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GENETICS | INVESTIGATION

Independent Molecular Basis of Convergent
Highland Adaptation in Maize

Shohei Takuno,*,1 Peter Ralph,†,‡ Kelly Swarts,§ Rob J. Elshire,** Jeffrey C. Glaubitz,**

Edward S. Buckler,**,†† Matthew B. Hufford,*,‡‡ and Jeffrey Ross-Ibarra*,§§,2

*Department of Plant Sciences, †Department of Evolution and Ecology, and §§The Center for Population Biology and the Genome
Center, University of California, Davis, California 95616, ‡Molecular and Computational Biology, University of Southern California,

Los Angeles, California 90089-0371, §School of Plant Sciences, Section of Plant Breeding and Genetics, and **Institute for
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Research Service, Ithaca, New York 14853, and ‡‡Department of Ecology, Evolution, and Organismal Biology, Iowa State University,
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ABSTRACT Convergent evolution is the independent evolution of similar traits in different species or lineages of the same species; this
often is a result of adaptation to similar environments, a process referred to as convergent adaptation. We investigate here the molecular
basis of convergent adaptation in maize to highland climates in Mesoamerica and South America, using genome-wide SNP data. Taking
advantage of archaeological data on the arrival of maize to the highlands, we infer demographic models for both populations, identifying
evidence of a strong bottleneck and rapid expansion in South America. We use these models to then identify loci showing an excess of
differentiation as a means of identifying putative targets of natural selection and compare our results to expectations from recently
developed theory on convergent adaptation. Consistent with predictions across a wide parameter space, we see limited evidence for
convergent evolution at the nucleotide level in spite of strong similarities in overall phenotypes. Instead, we show that selection appears to
have predominantly acted on standing genetic variation and that introgression from wild teosinte populations appears to have played a role
in highland adaptation in Mexican maize.

KEYWORDS convergent evolution; highland adaptation; maize; population genomics

CONVERGENT evolution occurs when multiple species or
populations exhibit similar phenotypic adaptations to

comparable environmental challenges (Wood et al. 2005;
Arendt and Reznick 2008; Elmer and Meyer 2011). Evolution-
ary genetic analysis of a wide range of species has provided
evidence for multiple pathways that lead to convergent evo-
lution. One such route occurs when identical mutations arise
independently and fix via natural selection in multiple popu-
lations. In humans, for example, malaria resistance due to
mutations from Glu to Val at the sixth codon of the b-globin
gene has arisen independently on multiple unique haplotypes

(Currat et al. 2002; Kwiatkowski 2005). Convergent evolution
can also be achieved when different mutations arise within
the same locus yet produce similar phenotypic effects. Grain
fragrance in rice appears to have evolved along these lines, as
populations across East Asia have similar fragrances resulting
from at least eight distinct loss-of-function alleles in the
BADH2 gene (Kovach et al. 2009). Finally, convergent evolu-
tion may arise from natural selection acting on standing ge-
netic variation in an ancestral population. In the three-spined
stickleback, natural selection has repeatedly acted to reduce
armor plating in independent colonizations of freshwater en-
vironments. Adaptation in these populations occurred both
from new mutations and from standing variation at the Eda
locus in marine populations (Colosimo et al. 2005).

Not all convergent phenotypic evolution is the result of
convergent evolution at the molecular level, however. Recent
studies of adaptation to high elevation in humans, for
example, reveal that the genes involved in highland adapta-
tion are largely distinct among Tibetan, Andean, and Ethio-
pian populations (Bigham et al. 2010; Alkorta-Aranburu et al.
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2012; Scheinfeldt et al. 2012). While observations of inde-
pendent origin may be due to a complex genetic architecture
or standing genetic variation, introgression from related pop-
ulations may also play a role. In Tibetan populations, the
adaptive allele at the EPAS1 locus appears to have arisen
via introgression from Denisovans, a related hominid group
(Huerta-Sánchez et al. 2014). Beyond these examples, how-
ever, we still know relatively little about whether convergent
phenotypic evolution is driven by common genetic changes or
the relative frequencies of these different routes of conver-
gent evolution.

The adaptation of maize (Zea mays ssp. mays) to high-
elevation environments provides an excellent opportunity to
investigate the molecular basis of convergent evolution. Maize
was domesticated from the wild teosinte Z. mays ssp. parvi-
glumis (hereafter parviglumis) in the lowlands of southwest
Mexico �9000 years before present (YBP) (Matsuoka et al.
2002; Piperno et al. 2009; van Heerwaarden et al. 2011). After
domestication, maize spread rapidly across the Americas,
reaching the lowlands of South America and the high eleva-
tions of the Mexican Central Plateau by �   6000 YBP (Piperno
2006) and the Andean highlands by �   4000 YBP (Perry et al.
2006; Grobman et al. 2012). The transition from lowland to
highland habitats spanned similar environmental gradients in
Mesoamerica and South America (Supporting Information,
Figure S1) and presented a host of novel challenges that often
accompany highland adaptation, including reduced tempera-
ture, increased ultraviolet radiation, and reduced partial pres-
sure of atmospheric gases (Körner 2007).

Common garden experiments in Mexico reveal that
highland maize has successfully adapted to high-elevation
conditions (Mercer et al. 2008), and phenotypic comparisons
between Mesoamerican and South American populations are
suggestive of convergent evolution. Maize landraces (open-pol-
linated traditional varieties) from both populations share a num-
ber of phenotypes not found in lowland populations, including
dense macrohairs and stem pigmentation (Wellhausen et al.
1957; Wilkes 1977), differences in tassel branch and ear husk
number (Brewbaker 2015), and a changed biochemical re-
sponse to UV radiation (Casati and Walbot 2005). In spite of
these shared phenotypes, genetic analyses of maize landraces
from across the Americas indicate that the two highland pop-
ulations are independently derived from their respective low-
land populations (Vigouroux et al. 2008; van Heerwaarden
et al. 2011), suggesting that observed patterns of phenotypic
similarity are not simply due to recent shared ancestry.

In addition to convergent evolution between maize land-
races, a number of lines of evidence suggest convergent
evolution in the related wild teosintes. Z. mays ssp. mexicana
(hereafter mexicana) is native to the highlands of central
Mexico, where it is thought to have occurred since at least
the last glacial maximum (Ross-Ibarra et al. 2009; Hufford
et al. 2012a). Phenotypic differences between mexicana and
the lowland parviglumis mirror those between highland and
lowland maize (Lauter et al. 2004), and population genetic
analyses of the two subspecies reveal evidence of natural

selection associated with altitudinal differences (Fang et al.
2012; Pyhäjärvi et al. 2013). Landraces in the highlands of
Mexico are often found in sympatry with mexicana and gene
flow from mexicana likely contributed to maize adaptation to
the highlands (Hufford et al. 2013). No wild Zea occur in
South America, and South American landraces show no evi-
dence of gene flow from Mexican teosinte (van Heerwaarden
et al. 2011), further suggesting independent origins for alti-
tude-adapted traits.

Here we use genome-wide SNP data from Mesoamerican
and South American landraces to investigate the evidence for
convergent evolution to highland environments at the molec-
ular level. We estimate demographic histories for maize in the
highlands of Mesoamerica and South America and then use
these models to identify loci that may have been the target of
selection in each population. We find a large number of sites
showing evidence of selection, consistent with a complex
genetic architecture involving many phenotypes and numer-
ous loci. We see little evidence for shared selection across
highland populations at the nucleotide or gene level, a result
we show is consistent with expectations from recent theoret-
ical work on convergent adaptation (Ralph and Coop 2014a).
Instead, our results support a role for adaptive introgression
from teosinte in Mexico and highlight the contribution of
standing variation to adaptation in both populations.

Materials and Methods

Materials and DNA extraction

We included one individual from each of 94 landrace maize
accessions from high and low-elevation sites in Mesoamerica
and South America (Table S1). Accessions were provided by
the U.S. Department of Agriculture germplasm repository or
kindly donated by Major Goodman (North Carolina State Uni-
versity, Raleigh, NC). Sampling locations are shown in Figure
1A. Landraces sampled from elevations ,1700 m were consid-
ered lowland, while accessions from .1700 m were considered
highland. Seeds were germinated on filter paper following fun-
gicide treatment and grown in standard potting mix. Leaf tips
were harvested from plants at the five-leaf stage. Following
storage at 280� overnight, leaf tips were lyophilized for 48
hr. Tissue was then homogenized with a Mini-Beadbeater-8
(BioSpec Products, Bartlesville, OK). DNA was extracted using
a modified CTAB protocol (Saghai-Maroof et al. 1984). The
quality of DNA was ensured through inspection on a 2% aga-
rose gel and a NanoDrop spectrophotometer (Thermo Scien-
tific, NanoDrop Products, Wilmington, DE).

SNP data

We generated two complementary SNP data sets for the
sampled maize landraces. The first set was generated using
the Illumina (San Diego) MaizeSNP50 BeadChip platform,
including 56,110 SNPs (Ganal et al. 2011). SNPs were clustered
with the default algorithm of the GenomeStudio Genotyping
Module v1.0 (Illumina) and then visually inspected and man-
ually adjusted. These data are referred to as “MaizeSNP50”
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hereafter. This array contains SNPs discovered in multiple as-
certainment schemes (Ganal et al. 2011), but the vast majority
of SNPs come from polymorphisms distinguishing the maize
inbred lines B73 and Mo17 (14,810 SNPs) or identified from
sequencing 25 diverse maize inbred lines (40,594 SNPs) (Gore
et al. 2009).

The second data set was generated for a subset of 87 of
the landrace accessions (Table S1), utilizing high-throughput
Illumina sequencing data via genotyping by sequencing
(GBS) (Elshire et al. 2011). Genotypes were called using
TASSEL-GBS (Glaubitz et al. 2014), resulting in 2,848,284
SNPs with an average of 71.3% missing data per individual.

