposition 3.4.1: Let R be ultra-o-minimal.

(a) If X ⊊ Rk and is discrete and definable in an ultra-o-minimal expansion of R, then X
can be tallied in an ultra-o-minimal expansion of R.

(b) In any ultra-o-minimal expansion that can tally X, the tally of X is an element of N∗.

Proof. If necessary, we expand the language by a new predicate so that X is definable in
R. We expand the language with a new predicate I and a new function C, and let R′ be
the structure R expanded to this new language by interpreting I as ∏i∈I Ii/U , and C by the
function ∏i∈I Ci/U , where Ii is, in U -most index models the initial segment [1, ∣Xi∣] of N,
and the set {0} otherwise, and the map Ci ∶ Xi → Ii is the map that sends the j-th element
of Xi to j ∈ N, in U -most index models, and maps everything to 0 otherwise. Since X is

46



finite in U -most index models, these maps exist in U -most index models, so this definition
is well-formed. This gives us an ultra-o-minimal expansion of R which tallies X.

Now for (b), if X was tallied in an expansion R′ of R using an integer part N of R′,
then we could expand R′, by the above construction to a new structure R′′ where X was
also tallied in N∗. But then we would have two tallies, X ↦ (N∗)≤N and X ↦ N≤M . But
then by Proposition 3.3.1, we have that N≤K = (N∗)≤K where K = min(N,M). ∎

3.4.2 Untalliable Sets

The previous proposition seems to point to a major difference between general pseudo-
o-minimal structures and ultraproducts of o-minimal structures: a priori it seems to be
possible to tally the elements of discrete definable sets in more than one way in the former
structures, or possibly not at all, while in ultraproducts, tallying always happens using the
hypernaturals.

In fact, the latter situation is a possibility. That is, there are pseudo-o-minimal struc-
tures with definable subsets that are not only not tallied, but cannot be tallied in any
pseudo-o-minimal expansion.

Example 3.4.1: Let R be an ultrapower of the real field, in the language of real closed fields,
and let Q be a new unary predicate symbol. We define P to be set of powers of 2 in R (i.e. the
set {x ∈ R ∣ x = 2n for some n ∈ N∗}, where N∗ is the set of hypernatural numbers in R). We
expand R to an Lrcf(Q)-structure by letting Q be interpreted as P ∩ [1,M] for some infinite
power of 2, M ∈ R. Then this structure (R,Q) is pseudo-o-minimal: write R = ∏i∈IRi/U ,
and M = ∏i∈IMi/U , and note that Q = ∏i∈I Qi/U , where Qi = {1,2,4, ...,2mi}, and mi is the
greatest natural number so that 2mi ≤Mi (in particular, Mi ∈ N).)

Now, by the main results in [?], the structure (R, P ) defines (in the language Lrcf∪{P})
an ordered abelian group structure on P , and this is essentially it. That is, the theory of this
structure is completely axiomatized by just the axioms for real closed fields together with the
statements that P is an ordered multiplicative group satisfying 2 ∈ P ∧∀x(1 < x < 2→ x ∉ P )
and ∀x(x > 0 → ∃y ∈ P (y ≤ x < 2y)). But then, in the prime model R′ of Th(R,Q),
there is no infinite element N of the underlying field which is logarithmic in M (that is, an
(infinite) element such that Nk < M for all natural numbers k). This is because the prime
model of Th(R,Q,M) is just the real closure of the field generated by the (relative) divisible
hull of M in P (since we have definable Skolem functions, and the theory has quantifier
elimination), and this clearly does not contain an element N as above. Since (R,Q) is a
reduct of (R,Q,M), its prime model would be contained in the prime model of the latter
(and so itself fail to have an element logarithmic in M .)

We will show that there can be no tallymorphism of Q with an interval initial segment
in an nn-part N in this structure. The intuition here is that since the set Q just consists of
the set {21,22, ...,2N−1,2N}, at least seen from an elementary extension, and so Q ‘has’ N
elements (with ‘N = log2(M)’); and that this would force a tallymorphism to map onto an
interval [1,N].
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Making this intuition rigorous, if there were a tallymorphism l ∶ Q → N ≤N in some
LOM+DC+dPHP expansion of R′ for some some nn-part N of R′, with N ∈ N , then we
would have that N was logarithmic in M in the above sense. Thus:

Proof. Write e = l−1. Now note that for any k ∈ N, we have that if x ∈ N≤N is large enough,
then xk < e(x). If this were not the case, let x ∈ N ≤N be least with this property; that is, take
the least infinite element of the definable set {x ∈ R′ ∣ x ∈ N≤N ∧ xk > e(x)}. We can take
an infinite element, since for any k ∈ N, there is a finite x′ so that for all x > x′, xk < e(x).
This is because e ↾ N = 2x ↾ N since e is order-preserving, and Qini just consists of the set
{2n ∣ n ∈ N}.

So then, we have that (x − 1)k < e(x − 1), yet xk ≥ e(x) by choice of x. But letting
p(Y ) be the unique polynomial of degree k − 1 such that Y k = (Y − 1)k + p(Y ), we have
p(x) ≤ (x − 1)k, since x is infinite and p is of degree < k, so then:

xk = (x − 1)k + p(x) ≤ (x − 1)k + (x − 1)k = 2(x − 1)k < 2e(x − 1) = e(x)

The final equality follows since e must send pN (x) to pQ(e(x)). But pQ(e(x)) = e(x)/2 by
definition of Q.

Thus, we have a contradiction, and thus, all x ∈ N≤N satisfy xk < e(x) as long as they
are large enough. But for each k, the least such x satisfying this is finite, and we just showed
that there is no infinite counterexample. Thus, in particular, the greatest element of N≤N ,
namely N , satisfies Nk < e(N) =M for all natural numbers k. That is, it is logarithmic in
M . But this contradicts the choice of R′. Thus, R′ cannot tally Q. ∎

This example lead us to consider relaxing the definition of tallies slightly in a way that
ensures (or at least seems likely to ensure) that they always exist (in an LOM+DC+dPHP
expansion). However, so as not to lose the main thread, we present that material - on
‘Approximate Tallies’ - later, in Section 3.6.

3.5 Uniform Pseudofiniteness (Ambient Dimension 2)

From now on, we will work with LOM+DC+dPHP expansions of fields R which can tally
all of their discrete definable sets (in any ambient dimension). That is, for every discrete
definable set, there is a definable tallymorphism to an initial segment of some fixed nn-part
N in R. We will call this assumption (Tally). This alone, however, can do work for us,
but not get us all the way. We also make the following assumption, and use it to derive the
uniformity result that follows:

(Unbounded Tally): Every interval initial segment N ≤N of N is definable in R. That is,
there is no upper bound on the tallies of definable sets in R.19

19By Fact 3.3.1, we know that this is equivalent to tallying a sequence of sets whose tallies are cofinal in
N .
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The main result of this section is the following:

Theorem 3.5.1 (Uniform Pseudofiniteness with Tallies (Dim 2)): Let X ⊊ R2 be definable
and suppose that for all r ∈ R the fibre Xr of X above r is discrete. Then assuming (Tally)
and (Unbounded Tally) we can find α ∈ N such that for every r, the fibre Xr has tally
≤ α, and some fibre has tally equal to α. Futhermore, we can determine, for any pair of
elements z, z′ ∈X, whether they have the same tally according to the tally of their respective
fibres of X (this notion is called fiberwise tally in X, and is defined below).

What we do not claim we can derive just from these assumptions is a decomposition of
X into the graphs of α-many different definable functions f1 < f2 < ... < fα such that they
are all continuous, except on a common discrete set of (possible) discontinuities. Certainly,
we can get this for the initial ω-many functions f1, f2, ... by simply defining fn(x) = nth

element of the fibre above x,20 and assuming every fibre had the same tally, we could also
define the final ω-many fα, fα−1, ... by fα−n(x) ∶= (n+ 1)st-last element of the fibre above x.
These functions have a discrete set of discontinuities, but there is, at this point, no way to
get the definability of all of these functions, let alone what we might really want: a uniform
definition collecting all of them.

Before proceeding we will begin by recording a proposition and a definition.

