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Introduction
The global prevalence of  nonalcoholic fatty liver disease (NAFLD), a state of  excess liver lipid accumula-
tion in the absence of  chronic alcohol intake, is estimated to be approximately 24% (1). A subset of  patients 
with NAFLD go on to develop non-alcoholic steatohepatitis (NASH) with associated inflammation and 
fibrosis. NASH is now the leading cause of  liver transplantation in the United States and predisposes to 
hepatocellular carcinoma (HCC) (2), the most common malignancy of  the liver worldwide (3). Currently, 
there are no FDA-approved treatments for NASH, which could be a reflection of  the lack of  faithful animal 
models that fully recapitulate its clinical presentation (4, 5).

NASH pathogenesis is complex and multifactorial, though the risk factors are nearly identical to 
those predisposing to the metabolic syndrome (4). It was revealed nearly 2 decades ago that NAFLD is 
significantly associated with insulin resistance (IR) (6), and NAFLD-associated hepatic IR is independent 
of  adiposity and glucose intolerance (7). Although the association of  IR with fatty liver is strong, the 
cause-and-effect relationship is unclear. Hepatic fat content results from a balance of  fatty acid influx, de 
novo lipogenesis (DNL), secretion of  triglycerides, and catabolism of  fatty acids by β-oxidation (8). Given 
that these 4 processes occur within the liver itself, the majority of  research and treatment paradigms for 
NAFLD, NASH, and HCC have been focused on liver-intrinsic mechanisms.

How IR promotes hepatic lipid accumulation is debated. Insulin suppresses gluconeogenesis and 
induces DNL in the liver (9). Thus, the predicted consequence of  IR is increased glucose production and 
reduced lipogenesis. However, it is well recognized that the former and not latter pathways are affected in 
people with diabetes, as high levels of  gluconeogenesis coexist with increased hepatic lipid burden in the 
setting of  IR. This phenomenon has been termed “selective IR” and been attributed to both liver-intrinsic 
and -extrinsic mechanisms (10, 11).

Nonalcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) are liver manifestations 
of the metabolic syndrome and can progress to hepatocellular carcinoma (HCC). Loss of growth 
hormone (GH) signaling is reported to predispose to NAFLD and NASH through direct actions on 
the liver. Here, we report that aged mice lacking hepatocyte Jak2 (JAK2L), an obligate transducer 
of GH signaling, spontaneously develop the full spectrum of phenotypes found in patients with 
metabolic liver disease, beginning with insulin resistance and lipodystrophy and manifesting as 
NAFLD, NASH, and even HCC, independent of dietary intervention. Remarkably, insulin resistance, 
metabolic liver disease, and carcinogenesis are prevented in JAK2L mice via concomitant deletion 
of adipocyte Jak2. Further, we demonstrate that GH increases hepatic lipid burden but does so 
indirectly via signaling through adipocyte JAK2. Collectively, these data establish adipocytes as the 
mediator of GH-induced metabolic liver disease and carcinogenesis. In addition, we report what we 
believe to be a new spontaneous model of NAFLD, NASH, and HCC that recapitulates the natural 
sequelae of human insulin resistance–associated disease progression. The work presented here 
suggests that attention be paid to inhibition of adipocyte GH signaling as a therapeutic target of 
metabolic liver disease.

https://doi.org/10.1172/jci.insight.131310
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Prolonged fasting/starvation, such as in anorexia nervosa (AN), and lipodystrophy (LD) are other 
conditions associated with fatty liver (12, 13). Interestingly, these states of  adipose tissue dysfunction have 
IR as a commonality and, especially in the case of  LD, have biochemical features more closely aligned with 
prevalent forms of  IR than those caused by defects in insulin signaling itself  (13). This suggests that adipose 
tissue dysfunction may be a common feature, and possibly a driver, of  various forms of  IR.