To assess data quality, we compared genotypes at the
7197 SNPs (229,937 genotypes, excluding missing data)
that overlap between the MaizeSNP50 and GBS data sets.
While only 0.8% of 173,670 comparisons involving homo-
zygous MaizeSNP50 genotypes differed in the GBS data,
88.6% of 56,267 comparisons with MaizeSNP50 heterozy-
gotes differed, nearly always being reported as a homozy-
gote in GBS. Despite this high heterozygote error rate, the
high correlation in allele frequencies between data sets
(r ¼ 0:89; Figure S2) supports the utility of the GBS data set
for estimating allele frequencies.

We annotated SNPs using the filtered gene set from RefGen
version 2 of the maize B73 genome sequence (Schnable et al.
2009; release 5b.60) from maizesequence.org. We excluded
genes annotated as transposable elements (84) and pseudo-
genes (323) from the filtered gene set, resulting in a total of
38,842 genes.

Structure analysis

We performed a STRUCTURE analysis (Pritchard et al. 2000;
Falush et al. 2003), using only synonymous and noncoding
SNPs from the MaizeSNP50 data due to its low error in iden-
tifying heterozygous genotypes. We randomly pruned SNPs
closer than 10 kb and assumed free recombination between
the remaining SNPs. Alternative distances were tried with

nearly identical results. We excluded SNPs in which the num-
ber of heterozygous individuals exceeded homozygotes and
where the P-value for departure from Hardy–Weinberg Equi-
librium (HWE) using all individuals was ,0.05 based on
a G-test. Following these data-thinning measures, 17,013 bial-
lelic SNPs remained. We conducted three replicate runs of
STRUCTURE, using the correlated allele frequency model with
admixture for K = 2 through K = 6 populations, a burn-in
length of 50,000 iterations, and a run length of 100,000 iter-
ations. Results across replicates were nearly identical.

Historical population size

We tested three models in which maize was differentiated
into highland and lowland populations subsequent to
domestication (Figure 2).

We calculated the observed joint frequency distributions
(JFDs), using only the GBS data set due to its lower level of
ascertainment bias. A subset of synonymous and noncoding
SNPs was utilized that had $15 individuals without missing
data in both lowland and highland populations and did not
violate HWE. A HWE cutoff of P, 0:005 was used for each
subpopulation due to our undercalling of heterozygotes. We
obtained similar results under more or less stringent thresh-
olds for significance (P, 0:05� 0:0005; data not shown),
although the number of SNPs was very small at P, 0:05:

Parameters were inferred with the software dadi (Guten-
kunst et al. 2009), which uses a diffusion method to calculate
an expected JFD and evaluates the likelihood of the data, as-
suming multinomial sampling. We did not use the “full” model
that incorporates all four populations because parameter esti-
mation under this model is computationally infeasible.

Model IA: This model is applied separately to both the
Mesoamerican and the South American populations. We
assume the ancestral diploid population representing parviglu-
mis follows a standard Wright–Fisher model with constant
size. The size of the ancestral population is denoted by NA:

Figure 1 (A) Sampling locations of landraces. Red,
blue, yellow, and light blue circles represent Mes-
oamerican lowland, Mesoamerican highland,
South American lowland, and South American
highland populations, respectively. (B) Results of
STRUCTURE analysis of the MaizeSNP50 SNPs with
K ¼ 2� 4: The top panel shows the elevation,
ranging from 0 to 4000 m on the y-axes. The col-
ors in K ¼ 4 correspond to those in A.
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At tD generations ago, the bottleneck event begins at domes-
tication, and at tE generations ago, the bottleneck ends. The
population size and duration of the bottleneck are denoted by
NB and tB ¼ tD 2 tE; respectively. The population size recovers
to NC ¼ aNA in the lowlands. Then, the highland population
is differentiated from the lowland population at tF generations
ago. The size of the lowland and highland populations at time
tF is determined by a parameter b such that the population is
divided by bNC and ð12bÞNC; our conclusions hold if we
force lowland population size to remain at NC (data not
shown).

We assume that the population size in the lowlands is
constant but that the highland population experiences expo-
nential expansion after divergence: its current population size is
g times larger than that at tF:

Model IB: We expand model IA for the Mesoamerican
populations by incorporating admixture from the teosinte
mexicana to the highland Mesoamerican maize population.
The time of differentiation between parviglumis and mexi-
cana occurs at tmex generations ago. The mexicana popula-
tion size is assumed to be constant at Nmex: At tF generations
ago, the Mesoamerican highland population is derived from
admixture between the Mesoamerican lowland population
and a portion Pmex from the teosinte mexicana.

Model II: The final model includes the Mesoamerican
lowland, South American lowland, and highland popula-
tions. This model was used for simulating SNPs with
ascertainment bias (see below). At time tF; the Mesoamer-
ican and South American lowland populations are differen-
tiated, and the sizes of populations after splitting are
determined by b1: At time tG; the South American lowland
and highland populations are differentiated, and the sizes of
populations at this time are determined by b2: As in model

IA, the South American highland population is assumed to
experience population growth with the parameter g.

Estimates of a number of our model parameters were
available from previous work. NA was set to 150,000, using
estimates of the composite parameter 4NAm � 0:018 from par-
viglumis (Eyre-Walker et al. 1998; Tenaillon et al. 2001, 2004;
Wright et al. 2005; Ross-Ibarra et al. 2009) and an estimate of
the mutation rate m � 33 1028 (Clark et al. 2005) per site per
generation. The severity of the domestication bottleneck is
represented by k ¼ NB=tB (Eyre-Walker et al. 1998; Wright
et al. 2005), and following Wright et al. (2005) we assumed
k ¼ 2:45 and tB ¼ 1000 generations. Taking into account ar-
chaeological evidence (Piperno et al. 2009), we assumed
tD ¼ 9000 and tE ¼ 8000: We further assumed tF ¼ 6000
for Mesoamerican populations in models IA and IB (Piperno
2006); tF ¼ 4000 for South American populations in model IA
(Perry et al. 2006; Grobman et al. 2012); and tmex ¼ 60; 000;
Nmex ¼ 160; 000 (Ross-Ibarra et al. 2009), and Pmex ¼ 0:2
(van Heerwaarden et al. 2011) for model IB. For both models
IA and IB, we inferred three parameters (a, b, and g), and, for
model II, we fixed tF ¼ 6000 and tG ¼ 4000 (Perry et al. 2006;
Piperno 2006; Grobman et al. 2012) and estimated the remain-
ing four parameters (a, b1; b2; and g).

Population differentiation

We used our inferred models of population size change to
generate a null distribution of FST from the expected JFD esti-
mated in dadi (Gutenkunst et al. 2009). The P-value of
a SNP was calculated by

P
�
FST E $ FST O

��p6 0:025
� ¼ P

�
FST E $ FST O \ p6 0:025

�
Pðp6 0:025Þ ;

where FST_O and FST_E are observed and expected FST values
and p60:025 is the set of loci with mean allele frequency

Figure 2 Models of historical population size for
lowland and highland populations. Parameters in
boldface type were estimated in this study. See text
for details.
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across both highland and lowland populations within 0.025
of the SNP in question.

Generating the null distribution of differentiation for the
MaizeSNP50 data requires accounting for ascertainment
bias. Evaluation of genetic clustering in our data (not shown)
coincides with previous work (Hufford et al. 2012b) in sug-
gesting that the two inbred lines most important in the ascer-
tainment panel (B73 and Mo17) are most closely related to
Mesoamerican lowland maize. We thus added two additional
individuals to the Mesoamerican lowland population and gen-
erated our null distribution using only SNPs for which the two
individuals had different alleles. For model IA in South America
we added two individuals at time tF to the ancestral population
of the South American lowland and highland populations be-
cause the Mesoamerican lowland population was not incorpo-
rated into this model. For each combination of sample sizes in
lowland and highland populations, we generated a JFD from
107 SNPs using the software ms (Hudson 2002). Then, we
calculated P-values from the JFD in the same way. We calcu-
lated FST values for all SNPs that had $10 individuals with no
missing data in all four populations and showed no departure
from HWE at the 0.5% (GBS) or 5% (MaizeSNP50) level.

Haplotype sharing test

We performed a pairwise haplotype sharing (PHS) test to de-
tect further evidence of selection, following Toomajian et al.
(2006). To conduct this test, we first imputed and phased the
combined SNP data (both GBS and MaizeSNP50), using the
fastPHASE software version 1.4.0 (Scheet and Stephens 2006).
As a reference for phasing, we used data (excluding heterozy-
gous SNPs) from an Americas-wide sample of 23 partially in-
bred landraces from the Hapmap v2 data set (Chia et al. 2012).
We ran fastPHASE with default parameter settings. PHS was
calculated for an allele A at position x as

PHSxA ¼
Pp21

i¼1

Pp
j¼iþ1

Zijx 
p

2

!2
Xn21

i¼1

Xn
j¼iþ1

Zijx 
n

2

!;
(1)

where n is the sample size of haploids, p is the number of
haploids carrying the allele A at position x, and

Zijx ¼
dijx 2 dij

sij
; (2)

where dijx is the genetic distance over which individuals i and j
are identical surrounding position x, dij is the genome-wide
mean of distances over which individuals i and j are identical,
and sij is the standard deviation of the distribution of distan-
ces. Genetic distances were obtained for the MaizeSNP50 data
(Ganal et al. 2011) and fitted using a 10th-degree polynomial
curve to all SNPs (data not shown).

Polarizing adaptive alleles

To polarize the ancestral state of alleles and help identify
adaptive alleles, we retrieved SNP data from 14 parviglumis
inbred lines included in the Hapmap v2 data set, using only

SNPs with n$ 10 (Chia et al. 2012; Hufford et al. 2012b).
Alleles were called ancestral if they were at higher fre-
quency in parviglumis or uncalled in parviglumis but at
higher frequency in all populations but one.