Proposition 3.5.1 (Automatic Uniformity of Tallies): If D ⊊ R2 is discrete, infinite and
definable, with infinitely many fibres, all of which are infinite,21 then letting F ∶ D → N≤N

and fq ∶ Dq → N≤Nq be tallymorphisms for all q ∈ π(X), we can define a function tD ∶
D → N≤α for some α ∈ N such that tD ↾ Dq = fq. In particular, we can define the set
{q ∈ π(D) ∣ Dq has tally ≤ β} for any β ≤ α.

Proof. We have that fq(z) = β iff β = F (z) − F (λDq) =∶ tD(z), a uniform definition in
q ∈ π(D). The α in our statement is just the greatest element of the set

{x ∈ R ∣ x = F (z) − F (λDq) for some q ∈D}

And the final statement is obvious: just define {q ∈ π(X) ∣ F (z) − F (λDq) ≤ β}. ∎

Definition 3.5.1: For a set X as in the statement of Theorem 3.5.1, which has discrete
fibres, and for z ∈ X, we say that α is the fiberwise tally of z in X if it has image α
under the tally of the fibre Xπ(z). In particular, if X is a discrete set D, as in the proposition
above, and we let z = ⟨q, x⟩ ∈ X, then we can define the fibrewise tally of z in X: it is just
tX(z).

The proposition allows us, as an aside, to answer question (d) from Remark 3.2.1:

Corollary 3.5.1: With D as in the proposition, if we additionally had that every Dq had
tally α ∈ N , then letting λ = λπ(D), we have [D]t = [π(D) ×Dλ]t.

20This works since we can just write “y = fn(x) ↔ (y ∈Xx ∧ ∃=n−1z ∈Xx such that z < y)”
21An unneccessary, but simplifying assumption.
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Proof. Let fλ be the tally forDλ, and fπ(D) the tally for π(D). The map F is a tallymorphism
of D to N ≤N , and the map

G(z) = fλ(γDλ) ⋅ (fπ(D)(π(z)) − 1) + tD(z)

sends π(D) ×Dλ to N≤N , and it is easy to check that it is order-preserving. Thus, since F
is a tallymorphism from D to N≤N , G−1 ○ F is a tallymorphism from D to π(D) ×Dλ. ∎

We will start the proof of the theorem by making the following definition, as in [vdD98-a]
(Chapter 3, 1.7):

Definition 3.5.2: Given a subset X ⊆ R2, a point ⟨a, b⟩ ∈ R2 is called normal if there is an
r ∈ R>0 such that either Br(⟨a, b⟩) ∩X = ∅ (and hence ⟨a, b⟩ ∉ X), or Br(⟨a, b⟩) ∩X = Γ(f)
for some continuous (necessarily unique and definable) function f ∶ (a − r, a + r) → R (and
hence ⟨a, b⟩ ∈ X). We also define ⟨a,+∞⟩ to be normal if there is r ∈ R>0 and b ∈ R such
that ((a − r, a + r) × (b,+∞)) ∩X = ∅ (similarly for points ⟨a,−∞⟩).

Note: The sets {(a, b) ∣ ⟨a, b⟩ is normal }, {a ∣ ⟨a,+∞⟩ is normal }, and {a ∣ ⟨a,−∞⟩ is
normal } are definable.

Now, diverging from [vdD98-a], we define the sets

G = {x ∈ R ∣ ∀y ∈ R±∞ ⟨x, y⟩ is normal}, B = {x ∣ x ∉ G}

and call them the ‘good’ and ‘bad’ points, respectively, of R1 (the first coordinate). It is
clear that the sets G and B are definable as well.

We will next show that B is discrete, and hence that G is a union of disjoint open
intervals. But first:

Claim: If a ∈ B, then there is a least b ∈ R±∞ such that ⟨a, b⟩ is not normal.

Proof. This follows immediately since the fibre Xa is discrete and definable: we can define
the set {b ∈ R±∞ ∣ ⟨a, b⟩ is normal}, take its complement inside Xa ∪ {±∞}, and note that
this is a discrete definable set. It thus has a least element and we are done. ∎

Claim: B is discrete.

Proof. This proof is similar to the proof in [vdD98-a] that B, as defined there is not infinite.22

As a subset of R, B not being discrete would imply the existence of a subinterval
(a, b) = I ⊆ B. Define k(x) for x ∈ I to be the unique least element of R±∞ which is non-
normal above x (which exists by the previous claim). We also define j(x) ∶= pXx(k(x)) and
l(x) ∶= sXx(k(x)). Note that for some x ∈ I, either j or l may be undefined, but nonetheless,

22Note that in our case, a definable set not containing an interval is equivalent to discreteness, instead of
finiteness.
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dom j,dom k,dom l ⊆ I. We claim, for a contradication, that the point ⟨x, k(x)⟩ is normal
for some x ∈ I.

Since k is definable on I, by the Monotonicity Theorem, we may assume (by possibly
shrinking I), that k is continuous on I. Now, one of the following four sets must contain an
interval:

dom l ∩ dom j, I − (dom l ∪ dom j), dom l − dom j,dom j − dom l

This is because the union of these four sets is all of I, and the union of four discrete sets is
discrete.

I will deal with the first case, since the others are simpler, and are proven similarly.
In the first case, we are supposing that there is an interval J contained inside dom l ∩

dom j. In particular, the functions j, k and l are all defined on J . Now, again by the
Monotonicity Theorem, we may shrink J so that j, k, and l are all continuous on J .

But since j < k < l where the three functions are defined, in particular, their graphs do
not intersect. Now note that k(x) need not be an element of X: it is just the least b such
that ⟨x, b⟩ is non-normal. So, we define the two sets

J1 ∶= {x ∈ J ∣ ⟨x, k(x)⟩ ∈X} and J2 ∶= {x ∈ J ∣ ⟨x, k(x)⟩ ∉X}.

Since both are definable, and partition J , at least one contains an interval. Replacing
J with that interval, we then have either Γ(k ↾ J) ⊆ X (if J1 contained an interval) or
Γ(k ↾ J) ∩X = ∅ (in case J2 contained an interval). In either case, it is clear that Γ(k ↾ J)
contains only normal points (keeping in mind that j < k < l and all three are continuous
here. But this is a contradiction: for any x ∈ J , ⟨x, k(x)⟩ is normal. ∎

Now so far, we have only used (T), and the proof has largely mirrored the proof in the
o-minimal case. Here though is where things change, and where we do not see how we could
get by this obstacle without using an assumption like (Unbounded Tally).

Claim: If a ∈ G, then the tally of Xx is constant for all x in the interval I = (b, sB(b)), where
b is the greatest element of B less than a (i.e. b = γB<a.)

Proof. Let J = [a, a′], where b < a < a′ < sB(b), and let ρ = a′ − a. What we will prove is
that we can take the function defined locally near z = ⟨a, y⟩ for y ∈ Xa by its normality and
‘continue’ it to the right (or left), in the sense of expanding its domain to include all of J by
a series of extensions.

What we need to obtain is an ε so that for all z ∈X ∩(J ×R), the set Bε(z) is the graph
of a continuous function.

To do this, we start by defining D to be the set of ‘bad distances’:

D ∶= {r ∈ R>0 ∣ ∃z ∈ (X ∩ (J ×R)), Br(z) ∩ X is not the graph of a continuous function}.

We say that r is a bad distance for z ∈X ∩ (J ×R) if z witnesses that r ∈D.
Let ε = 1

3 ⋅ λbd(D). Since D ⊆ R>0 is definable, bd(D) is discrete, and so has a least
element (by definition ≥ 0). We will show though, that this element is strictly greater than
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0. If λ ∶= λbd(D) = 0, then we would have an interval (0, t) ⊆ D for some t ∈ R>0. To see
that this implies a contradiction, first we define, for ⟨x, y⟩ ∈X,

D⟨x,y⟩ ∶= {r ∈ R>0 ∣ r is a bad distance for ⟨x, y⟩}

and we define the following function on J :

h(x) ∶= λ{infD⟨x,y⟩ ∣ y ∈Xx}

This function is well-defined, since for each y in Xx, we have the set of bad distances, and
clearly this set is an interval of the form (b,+∞) for some b > 0. Thus, it has an infimum, b.
And since we have one such value for each element y of the fibre Xx, we have a discrete set
of such values, and there is thus a least element. Note that the infimum b of a set D⟨x,y⟩ is
always positive: normality forces there to be some non-bad, (positive) distances.

