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Pressure Dependence of 7. and Charge Transfer in YBa,Cu3O, (6.35 < x < 7) Single Crystals
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The superconducting critical temperature 7 of YBa,Cu3O;x single crystals (6.35<Sx<7) has been
measured resistively as a function of pressure P (0 < P <20 kbar). The initial rate d7./dP exhibits
three distinct regimes, a narrow plateau near x == 7 with dT./dP = 0.04 K/kbar, a plateau in the range
6.4Sx56.8, where dT./dP =0.43 K/kbar, and a maximum value ~0.8 K/kbar at x=6.35. An
analysis of the T.(x,P) data using a phenomenological model yields a pronounced peak near x =6.8 in
dAny (x)/dP, where Any(x) is the change in the hole density in the CuO; planes relative to the value cor-

responding to the fully oxygenated sample.

PACS numbers: 74.70.Vy, 74.60.Mj

Veal and co-workers [1] have prepared single-crystal
specimens of YBayCu3;O, and demonstrated that the su-
perconducting critical temperature 7, depends on the de-
gree of oxygen ordering in the CuO chain sites in addi-
tion to the oxygen concentration x [2]. The oxygen or-
dering is manifested in dramatic increases in 7, with time
in samples that have been quenched from high tempera-
tures and annealed at room temperature [1]. Presumably
the number of mobile holes in the CuO; planes that are
involved in superconductivity and which determine 7, is
controlled by both the concentration and degree of order-
ing of the oxygen ions. In order to elucidate the relation-
ship between T. and the number of holes in the CuO,
planes and the transfer of charge between the CuO
chains and the CuO; planes, we have measured the pres-
sure P dependence of T, between 0 and ~20 kbar as a
function of x (6.35 < x <7) on high-quality single crys-
tals of YBa,Cu3O, prepared in the same manner as those
originally studied at atmospheric pressure by Veal et al.
[1]. For all values of x investigated, we have found that
T, increases linearly with P at a rate d7./dP that in-
creases by more than an order of magnitude with de-
creasing x between x=7 and x =6.35. An analysis of
the T.(x,P) data within the context of an inverted para-
bolic relationship between T, and the concentration Any
of mobile holes in the CuO, planes, as proposed by
several groups, yields a monotonic variation of Anj, with x
similar to that of T.(x). The dependence of the amount
of charge transferred from the CuO chains to the CuO,
planes under pressure, dAn,/dP, shows a pronounced
peak near x =6.8. The Any, and dAn,/dP vs x data pro-
vide important input for microscopic models of the distri-
bution of charge in the YBa;Cu30, system; in particular,
the value of dAn,/dP at x =7 is consistent with recent
calculations by Gupta and Gupta [3].

Measurements of the temperature dependence of the
electrical resistivity under nearly hydrostatic pressures up

to 20 kbar were carried out on eleven high-quality single
crystals of YBa,Cu30, (6.35 < x S7) grown at Argonne
National Laboratory in gold crucibles using the self-flux
method [4]. The single crystals have a typical size of
1.2%1.1x0.26 mm?, with the ¢ axis along the shortest di-
mension of the crystals. For the single crystals with
6.35 < x < 6.85, the oxygen content was set using the
procedure described in Ref. [5]. One crystal was an-
nealed in oxygen at 400°C for 24 h under 3 kbar pres-
sure. While the stoichiometry was not measured, x
should be significantly increased relative to ambient-
pressure treatments; we estimate that x = 7.

Figure 1 shows a typical set of R vs T curves for a
YBa,Cu30, (x =6.6) single crystal measured at different
pressures. The normal-state resistance shows metallic be-
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FIG. 1. Resistance R vs temperature 7 for a YBa;Cu3Ox
(x=6.6) single crystal measured at pressures 0 <P <16.9
kbar. Inset: A plot of T, vs P. The vertical bars indicate the
superconducting transition width defined as the temperature
difference between 10% and 90% values of the extrapolated
normal-state electrical resistance.
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havior. The magnitude of the room-temperature resis-
tance measured at different applied pressures, normalized
by the resistance at ambient pressure R, decreases
linearly with increasing pressure at a rate (1/Ro)dR/
dP=(—1.1%02)x10"% kbar~!. This value is in-
dependent of the oxygen content x for 6.4 < x < 6.95.
For polycrystalline samples, Borges et al. [6] and
Medvedeva er al. [7] obtained a value of —1.2x10 72
kbar ~! over the same range of x values.