For SNPs identified as putative outliers by our FST approach,
we then used patterns of allele frequency across populations to
infer which allele was likely adaptive. For SNPs with a signifi-
cant FST only in Mesoamerica, for example, we characterized
them as adaptive if they were at high frequency in one Meso-
american population (lowland or highland) and low frequency
in the other as well as low frequency in parviglumis and at most
intermediate frequency (or low frequency if missing in parvi-
glumis) in South American populations. SNPs were inferred to
show convergent adaptation if they were at high frequency in
both highland (or lowland) populations and at low frequency in
the other two populations and parviglumis.

Theoretical evaluation of convergent evolution

We next asked whether the abundance and degree of co-
incidence of presumably adaptive high-FST alleles seen in the
SNP data are consistent with what is known about the popula-
tion history of maize. There are three ways that adaptive alleles
could be shared between highland populations: (a) by appearing
in both locations as independent, de novo mutations; (b) by
moving from one highland population to the other by migration;
and (c) through convergent selective forces acting on shared
standing variation. Here, we provide rough estimates of these
rates and develop in the Appendixmore detailed, complementary
models that build on the work of Ralph and Coop (2014a,b).

We chose to implement a fairly detailed demographic
model. This is because much of the population genetics theory
we use relies on universality results that reduce demographic
models to two parameters: the dispersal distance (mean
parent–offspring distance) and the variance in offspring num-
ber. However, these universality results do not hold if either
distribution (dispersal or offspring) is sufficiently long tailed;
the detailed model allows us to both get a good idea of what
part of parameter space we should focus on and verify that the
approximation results we use are robust.

To assess the likely importance of a and b, we first evaluate
the rate at which we expect an allele that provides a selective
advantage at higher elevation to arise by new mutation in or
near a highland region (lmut) and then use coalescent theory
to show that even a highland-adapted allele that was neutral
in the lowlands is unlikely to have had time to spread between
highland populations under neutral gene flow. It may be more
likely that alleles adapted in the highlands are slightly delete-
rious at lower elevation, consistent with empirical findings in
reciprocal transplant experiments in Mexico (Mercer et al.
2008); in the Appendixwe find the rate at which such an allele
already present in the Mesoamerican highlands would transit
the intervening lowlands and fix in the Andean highlands. The
resulting values depend most strongly on the population den-
sity, the selection coefficient, and the rate at which seed is
transported long distances and replanted. While long-distance
dispersal is certainly possible, evidence from traditional seed
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systems in Mexico suggests even today it is rare: when farmers
exchange seed (a minority of the time) �90% of seed lots
come from ,10km away and from a site with altitudinal
difference of ,50 m, although farmers in highland locales
exchange seeds over a greater range than average (Bellon et al.
2011). We checked the results by evaluating several choices of
these parameters as well as with simulations, described in the
Appendix. Here we describe the mathematical details; readers
may skip to the Results without loss of continuity.

Demographic model: Throughout, we followed van Heer-
waarden et al. (2010) in constructing a detailed demographic
model for domesticated maize. We assume fields of N ¼ 105

plants are replanted each year from Nf ¼ 561 ears, from com-
pletely new stock (with probability pe ¼ 0:068), from par-
tially new stock (a proportion rm ¼ 0:2 with probability
pm ¼ 0:02), or otherwise entirely from the same field. Each
plant is seed parent to all kernels of its own ears, but can be
pollen parent to kernels in many other ears; a proportion
mg ¼ 0:0083 of the pollen-parent kernels are in other
fields. Wild-type plants have an average of mE ¼ 3 ears per
plant, and ears have an average of N=Nf kernels; each of
these numbers is Poisson distributed. The mean number of
pollen-parent kernels, and the mean number of kernels per
ear, is assumed to be ð1þ sbÞ times larger for individuals
heterozygous for the selected allele (the fitness of homozy-
gotes is assumed to not affect the probability of establish-
ment). Migration is mediated by seed exchange—when
fields are replanted from new stock, the seed is chosen from
a random distance away with mean ss ¼ 50 km, but plants
pollinate only other plants belonging to the same village (dis-
tance 0). The mean numbers of each category of offspring
(seed/pollen; migrant/nonmigrant) are determined by the
condition that the population is stable (i.e., wild-type, diploid
individuals have on average two offspring) except that heter-
ozygotes have on average ð1þ sbÞ offspring that carry the
selected allele. Each ear has a small chance of being chosen
for replanting, so the number of ears replanted of a given
individual is Poisson, and assuming that pollen is well mixed,
the number of pollen-parent kernels is Poisson as well. Each
of these numbers of offspring has a mean that depends on
whether the field is replanted with new stock, and whether
ears are chosen from this field to replant other fields, so the
total number of offspring is a mixture of Poissons. These
means, and more details of the computations, are found in
the Appendix. At the parameter values given, the dispersal
distance (mean distance between parent and offspring) is
s ¼ 3:5 km, and the haploid variance in number of offspring
(j2; the variance in number of inherited copies of a chosen
parental allele) is between 20 (for wild type) and 30 (for
sb ¼ 0:1). (Note that in a panmictic population, the offspring
variance is approximately the ratio of census size to effective
population size, j2 � N=Ne:Þ

New mutations: The rate at which new mutations appear
and fix in a highland population, which we denote lmut; is

approximately equal to the total population size of the high-
lands multiplied by the mutation rate per generation and the
chance that a single such mutation successfully fixes (i.e., is not
lost to drift). The probability that a single new mutant allele
providing benefit sb to heterozygotes at high elevation will fix
locally in the high-elevation population is approximately 2sb
divided by the haploid variance in offspring number. This can
be shown by expanding the generating function near 1, as in
Fisher (1922) and Jagers (1975); see Lambert (2006) for more
sophisticated models.

Concretely, the probability that a new mutation destined for
fixation will arise in a patch of high-elevation habitat of area A
in a given generation is a function of the density of maize per
unit area r, the selective benefit sb it provides, the mutation
rate m, and the haploid variance in offspring number j2: In
terms of these parameters, the rate of appearance is

lmut¼ 2mrAsb
j2

: (3)

Geographic distribution: Throughout we work with pop-
ulations distributed continuously across geography, with two
regions of high elevation, the Mesoamerican and Andean
highlands, separated by �4000 km. The value A in Equation 3
is the total cultivated area in which the (highland-adapted)
alleles in question are beneficial; for estimation of A in South
America we overlaid raster layers of altitude (www.worldclim.
org) and extent of maize cultivation (www.earthstat.org) and
calculated the total area of maize cultivated Habove 1700 m,
using functions in the raster package for R (Hijmans and van
Etten 2014).

Of course, the selective benefit of highland alleles is not
discrete, but likely changes continuously with altitude, and it
may be that the adaptive mutation occurs in a lowland area,
subsequently migrating into the highlands. The calculation
above does not account for these points, but the approxima-
tion is quite good, as verified by exact numerical calculation
of the chance of fixation of a mutation as a function of the
location where it first appears (see Figure A1); for theoretical
treatment see Barton (1987).

Migration: It is harder to intuit a corresponding expression
for the chance that an allele established by selection in one
highland population moves to the other.

For maize in the Andean highlands to have inherited
a highland-adapted allele from the Mesoamerican highlands,
those Andean plants must be directly descended from highland
Mesoamerican plants that lived more recently than the
appearance of the adaptive allele. In other words, the ancestral
lineages along which the modern Andean plants have inherited
at that locus must trace back to the Mesoamerican highlands. If
the allele is neutral in the lowlands, we can treat the movement
of these lineages as a neutral process, using the framework of
coalescent theory (Wakeley 2005). To do this, we need to
follow all of the N � 2:53 106 lineages backward. These
quickly coalesce to fewer lineages; but this turns out to not
affect the calculation much. Assuming demographic stationarity,
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the motion of each lineage can be modeled as a random walk,
whose displacement after m generations has variance ms2 and
for large m is approximately Gaussian. If we assume that line-
ages move independently, and Zn is the distance to the furthest
of n lineages, then Zn #

ffiffiffiffiffiffiffiffiffiffi
ms2

p
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2log n
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=log n
p Þ with

very high probability (Berman 1964).
Since this depends only on the logarithm of n, the num-

ber of lineages, the practical upshot of this is that the most
distant lineage is very unlikely to be more than about six
times more distant than the typical lineage, even among 107

lineages. Lineages are not independent, but this only makes
this calculation conservative.

Data availability

Genotyping data for all 94 lines in standard hapmap format
is available at Figshare with the following DOI: https://
figshare.com/articles/GBS_of_highland_and_lowland_maize/
746990/1. All code is available at https://github.com/
rossibarra/hilo_paper.

Results

Samples and data

We sampled 94 maize landraces from four distinct regions in
the Americas (Table S1, Figure 1): the lowlands of Mesoa-
merica (Mexico/Guatemala; n ¼ 24) and northern South
America (n ¼ 23) and the highlands of Mesoamerica
(n ¼ 24) and the Andes (n ¼ 23). Samples were genotyped
using the MaizeSNP50 Beadchip platform (n ¼ 94) and GBS
(n ¼ 87). After filtering for Hardy–Weinberg genotype fre-
quencies and minimum sample size $10 in each of the
four populations (see Materials and Methods) 91,779 SNPs
remained, including 67,828 and 23,951 SNPs from GBS
and MaizeSNP50, respectively.