Now, since h is a definable function on an interval in R, by the Monotonicity Theorem,
we know that h is continuous on J except on a discrete subset. Furthermore, we may assume
that since D contains an interval (0, t), that on some subinterval, h is continuous and has
image (0, t′) for some 0 < t′ < t. Shrink J to such a subinterval.

Then finally, we may again assume by the Monotonicity Theorem that there is a further
subinterval where h is monotone. (h cannot be constant everywhere on this interval since
we are assuming it has image (0, t′).) In particular, assume without loss of generality that h
is monotonically decreasing here. Let d be the right endpoint of this interval. Then letting
y be the unique value such that h(d) ∶= infD⟨d,y⟩, we have that ⟨d, y⟩ is not normal since y,
by the definition of d, has no non-bad distances.

What we have defined then, is the value ε = ε(J), depending only on our initial choice
of J ⊊ (b, sB(b)) which, by construction, has the property that for all z ∈ X ∩ (J × R), the
box Bε(z) intersects X in the graph of a function.

Now, what we do is define a discrete ‘sampling’ of the interval J , using ε: let r = ρ/ε,
and note that an evenly-spaced discrete set with spacing r and least element a would have to
have greatest element greater than a′; thus, with this in mind, we let β be the least element
of N such that β ⋅ ε ≥ ρ and then define

E = {e ∈ J ∣ e = a ∨ ∃α ∈ N≤β (e = a + α ⋅ r)}

The number β necessary to define this clearly must exist23, and by (UT), the set N≤β is
definable (up to using a parameter for β).24

But now, we can define the set of fibres above E: let EX ∶= (Xe)e∈E. With this set, we
can then define certain discrete unions of ε-boxes, or ‘tubes’ that we can use to continue the
functions defined locally near points of X ∩(J ×R) by the normality of those points. To this

23We are not defining β, we are just choosing it.
24This is the key use of (UT): if we do not assume (UT), it could be that ε is so small, or that ρ is

so large that r is greater than all the tallies of discrete definable sets in R, in which case E would not be
definable.
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end, suppose that z = ⟨a, x⟩ has the property that F (z) − F (λXa) = β; that is, tE(z) = β.
Then we define

A = {⟨u, v⟩ ∈ EX ∣ tEX(v) = β}

and
T = {⟨u, v⟩ ∣ a ≤ u ≤ a′ ∧ ∃ζ ∈ A, ⟨u, v⟩ ∈ Bε(ζ)}

T is one of the aforementioned ‘tubes’, and consists of a union of boxes Bε(ζ) for points
ζ ∈ EX . It is clearly definable, since A is (and A is definable since tEX is). But then
T is a definably connected set containing z, containing some point z′ = ⟨a′, x′⟩, and with
the property that T ∩X is the graph of a continuous function (if it were not, there would
have to be a bad point in J). That is, we have ‘continued’ the function witnessing the
normality of z to the whole interval J . In particular, it is easy to check that z′ will have
F (z′) −F (λXa′) = tEX(z′) = α as well, and that every z∗ in T ∩X will be the αth element of
the fibre above π(z∗).

The goal from here is to use this ability to continue these locally defined functions
to show that the size of the fibres of X above elements between successive bad points is
constant.

(Recall: I = (b, sB(b)) for some b ∈ B, and that J = [a, a′] ⊊ I.)

To this end we start by showing that the tallies of the fibres above elements of J are
all the same. If this were not the case, then suppose without loss of generality first that
the there is some ⟨c, x′⟩ ∈ X such that under the tally map for Xc, x′ has image β and
x′ = γXc; and secondly suppose that ⟨a, x⟩ ∈ X has image β + 1 under the tally map for Xa

(i.e. tEX(⟨a, x⟩) = β + 1).
Now, by the definition of ε, we know that in the neighbourhood (a, a + ε), we have can

define β + 1 continuous functions, f1 < ... < fβ+1. But by applying the continuation process

to each of these functions, we have, by the construction, that the continuations, f̃α will have
f̃1 < ... < f̃β+1, and we will have that they are defined on an interval containing (a, c]. Then,
we notice the contradiction: fβ+1(c) is the (β + 1)st element of the fibre Xc. But then Xc

has tally ≥ β + 1, contradicting that x′ = γXc, and that x′ has tally β under the tally for Xc.
Now, let d be the midpoint between b and sB(b), and take Jρ to be the interval (d −

ρ/2, d + ρ/2). We notice that ε(Jρ) really only depends on ρ, and thus, since

I = (b, sB(b)) = ⋃
ρ=∣sB(b)−b∣

b∈B

Jρ,

and since there is a constant tally for all the fibres of X above elements of Jρ by the above
continuation argument, this same tally will work for all Jρ, and hence for all x ∈ I. ∎

With this under our belts, we can now complete the proof of the theorem:

Proof. (of Theorem 3.5.1) We have shown that for successive elements of B, the tallies of
fibres of X in between are constant. What we will show is that there is a way to go from
this to a maximum for the tallies of all the fibres of X.
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We define the skeleton of X, Sk(X), in the following way: first, let G1/2 be the set of
midpoints between elements of B ∪ {±∞}; that is,

G1/2 = {x ∈ G ∣ ∃b ∈ B such that x =
b + sB(b)

2
∨ x = λB − 1 ∨ x = γB + 1} .

Then we define:
Sk(X) ∶= {⟨x, y⟩ ∈X ∣ x ∈ G1/2 ∨ x ∈ B}

That is, the skeleton of X is the union of the fibers of X above only the elements of B, and
the midpoints between the elements of B.

By definition, Sk(X) is discrete, and by the previous claim, we know that the maximum
size of a fibre of X is the maximum size of a fiber of Sk(X). Thus, we can note at this point
that we could take the tally of the collapse of the skeleton (it being a definable discrete set),
and this would give us a definite bound on the size of the fibres of Sk(X), and thus of X.
That is, we can already conclude that there is a uniform bound on the size of the fibres; we
will further show that we can obtain a strict bound on the size of the fibres, in the sense of
this maximum tally being obtained.

To get a strict bound, we start by taking the collapse of the skeleton of X,

X̌ ∶= ↓Sk(X).

Note that for each fiber of the skeleton, it is compressed into some interval [q, q + δ(q)] (see
the definition of the collapse of a set: Definition 3.2.3).

Now since X̌ is a definable discrete set, by assumption, it has a tallymorphism fX̌ onto
an initial segment of an nn-part, with maximum element NX̌ . We define the set

M ∶= {x ∈ X̌ ∣ x = q + δ(q) for some q ∈ π(X̌)}

By definition, M is a discrete definable set that consists of the image under the collapse
of the greatest element of each fibre in the skeleton of X.

We then let M̃ ∶= fX̌(M), and we define α to be the greatest element of the set

{x ∈ R>0 ∣ x = ∣m − pM̃(m)∣ for some m ∈ M̃ − {λM̃}}.

Since this set is definable, and since it consists of exactly the distances between succes-
sive elements of M̃ , it gives the set of tallies of the fibers of X. That is, ∣m − pM̃(m)∣ is the
distance in the nn-part that R is tallying with between fX̌-images of successive elements of
M . But such distances are, by definition, the tallies of sets [q, q + δ(q)] ∩ X̌, each of which
is just the number of elements of the fibre of X above q.

Thus, since α is its maximum, α is the exact maximum size of the fibers of X. In
particular, there is some fiber of X of size α, and there is no fiber of size greater. ∎
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3.6 Approximate Tallies and Overtallies

In this section we try to rectify the problem we noticed with tallies: there are some LOM+DC
+dPHP structures with discrete definable sets that cannot be tallied in any LOM+DC+
dPHP expansion. In order to fix this, we introduce the idea of approxmiate tallies, and over-
and undertallies. We are in the same sort of situation as in the previous sections: R is an
expansion of real closed field satisfying LOM+DC+dPHP, and N is a fixed nn-part for R.