In this study, the superconducting transition tempera-
ture measured at different pressures P is defined as the
temperature at which the electrical resistance R drops to
50% of its extrapolated normal-state value. The observed
structure in the transition region (as shown in Fig. 1)
might be related to oxygen inhomogeneity or sample im-
purities. The superconducting transition width AT,
defined as the temperature difference between 10% and
90% values in the extrapolated normal-state electrical
resistivity, appears to be independent of pressure. This
assures that the extracted values of dT./dP from the
resistivity data are independent of the definition chosen
for T,.. The advantage of using single crystals is that they
are free of grain-interaction stresses that are impossible
to avoid in sintered ceramic samples. Such stresses could
significantly alter T, especially in oxygen-deficient sam-
ples, since T, of these samples depends strongly on pres-
sure.

The inset of Fig. 1 depicts the linear increase of T,
with pressure at a rate d7T./dP =0.45+0.01 K/kbar for
an oxygen-deficient crystal with x=6.6. This value is
comparable to the values reported by other groups for
oxygen-deficient polycrystalline samples [7,8]. The verti-
cal bars indicate the transition width. For all the single
crystals studied at pressures up to 18 kbar, 7, exhibits a
linear increase with pressure at a rate which depends on
x, as will be discussed below.

Figure 2 shows the resistive 7, measured at ambient
pressure along with d7,./dP as a function of x. The plot
of dT./dP vs x includes data from Ref. [8] which comple-
ment the data reported herein; the two sets of data pro-
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FIG. 2. Resistive superconducting transition temperature 7.
measured at ambient pressure and d7./dP as a function of x for
eleven single crystals of YBa;Cu3Oy. The solid triangles repre-
sent data from Ref. [8].

vide a complete picture of the variation of T, with pres-
sure over the entire range of x values. The two remark-
able features of the plot of dT./dP vs x are as follows:
(i) dT./dP increases markedly with decreasing x from
0.04 K/kbar at x=7 to 0.8 K/kbar at x =6.35. (ii)
There are three distinct regimes in the behavior of
dT./dP: a wide plateau in dT./dP vs x at 0.43+0.07
K/kbar for 6.4<x=<6.8, a steep linear decrease of
dT./dP with increasing x which sets in at x = 6.8, near
the beginning of the 90-K plateau in 7.(x), and a second
plateau in dT./dP at ~0.04 K/kbar for 69<x=<7.
The small increase observed at high x is within the exper-
iment error which is +0.07 K/kbar for the d7./dP
values within the plateau. To the best of our knowledge,
this is the first report of the existence of a plateau in
dT./dP vs x for 6.4 <x < 6.8. Two crystals were mea-
sured for x =6.35. Neither crystal exhibited a complete
transition to zero resistance at ambient pressure down to
1.5 K. However, zero resistance appeared at 5 kbar
above which dT./dP =0.8 +0.02 K/kbar.

It has been suggested [9-12] that T, is an inverted par-
abolic function of Any(x)=n,(x) —n,(7), where Anj(x)
is the change in the hole density in the CuQ; planes rela-
tive to the value corresponding to the fully oxygenated
sample, and that there is an optimum hole density at
which T, attains a maximum value T,o. Whangbo and
Torardi suggested that this is true for every class of p-
type cuprate superconductor [12]. Based on an analysis
of experimental results on the Y;-.-,Ca,Pr,Ba,Cu;-
Og.95 system, Neumeier et al. [10] were the first to sug-
gest that 7, of YBa,Cu3O7;-5 could be increased to
T.0=97 K by decreasing the hole concentration of the
fully oxygenated sample by ng=0.05 hole per CuO,
plane. The relationship between the hole carrier density
and T, has been investigated experimentally for several
cuprate superconductors [13]. An abrupt onset of super-
conductivity in which T, increases sharply with increas-
ing hole carrier density was found for hole concentrations
ny > 0.06 hole/(CuO; plane). For even higher hole con-
centrations, T, increases parabolically and attains a max-
imum at ny ==0.25 hole/(CuO;, plane) (x =6.91) for
YBa;Cu30,. This behavior is in agreement with calcula-
tions by Brown that are based on a bond-valence-sum
model and have been corrected for geometrical stress
[14].

In order to analyze the dT./dP vs x data, we have as-
sumed that the dependence of T, on Any is governed by
the following phenomenological model, generalized to in-
clude pressure [15],

Te(x,P) =T.o(P) — Alno+An, (x,P)]1?, )
and that the rate of increase of T, with pressure is given
by

dT, Anp
1P (x) 7p 1P >, @

where T.¢ is the maximum attainable 7, and An, <0

aT,
=29 5 Alng+An, (x)] a
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represents the decrease in the number of holes in the
CuO; plane from the value corresponding to x = 7. The
first term in Eq. (2) insures that d7./dP has the experi-
mentally measured positive value for the fully oxygenated
sample. While the second term in Eq. (2) represents the
contribution of the change in the number of holes in the
CuO; planes under pressure to the change of 7, with P,
the first term, d7T.o/dP, includes the contribution of all
the mechanisms which would produce a linear increase of
T.o with P. Hence, according to this phenomenological
model, the increase of 7, with P may be produced by
pressure-induced charge transfer as well as other mecha-
nisms provided that they yield a linear T.o(P).