As is the case with protracted fasting, NAFLD and NASH are associated with adipose tissue dysfunc-
tion (13, 14). Growth hormone (GH) is a starvation-induced hormone that controls hepatic and circulating 
insulin-like growth factor 1 (IGF1) levels and adipose tissue lipolysis during fasting (15, 16) and is elevated 
in patients with LD (17). Malnutrition, LD, AN, and NAFLD are associated with hepatic GH resistance, 
which may seem paradoxical, but in fact hepatic GH resistance leads to elevated circulating GH, via loss of  
IGF1-mediated feedback inhibition, which can act on non-liver, GH-responsive tissues. In fact, treatment 
of  AN patients with GH fails to increase IGF1 levels, confirming hepatic GH resistance, but does further 
decrease fat mass, indicating that adipose tissue remains GH responsive in the clinically “GH-resistant” 
state (18). Thus, elevated GH activity on adipose tissue may be a commonality among GH-resistant and IR 
states, including starvation, LD, and NAFLD/NASH.

GH is a major regulator of  glucose and lipid metabolism (19, 20). Congenital loss of  global GH signal-
ing increases insulin sensitivity and adiposity and may decrease the incidence of  diabetes and cancer (21, 
22). Conversely, exposure to GH acutely (19) or chronically, in the setting of  acromegaly, induces IR (23). 
Somewhat paradoxically, adult-onset GH deficiency also predisposes to fatty liver and NASH (24), possibly 
by a different mechanism via direct effects on hepatic DNL (25). However, a unifying model of  how GH 
impinges on insulin sensitivity to mediate glucose and lipid metabolism has not been universally accepted.

We previously reported that mice with hepatic GH resistance, via hepatocyte-specific deletion of  
Jak2 (JAK2L), developed fatty liver in a GH-dependent manner and had early signs of  NASH by 20 
weeks of  age (26). Here, we report that aged JAK2L mice are insulin resistant and lipodystrophic and 
subsequently develop severe NASH and HCC. These phenotypes recapitulate the features of  metabolic 
liver disease and are entirely dependent on adipocyte JAK2 because mice lacking both hepatocyte and 
adipocyte Jak2 (JAK2LA) retained insulin sensitivity and maintained liver homeostasis. Treatment with 
recombinant GH increased liver triacylglycerol (TAG) and diacylglycerol (DAG) levels in controls but 
not in mice lacking adipocyte Jak2 only. Collectively, we demonstrate that adipocytes are the target of  
GH-induced changes in liver metabolism. Further, we provide a potentially new model of  metabolic liver 
disease that is independent of  dietary intervention.

Results
Hepatic GH resistance promotes age-associated IR via adipocyte signaling. We aged cohorts of  control (CON, n 
= 16), JAK2L (n = 14), and JAK2LA (n = 17) mice to between 70 and 75 weeks of  age and determined 
glucose homeostasis in the fed and fasted states. Similar to our previous results in younger mice (27), 
induction of  hepatic GH resistance through hepatocyte-specific deletion of  Jak2 in JAK2L and JAK2LA 
mice essentially eliminated detectable circulating IGF1 (Figure 1A). This abolished IGF1-mediated nega-
tive feedback on central GH production and resulted in approximately 200 times higher fasting serum GH 
levels in both JAK2L and JAK2LA animals compared with the CON cohort (Figure 1B). Blood glucose 
levels varied little among the 3 genotypes, with only JAK2LA mice having statistically lower levels of  fed 
glucose compared with CON mice (Figure 1C). CON mice appropriately showed lower serum insulin lev-
els following an overnight fast; however, JAK2L animals had both fed and fasting hyperinsulinemia (Figure 
1D). This led to a large increase in the homeostatic assessment model of  insulin resistance (HOMA-IR) 
in the JAK2L mice that was normalized in JAK2LA animals (Figure 1E). Insulin tolerance testing (ITT) 
revealed augmented responsiveness in JAK2LA mice as compared with CON and JAK2L cohorts (Figure 
1F). Although HOMA-IR and ITT results were not concordant in these cohorts, HOMA-IR is more closely 
correlated with hepatic than peripheral insulin sensitivity (28), consistent with our previous published work 
using hyperinsulinemic-euglycemic clamps in JAK2L mice (20). Therefore, aged mice lacking hepatocyte 
Jak2 are GH resistant and develop IR in an adipocyte Jak2–dependent manner.