Population structure

We performed a STRUCTURE analysis (Pritchard et al. 2000;
Falush et al. 2003) of our landrace samples, varying the num-
ber of groups from K = 2 to 6 (Figure 1B, Figure S3). Most
landraces were assigned to groups consistent with a priori
population definitions, but admixture between highland and
lowland populations was evident at intermediate elevations
(�  1700 m). Consistent with previously described scenarios
for maize diffusion (Piperno 2006), we find evidence of
shared ancestry between lowland Mesoamerican maize and
both Mesoamerican highland and South American lowland
populations. Pairwise FST among populations reveals low
overall differentiation (Table 1), and the higher FST values
observed in South America are consistent with the decreased
admixture seen in STRUCTURE. Archaeological evidence sup-
ports a more recent colonization of the highlands in South
America (Perry et al. 2006; Piperno 2006; Grobman et al.
2012), suggesting that the observed differentiation may be
the result of a stronger bottleneck during colonization of the
South American highlands.

Population differentiation

To provide a null expectation for allele frequency differen-
tiation, we used the JFD of lowland and highland popula-
tions to estimate parameters of two demographic models,
using the maximum-likelihood method implemented in dadi
(Gutenkunst et al. 2009). All models incorporate a domesti-
cation bottleneck and population differentiation between
lowland and highland populations, but differ in their con-
sideration of admixture and ascertainment bias (Figure 2;
see Materials and Methods for details). We used published
estimates of the strength of the domestication bottleneck
(Eyre-Walker et al. 1998; Tenaillon et al. 2004; Wright
et al. 2005), but confirmed that changing the strength of
the bottleneck had little influence on the null distributions
of FST values (not shown).

Estimated parameter values are listed in Table 2; while
the observed and expected JFDs were quite similar for both
models, residuals indicated an excess of rare variants in the
observed JFDs in all cases (Figure 3). Under both models IA
and IB, we found expansion in the highland population in
Mesoamerica to be unlikely, but a strong bottleneck followed
by population expansion is supported in South American high-
land maize in both models IA and II. In Mesoamerica, the
likelihood value of model IB was higher than the likelihood
of model IA by 850 units of log-likelihood (Table 2), consistent
with analyses suggesting a significant role for introgression
from mexicana during the spread of maize into the highlands
(Hufford et al. 2013).

Comparisons of our empirical FST values to the null expec-
tation simulated under our demographic models allowed us to
identify significantly differentiated SNPs between lowland and
highland populations. In all cases, observed FST values were
quite similar to those generated under our null models (Figure
S4), and model choice had little impact on the distribution of
estimated P-values (Figure S5). We show results under model
IB for Mesoamerican populations and model II for South
American populations. We chose P, 0:01 as the cutoff for
significant differentiation between lowland and highland pop-
ulations and identified 687 SNPs in Mesoamerica (687/76,989 =
0.89%) and 409 SNPs in South America (409/63,160 =
0.65%) as significant outliers (Figure 4). All results were
qualitatively identical with different cutoff values (0.05 or
0.001; data not shown). SNPs with significant FST P-values

Table 1 FST of synonymous and noncoding GBS SNPs between
populations

Mesoamerica South America

Lowlands Highlands Lowlands Highlands

Mesoamerica
Lowlands —

Highlands 0.0244 —

South
America
Lowlands 0.0227 0.0343 —

Highlands 0.0466 0.0534 0.0442 —
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were enriched in intergenic regions rather than in protein-
coding regions [60.0% vs. 47.9%, Fisher’s exact test, P, 1027

for Mesoamerica; 62.0% vs. 47.8%, Fisher’s exact test (FET),
P,1025 for South America].

Patterns of adaptation

Given the historical spread of maize from an origin in the
lowlands, it is tempting to assume that the observation of
significant population differentiation at a SNP should be
primarily due to an increase in frequency of adaptive alleles in
the highlands. To test this hypothesis, we sought to identify
the adaptive allele at each locus, using comparisons between
Mesoamerica and South America as well as parviglumis (see
Materials and Methods). Consistent with predictions, we infer
that differentiation at 72.3% (264) and 76.7% (230) of SNPs
in Mesoamerica and South America is due to adaptation in
the highlands after excluding SNPs with ambiguous patterns
likely due to recombination (Table S2).

As further evidence of selection, we asked whether alleles
showing excess differentiation also exhibit longer haplotypes
than expected. We calculated the empirical quantile of the
pairwise haplotype score from Toomajian et al. (2006) for
each putatively adaptive SNP as the proportion of all SNPs
at a similar frequency with PHS scores greater than or equal
to the PHS score observed at the focal SNP (Table S2). If FST
outliers have indeed been targeted by selection in a particular
population, we expect this empirical quantile to be smaller
(i.e., fewer random SNPs of similar frequency have as large

a PHS score) than in other populations. Indeed, we find that
SNPs identified as putatively adaptive in each of the four
populations show smaller empirical PHS quantiles more often
than the 50% expected by chance (Table S2).

Convergent evolution at the nucleotide level should be
reflected in an excess of SNPs showing significant differen-
tiation between lowland and highland populations in both
Mesoamerica and South America. Although the 19 SNPs
showing FST P-values ,0:01 in both Mesoamerica (PM) and
South America (PS) are statistically greater than the �5
expected (48; 3703 0:013 0:01 � 4:8; x2-test, P � 0:001),
they nonetheless represent a small fraction (�7  2   8%) of all
SNPs showing evidence of selection. This paucity of shared
selected SNPs does not appear to be due to our demographic
model: a simple outlier approach using the 1% highest FST
values finds no shared adaptive SNPs between Mesoamerican
and South American highland populations. For 13 of the 19
SNPs showing putative evidence of shared selection we could
use data from parviglumis to infer whether these SNPs were

Table 2 Estimated parameters of population size model

Mesoamerica

Model IA
Likelihood 25,592.80
NC 138,000
N1 52,440
N2 85,560
N2P 85,560

Model IB
Likelihood 24,654.79
NC 225,000
N1 171,000
N2 54,000
N2P 54,000

South America

Model IA
Likelihood 23,855.28
NC 78,000
N1 75,660
N2 2,340
N2P 205,920

Model II
Likelihood 28,044.71
NC 150,000
N1 96,000
N2 54,000
N3 51,300
N4 2,700
N4P 145,800

Figure 3 Observed and expected joint distributions of minor allele fre-
quencies in lowland and highland populations in (A) Mesoamerica and (B)
South America. Residuals are calculated as ðmodel2dataÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
model

p
:
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likely selected in lowland or highland conditions (see Materi-
als and Methods). Surprisingly, SNPs identified as shared
adaptive variants more frequently showed segregation pat-
terns consistent with lowland (10 SNPs) rather than highland
adaptation (2 SNPs).

We also investigated how often different SNPs in the same
gene may have been targeted by selection. To search for this
pattern, we considered all SNPs within 10 kb of a transcript as
part of the same gene, excluding SNPs in a microRNA or
a second transcript. We classified SNPs showing significant FST
in Mesoamerica, South America, or both regions into 778 genes.
Of these, 485 and 277 genes showed Mesoamerica-specific and
South America (SA)-specific significant SNPs, while 14 genes
contained at least one SNP with a pattern of differentiation
suggesting convergent evolution and 2 genes contained both
Mesoamerica-specific and SA-specific significant SNPs. Overall,
however, fewer genes showed evidence of convergent evolution
than expected by chance (permutation test; P, 1025).

Finally, we tested whether genes showing evidence of
selection in both highland populations were enriched for
particular metabolic pathways, using data on 481 metabolic
pathways from the MaizeCyc database (ver. 2.2) (Monaco
et al. 2013). We found 92 pathways that include a selected
gene from only one of the highland populations, but no
significant excess of shared pathways: only 32 pathways in-
cluded a selected gene in both populations (P ¼ 0:0961;
Table S3). Despite similar phenotypes and environments,
we thus see little evidence for convergent evolution at the
SNP, gene, and metabolic-pathway levels.

Comparison to theory

Given the limited empirical evidence for convergent evolu-
tion at the molecular level, we took advantage of recent

theoretical efforts (Ralph and Coop 2014a) to assess the
degree of convergence expected under a spatially explicit
population genetic model (see Materials and Methods). Us-
ing current estimates of maize cultivation in South America,
we find a 270; 200-km2 area in which maize is cultivated
in $1% of the land area, for a total area of cultivation of
�600; 000 ha: At a planting density of r � 20; 000 plants
per hectare, this gives a total maize population of �12 bil-
lion. Assuming an offspring variance of j2 ¼ 30; we can then
compute the waiting time Tmut ¼ 1=lmut for a new beneficial
mutation to appear and fix. If we assume an average selec-
tion coefficient of sb ¼ 1025 for each mutation, a single-base
mutation with mutation rate m ¼ 331028 (Clark et al.
2005) would take an expected 4162 generations to appear
and fix. Our estimate of the maize population size uses the
land area currently under cultivation and is likely an over-
estimate; Tmut scales linearly with the population size and
lower estimates of A will thus increase Tmut proportionally.
However, because Tmut also scales approximately linearly
with both the selection coefficient and the mutation rate,
strong selection and the existence of multiple equivalent
mutable sites could reduce this time. For example, if any
one of 10 sites within a gene were to have an equivalent
selective benefit of sb ¼ 1024; Tmut would be reduced to 42
generations assuming constant A over time.

Gene flow between highland regions could also generate
patterns of shared adaptive SNPs. The coalescent calcula-
tions described above suggest that highland area today is
unlikely to draw any ancestry from a region . 6s

ffiffiffiffi
m

p
km

away fromm generations ago in any part of the genome that
is neutral in the lowlands. Our estimated dispersal of
s ¼ 3:5 km thus provides an estimate of 1328 km. The Mes-
oamerican and Andean highlands are �4000 km apart, and
neutral alleles are therefore not expected to transit between
the Mesoamerican and Andean highlands within 4000 gen-
erations. Changing the typical distance over which farmers
share seed by a factor of 10 would change this conclusion,
but data from field surveys do not lend support to such high
dispersal distances (Bellon et al. 2011).