Calculations of the rate of charge transfer under pres-
sure based on neutron diffraction data and a bond-
valence-sum analysis yielded dAn,/dP=8x10"* and
6.5%x10 % hole/kbar for x =6.6 and 6.93, respectively
[16]. These two values, the corresponding measured
values of dT./dP, and the conditions 7.=0 K for
An, =0.25 hole/(CuO; plane) and T,=93.87 K for
Anp =0 holes/(CuO, plane) were used to solve Egs. (1)
and (2), yielding the parameters T.o=94 K, dT.o/dP
=0.048 K/kbar, ng=0.007 hole/CuO,, and A =1587 K.

Figure 3 shows a plot of the change in the number of
hole carriers in the CuQO; planes, An,, vs x, calculated
from Eq. (1). Clearly, the An,(x) data follow the same
trend as the 7.(x) data, in agreement with previous re-
sults which established that the value of T, is related to
the density of hole carriers in the CuO; planes [17-19].
A plot of Any vs T, given by the parabolic relation [Eq.
(1)] with the above-mentioned parameter values is shown
in the inset and is the basis upon which the values of Any
and dAn,/dP were calculated from 7. and d7T./dP. The
open circles represent the values of 7, for the crystals
that were investigated.

Figure 4 shows dAn,/dP vs x calculated from the phe-
nomenological model [Eq. (2)] and the experimental
values of dT./dP. The pressure-induced charge transfer
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FIG. 3. Change of the number of hole carriers in the CuO,
plane, Ans, vs x for YBa;Cu3Oy single crystals. Inset: A plot of
Any vs T, given by Eq. (1). The open circles represent the
values of T, for the measured crystals.
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dAny/dP displays a pronounced peak near x =6.8 and
then decreases with increasing x, reaching a value of
~3%10~* hole/kbar for x = 7. This small change in
Anp with pressure for the fully oxygenated samples is
consistent with the small measured value of d7./dP and
the parabolic dependence of T, on An,. Gupta and Gup-
ta [3] reported a value of 1.7x10 ~* hole/kbar derived
from a bond-valence-sum model, while Reyes et al. [20]
recently reported a value of 12x10 ™% hole/kbar for x
=6.62 and 6x10~* hole/kbar for x==7, from an
analysis of high-pressure nuclear-quadrupole-resonance
data based on the charge-transfer model. Within experi-
mental error, these values are in good agreement with our
results in Fig. 4.

The study by Jorgensen et al. [16] indicated that the
charge transfer between chains and planes was essentially
identical for the x =6.6 and 6.93 samples (the data are
included in Fig. 4); rather small changes in the pressure
dependence of the lattice parameters were observed for
these samples. However, Fig. 4 implies that significantly
larger changes in the pressure dependence of the lattice
parameters and bond lengths will be observed for samples
with x near 6.8.

In summary, our 7.(P) measurements reveal that the
dT./dP vs x curve of YBa;Cu3O, has the following
features: dT./dP attains a maximum value of ~0.8
K/kbar for x =6.35, displays a wide plateau at ~0.43
K/kbar for 6.4 <x 6.8, decreases with increasing x for
6.8<x<6.9, and exhibits a second plateau at —~0.04
K/kbar for 6.9<x<7. We calculated An,(x) and
dAn,(x)/dP from the values of dT.(x)/dP reported
herein and in Ref. [8], using an inverted parabolic depen-
dence between T, and Any in which pressure was includ-
ed as an independent variable. The calculated values of
dAn,(x)/dP are in excellent agreement with previous
theoretical [3] (x = 7) and experimental [20] (x =6.62
and x = 7) results, indicating that a parabolic model is
appropriate for the oxygen-deficient YBa;Cu3O, system.
Within the context of this phenomenological model, the
increase of T. with pressure is produced by pressure-
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FIG. 4. Calculated values of dAn/dP vs x based on the phe-
nomenological model [Eq. (2) in the text] and using the experi-
mental values of d7.(x)/dP for the YBa;Cu3O, single crystals.
The solid line is a guide to the eye.
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induced charge transfer between CuO chains and CuO;
planes, as well as other mechanisms which yield a linear
dependence of T.o on P. In contrast to previous reports,
dAny/dP exhibits a dramatic peak near x =6.8 and then
decreases with x, attaining a value of ~3Xx 104
hole/kbar for x = 7.
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