Definition 3.6.1:

● Let X be a discrete definable set in R. We say that a map f ∶ X → N≤N is an
approximate tally of X if it is a definable order-preserving injection.

● We say that X has tally bounded above by N , if there is an approximate tally f
as above.

● We call a map f ∶ X → Y , for Y another discrete definable set, an approximate
tallymorphism if it is an order-preserving injection which factors as f = h−1 ○ g, for
g an approximate tallymorphism from X to N≤N for some N , and h an approximate
tallymorphism from Y to the same initial segment.

The definition of approximate tally is supposed to be a way to capture the idea that we
can in some sense ‘guess’ at the number of elements of X. Before getting further into these,
we record a quick lemma relating this notion to tallymorphisms:

Lemma 3.6.1: If X has tally bounded above by N ∈ N via a map f , and there is a definable
injection g from N≤N to X, then X is tallied by N≤N . (Note that we do not assume that g
is order-preserving).

Proof. Compose the maps to get F = g ○ f . Then since F is a definable injective self-map of
X, it is surjective as well by dPHP. But then for every x′ ∈X, there is some x ∈X such that
g(f(x)) = x′. So in particular, if g were not surjective, we could take x′ ∉ g(N≤x) ⊆ X, and
derive a contradiction. So g is surjective. Similarly, if f were not surjective, we would then
have n ∈ N≤N such that n ∉ f(X) ⊆ N≤N . But then since g is injective, the image g(n) ∈ X
would not be hit by F . Thus, f is a tallymorphism. ∎

We can always define a number which is a discrete set’s overtally (a bound on what
the tally of the set ‘could’ be were it talliable):

Letting X be a definable discrete set in R1, we let wX be the minimum distance between
any two successive elements of X. (As we saw in the previous section, this set is definable
and discrete, and so indeed has a least element.) We then call the following number the
(default) overtally for X:

ot(X) ∶= 1 + γ{
1

wX
⋅ (x − λX) + 1 ∣ x ∈X}
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In particular, we define the standard position of X to be the set defined in the definition
of ot(X):

St(X) ∶= {
1

wX
⋅ (x − λX) + 1 ∣ x ∈X}

Fact 3.6.1: St(X) has least element 1, second element 2, and wSt(X) = 1.

Because of this fact, we know that St(X) has, at most, γSt(X) elements (possibly
rounded up by 1) in the sense of tallies: this is because the ‘largest’ set with the restrictions
listed in the Fact would be an evenly-spaced set with least element 1, greatest element
γSt(X), and spacing 1. This set, by virtue of being evenly-spaced, would in fact have a
tally,25 and the tally would have to be γSt(X) or γSt(X) + 1. This is the reasoning behind
our definition of ot(X): it is the absolute largest that the tally of X could be if X were
tallied in some expansion of R.

Note that we can define the overtally of X without making any assumptions about
what sets or maps are definable in R. In particular, it does not require that any (interval)
initial segments of N are definable in R. However, even though we can make this definition,
it lacks teeth without any such definable interval initial segments: we can see that ot(X) is
in fact a bound, but we are not able to define an approximate tally for X. An approximate
tally for X would tell us not only a bound on the size of X, but would, for each element
of X, give its approximate relative position in the set X. But if we have that N≤ot(X) is
definable, then we can define the following (default) approximate tally for X:

atX ∶X → N≤ot(X), atX(x) ∶= γ((N≤ot(X))≤St(x))

where St(x) is just the image of x under the standard position map, i.e. 1
wX

⋅ (x − λX) + 1.
Essentially atX takes x to its position in St(X), then takes the (unique) ‘natural number-
part’ of x.

Also note that the definitions of ot(X), St(X), and atX are all defined, so far, only for
sets X in one ambient dimension. However, we can quickly extend them to higher ambient
dimensions by defining ot(X) = ot(↓(X)), St(X) = St(↓(X)) and atX(x) to be at↓(X)(↓(x)).

These concepts are quite weak (especially without defining any initial segments of N )
in that overtallies sometimes give drastic overestimates of the ‘true’ size of the set and can
give very different answers for sets which only differ by a single element or small set. We
note this only to make a point of how weak this notion is.

Example 3.6.1: Let X be the set {−1,2,8}. Then wX = 3, St(X) = {1,2,4}, and ot(X) = 5.
However, Y = {−1,2,8,1010} has only one more element, but we have ot(Y ) ≈ 3 × 109, a
significant difference considering that we have only added 1 new element.

The example points out that the value of ot(X) really only depends on the first and last
element, combined with whatever is the least distance between elements. So even though

25Recall that the map would be given by subtracting λX − 1 from the set, then dividing by the spacing.
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that minimum distance might only be realized once in that set, and the spacing be very
different throughout the rest of the set, it still affects the overtally. An overtally would
certainly not be useful in a real-world application!

With the weakness of our notion duly noted, we proceed to prove an analogue of the
Uniform Pseudofiniteness theorem from the previous section.

3.6.1 Approximate Uniform Pseudofiniteness (Arbitrary
Ambient Dimension)

In this subsection, we will only be assuming the following much weaker verion of (Tally):

(Approximate Tally): every discrete definable set R has a definable approximate tally.

Just to be clear, this is equivalent to assuming only that some (interval) initial segments
of N are definable: once we have those, from what we saw in the previous subsection, we can
then define default overtallies and so on. We mention a conjecture related to this assumption
in the next (and last) subsection of this chapter.

First, we have a version of Proposition 3.5.1. And though we will not be using it we
record it anyway for completeness:

Proposition 3.6.1 (Automatic Uniformity of Overtallies): If D ⊊ R2 is discrete, infinite
and definable, with infinitely many infinite fibres, then letting uatD be the map sending
z = ⟨q, d⟩ ∈ D to γ((N≤ot(D))≤St(d)), we have that uatD ↾ Dq = atDq for all q ∈ π(D). Thus,
uatD collects all of the default approximate tally maps for the fibres of D, uniformly in
q ∈ π(D). In particular, we can define the set {q ∈ π(D) ∣ Dq has tally bounded by β} for
any β ≤ ot(X).

Note that uatD maps into the same initial segment, N≤ot(D), that F does; that is, it
does not increase the overall approximate tally of the set. Nor does it increase the overtally
of the individual fibres.

Theorem 3.6.1 (Approximate Uniform Pseudofiniteness (Arbitrary Dimension, Bounded
Variation)): Let X ⊊ R1+n be definable and suppose that for all r ∈ R1 the fibre Xr of X
above r is discrete. Furthermore, suppose that X is of bounded variation in the following
sense: there are µ,M ∈ R>0 (depending on X) such that for any two z, z′ ∈ Xx for some
x ∈ R, we have µ < ∣x − x′∣ <M .26 Then assuming (Unbounded Tally) we can find α ∈ N
such that for every r, the fibre Xr has tally bounded above by α (in the sense of Definition
3.6.1).

26Note that such a set need not be bounded (that is, contained in some open box): take X to be the graph
of x ↦ 1/x: each fibre has size 1, and so will satisfy the conditions so far set out. That is, the condition of
bounded variation (by defintion) only affects places in X with fibres of size > 1.
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Proof. The proof of this is actually quite different from the proof of the version for tallies.
However, parts of that proof did not directly rely on the assumption (Tally). In particular,
by running the safe proofs here, we can again define normality and the sets of ‘good’ and
‘bad’ points, G and B in R1. In addition, we have the first two claims of that proof: that for
every b ∈ B, there is a least element of the fibre above b which is not normal, and secondly
that the (definable) set B is discrete.

Now, our proof will actually be much quicker from hereon. We start by noting that we
defined St(X) for higher-dimensional discrete sets X, and thus strictly, St(X) is not defined
for our set X.

However, we will define the following related set S:

S ∶= {⟨q, y⟩ ∈ R2 ∣ q ∈ π(X) ∧ y ∈ St(Xq)}

Ideally, we would like to say that α = ot(S) is the desired bound. However, we notice
immediately that there are two potential sorts of possible problems this could lead us to.
We illustrate these with a simple example:

Let X be the union of the graphs of the three functions x ↦ 2 + x−2, x ↦ 0 and
x↦ 1. Then as r → 0, we can see that γSt(Xr) → +∞, since the minimum distance between
elements, near 0 remains 1, while the greatest element of Xr goes to +∞. Thus, in St(Xr),
that top element will still go to +∞.