JAK2L mice are lipodystrophic and have defective adipose tissue signaling in response to feeding. Aged JAK2L 
mice weighed less than the CON and JAK2LA cohorts in both the fed and fasted states (Figure 2A). Inter-
estingly, JAK2L mice lost more weight following an overnight fast, consistent with the role of  GH as a cat-
abolic “starvation” hormone (Figure 2B). Dual-energy x-ray absorptiometry scanning revealed an increase 
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in lean mass and loss of  fat mass in JAK2L mice that was normalized in the JAK2LA cohort (Figure 2C). 
Although relative visceral (epididymal pads) fat mass did not statistically differ among the groups (Figure 
2D), a large reduction in subcutaneous (inguinal pads) fat was observed in JAK2L animals, while JAK2LA 
mice had increased relative subcutaneous fat mass (Figure 2E). Histological sectioning revealed smaller adi-
pocytes and sclerotic tissue in JAK2L inguinal fat pads (Figure 2F). In contrast, JAK2LA fat pads were his-
tologically devoid of  fibrotic lesions and contained adipocytes of  a size comparable to CON (Figure 2F). At 
the molecular level, acute refeeding increased levels of  phosphorylated (threonine 389) p70S6K, a target of  
the mammalian target of  rapamycin complex 1 (mTORC1) (29), a major regulator of  the fasting-to-fed tran-
sition (30), in inguinal adipose tissue (Figure 2G). The adipose p70S6K1 response to refeeding was entirely 
abolished in JAK2L but not JAK2LA mice (Figure 2, G and H). Collectively, high levels of  circulating GH 

Figure 1. Hepatic GH resistance does not correlate with IR in mice lacking adipocyte Jak2. Serum (A) IGF1 and (B) GH levels in 16-hour-fasted CON, JAK2L, and 
JAK2LA mice. (C) Blood glucose and (D) serum insulin levels in ad lib–fed (shown in black) and mice fasted 16 hours (shown in red). (E) Homeostatic assess-
ment model of insulin resistance (HOMA-IR) values. (F) ITT in CON (black), JAK2L (red), and JAK2LA (green) mice. n = 9–13 (A, B, D, and E), 10–15 (C), and 6–8 
(F). *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001 by 1-way (A, B, and E) and 2-way ANOVA (C, D, and F). 

https://doi.org/10.1172/jci.insight.131310


4insight.jci.org      https://doi.org/10.1172/jci.insight.131310

R E S E A R C H  A R T I C L E

in JAK2L mice were associated with LD and aberrant fasting-to-fed transitional adipose tissue signaling that 
adipocyte Jak2 governs.

Loss of  hepatocyte Jak2 promotes increased hepatic lipid burden and dyslipidemia in an adipocyte Jak2–dependent 
manner. Given the association of  IR and LD with hepatosteatosis, we examined the livers of  aged CON, 
JAK2L, and JAK2LA mice. As a percentage of  total body weight, JAK2L animals had increased liver 
weight compared with both the CON and JAK2LA cohorts (Figure 3A). In contrast, JAK2LA mice had 
decreased liver weight (Figure 3A). Both total hepatic triglycerides (Figure 3B) and cholesterol (Figure 3C) 
were increased in JAK2L mice in an adipocyte Jak2–dependent manner. Markers of  liver injury, including 

Figure 2. JAK2L mice are lipodystrophic and have a defective fasted-to-fed response in adipose tissue. (A) Body weight in grams (g) of ad lib–fed 
and 16-hour-fasted control CON, JAK2L, and JAK2LA mice. (B) Percentage of body weight lost following a 16-hour fast. (C) Percentages of lean and 
fast mass. Amount of (D) epididymal and (E) inguinal fat mass as a percentage of total body weight. (F) H&E staining of inguinal fat pads from 
16-hour-fasted mice (original magnification, ×10). (G) Inguinal adipose levels (n = 3 per condition) of phosphorylated (T389) p70S6K (top) and total 
p70S6K (bottom) in 16-hour-fasted (–) or 30-minute-refed (+) mice as determined by Western blot. (H) Densitometric quantification of Western blots 
from (G) plotting phosphorylated T389/total p70S6K. n = 10–15 (A and B), 12–17 (C), and 5–7 (D and E). *P < 0.05; **P < 0.01; ****P < 0.0001 by 1-way 
(B and E) or 2-way (A, C, and H) ANOVA.
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alanine aminotransferase (ALT, Figure 3D), aspartate aminotransferase (AST, Figure 3E), and alkaline 
phosphatase (AP, Figure 3F) were increased in JAK2L animals, and only AST levels were not entirely 
normalized in the JAK2LA cohort. Neither fasting serum nonesterified fatty acids (NEFAs, Figure 3G) nor 
triglycerides (Figure 3H) differed among the groups. However, fasting total cholesterol (Figure 3I) as well as 
HDL-C (Figure 3J) and LDL-C (Figure 3K) levels were increased in JAK2L mice. Again, these levels were 