These results for neutral alleles put a lower bound on the
time for deleterious alleles to transit as well, suggesting that
we should not expect even weakly deleterious alleles (e.g.,
sm ¼ 1025) to havemoved between highlands. We expect many
of the alleles adaptive in the highlands to be deleterious in the
lowlands and analyze this case in more detail in the Appendix.

Taken together, these theoretical considerations suggest
that any alleles beneficial in the highlands that are neutral
or deleterious in the lowlands and shared by both the
Mesoamerican and South American highlands would have
been present as standing variation in both populations,
rather than passed between them.

Alternative routes of adaptation

The lack of both empirical and theoretical support for
convergent adaptation at SNPs or genes led us to investigate
alternative patterns of adaptation.

Figure 4 Scatter plot of 2log10P-values of observed FST values based on
simulation from estimated demographic models. P-values are shown for
each SNP in both Mesoamerica (model IB; PM on x-axis) and South Amer-
ica (model II; PS on y-axis). Red, blue, orange, and gray circles represent
SNPs showing significance in both Mesoamerica and South America, only
in Mesoamerica, only in South America, or in neither region, respectively.
The number of SNPs in each category is shown in the same color as the
circles.
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We first sought to understand whether SNPs showing high
differentiation between the lowlands and the highlands arose
primarily via new mutations or were selected from standing
genetic variation. We found that putatively adaptive variants
identified in both Mesoamerica and South America tended to
segregate in both the lowland population [85.3% vs. 74.8% in
Mesoamerica (Fisher’s exact test, P, 1029) and 94.8% vs.
87.4% in South America (P, 1024)] and parviglumis [78.3%
vs. 72.2% in Mesoamerica (Fisher’s exact test, P, 0:01) and
80.2% vs. 72.8% in South America (P, 0:01)] more often than
other SNPs of similar mean allele frequency .

While maize in highland Mesoamerica grows in sympatry
with the highland teosinte mexicana, maize in South America
is outside the range of wild Zea species, leading to a marked
difference in the potential for adaptive introgression from wild
relatives. Pyhäjärvi et al. (2013) recently investigated local
adaptation in parviglumis and mexicana populations, charac-
terizing differentiation between these subspecies using an out-
lier approach. Genome-wide, only a small proportion (2–7%)
of our putatively adaptive SNPs were identified by Pyhäjärvi
et al. (2013), although these numbers are still in excess of
expectations (Fisher’s exact test, P,1023 for South America
and P, 1028 for Mesoamerica; Table S4). The proportion of
putatively adaptive SNPs shared with teosinte was twice as
high in Mesoamerica, however, leading us to evaluate the
contribution of introgression from mexicana (Hufford et al.
2013) in patterning differences between South American
and Mesoamerican highlands.

The proportion of putatively adaptive SNPs in introgressed
regions of the genome in highland maize in Mesoamerica was
nearly four times higher than found in South America (FET,
P,10211), while differences outside introgressed regions were
much smaller (7.5% vs. 6.2%; Table S5). Furthermore, of the
77 regions identified as introgressed in Hufford et al. (2013),
more than twice as many contain at least one FST outlier in
Mesoamerica as in South America (23 compared to 9; one-
tailed Z-test, P ¼ 0:0027). Excluding putatively adaptive SNPs,
mean FST between Mesoamerica and South America is only
slightly higher in introgressed regions (0.032) than across the
rest of the genome (0.020), suggesting the enrichment of high-
FST SNPs seen in Mesoamerica is not simply due to neutral
introgression of a divergent teosinte haplotype.

Discussion

Our analysis of diversity and population structure in maize
landraces from Mesoamerica and South America points to an
independent origin of South American highland maize, in line
with earlier archaeological (Perry et al. 2006; Piperno 2006;
Grobman et al. 2012) and genetic (van Heerwaarden et al.
2011) work. We use our genetic data to fit a model of histor-
ical population size change and find evidence of a strong
bottleneck followed by expansion in the highlands of South
America. We identified SNPs deviating from patterns of allele
frequencies determined by our demographic model as loci
putatively under selection for highland adaptation.

Although the rapid decay of linkage disequilibrium in
maize (Figure S6) makes it likely we have identified only
a subset of selected loci (Tiffin and Ross-Ibarra 2014), sev-
eral lines of evidence suggest our results are likely repre-
sentative of genome-wide patterns. SNPs identified as FST
outliers by our method show evidence of longer haplotypes
and patterns of among-population allele frequency consis-
tent with adaptation (Table S2). Consistent with previous
work suggesting adaptive introgression from teosinte, the
Mesoamerican highland population shares a larger proportion
of SNPs identified as adaptive in teosinte (Pyhäjärvi et al.
2013). We also see more FST outliers in Mesoamerica in
regions introgressed from teosinte and that overlap with QTL
for differences between parviglumis andmexicana (Lauter et al.
2004; Hufford et al. 2013). Finally, although our SNP data are
enriched in low-copy genic regions, our results are consistent
with both genome-wide association studies in maize (Wallace
et al. 2014) and local adaptation in teosinte (Pyhäjärvi et al.
2013) in finding an excess of putatively adaptive SNPs in inter-
genic regions of the genome.

Although our data identify hundreds of loci that may
have been targeted by natural selection in Mesoamerica and
South America, ,1.8% of SNPs and 2.1% of genes show
evidence for convergent evolution between the two high-
land populations. This relative lack of convergent evolution
is concordant with recently developed theory (Ralph and
Coop 2014a), which applied to this system suggests that
convergent evolution involving identical nucleotide changes
is unlikely to have occurred in the time since highland coloni-
zation through either recurrent mutation or migration across
Central America via seed sharing. These results are generally
robust to variation in most of the parameters, but are sensitive
to gross misestimation of some of the parameters—for exam-
ple, if seed sharing was common over distances of hundreds of
kilometers. The modeling highlights that our outlier approach
may not detect traits undergoing convergent evolution if the
genetic architecture of the trait is such that mutation at a large
number of nucleotides would have equivalent effects on fitness
(i.e., adaptive traits have a large mutational target). While QTL
analysis suggests that some of the traits suggested to be adap-
tive in highland conditions may be determined by only a few
loci (Lauter et al. 2004), others such as flowering time (Buckler
et al. 2009) are likely to be the result of a large number of loci,
each with small and perhaps similar effects on phenotype.
Future quantitative genetic analysis of highland traits using
genome-wide association methods may prove useful in search-
ing for the signal of selection on such highly quantitative traits.

Our observation of little convergent evolution is also
consistent with the possibility that much of the adaptation
to highland environments made use of standing genetic
variation in lowland populations. Indeed, we find that as
much as 90% of the putatively adaptive variants in Meso-
america and South America are segregating in lowland
populations, and the vast majority are also segregating in
teosinte. Selection from standing variation should be common
when the scaled mutation rate u (product of the effective
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population size, mutation rate, and target size) is .1, as long
as the scaled selection coefficient Ns (product of the effective
population size and selection coefficient) is reasonably large
(Hermisson and Pennings 2005). Estimates of u from syn-
onymous nucleotide diversity in maize (Tenaillon et al. 2004;
Wright et al. 2005; Ross-Ibarra et al. 2009) suggest that ad-
aptation from standing genetic variation may be likely for
target sizes larger than a few hundred nucleotides. In maize,
such a scenario has been recently shown for the locus grassy
tillers1 (Wills et al. 2013), at which adaptive variants in both an
upstream control region and the 39-UTR are segregating in teo-
sinte but show evidence of recent selection in maize, presumably
due to the effects of this locus on branching and ear number.

Both our empirical and theoretical results suggest that
adaptation to high elevation probably occurred through some
combination of selection on standing variation and indepen-
dent de novo mutation at highly quantitative traits. Because
cultivated maize has retained high levels of diversity, much of
the ancestral variation present in the populations that founded
each of the two highlands was likely shared, allowing for the
possibility of shared signals due to selection on the same an-
cestral variants. However, initial frequencies of alleles present
as standing variation will be highly stochastic, leading to a sig-
nificant role of chance in which alleles are selected as well the
strength of the signal of FST: This is particularly true for alleles
likely to be adaptive in the highlands and thus weakly delete-
rious in lowland populations, as these should be rare in indi-
vidual populations. Epistasis could make it even less likely that
the same allele is shared between regions.

Overall, our results highlight the complexity of studying
convergent evolution for quantitative traits in highly diverse
species. Our future efforts will take advantage of reciprocal
transplant experiments to identify specific phenotypes under
selection. We are also developing mapping populations in
both Mesoamerica and South America that should allow
identification of genomic regions underlying phenotypes of
interest and estimation of the proportion of adaptive variation
shared between populations.
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Table A1 Parameter estimates used in calculations and other notation

Parameter meaning Notation Value

Complete seed stock replacement probability pe 0.068
Pollen migration rate mg 0.0083
Number of plants per field N 105

Number of ears used to replant Nf 561
Mean ears per plant mE 3
Partial stock replacement probability pm 0.02
Mean proportion stock replaced rm 0.2
Pollen migration distance sp 0 km
Seed replacement distance ss 50 km
Distance between demes a 15 km
Width of altitudinal cline w 62 km
Deleterious selection coefficient sd Varies
Beneficial selection coefficient sb Varies
Slope of selection gradient a ðsd þ sbÞ=w
Variance in offspring number j2 Varies
Maize population density r 53103

Area of highland habitat A 270,000 km2

Mean dispersal distance s 1.8 km

Appendix

Demographic Modeling

Throughout we use in many ways the branching process approximation—if an allele is locally rare, then for at least a few
generations, the fates of each offspring are nearly independent. So, if the allele is locally deleterious, the total numbers of
that allele behave as a subcritical branching process, destined for ultimate extinction. On the other hand, if the allele is
advantageous, it will either die out or become locally common, with its fate determined in the first few generations. If the
number of offspring of an individual with this allele is the random variable X, with mean E½X� ¼ 1þ s (selective advantage
s. 0, Table A1), variance Var½X� ¼ j2; and ℙfX ¼ 0g. 0 (some chance of leaving no offspring), then the probability of local
nonextinction p

*
is approximately p

*
� 2s=j2 to a second order in s. The precise value can be found by defining the

generating function FðuÞ ¼ E½uX �; the probability of local nonextinction p
*
is the minimal solution to Fð12 uÞ ¼ 12u:

[This can be seen because 12 p
*
is the probability that an individual’s family dies out; this is equal to the probability that the

families of all that individual’s children die out; since each child’s family behaves independently, if the individual has x
offspring, this is equal to ð12p

*
Þx; and Fð12 p

*
Þ ¼ E½ð12p

*
ÞX �.]