Similarly, as r → ±∞, we have that the minimum distance between elements of X goes
to 0. But then the difference between the first and last elements of the fibre will go to ∞,
so we have that γSt(Xr) again goes to +∞.

However, we specifically have made the assumption of bounded variation to deal with
these problems. We can actually immediately derive our result:

Since X is of bounded variation, we know that for any a ∈ Rm, µ < wXa (where wXa
is the minimum distance between successive elements of the set Xa) and γXa − λXa < M .
Thus, since in general the image of γY under St is always 1

wY
⋅ (γY − λY ) + 1, we have that

otXa = γSt(Xa) =
1

wXa
⋅ (γXa − λXa) + 1 ≤

M

µ
+ 1

That is, the default overtally for Xa is bounded by the fixed constant M/µ + 1. Since this
value does not depend on a ∈ Rm, we have that the number M/µ + 1 is a uniform bound.

∎

One might hope for a stronger statement of uniform finiteness (that is, which does
not restrict the definable sets). However, we would then need to refine the definition of
approximate tally to handle this: the examples given during the proof above show that
there is, for general definable fibrewise-discrete sets X, no upper bound on the approximate
tally. The way that this would have to work is that we would have to give a more nuanced
definition of approximate tally which did not rely only on the two values wX and γX − λX .
Or else, we would have to ask for something slightly weaker in the statement of the theorem.
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For example, we could ask that there be an α such that for a ∈ Rm, there is a neighbourhood
B ∋ a and a (not neccesarily R-definable) ‘deformation’ fB ∶ X × [0,1] → B × R such that
the image has overtally less than α, and such that f preserves the ‘abstract tally’ of the
individual fibres, except at fibres above bad points, in the sense being almost everywhere
continuous (or something possibly some stronger condition). A proof would work in this
case by showing that the set G of good points is always open in Rm (as in the o-minimal
case), and then showing that for any point a ∈ G there is a function fB as above on some
neighbourhood of a. The latter part would work by piecing together the graphs of the local
functions defined in neighbourhoods of points of X in the fibre above a.

3.6.2 A Conjecture on Approximate Tallies and nn-Parts

The following conjecture would be very important to settle. If it is true, then the result in the
previous section would show that we could always extend R to a structure with approximate
tallies for all of its definable sets.

Conjecture 3.6.1: For any LOM+DC+dPHP/pseudo-o-minimal expansion of a field, R,
there is some nn-part N such that (R, (N≤N)N∈N ) is also LOM+DC+dPHP (respectively,
pseudo o-minimal).27

This conjecture has some good intuition behind it, since it works if R is assumed to
be ultra-o-minimal. To be clear, we do not believe that the main roadblock to proving
is in securing an nn-part: if no interval initial segments of nn-parts are definable in R
already then we hope that any choice of nn-part in R leads to an LOM+DC+dPHP (resp.
pseudo-o-minimal) expansion consisting of R together with all of this nn-part’s (interval)
initial segments, and that all of these structures are isomorphic. If R does define some
interval initial segments of some nn-part (recall that pairwise, such sets either extend or are
extended by the other), then we hope that any nn-part which extends ⟨N≤N⟩ for some such
initial segment gives rise, again, to a nice expansion of R (and again, that the choice should
be irrelevant, up to isomorphism).

27That is, we may need to assume pseudo-o-minimality to make this work; for now it is quite unclear if
this will be the case.

59



Chapter 4

Some Ultra-O-Minimal Structures
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4.1 Introduction

In this chapter, we will investigate examples of ultra-o-minimal structures. A few of these
we will be able to show are actually o-minimal, including a function related to the expo-
nential function. These are ‘new’ examples of o-minimal structures, in that they are not
even mentioned elsewhere in the literature. And though we are not able to answer some of
the natural questions that we might ask about the classes of examples we will introduce, we
make a start at the study of them here.

First of all, we will consider the family of examples consisting of ultraproducts of poly-
nomials over R ⊧ RCF considered as functions defined in ultrapowers of R. These functions
can naturally be called pseudopolynomials. Some specific subfamilies of these will be studied,
including the pseudopolynomials which are ultraproducts of Taylor polynomials for real total
analytic functions1 and total Pfaffian functions in particular (see Definition 4.2.3). It ends
up that at least some such pseudopolynomials will be o-minimal (i.e. the ultraproduct we
construct will be o-minimal). The most important example that we can show is o-minimal,
is the ultraproduct of the Taylor polynomials for the exponential function, ẽxp. Some of
our examples will not be o-minimal: replacing exp with sin in the previous example, we will
see - as we might expect - that we get a non-o-minimal structure. We will show that this is
actually systemic: any pseudopolynomial consisting of Taylor polynomials for a real analytic
function f with the property that (R, f) is not o-minimal will result in a structure (R, f̃)
which is not o-minimal. In fact, we will see that this can be generalized: I will introduce the
notion of a pseudopolynomial approximation, of which these are all examples, and show that
if we take such an approximation, f̃ , of a real function f with (R, f) non-o-minimal, then
the structure (R, f̃) will also be non-o-minimal. This result is not as straightforward as it
may seem at first glace: the fact that (R, f) is not o-minimal does not immediately show
that f̃ will be non-o-minimal: even if ϕ(x) is an LRCF (f)-formula which defines a subset of
R with infinitely many components, it is not clear prima facie that reinterpreting f as f̃ in
ϕ would necessarily result in a formula for a definable set with infinitely many components.
So to prove this result, we apply some recent work of Marikova on o-minimal structures with
an added ‘standard part map’ to derive our result.

A second family of examples will come from what I call pseudodynamical functions : they
are infinite iterates of a fixed unary function f . This will rely on noting that in general ultra-
o-minimal structures, there is a completely natural notion of the αth-iterate of a function f .
Some interesting examples of these functions will be put forward: when f is a polynomial
or rational function, the theory is already difficult; and when f is exp, the question of its
o-minimality is seemingly quite intractable at the moment. However, the latter function
being o-minimal would answer a long open question about o-minimal structures.2 We will

1That is, real functions with everywhere convergent Taylor series - in particular, those that are restrictions
of entire complex analytic functions to the real axis.

2At least, it would answer it for general o-minimal structures: the case where the universe is the reals
would still be an open question.
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not, in the end, have that much to say about this example: as we expected from the outset,
the study of this example is quite difficult: it involves considering the ‘eventual’ behaviour of
sets defined by exponential polynomials, and since the latter are already quite complicated to
deal with, this problem (even in low dimensions, and simplified particular cases) has resisted
our efforts. Nonetheless, I present some thoughts about how to approach it.

In this chapter, the focus will be exclusively on ultra-o-minimal structures. As such,
we will assume from now on that R is an ultra-o-minimal expansion of a real closed field.
In particular, the default presentation for R will be ∏i∈IRi/U for I an index set and U a
(non-principal) ultrafilter on I. Most of the actual examples will have I = N, so sometimes
we will assume this without specifically reminding the reader. Most of our examples will be

of the form R = (RI
/U ,G), in that the language will consist of LRCF (G) for a new unary

function symbol G, and the structure R will be, in the reduct to LRCF , just an ultrapower of
R. In particular, all of our structures will at least be real closed fields (so if we write (R,P ),
we mean (R,P ) implicitly).
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4.2 Pseudopolynomials

In this section, I will discuss examples of the following form: let R ⊧ RCF, and let (pi)i∈I be
an I-indexed sequence of polynomials pi ∈ R[x] (where x could be a tuple of variables), and
consider the LRCF (p)-structure consisting of R = (RU , (pn)n∈N/U), writing p̃ for (pn)n∈N/U
in what follows.

Definition 4.2.1: We call a function p̃ as above a pseudopolynomial (over RU).

● The set of pseudopolynomials naturally has a ring structure, just like the ring of (ordinary
polynomials), and we write RU[x]∞ for this ring.3 See [BDLV79] for more on this topic.
We note that we have the following natural system of embeddings (where R[x]∞ is the
subring of RU[x]∞ consisting of those pseudopolynomials with coefficients only in R):

R ↪ R[x] ↪ R[x]∞

↓ ↓ ↓

RU ↪ RU[x] ↪ RU[x]∞.