Figure 3. Loss of hepatocyte Jak2 promotes liver damage and dyslipidemia in an adipocyte Jak2–dependent manner. (A) Liver weight as a percentage of 
total body weight in 16-hour-fasted CON, JAK2L, and JAK2LA mice. Hepatic (B) triglycerides and (C) total cholesterol levels in 16-hour-fasted mice. (D) Ala-
nine aminotransferase (ALT), (E) aspartate aminotransferase (AST), (F) alkaline phosphatase (AP), (G) nonesterified fatty acids (NEFAs), (H) triglycerides, 
(I) cholesterol, (J) high-density lipoprotein (HDL), and (K) low-density lipoprotein (LDL) levels in 16-hour-fasted serum. n = 5–7 (A), 9–12 (B and C), and 9–13 
(D–K). *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001 by 1-way ANOVA.
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corrected by concomitant deletion of  adipocyte Jak2. Thus, hepatic GH resistance promotes increased liver 
lipid burden, liver injury, and dyslipidemia via effects on adipocytes.

JAK2L mice spontaneously develop age-associated NAFLD and NASH in an adipocyte Jak2–dependent 
manner. Livers collected from the aged cohorts were sent to a pathologist for a blinded histological 
assessment. H&E-stained liver sections of  aged CON mice demonstrated moderate lipid accumula-
tion, which was slightly increased by hepatocyte-specific deletion of  Jak2 (Figure 4, A–C). In contrast, 
few lipid droplets were observed in mice with loss of  both hepatocyte and adipocyte Jak2. Trichrome 
staining revealed some collagen deposition in the CON cohort, while fibrosis was more widespread 
in liver sections from JAK2L animals (Figure 4B). Similar to lipid droplets, trichrome staining was 
reduced in JAK2LA mice. Upon quantification, approximately 54% of  CON hepatocytes had lipid 
droplets, as compared with 74% and 9% for the JAK2L and JAK2LA cohorts, respectively (Figure 4, A 
and C). For CON and JAK2L livers, steatosis was primarily localized to zone 3, whereas in JAK2LA 
livers, lipid-laden hepatocytes were also found in the azonal and panacinar regions. Ballooning, an 
indication of  cellular stress, was found to be rare in CON liver sections. In contrast, histological bal-
looning was much more common in centrizonal sections of  JAK2L mice. The severity of  ballooning 
was markedly reduced, but not entirely corrected, by concomitant deletion of  adipocyte Jak2 (Figure 
4D). Inflammatory lymphocytic foci were present in about two-thirds of  sections examined from CON 
livers, while foci were identified in all JAK2L sections (Figure 4E). The number of  inflammatory foci 
were reduced in JAK2LA sections as compared with JAK2L but were not completely normalized to 
CON levels. Scoring for fibrosis (Figure 4F) and Brunt (Figure 4G) staging resulted in highly signifi-
cant increases for the JAK2L, but not JAK2LA, cohort as compared with CON mice. Thus, JAK2L 
mice develop NASH with aging with retained JAK2 functioning in adipocytes.

JAK2L mice spontaneously develop HCC. Given that a percentage of  patients with NASH develop HCC, 
we allowed cohorts of  CON (n = 17), JAK2L (n = 24), and JAK2LA (n = 20) mice to age until natural 
death (here, defined as veterinarian-mandated euthanasia). Upon necropsy, livers from both CON and 
JAK2L were pale and large, while JAK2LA mice had smaller, red-colored livers (Figure 5A). We noticed 
that a number of  livers from JAK2L mice had large growths (Figure 5B). Immunohistochemical assessment 
of  the tumors found them to be fibrotic (Figure 5C) and positive for both glutamine synthetase and glypi-
can-3 (Figure 5D), indicative of  HCC (31). Tumor sections were negative for CK19 (Figure 5D), favoring a 
diagnosis of  HCC over cholangiocarcinoma (32). Quantification of  HCC incidence in our cohort (Figure 
5E) revealed a statistical increase in JAK2L mice (χ2 test, P = 0.0077), with an average age of  discovery 
of  about 704 days. In contrast, HCC incidence in the JAK2LA cohort did not differ from control mice. In 
summary, mice with high levels of  circulating GH due to hepatocyte-specific deletion of  Jak2 spontaneous-
ly developed HCC with age. In contrast, high levels of  GH in the setting of  dual hepatocyte and adipocyte 
Jak2 deficiency appear to protect against age-associated HCC.