If the selective advantage (s) depends on geographic location, a similar fact holds: index spatial location by i 2 1; . . . ; n;
and for u ¼ ðu1; u2; . . . ; unÞ define the functions FiðuÞ ¼ E½Qju

Xij
j �; where Xij is the (random) number of offspring that an

individual at i produces at location j. Then p* ¼ ðp
*1
; . . . ; p

*n
Þ; the vector of probabilities that a new mutation at each location

eventually fixes, is the minimal solution to Fð12 p
*
Þ ¼ 12 p

*
; i.e., Fið12 p

*
Þ ¼ 12 p

*i
:

Here we consider a linear habitat, so that the selection coefficient at location ℓi is si ¼ minðsb;maxð2sd;aℓiÞÞ: There does
not seem to be an explicit analytic expression for p

*
in this case, but since 12 p

*
is a fixed point of F; the solution can be

found by iteration: 12 p
*
¼ limn/NFnðuÞ for an appropriate starting point u.

Maize model

The migration and reproduction dynamics we use are taken largely from Van Heerwaarden et al. (2010). On a large scale, fields
of N plants are replanted each year from Nf ears, from completely new stock (with probability pe), from partially new stock (a
proportion rm with probability pm), or entirely from the same field. Plants have an average of mE ears per plant, and ears have
an average of N=Nf kernels; so a plant has on average mEN=Nf kernels, and a field has on average mEN ears and mEN

2=Nf

kernels. We suppose that a plant with the selected allele is pollen parent to ð1þ sÞmEN=Nf kernels and also seed parent to
ð1þ sÞmEN=Nf kernels, still in mE ears. The number of offspring a plant has depends on how many of its offspring kernels get
replanted. Some proportion mg of the pollen-parent kernels are in other fields and may be replanted; but with probability pe no
other kernels (i.e., those in the same field) are replanted. Otherwise, with probability 12 pm the farmer chooses Nf of the ears
from this field to replant [or ð12 rmÞNf of them, with probability pm]; this results in a mean number Nf=N [or ð12 rmÞNf=N] of
the plant’s ears of seed children being chosen and a mean number 1þ s of the plant’s pollen children kernels being chosen.
Furthermore, the field is used to completely (or partially) replant another’s field with chance pe=ð12 peÞ (or pm), resulting in
another Nf=N (or rmNf=N) ears and 1þ s [or rmð1þ sÞ] pollen children being replanted elsewhere. Here we have assumed that
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pollen is well mixed within a field and that the selected allele is locally rare. Finally, we must divide all these offspring numbers
by 2, since we look at the offspring carrying a particular haplotype, not of the diploid plant’s genome.

The above gives mean values; to get a probability model we assume that every count is Poisson. In other words, we
suppose that the number of pollen children is Poisson with random mean lP and the number of seed children is a mixture of
K independent Poissons with mean ð1þ sÞN=Nf each, where K is the random number of ears chosen to replant, which is itself
Poisson with mean mK: By Poisson additivity, the numbers of local and migrant offspring are Poisson, with means
lP ¼ lPL þ lPM and mK ¼ mKL þ mKM; respectively. With probability pe; lPM ¼ mgð1þ sÞ and mK ¼ lPL ¼ 0: Otherwise, with
probability ð12 peÞð12 pmÞ; mKL ¼ Nf=N and lPL ¼ ð1þ sÞð12mgÞ; and with probability ð12 peÞpm; mKL ¼ ð12 rmÞNf=N
and lPL ¼ ð12 rmÞð1þ sÞð12mgÞ: The migrant means are, with probability ð12 peÞpe=ð12 peÞ ¼ pe; mKM ¼ Nf=N and
lPM ¼ 1þ s; while with probability ð12 peÞpm; mKM ¼ rmNf=N and lPM ¼ ð1þ sÞðrmð12mgÞ þmgÞ; and otherwise
mKM ¼ 0 and lPM ¼ mgð1þ sÞ:
The generating function

The generating function of a Poisson with mean l is fðu; lÞ ¼ expðlðu21ÞÞ; and the generating function of a Poisson(m)
sum of Poisson(l) values is fðfðu; lÞ;mÞ: Therefore, the generating function for the diploid process, ignoring spatial
structure, is

FðuÞ ¼ pefðu;mgð1þ sÞÞ

þ
(
ð12 peÞð12 pmÞfðu; ð1þ sÞð12mgÞÞf

�
f

�
u;
ð1þ sÞN

Nf

�
;
Nf

N

�

þ ð12 peÞpmf
�
u; ð1þ sÞð12 rmÞð12mgÞ

�
f

�
f

�
u;
ð1þ sÞN

Nf

�
;
ð12 rmÞNf

N

�)

3

(
pe

ð12 peÞfðu; 1þ sÞfðfðu; ð1þ sÞNf=NÞ;Nf=NÞ

þ pmf
�
u; ð1þ sÞ

�
rmð12 peÞð12mgÞ þmg

		

3   f
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)
(A1)
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u;mgð1þ sÞ�

3

 
pe þ

(
ð12 peÞð12 pmÞf

�
u; ð1þ sÞð12mgÞ

�
f

 
f

 
u;
ð1þ sÞN

Nf

!
;
Nf

N

!

þ ð12 peÞpmf
�
u; ð1þ sÞð12 rmÞð12mgÞ

�
f

 
f

 
u;
ð1þ sÞN

Nf

!
;
ð12 rmÞNf

N

!)

3

(
pe

ð12 peÞf
�
u; ð1þ sÞð12mgÞÞfðfðu; ð1þ sÞNf=NÞ;Nf=NÞ

þ pmf
�
u; ð1þ sÞrmð12mgÞ

�
3   f

 
f

 
u;
ð1þ sÞN

Nf

!
;
rmNf

N

!

þ
 
12

pe
ð12 peÞ2 pm

!)!
: (A2)

To get the generating function for a haploid, replace every instance of 1þ s by ð1þ sÞ=2:
As a quick check, the mean total number of offspring of a diploid is
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ð1þ sÞ
�
mg þ ð12 peÞ



ð12 pmÞ

�ð12mgÞ þ 1
�þ pm

�ð12 rmÞð12mgÞ þ ð12 rmÞ
��

þ


peðð12mgÞ þ 1Þ þ pmð12 peÞðrmð12mgÞ þ rm

���
(A3)

¼ ð1þ sÞ
�
mg þ ð12 peÞð22mgÞð12 pmrmÞ þ

�
peð22mgÞ þ pmrmð12 peÞð22mgÞ

�	
(A4)

¼ ð1þ sÞ�mg þ ð22mgÞ
�ð12 peÞð12 pmrmÞ þ pe þ pmrmð12 peÞ

�	
(A5)

¼ ð1þ sÞ�mg þ ð22mgÞ
�

(A6)

¼ 2ð1þ sÞ: (A7)

We show numerically later that the probability of establishment is very close to 2s over the variance in reproductive number
(as expected). It is possible to write down an expression for the variance, but the exact expression does not aid the intuition.

Migration and spatial structure

To incorporate spatial structure, suppose that the locations ℓk are arranged in a regular grid, so that ℓk ¼ ak: Recall that sk is
the selection coefficient at location k. If the total number of offspring produced by an individual at ℓi is Poisson(li), with each
offspring independently migrating to location j with probabilitymij, then the number of offspring at j is Poisson(mijli), and so
the generating function is

fðu; l;mÞ ¼
Y
j

exp
�
limijðuj2 1Þ� (A8)

¼ exp

(
li

  X
j
mijuj

!
2 1

!)
: (A9)

We can then substitute this expression into Equation A1, with appropriate migration kernels for pollen and seed dispersal.
For migration, we need migration rates and migration distances for both wind-blown pollen and farmer seed exchange.

The rates are parameterized as above; we need the typical dispersal distances, however. One option is to say that the typical
distance between villages is dv and that villages are discrete demes, so that pollen stays within the deme (pollen migration
distance 0) and seed is exchanged with others from nearby villages, on average ss distance away in a random direction. The
number of villages away the seed comes from could be geometric (including the possibility of coming from the same village).

Dispersal distance

The dispersal distance—the mean distance between parent and offspring—is equal to the chance of intervillage movement
multiplied by the mean distance moved. This is

s ¼ ðpe þ ð12 peÞpmrmÞss ¼ 3:5864 km (A10)

at the parameter values above.
Iterating the generating function above finds the probability of establishment as a function of distance along the cline.