● We define the degree of p̃ ∈ RU[x]∞ to be α = ∏i∈I deg(pi)/U ∈ N∗.

4.2.1 Taylor Pseudopolynomials

Let f be a real analytic function with Taylor polynomials (Tn)n∈N defined on the set dom f . In
particular, for every x ∈ dom f ⊆ R, we have limn→∞(Tn(x)) = f(x). Thus, in R = (RU , T̃ ) =
(RU , (Tn)n∈N/U), we have for all x ∈ dom f ⊆ R, that T̃ (x) = f(x)+εf(x) for some infinitesimal
(not necessarily definable) function εf .4 By definition, εf(x) equal to T̃ (x) − f(x); i.e it is
the ‘error function’ for the approximation of f by the Taylor polynomials (Tn)n∈N.

We call a function f̃ = T̃ for some real analytic f with (Tn)n∈N its sequence of Taylor
polynomials the (default) Taylor Pseudopolynomial for f .

We use the word ‘default’ because, for example, letting σ be a permutation of N, we
have that f̃∗ ∶= ∏n∈N Tσ(n)/U will also satisfy f̃∗(x) = f(x) + ε∗f(x) for some infinitesimal

function ε∗f . Similarly, the same property is also satisfies by f̃∗∗ ∶= ∏n∈N Tn+1/U , and many
other such pseudopolynomials.5

Example 4.2.1:

● Tn ∼ P for some polynomial P . Thus, Tn = P for sufficiently large n. Thus, P̃ = P .

3This generalizes the notation ‘R[x]n’ for the polynomials over R of degree ≤ n.
4We are not assuming that εf(x) is positive, let alone non-zero everywhere.
5Note that these two examples are not the same: n ↦ n + 1 is not a permutation of N. The most

general statement of these examples is that if σ is a self-map of N with infinite image, we get a new Taylor
pseudopolynomial with the same property.
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● Tn ∼ exp. We will see below that this structure is o-minimal.

● Tn ∼ sin. This structure is not o-minimal: since s̃in(x) = sin(x) + ε(x) for all x ∈ R for
some infinitesimal function ε, in particular letting

Z(s̃in) ∶= {x ∈ R ∣ s̃in(x) = 0},

we have that Z ∩R has infinitely many components. That is, x ∈ Z ∩R if and only if there
is a (unique) n ∈ Z such that x = nπ + ε(x), and since ε is infinitesimal, Z ∩R is discrete
(actually, since Z is an ultraproduct of discrete sets, it is discrete everywhere, not just on
R). Thus Z, a definable set in R, has infinitely many components as well.

A consequence of Theorem 4.2.1 below is that if f is real analytic and (R, f) is not
o-minimal (as with f = sin), then (R, f̃) is also not o-minimal. Also, we will see later that if
f is a special kind of real analytic function, called Pfaffian, then (R, f) is o-minimal, and if
f̃ is also Pfaffian, then we obtain that (R, f̃) is o-minimal as well. At this point, this is the
extent to which we can classify the examples of Taylor pseudopolynomial approximations.

4.2.2 General Pseudopolynomial Approximations

There is no reason why we need to specifically restrict to the cases where P is a sequence of
Taylor polynomials for a function. In general:

Definition 4.2.2: If f is a function, and f̃ = ∏i∈I fi/U a pseudopolynomial such that for all
x ∈ dom f ⊆ R, we have limn→Pn(x) = f(x) + εf(x) for some infinitesimal function εf , then

we say that f̃ is a pseudopolynomial approximation of f .

The study of pseudopolynomial approximations seems quite interesting due to the com-
bined facts that (a) a pseudopolynomial approximation is, on a convex neighbourhood of 0
containing the finite elements of R, only off from the given function f by an infinitesimal;
and (b) that most likely, f will not be definable in R. The latter is likely because for most
functions f , f̃ and f will diverge from each other eventually (i.e. away from the aforemen-
tioned convex set). For instance, with f = exp, it is a consequence of Lemma 4.3.1 that for
any pseudopolynomial approximation, f̃ , eventually ∣ exp−f̃ ∣ > r for any r ∈ R.

Theorem 4.2.1: If f is a function such that (R, f) is not o-minimal, and if f̃ = P̃ is some
pseudopolynomial approximation of f , then (R, f̃) is not o-minimal.

We note that as in the case where f = sin, the conclusion is almost immediate. However,
for general f , a formula which defines (with f) a subset of R witnessing that f is not o-
minimal does not, seem to have to a priori, be a formula which (with f̃) defines a subset
of R witnessing that f̃ is not o-minimal. In particular, the formula could contain many
quantifiers and so geometrically be quite a mess of projections and complements etc.
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So what we will do is apply some recent work of Marikova in [Ma10, Ma11]. In the second
referenced paper, she proves the following theorem (which I preface with some notation from
her paper):

Let R be an o-minimal expansion of a real closed field, V a proper convex subring of
R, and let st ∶ V → K be the corresponding residue (i.e ‘standard part’) map with kernel m,
and residue field K = V /m. Let stX ∶= st(X ∩ V n) for X ⊆ Rn, and let Kind denote the K

expanded by symbols for all the sets stX ⊆ Kn for definable X ⊆ Rn for some n. Say that
(R,V ) ⊧ Σ(n) if for every definable X ⊆ [−1,1]1+n there is ε0 ∈ m>0 such that stXε0 = stXε

for all ε ∈ m>ε0 . And say that (R,V ) ⊧ Σ if (R,V ) ⊧ Σ(n) for every n.

Theorem 4.2.2 ([Ma11], Theorem 1.2): The following are equivalent:

1. Kind is o-minimal

2. (R,V ) ⊧ Σ

3. (R,V ) ⊧ Σ(1).

She also proved the following in the earlier paper:

Lemma 4.2.1 ([Ma10], Lemma 3.4): Let R be ω-saturated. Then letting V be the convex
hull of Q in R, we have (R,V ) ⊧ Σ.

Proof. Using this result, the proof of our result is a quick application: if R′ = (R, f̃) were
o-minimal, then since ultraproducts are ω-saturated, we let V be the convex hull of Q in R′,
and obtain that (R′, V ) ⊧ Σ. But then Kind is o-minimal. But since (R, f) is a reduct of
this structure, it must be o-minimal too, a contradiction. ∎

We would also like to eventually show the converse of this theorem. A proof of this
would likely rely on the properties mentioned before the theorem: in some sense, f̃ has
two distinct pieces: the piece where it is infinitesimally close to f , and the part where they
separate. If a set were definable in R, (assuming that f is o-minimal), then we would like to
show that it comes from a definable set in (R, f), by replacing the occurences of f with f̃ ;
and that in virtue of this, there is a way to break this set into the part defined where f̃ ∼ f ,
and the part where f̃ ∼ c ⋅xr for some c, r. (That f̃ is eventually ∼ c ⋅xr is again a consequence
of Lemma 4.3.1 below.) The hope is that it would then be fairly striaghtforward to show
that each piece is o-minimal.

4.2.3 Pfaffian Functions

There is much to know about Pfaffian functions and their position within the theory of
o-minimality. For a short survey of the basics and their relevance to o-minimality, see
[Ma97]. Pfaffian functions are always real analytic, and in particular, include the exponential
function. The definition below specializes to the standard definition (i.e for when R below
is o-minimal) but also works for our more general context:
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Definition 4.2.3: Let R be an LOM+DC expansion of an ordered field. Let f1, ..., fs ∶ R → R
be definable and C∞. We say that (f1, ..., fs) is a (one-variable)6 Pfaffian chain in R if
f ′i ∈ R[x, f1, ..., fi] for i = 1, ..., s. A definable map F ∶ R → R is a (one-variable) Pfaffian
function in R if F ∈ R[x, f1, ..., fs] for some Pfaffian chain (f1, ..., fs) in R.