GH increases hepatic lipid burden through adipocyte Jak2. JAK2 is known to transduce signals from 
cytokines other than GH. Therefore, the phenotypic changes in hepatic metabolism observed in 
JAK2L and JAK2LA mice may not be entirely due to loss of  GH signaling. To more definitely address 
the role of  GH, we injected CON mice and JAK2A mice with vehicle or GH daily for 7 consecutive 
days. We chose JAK2A over JAK2LA mice to specifically address the role of  adipocyte JAK2, without 
any confounding effects of  combinatorial hepatocyte deletion, in mediating metabolic changes follow-
ing GH exposure. Livers were collected and subjected to a liquid chromatography-mass spectrometry 
panel targeting approximately 200 lipids. Heatmaps derived from the top 99% of  lipid species detected 
show that GH treatment grossly augmented hepatic TAG (Figure 6A) and DAG (Figure 6B; for raw 
lipidomics data and concentration waterfall plots, see Supplemental Table 1 and Supplemental Figure 
1, respectively; supplemental material available online with this article; https://doi.org/10.1172/jci.
insight.131310DS1) species in CON mice. One week of  GH treatment increased total hepatic TAG 
(Figure 6C) and DAG (Figure 6D) by an average of  approximately 18% and 15%, respectively, in CON 
but not JAK2A mice. Hepatic cholesterol ester (CE) species were less affected by GH treatment (Fig-
ure 6E). However, GH treatment in CON mice did produce statistically higher levels of  total hepatic 
CE than in JAK2A animals (Figure 6G). GH treatment did not differentially affect total hepatic cer-
amide (CER) when comparing CON and JAK2A cohorts (Figure 6, F and H). Therefore, acute GH 
treatment increases hepatic lipid burden but does so via adipocyte signaling.

https://doi.org/10.1172/jci.insight.131310
https://insight.jci.org/articles/view/131310#sd
https://insight.jci.org/articles/view/131310#sd
https://insight.jci.org/articles/view/131310#sd
https://doi.org/10.1172/jci.insight.131310DS1
https://doi.org/10.1172/jci.insight.131310DS1
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Discussion
The association between IR and type 2 diabetes (T2D) with hepatosteatosis is strong (33). However, it pres-
ents a number of  physiological quandaries. Chief  among them is why fatty liver develops in the setting of  IR 
(34). The normal physiological roles of  insulin action on the liver are to suppress hepatic glucose production 

Figure 4. Loss of hepatocyte Jak2 promotes NAFLD and NASH in an adipocyte Jak2–dependent manner. (A) H&E and (B) trichrome staining of liver 
sections from CON, JAK2L, and JAK2LA mice. (C) Percentages of hepatosteatosis, (D) ballooning, and (E) inflammatory loci observed in liver sections. (F) 
Fibrosis staging score. (G) Brunt staging score. n = 10–12. ***P < 0.001; ****P < 0.0001 by 1-way ANOVA.
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(HGP) and to stimulate TAG synthesis. Thus, the prediction would be that patients with T2D would have 
hyperglycemia (from the inability of  insulin to suppress HGP) concomitant with “normal” liver lipid levels 
(from the inability of  insulin to induce TAG synthesis). Nevertheless, patients with T2D, while indeed exhib-
iting increased gluconeogenesis, also display increased rates of  TAG synthesis, suggesting the latter pathway 

Figure 5. Loss of hepatocyte Jak2 promotes HCC in an adipocyte Jak2–dependent manner. 
(A) Pictures of gross livers from CON (left), JAK2L (middle), and JAK2LA mice (right). (B) Liver 
nodules on a JAK2L liver. (C) H&E and trichrome staining of liver sections from control mice 
(left) and JAK2L nodules (right). Scale bar: 1 mm. (D) Immunohistochemistry of sections from 
JAK2L liver nodules stained with anti–glutamine synthetase (top), anti-glypican-3 (middle), 
and CK19 (bottom). Scale bar: 900 um. (E) Contingency evaluation of HCC incidence showing 
the number of mice with HCC-negative (HCC –ve) and -positive (HCC +ve) tumors, n = 17–24.  
P value determined by χ2 testing.
 