This is shown in Figure A1. Note that the approximation 2s divided by the variance in offspring number is quite close.
In the main text, we used a rough upper bound on the rate of migration that ignored correlations in migrants. As we show

in Ralph and Coop (2014a), the rate of adaptation by diffusive migration is more precisely

lmig ¼ 1
2
rsmmin

 
sm;

2sb
j2

!
exp

 
2

ffiffiffiffiffiffiffiffi
2sm

p
R

s

!
:

First note that for 1021 # sm # 1024; the value 1=
ffiffiffiffiffiffiffiffi
2sm

p
is between 2 and 70—so the exponential decay of the chance of

migration falls off on a scale of between 2 and 70 times the dispersal distance. Above we have estimated the dispersal distance
to be s � 3:5 km, and far below the mean distance ss � 50km that we have estimated for the mean distance from which new
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seed to replant a field is obtained, on occasions when the farmer chooses to do so. Taking s ¼ 3:5 km, we have that
7#s=

ffiffiffiffiffiffiffiffi
2sm

p
# 250 km. A very conservative upper bound might be s#ss=10 (if farmers replaced 10% of their seed with

long-distance seed every year). At this upper bound, we would have 10#s=
ffiffiffiffiffiffiffiffi
2sm

p
# 350 km, which is not very different. This

makes the exponential term small since R is on the order of thousands of kilometers.
Taking s ¼ 3:5 km, we then compute that if sm ¼ 1024 (very weak selection in the lowlands), then for R ¼ 1000 km, the

migration rate is lmig # 1025; i.e., it would take on the order of 100,000 generations (years) to get a successful migrant only
1000 km away, under this model of undirected, diffusive dispersal. For larger sm; the migration rate is much smaller.

Migration rate of deleterious alleles

In the main text we computed lmut; the rate at which new adaptive alleles appeared by mutation. A corresponding
expression for the chance that an allele moves from one highland population to another is harder to intuit. This problem
is studied in more depth in Ralph and Coop (2014a), under the assumption that the alleles are deleterious between the
highlands. Since such deleterious alleles are much less likely to transit than neutral ones, the analysis in the main text implies
that gene flow is unlikely to have shared these alleles between highland regions. However, because spatially continuous
models assuming selective effects are better understood than neutral ones, and we do expect a trade-off between highland
and lowland adaptation, it is useful to understand what happens in this case as well.

If an allele is beneficial at high elevation and fixed in the Mesoamerican highlands but is deleterious at low elevations, then at
equilibrium it will be present at low frequency at migration–selection balance in nearby lowland populations (Haldane 1948;
Slatkin 1973). This equilibrium frequency decays exponentially with distance, so that the highland allele is present at distance R
from the highlands at frequency Cexpð2R

ffiffiffiffiffiffiffiffi
2sm

p
=sÞ; where sm is the deleterious selection coefficient for the allele in low elevation,

s is the mean dispersal distance, and C is a constant depending on geography (C � 1=2 is close). Multiplying this frequency by
a population size gets the predicted number (average density across a large number of generations) of individuals carrying the
allele. Therefore, in a lowland population of size N at distance R from the highlands, ðN=2Þexpð2R

ffiffiffiffiffiffiffiffi
2sm

p
=sÞ is equal to the

probability that there are any highland alleles present, multiplied by the expected number of these given that some are present.
Since we assume the allele is deleterious in the lowlands, if R is large there are likely none present; but if there are, the expected
number is of order 1=sm (Geiger 1999; Ralph and Coop 2014a). This therefore puts an upper bound on the rate of migration of

lmig #

 
smN
2

!
exp

 
2R

ffiffiffiffiffiffiffiffi
2sm

p
s

!
; (A11)

and we would need to wait Tmig ¼ 1=lmig generations for a rare such excursion to occur. This calculation omits the prob-
ability that such an allele fixes (� 2sb=j2) (discussed above) and the time to reach migration–selection balance (discussed in
the main text); both of these omissions mean we underestimate Tmig:

Results for gene flow of deleterious alleles: From our demographic model we have estimated a mean dispersal distance of
s � 3:5 km per generation. With selection against the highland allele in low elevations 1021 $ sm $ 1024; the distance s=

ffiffiffiffiffiffiffiffi
2sm

p
over which the frequency of a highland-adaptive, lowland-deleterious allele decays into the lowlands is still short: between 7
and 250 km. Since the Mesoamerican and Andean highlands are �4000 km apart, the time needed for a rare allele with weak
selective cost sm ¼ 1024 in the lowlands to transit between the two highland regions is Tmig � 83104 generations. While the
exponential dependence on distance in Equation A11 means that shorter distances could be transited more quickly, the waiting
time Tmig is also strongly dependent on the magnitude of the deleterious selection coefficient: with sm ¼ 1024; Tmig � 25
generations over a distance of 2000 km, but increases to � 108 generations with a still weak selective cost of sm ¼ 1023:

Figure A1 Probability of establishment, as a func-
tion of distance along and around an altitudinal
cline, whose boundaries are marked by green lines.
(A) The parameters shown, with cline width 62 km;
(B) the same parameters, except with cline width
500 km.
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TABLE S1 List of maize landraces used in this study
IDa USDA ID Population Landrace Locality Latitude Longitude Elevation Origin

RIMMA0409 PI 478968 Mesoamerican Tepecintle Chiapas, Mexico 15.4 -92.9 107 USDA

RIMMA0410 PI 478970 Lowland Vandeno Chiapas, Mexico 15.4 -92.9 107 USDA

RIMMA0433 PI 490825 Nal Tel ATB Chiquimula, Guatemala 14.7 -89.5 457 USDA

RIMMA0441 PI 515538 Coscomatepec Veracruz, Mexico 19.2 -97.0 1320 USDA

RIMMA0615 PI 628480 Tuxpeno Puebla, Mexico 20.1 -97.2 152 USDA

RIMMA0619 PI 645772 Pepitilla Guerrero, Mexico 18.4 -99.5 747 USDA

RIMMA0628 PI 646017 Tuxpeno Norteno Tamaulipas, Mexico 23.3 -99.0 300 USDA

RIMMA0696 Ames 28568 Tuxpeno El Progreso, Guatemala 16.5 -90.2 30 Goodman

RIMMA0700 NSL 291626 Olotillo Chiapas, Mexico 16.8 -93.2 579 Goodman

RIMMA0701 PI 484808 Olotillo Chiapas, Mexico 16.6 -92.7 686 Goodman

RIMMA0702 Ames 28534 Negro de Tierra Caliente Sacatepequez, Guatemala 14.5 -90.8 1052 Goodman

RIMMA0703 NSL 283390 Nal Tel Yucatan, Mexico 20.8 -88.5 30 Goodman

RIMMA0709 Ames 28452 Tehua Chiapas, Mexico 16.5 -92.5 747 Goodman

RIMMA0710 PI 478988 Tepecintle Chiapas, Mexico 15.3 -92.6 91 Goodman

RIMMA0712 NSL 291696 CYMT Oloton Baja Verapaz, Guatemala 15.3 -90.3 1220 Goodman

RIMMA0716 Ames 28459 Zapalote Grande Chiapas, Mexico 15.3 -92.7 91 Goodman

RIMMA0720 PI 489372 Negro de Tierra Caliente Guatemala 15.5 -88.9 39 Goodman

RIMMA0721 Ames 28485 Nal Tel ATB Chiquimula, Guatemala 14.6 -90.1 915 Goodman

RIMMA0722 Ames 28564 Dzit Bacal Jutiapa, Guatemala 14.3 -89.7 737 Goodman

RIMMA0727 Ames 28555 Comiteco Guatemala 14.4 -90.5 1151 Goodman

RIMMA0729 PI 504090 Tepecintle Guatemala 15.4 -89.7 122 Goodman

RIMMA0730 Ames 28517 Quicheno Late Sacatepequez, Guatemala 14.5 -90.8 1067 Goodman

RIMMA0731 PI 484137 Bolita Oaxaca, Mexico 16.8 -96.7 1520 Goodman

RIMMA0733 PI 479054 Zapalote Chico Oaxaca, Mexico 16.6 -94.6 107 Goodman

RIMMA0416 PI 484428 Mesoamerican Cristalino de Chihuahua Chihuahua, Mexico 29.4 -107.8 2140 NA

RIMMA0417 PI 484431 Highland Azul Chihuahua, Mexico 28.6 -107.5 2040 USDA

RIMMA0418 PI 484476 Gordo Chihuahua, Mexico 28.6 -107.5 2040 USDA

RIMMA0421 PI 484595 Conico Puebla, Mexico 19.9 -98.0 2250 USDA

RIMMA0422 PI 485071 Elotes Conicos Puebla, Mexico 19.1 -98.3 2200 USDA

RIMMA0423 PI 485116 Cristalino de Chihuahua Chihuahua, Mexico 29.2 -108.1 2095 NA

RIMMA0424 PI 485120 Apachito Chihuahua, Mexico 28.0 -107.6 2400 USDA

RIMMA0425 PI 485128 Palomero Tipo Chihuahua Chihuahua, Mexico 26.8 -107.1 2130 USDA

RIMMA0614 PI 628445 Mountain Yellow Jalisco, Mexico 20.0 -103.8 2060 USDA

RIMMA0616 PI 629202 Zamorano Amarillo Jalisco, Mexico 20.8 -102.8 1800 USDA

RIMMA0620 PI 645786 Celaya Guanajuato, Mexico 20.2 -100.9 1799 USDA

RIMMA0621 PI 645804 Zamorano Amarillo Guanajuato, Mexico 21.1 -101.7 1870 USDA

RIMMA0623 PI 645841 Palomero de Jalisco Jalisco, Mexico 20.0 -103.7 2520 USDA

RIMMA0625 PI 645984 Cacahuacintle Puebla, Mexico 19.0 -97.4 2600 USDA

RIMMA0626 PI 645993 Arrocillo Amarillo Puebla, Mexico 19.9 -97.6 2260 USDA

RIMMA0630 PI 646069 Arrocillo Amarillo Veracruz, Mexico 19.8 -97.3 2220 USDA

RIMMA0670 Ames 28508 San Marceno San Marcos, Guatemala 15.0 -91.8 2378 Goodman

RIMMA0671 Ames 28538 Salpor Tardio Solola, Guatemala 14.8 -91.3 2477 Goodman

RIMMA0672 PI 483613 Chalqueno Mexico, Mexico 19.7 -99.1 2256 Goodman

RIMMA0674 PI 483617 Toluca Mexico, Mexico 19.3 -99.7 2652 Goodman

RIMMA0677 Ames 28476 Conico Norteno Zacatecas, Mexico 21.4 -102.9 1951 Goodman

RIMMA0680 Ames 28448 Tabloncillo Jalisco, Mexico 20.4 -102.2 1890 Goodman

RIMMA0682 PI 484571 Tablilla de Ocho Jalisco, Mexico 22.1 -103.2 1700 Goodman

RIMMA0687 Ames 28473 Conico Norteno Queretaro, Mexico 20.4 -100.0 1921 Goodman
a GBS data are available for the accessions in bold font.
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TABLE S1 (continued)
ID USDA ID Population Landrace Locality Latitude Longitude Elevation (m) Origin