Crucially, the definition requires that the F and the functions f ′i be ordinary polynomials
over K. In particular, they each must have some finite degree. With this in mind, we define:

Definition 4.2.4: The complexity of a Pfaffian function F as in the above definition is the
sequence (s,deg q, (deg pj)j≤s), where F (x) = q(x, f1(x), ..., fs(x)), and f ′j(x) = p(x, f1(x), ...,
fj(x)). (That is, the complexity of F is the sequence consisting of the length of the chain,
and the degrees of all the polynomials witnessing the definition.)

With that definition, we can record the following theorem. It is the tool that we need
for our examples:

Theorem 4.2.3 ([FS10]): Let R be an LOM+DC expansion of a field by a family of Pfaffian
functions. Then R is o-minimal.

In particular, this says that if a function in an ultra-o-minimal structure is Pfaffian in
the above sense, then it is o-minimal.

In this particular case though, we do not need the full power of the theorem above. In
fact, there is a significantly different and far shorter proof of the weaker version that we are
using. But before we state and prove it, we record a couple of important facts we will use
about Pfaffianity in the o-minimal setting, specifically:

Theorem 4.2.4 (see [Ma97], Corollary 6.1): Let ϕ(x, y) be a quantifier-free LPf, which is the
language LRCF augmented by a symbol for all Pfaffian functions, and let RPf be the structure
consisting of the real field together with the standard interpretations of all of these functions.
Then there is a number N such that Z = {x ∈ Rn

Pf ∣ RPf ⊧ ϕ(x, a)} has at most N connected
components for all a ∈ R.

This implies that for a quantifier-free formula, there is a bound on the number of
connected components that the set that formula defines in R which is independent of the
parameters. But we also have the following:

Theorem 4.2.5 ([Wi96]): If R is an expansion of the real field by C∞ functions such that
the quantifier-free definable sets have finitely many connected components and such that this
bound is independent of parameters, then R is o-minimal.

This in particular, implies that the structure RPf is o-minimal. We will not use that,
but it is an important consequence. Instead we will use the combination of facts to prove
the aforementioned weaker version of Theorem 4.2.3:

6The definition of Pfaffian functions can be extended to higher arity functions, but we will not require
this for our examples.
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Lemma 4.2.2: If R is an o-minimal ultraproduct of o-minimal expansions of a real closed
field, then its expansion by a family of Pfaffian functions is also o-minimal.

Proof. Let R = ∏i∈IRi/U be an o-minimal expansion of a real closed field, and let (Fj)j∈J be
a family of Pfaffian functions. We will show that any reduct (R, F1, ..., Fn) of (R, (Fj)j∈J)
is o-minimal. This suffices since if the latter were not o-minimal, there would be a formula
ϕ(x) (possibly in many variables), which defined a set with infinitely many components.
However, ϕ could only mention finitely many of the functions Fj, and so R together with
these functions would already be non-o-minimal. In fact, we will only prove it for n = 1,
since the proof is the same, only requiring more indices to keep track of. Thus, in what
follows the subscript n on Fn refers to the index in the ultrafilter.

Let ϕ(x, y) be a quantifier-free formula. Now since each index model Rn ∶= (R, Fn) is
an expansion of R by a C∞ function, Khovanskii’s theorem (Theorem 4.2.4) tells us that
there is a number Nn depending only on the complexity of Fn which bounds the number of
connected components of ϕ(Rn, a) independent of the parameters a that are chosen.

Since the function F is an ordinary polynomial in R[x, f1, ..., fs], it has some finite
degree d. But then in U -most index models, the function Fn also must have degree d as a
polynomial in R[x, fn,1, ..., fn,s]. We can make the same obvservation about the polynomials
qn,i which witness f ′n,i ∈ R[x, fn,1, ..., fn,i]. And finally, since s is finite, the length of the
Pfaffian chain (fn,1, ..., fn,sn) must be this finite number s in U -most index models as well.

But the complexity of F is determined by exactly these finite quantities; thus, in U -
most index models, the Fn have this fixed complexity. But the bound on the components
of ϕ(Rn, a) depends only on the complexity. Thus, there is a uniform bound N on the
components of ϕ(Rn, a) that does not depend on the parameters. Thus, this is also a bound
in R. But then, Wilkie’s theorem (Theorem 4.2.5) implies that R is o-minimal. ∎

4.2.4 ẽxp is O-Minimal

As the title suggests, we will show in this section that (RU , ẽxp) is o-minimal. We will prove
this by showing that it is a reduct of an o-minimal structure, and we will show that using
the lemma just proved in the previous section, Lemma 4.2.2.

Extend LRCF by a new function symbol f , and two new constant symbols, c and d.
In this extended language, let R = ∏n∈N>0

Rn/U for U any non-principal ultrafilter, where

Rn consists of R with the interpretations fRn = (x ↦ xn), cRn = n and dRn = n!. These

structures are clearly o-minimal. In R, we write N = cR = (1,2,3, ...)U and xN−1

(N−1)! for the

function 1
dR

⋅ fR (i.e. the function x↦ (1, x, x
2

2! ,
x3

3! , ...)U .)

Corollary 4.2.1 (Of Lemma 4.2.2): (R, ẽxp) is o-minimal.

Proof. Define the following restricted functions:

f1 ∶=
1

x
↾ (0,∞),
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f2 ∶=
xN

N !
↾ (0,∞),

and f3 = F ∶= gR
′
↾ (0,∞) = ẽxp ↾ (0,∞).

Note that f1, f2 and f3 form a Pfaffian chain for F (at least, relative to the domain (0,∞)):
by definition F = f3, and we have

f ′3 = ẽxp′ = (0,1,1 + x,1 + x +
x2

2
, ...)U = (1,1 + x,1 + x +

x2

2
, ...)U − (1, x,

x2

2
, ...) = f3 − f2,

f ′2 = (N − 1) ⋅
xN−2

(N − 1)!
= (N − 1) ⋅ f1f2

and f ′1 = −f
2
1

Thus, F is a Pfaffian function relative to the domain (0,∞).
Similarly, let G = ẽxp ↾ (−∞,0) and define g1, g2 and g3 in analogy with f1, f2 and f3

above, but with their domains restricted to (−∞,0). By the same reasoning, g1, g2, and g3

also form a (restricted) Pfaffian chain and thus G is also a (restricted) Pfaffian function.
Now, the structure (R, F,G) is an ultraproduct of o-minimal structures, expanded by

a (two-element) family of Pfaffian functions.7 Consequently, by Lemma 4.2.2, this structure
is o-minimal. But since ẽxp is definable in this structure, we have that the reduct (R, ẽxp)
is o-minimal as well. ∎

4.2.5 A Variant of ẽxp Is Also O-Minimal

There are other choices of pseudopolynomial approximations of exp which are Pfaffian as
well.

It is well known that limn→∞(1 + x
n)

n = expx. With this in mind, we define Pn(x) =
(1 + x

n)
n. (Note that these polynomials are certainly not the Taylor polynomials for exp.)

And we let P = ∏n∈N>0
Pn/U .

Then the function P will also be Pfaffian, so:

Corollary 4.2.2: (R, P ) is o-minimal.

Proof. Doing a proof similar to the one in the previous section, we compute

P ′ = N (1 +
x

N
)
N−1

⋅ (
1

N
) = (1 +

x

N
)
N−1

= P ⋅ (
1

1 + x
N

)

7The fact that F and G are technically restricted is unimportant since they are restricted to single
intervals. (Though it would be important if we restricted them to a Cantor set, for example!) We could
trivially extend them to total functions (along with the fi and gi) and ẽxp would still be definable in this
structure, of course.
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and (
1

1 + x
N

)

′

=
− 1
N

(1 + x
N )2

=
−1

N(1 + x
N )2

= −
1

N
⋅ (

1

(1 + x
N )

)

2

∶

Thus, we can define q2 = Q = P ↾ (0,∞), and q1 =
1

1+ x
N

. It is easy to see that Q is (restricted)

Pfaffian, and that an analogous definition works to the left of 0. The rest is the same. ∎

An open question is whether this will be true for any pseudopolynomial approximation
of exp:

Question: If P is a pseudopolynomial approximation of exp, or in more generality, of any
Pfaffian function, is P also Pfaffian, and in particular, is (R, P ) also o-minimal?