https://doi.org/10.1172/jci.insight.131310
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remains active while the former loses insulin responsiveness. This paradox has been termed “selective hepat-
ic IR” and has been primarily attributed to branch points (i.e., 1 arm regulating HGP and a second mediat-
ing TAG synthesis) of  insulin signaling within the liver itself  (10, 11). TAG synthesis via hepatic DNL has 
been proposed as the potential driver of  fatty liver disease (35) and a target of  hepatic GH action (25). The 
natural conclusion would be to treat T2D and metabolic liver disease by targeting liver-intrinsic mechanisms.

An alternative hypothesis is that substrate delivery can drive HGP and TAG synthesis independent 
of  direct effects of  insulin on the liver (36). From this vantage, diseases associated with hepatic IR could 
be treated by either shutting off  the supply of  substrate or inhibiting substrate uptake. In support of  this, a 
study on patients with NAFLD demonstrated that the majority of  hepatic TAG arises from NEFAs, more 
than twice of  that derived from DNL (37). Furthermore, it was reported in high fat diet–fed rats that NEFA 
but not hepatic TAG accumulation is the cause of  liver cell injury (38). Regardless, registered interven-
tional NASH trials almost exclusively examine the effects of  agents targeting mechanisms within the liver. 
Therefore, the effects of  abrogating substrate supply or uptake remain unexamined, although preclinical 
models are supportive of  pursuing this paradigm (38, 39). Here, we show that inhibition of  adipocyte JAK2 
signaling prevents the sequelae of  events associated with high levels of  circulating GH, beginning with IR 
and progressing through HCC. Specifically, the potential, if  any, of  inhibiting adipocyte GH signaling for 
the treatment of  established NAFLD, NASH, and HCC is unknown.

Short-term starvation is a natural state of  IR and fatty liver (40). During nutrient deprivation, GH induc-
es IR and promotes a lipolytic response (15). It has been hypothesized that GH resistance, which results in 
high circulating GH levels, is an adaptive response to states of  undernutrition to maintain euglycemia (41). 
Adipocyte (42) but not hepatocyte (43) IR results in LD and can promote fatty liver. This suggests that star-
vation and LD-induced fatty liver may share a common mechanism involving GH-mediated adipocyte IR. 
Interestingly, although AN is characterized by GH resistance (i.e., elevated circulating GH in the face of  low 
plasma IGF1), treatment of  AN patients with GH further induces fat loss. This suggests that AN is actually 
a state of  hepatic GH resistance while adipose tissue of  patients with AN remains GH responsive. Consistent 
with this, we now show that mice with elevated GH (JAK2L) lose more body weight following a 16-hour fast 
and are lipodystrophic. We interpret this as an unrestrained chronic state of  adipose tissue IR and a condi-
tion mimicking metabolic starvation. At the molecular level, adipose tissue of  JAK2L mice failed to induce 
mTORC1 following acute refeeding, suggesting that GH impinges on mTORC1 activity. Interestingly, loss 
of  mTORC1 specifically in adipocytes induces IR, fatty liver disease, and LD (44), a phenocopy of  the 
JAK2L mice. These phenotypes associated with loss of  hepatocyte Jak2 — IR, attenuation of  adipose tissue 
mTORC1 activation, LD, and fatty liver — are rescued in JAK2LA mice. Therefore, adipocytes govern 
GH-mediated catabolism and fat mobilization and subsequent perturbation of  liver metabolism.