RIMMA0388 PI 443820 S. American Amagaceno Antioquia, Colombia 6.9 -75.3 1500 USDA

RIMMA0389 PI 444005 Lowland Costeno Atlantico, Colombia 10.4 -74.9 7 USDA

RIMMA0390 PI 444254 Comun Caldas, Colombia 4.5 -75.6 353 USDA

RIMMA0391 PI 444296 Andaqui Caqueta, Colombia 1.4 -75.8 700 USDA

RIMMA0392 PI 444309 Andaqui Caqueta, Colombia 1.8 -75.6 555 USDA

RIMMA0393 PI 444473 Costeno Cordoba, Colombia 8.3 -75.2 100 USDA

RIMMA0394 PI 444621 Pira Cundinamarca, Colombia 4.8 -74.7 1000 USDA

RIMMA0395 PI 444731 Negrito Choco, Colombia 8.5 -77.3 30 USDA

RIMMA0396 PI 444834 Caqueteno Huila, Colombia 2.6 -75.3 1100 USDA

RIMMA0397 PI 444897 Negrito Magdalena, Colombia 11.6 -72.9 50 USDA

RIMMA0398 PI 444923 Puya Magdalena, Colombia 9.4 -75.7 27 USDA

RIMMA0399 PI 444954 Cariaco Magdalena, Colombia 10.2 -74.1 250 USDA

RIMMA0403 PI 445163 Pira Naranja Narino, Colombia 1.3 -77.5 1000 USDA

RIMMA0404 PI 445322 Puya Grande Norte de Santander, Colombia 7.3 -72.5 1500 USDA

RIMMA0405 PI 445355 Puya Norte de Santander, Colombia 8.4 -73.3 1100 USDA

RIMMA0406 PI 445514 Yucatan Tolima, Colombia 5.0 -74.9 450 USDA

RIMMA0407 PI 445528 Pira Tolima, Colombia 4.2 -74.9 450 USDA

RIMMA0428 PI 485354 Aleman Huanuco, Peru -9.3 -76.0 700 NA

RIMMA0462 PI 445073 Amagaceno Narino, Colombia 1.6 -77.2 1700 USDA

RIMMA0690 PI 444946 Puya Magdalena, Colombia 8.3 -73.6 250 Goodman

RIMMA0691 PI 445391 Cacao Santander, Colombia 6.6 -73.1 1098 NA

RIMMA0707 PI 487930 Tuxpeno Ecuador -1.1 -80.5 30 Goodman

RIMMA0708 PI 488376 Yunquillano F Andaqui Ecuador -3.5 -78.6 1098 Goodman

RIMMA0426 PI 485151 S. American Rabo de Zorro Ancash, Peru -9.1 -77.8 2500 NA

RIMMA0430 PI 485362 Highland Sarco Ancash, Peru -9.2 -77.7 2585 NA

RIMMA0431 PI 485363 Perlilla Huanuco, Peru -8.7 -77.1 2900 NA

RIMMA0436 PI 514723 Morocho Cajabambino Amazonas, Peru -6.2 -77.9 2200 NA

RIMMA0437 PI 514752 Ancashino Ancash, Peru -9.3 -77.6 2688 NA

RIMMA0438 PI 514809 Maranon Ancash, Peru -8.7 -77.4 2820 NA

RIMMA0439 PI 514969 Maranon La Libertad, Peru -8.5 -77.2 2900 NA

RIMMA0464 PI 571438 Chullpi Huancavelica, Peru -12.3 -74.7 1800 USDA

RIMMA0465 PI 571457 Huarmaca Piura, Peru -5.6 -79.5 2300 USDA

RIMMA0466 PI 571577 Confite Puneno Apurimac, Peru -14.3 -72.9 3600 USDA

RIMMA0467 PI 571871 Paro Apurimac, Peru -13.6 -72.9 2800 USDA

RIMMA0468 PI 571960 Sarco Ancash, Peru -9.4 -77.2 3150 USDA

RIMMA0473 PI 445114 Sabanero Narino, Colombia 1.1 -77.6 3104 USDA

RIMMA0656 Ames 28799 Culli Jujuy, Argentina -23.2 -65.4 2287 Goodman

RIMMA0657 NSL 286594 Chake Sara Bolivia -17.5 -65.7 2201 Goodman

RIMMA0658 NSL 286812 Uchuquilla Bolivia -21.8 -64.1 1948 Goodman

RIMMA0661 PI 488066 Chillo Ecuador -2.9 -78.7 2195 Goodman

RIMMA0662 NSL 287008 Cuzco Ecuador 0.0 -78.0 2195 Goodman

RIMMA0663 PI 488102 Mishca Ecuador 0.4 -78.2 2067 Goodman

RIMMA0664 PI 488113 Blanco Blandito Ecuador 0.4 -78.4 2122 Goodman

RIMMA0665 PI 489324 Racimo de Uva Ecuador -0.9 -78.9 2931 Goodman

RIMMA0667 Ames 28737 Patillo Chuquisaca, Bolivia -21.8 -64.1 2201 NA

RIMMA0668 Ames 28668 Granada Puno, Peru -14.9 -70.6 3925 Goodman
a GBS data are available for the accessions in bold font.

7

S. Takuno et al.



TABLE S2 Patterns of adaptation

Population Pattern of adaptation No. of SNPs No. of SNPs supported by PHS test Significance a

Mesoamerica Highland adaptation 264 172 (65.2%) P < 10�3

Lowland adaptation 101 66 (65.3%) P < 0.05

S. America Highland adaptation 164 230 (71.3%) P < 10�5

Lowland adaptation 70 50 (71.4%) P < 0.05

a Probability of the observed percent of SNPs showing a lower empirical quantile. Under neutrality, 50% of SNPs
should have lower PHS values in the focal population; higher values indicate evidence of selection. See the main
text for details.
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TABLE S3 List of metabolic pathways showing evidence of convergent adaptation

Colanic acid building blocks biosynthesis
Purine nucleotides de novo biosynthesis II
Adenosine nucleotides de novo biosynthesis
NAD/NADH phosphorylation and dephosphorylation
tRNA charging pathway
Superpathway of phenylalanine biosynthesis
Superpathway of tryptophan biosynthesis
Aspartate biosynthesis
Tryptophan biosynthesis
Glutamine biosynthesis III
Isoleucine biosynthesis I
Threonine biosynthesis
Galactose degradation III
UDP-glucose biosynthesis (from glucose 6-phosphate)
Triacylglycerol biosynthesis
Phospholipid biosynthesis II
Phosphatidylglycerol biosynthesis I (plastidic)
Phosphatidylglycerol biosynthesis II (non-plastidic)
CDP-diacylglycerol biosynthesis II
CDP-diacylglycerol biosynthesis I
Ethylene biosynthesis from methionine
Stachyose degradation
Homogalacturonan degradation
Betanidin degradation
Aspartate degradation II
Phosphate utilization in cell wall regeneration
Phosphate acquisition
Superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle
C4 photosynthetic carbon assimilation cycle
Glycolysis IV (plant cytosol)
Glycolysis I
Glycolysis III
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TABLE S4 FCT between parviglumis and mexicana

Mesoamerica No. of SNPs

Significant NS Proportion

Significant FCT 25 337 0.077

NS 299 18,493 0.018

S. America No. of SNPs

Significant NS Proportion

Significant FCT 10 327 0.070

NS 133 17,518 0.018

10

S. Takuno et al.



TABLE S5 FST outlier SNPs and mexicana introgression

Introgression status Population FST outlier SNPs All other SNPs

Introgressed Mesoamerica 114 1953
S. America 26 1721

Not introgressed Mesoamerica 558 73892
S. America 379 60666
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FIGURE S1 Annual mean temperature and annual precipitation of the locations of the maize samples used in this
study. Red, blue, yellow and light blue bars represent Mesoamerican lowland, Mesoamerican highland, S. American
lowland and S. American highland populations, respectively.

12

S. Takuno et al.



Allele	
�
    frequency
GBS

A
lle
le
	
�
    fr
eq
ue
nc
y

M
ai
ze
S
N
P
50

FIGURE S2 Correlation of allele frequencies between GBS and MaizeSNP50 data. We used overlapping SNPs with
n � 40 for both data sets. The correlation coefficient is 0.890 (P < 10

�5 by permutation test with 10

5 replications).
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FIGURE S3 Likelihood of STRUCTURE analyses given the number of populations K.
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FIGURE S4 Observed and expected distributions of FST values in GBS (A) and MaizeSNP50 data (B). The y -axes
represent the expected (solid lines) and observed (red dots) frequency of SNPs for a range of FST values in bins of
0.05.
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FIGURE S5 Q-Q plot for �log10-scaled P-values of population differentiation between lowland and highland popula-
tions. (A) Model IA v.s. Model IB in Mesoamerica, (B) Model IA v.s. Model II in S. America.
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FIGURE S6 Pattern of decay of linkage disequilibrium in Mesoamerica (A) and S. America (B). Red and blue dots
represent lowland and highland populations, respectively. r2 values are reported as averages within 10-bp distance
bins.
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