4.3 Pseudodynamical Functions

In this short section, we will discuss another family of examples of ultra-o-minimal structures.
And though we will have less that we can specifically conclude about them, we will discuss
the importance of one of the examples of this family, and the relationship of this family to
other problems in model theory.

4.3.1 Notation and Some Definitions

Suppose that R = (RU , ...), and that f ∶ R → R is some function on R. Then the ultraproduct

∏ı∈I(f
(αi))/U for some α ∈ N∗ ⊊ RU is called the αth-iterate of f .

Note that it is not necessarily the case that the function f will be definable in (R, f (α)).
So we will assume that f is definable already in R, even though in some cases (for example
when f = exp), we could making this assumption.

Definition 4.3.1: For f ∶ R → R a unary function on a real closed field R, we call the family
of functions (f (α) ∶ R → R)α∈N∗ a pseudodynamical system, and we refer to functions
which are the αth iterate of some function f as pseudodynamical functions.

Note that if U were principal, and R = R = R, then a pseudodynamical system is just a
dynamical system in the ordinary sense.8

4.3.2 Polynomial and Rational Examples

From now on, let I = N>0 and R = R (and thus R = RU for some ultrafilter U on N>0). And
fix an infinite N ∶= ∏k∈N>0

k/U = (1,2,3,4, ...)U .

8This definition is interchangable with various other possible definitions of a ‘dynamical system’: for
instance, is it similar to saying that a dynamical system consists of a set X together with a self-map f . In
our case, we could also just as easily assumed that dom f ⊆ R, but since all our examples will be total we
will just assume that f is too.
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If f is chosen to be a polynomial, we will find already that our problem is quite difficult
if we set as our task the classification of for which f , will (R, f (N)) be o-minimal.

Example 4.3.1:

1. f = rxn, for some n ∈ N and r ∈ R≠0.

⋅ if n = 0, f (N) ≡ r.

⋅ otherwise, f (N)(x) = rn⋅(N−1)xn⋅N .

2. f = rx−n, for some n ∈ N>0 and r ∈ R≠0.

⋅ let K = (1,1 − n,1 − n + 2n,1 − n + 2n − 3n, ...)U = ∑
N
k=1(−1)k−1 ⋅N .

⋅ then either f (N)(x) = rKx−n⋅N (if {1,3,5, ...} ∈ U)

⋅ or f (N)(x) = rKxn⋅N (if {2,4,6, ...} ∈ U).

3. f = ax+b
cx+d for a, b, c, d ∈ R, with either c ≠ 0 or d ≠ 0.

⋅ let M = (mij)1≤i,j≤2 be the matrix (
a b
c d

). And let the number Ak for k ∈ N∗ be the

(1,1)-entry in Mk (matrix multiplication), and let A = (A1,A2,A3, ...)U . Similarly
define Bk,Ck,Dk using Mk and define B,C,D ∈ N∗ analogously to A.

⋅ Then f (N)(x) = Ax+B
Cx+D .

(Notice that f is just the action of an element of the group PSL(2,R) (if not of
an even simpler form due to some coefficients being 0): thus, since multiplication
of elements of PSL(2,R) correspond to composition of their corresponding actions,
the family (f (n))n∈N>0 consists only of actions of elements of PSL(2,R). Thus, f (N),
as an ultraproduct of them, will be the action of an element of PSL(2,R), and in
particular of the same form, but taking coefficients from R instead of R.)

⋅ The particular case when c = 0 gives us that f = a′x + b′, and thus, we will have
f (N)(x) = Ax +B for some A,B ∈ R.

⋅ In any case, all of these functions are o-minimal, since they are definable (with pa-
rameters) already in R just using the field language.

4. For f a general higher-degree polynomial x↦ p(x) or x↦ p(x)
q(x) , the best we can say for

now is that f (N) is a pseudopolynomial P or a ratio of pseudopolynomials P
Q , which we

dub a pseudorational function.

⋅ In particular, when f = axn + bxk + ... for some n > 1, k ∈ N, and a, b ≠ 0, then
f (N) will most likely be a pseudopolynomial with infinitely many different monomials
of different degrees. For example, if f = x2 + 1, then f (N) will have infinitely many
non-zero even-degree terms.
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The last example is clearly not particularily satisfying: we have already seen how diffi-
cult it is to classify even the pseudopolynomials into the o-minimal and non-o-minimal ones;
the case of ‘pseudorationals’ promises to be even more complicated. There is an obvious
reason why these examples quickly become so difficult to handle: the model theoretic study
of algebraic dynamics studies the eventual behaviour of polynomial and rational dynamical
systems, and this field is relatively new, with a large space of open problems. Some pro-
gess has been made though. For instance, see [MeSc] for more on algebraic dynamics and
in particular for the current limit of our understanding of polynomial algebraic dynamical
systems.

However, there is at least one subfamily of these examples which are always o-minimal:
the ones which have finitely many terms in the ultraproduct. That is:

Fact 4.3.1: Let f be a pseudorational function given by a ratio P
Q of pseudopolynomials. (In

particular, f would just be a pseudopolynomial if Q were a factor of P .) Then if P and Q
have finitely many terms, i.e deg(P ),deg(Q) ∈ N, then (R, f) is o-minimal.

The proof is trivial, as such functions are either already definable in R with parameters
just using the field language, or can be defined after adding finitely many power functions,
each of which can be added to R o-minimally.

4.3.3 Powerboundedness

Recall the definition of powerboundedness from Chapter 1: an LOM+DC structure R is
powerbounded if every unary definable function f is eventually bounded by some definable
power function xr. Recall that R is powerbounded or else defines the exponential function.
We define R to be exponentially bounded if every unary definable function f is eventually
bounded by exp(n).

We record the following quick fact, before looking at the case where f = exp.

Lemma 4.3.1: If f ∶ R→ R is a function definable in a powerbounded o-minimal expansion
of R (and hence polynomially bounded), then (R, f (N)) is powerbounded. And in general, if
f̃ is a pseudopolynomial, then (R, P ) is powerbounded.

Proof. Since each iterate f (n) of f is definable in (R, f), we have that there is are kn ∈ N
and xn ∈ R such that f (n)(x) < xkn for all x > xn. But then with K = ∏n∈N>0

kn/U and
xN = ∏n∈N>0

xn, we have f (N)(x) < xK for all x > xN .
The second statement follows analogously. ∎

In particular, the examples in the previous section are all powerbounded.

4.3.4 On exp(α)

In this short section, we finish the chapter by mentioning the example of f = exp.
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The following has been an open question ever since Miller proved the Growth Dichotomy
(first, for expansions of R in [Mi94]):

Question: Are there any non-exponentially bounded o-minimal structures? In particular,
are there any that expand R?

If (R, exp(α)) is o-minimal, then it would answer the first question affirmatively, while
leaving the latter open.

Approaching this question is quite difficult given our current tools. Even in one variable,
and with other simplifying assumptions, the functions involved are quite difficult to analyze.9

However, we will end with some comments about a possible line of attack:
Wilkie showed in [Wi99] that the structure Rexp = (R, exp) is o-minimal, and in [Wi96]

that it is model complete. A result of this is that the definable sets in this structure consist
exactly of the projections of zerosets of exponential polynomials. An exponential polynomial
is a function f = P (x, expx) for P (X,Y ) a polynomial. The main steps we might hope
to take to show the o-minimality of (R, exp(α)) are first showing that definable sets are
just projections of zerosets of what we call ‘pseudoexponential polynomials’,10 which are
functions f = P (x, exp(α) x), for P (X,Y ) a polynomial; then second, to show that these
sets are as well behaved as the zerosets of exponential polynomials. The idea we have in
mind for the latter step would involve showing that exponential polynomials of the form
f = P (x, exp(k) x) are well-behaved as k → ∞; that is, that eventually in k, the number of
definably connected components of the projection of the zeroset of such a function becomes
constant.

9Note that exp(α) is not Pfaffian a priori, even though it is pseudoPfaffian in a certain sense. Thus we
cannot directly apply Lemma 4.2.2.

10Unfortunately, the terminology ‘pseudoexponential’ is in use elsewhere in model theory; but it seems
unlikely to cause much confusion here.
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