Adult GH deficiency (AGHD) commonly results in the development of  NAFLD and NASH (24). The 
association of  AGHD with fatty liver has been attributed to the ability of  GH to inhibit hepatic DNL; hence, 
in the absence of  liver GH action, DNL would be increased (25). This is in contrast with our previous work 
using in vivo 2H2O labeling because we found no increase in DNL in mice with fatty liver lacking hepatic 
GH signaling (26). Instead, using precise, tissue-specific genetic models, we have determined that fatty acid 
uptake, via Cd36, is responsible for liver-intrinsic mechanisms driving fatty liver in mice with disrupted 
hepatic GH signaling (39). Further, hepatosteatosis following hepatic GH resistance is dependent on cir-
culating GH, and because GH cannot transduce hepatic signals in the setting of  hepatic GH resistance, a 
tissue other than liver must mediate fatty liver development (26). Here, our lipidomics data demonstrate that 
1 week of  GH treatment promoted lipid deposition in livers of  mice with intact hepatic GH signaling but 
not in mice lacking adipocyte GH signaling. Thus, both loss of  hepatic GH sensitivity as well as continued 
hepatic exposure to GH in GH-sensitive animals promotes fatty liver. This may seem contradictory except 
that hepatic GH resistance results in high levels of  circulating GH, similar to peripheral administration of  
recombinant GH. As we show here, hepatosteatosis induced by either GH resistance or GH treatment is 
governed by adipocyte JAK2. Regardless, the association of  AGHD with liver fat and dysfunction has led 
to the dominant paradigm of  augmenting GH levels to treat NAFLD and NASH. We propose that this 

Figure 6. GH treatment induces hepatic lipid deposition via adipocyte Jak2. Lipidomics heatmaps of individual hepatic (A) triacylglycerol (TAG), (B) 
diacylglycerol (DAG), (E) cholesterol ester (CE), and (F) ceramide (CER) species in vehicle-treated (Veh-treated) or GH-treated CON and JAK2A mice. 
Total hepatic (C) TAG, (D) DAG, (G) CE, and (H) CER levels. *P < 0.05; **P < 0.01 by 2-way ANOVA. For lipidomics heatmaps, all values of individual lipid 
species are expressed as the log2 ratio to Veh-treated CON mice and visualized by the log2 scale to the right of the heatmap. n = 4–5. 
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approach will likely worsen the pathophysiology of  established NAFLD and NASH, as was reported for 
patients with AN (18) and HIV-associated LD (45, 46).

Cordoba-Chacon et al. recently reported that knockdown of  hepatocyte Ghr in adult mice (aHep-
GHRkd) promotes fatty liver and NASH via increased DNL without severe alterations in systemic metab-
olism or adipose tissue lipolysis (47). This led them to conclude that liver disease from loss of  hepatocyte 
GH signaling occurs via liver-autonomous means. However, it is difficult to make these conclusions in the 
face of  high circulating GH, as reported in their aHepGHRkd mice, which can act on non-liver tissue, as 
well as IR (hyperinsulinemia and hyperglycemia). Previously, we controlled for augmented circulating GH 
in mice lacking hepatocyte GH signaling by global disruption of  GH secretion (26). These studies demon-
strated that circulating GH mediated onset of  fatty liver in JAK2L mice, demonstrating that cells other than 
hepatocytes were responsible for development of  hepatosteatosis. aHepGHRkd did not display increased 
plasma NEFAs, which is consistent with our study here because we did not observe a correlation between 
circulating fasting NEFA levels and liver pathology. However, given that circulating NEFA levels are the 
net result of  release and uptake, and that loss of  hepatic GH signaling induces Cd36 (which increases 
NEFA uptake), it is difficult to make any conclusions on the state of  lipolysis (39). To directly address this, 
Cordoba-Chacon et al. (47) used adipose explant cultures to demonstrate that aHepGHRkd had normal 
basal and stimulated rates of  lipolysis. This is also consistent with our previously published results showing 
that GH does not affect basal lipolysis but instead specifically interferes with the ability of  insulin to sup-
press lipolysis (19). Thus, without directly attending to high circulating GH levels present in aHepGHRkd 
mice via concomitant loss of  adipocyte Ghr or global Gh disruption, it is premature to conclude that fatty 
liver and NASH resulting from loss of  hepatocyte Ghr occurs via liver-autonomous means.

The role of  JAK2/STAT5 signaling in HCC is well documented. Liver-specific Stat5 knockouts 
(STAT5L), like our JAK2L mice here, succumb to HCC on aging without carcinogen or dietary interven-
tion (48). In a study by Yu, Zhu, Riedlinger, Kang, and Hennighausen, STAT5L mice developed HCC 
at age 17 months, although it was a small cohort of  4 mice. In addition, a previous study examined liver 
tumorigenesis in JAK2L mice and reported a 68% incidence at 60 weeks of  age, although it is unclear 
whether the tumors were HCC (49). Here, we report that 10/24 (~42%) of  JAK2L mice developed HCC 
with an average age of  discovery of  about 704 days. Contrary to these findings, 1 report found that loss of  
hepatocyte Jak2 protects against liver tumorigenesis (50). However, the work by Shi et al. used chemical 
and dietary perturbations to induce liver disease and carcinogenesis. We propose that findings from the 
reports, including our own, on aging-related HCC are mediated by adipocyte GH signaling and governed 
by IR while orally administered carcinogens and dietary models directly affect hepatocytes. Our work here 
demonstrates that JAK2L mice succumb specifically to the sequelae of  events leading to metabolic liver dis-
ease and, although it is experimentally cumbersome to wait approximately 2 years for HCC development, 
may provide a more faithful model of  human IR-associated HCC.

Acromegaly predisposes to cancer, and cancer has become a leading cause of  acromegaly-associ-
ated deaths, despite an overall increase in life expectancy due to new treatments (51). The most par-
simonious rationale for the mechanism of  cancer onset due to high levels of  GH is increased plasma 
IGF1. However, we report here that mice with hepatic GH resistance indeed succumb to HCC, despite 
undetectable circulating IGF1. Further, while treatment of  Laron syndrome (LS) patients (loss of  GH 
signaling) with recombinant IGF1 does normalize linear growth rates, restoration of  IGF1 levels by 
pharmacological means does not prevent the immunity from cancer appreciated in those with LS (52). 
Collectively, then, we propose that GH predisposes to cancer via its role in metabolism and not IGF1 
production, possibly through actions on adipose tissue. Adipose tissue dysfunction, and IR in partic-
ular, is highly associated with cancer and adipocytes have been proposed as mediators of  tumor cell 
behavior (53). How insulin-resistant adipocytes promote oncogenesis is unknown, but a role for fatty 
acid receptors has been proposed (54). In addition, metabolic reprogramming in HCC is mediated 
by the master oncogene Myc (55), and MYC levels themselves are induced by cellular exposure to 
fatty acids (56). Interestingly, a single bolus of  GH increased hepatic Myc expression within 1 hour of  
administration (57). Therefore, it is tempting to speculate that adipocytes release a factor in a JAK2-de-
pendent manner that subsequently induces hepatic Myc, leading to a favorable metabolic environment 
for development of  HCC. Given that HCCs are “addicted” to sustained MYC expression (58), it will 
be interesting to test whether inhibition of  adipocyte JAK2 will lead to regression of  established HCC, 
what would ultimately be akin to a kind of  “metabolite addiction.”
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Our current study excluded female mice. This is particularly relevant to NAFLD and NASH because 
sexual dimorphism is a characteristic of  the disease (59). Females are relatively protected from metabolic 
dysregulation in both humans and mice, and this has been attributed to, among other sex-based differences, 
a preferential partitioning of  FA toward ketogenesis over VLDL TAG production (60). Our studies here 
were a follow-up to previous work using hyperinsulinemic-euglycemic clamps (19, 20), where the high 
degree of  variability between female animals when using this technique presented a resource-based limita-
tion for us. Therefore, females were not included in the current aging study because we have yet to definitely 
determine the state of  insulin sensitivity in either JAK2L or JAK2LA female mice. Regardless, this is a 
major limitation in our report that we hope to remediate in the future.

Methods
Animals and diets. The generation of  JAK2L and JAK2LA mice using Albumin:Cre and Adiponectin:Cre was 
previously described (20). For our studies reported here, Jak2lox/lox (61) were used as controls and back-
crossed onto the C57BL/6 background for at least 9 generations. We used male mice only in these studies, 
and all animals were maintained on PicoLab Mouse Diet 20 (Lab Diet 5058; percentage of  calories provid-
ed by protein, 23%; fat, 22%; and carbohydrate, 55%) throughout their lifetime.

Study designs. Mice were aged until 70 to 75 weeks for metabolic studies. Blood was collected by ret-
ro-orbital puncture at 1700 hours before food removal as the fed state. The following morning at 0900 
hours, mice were sacrificed and blood and tissues collected as the fasted state. For refeeding studies, mice 
fasted overnight were sacrificed or refed for 30 minutes before tissue collection by placing a pellet of  food 
into the cages. Tissues were flash frozen on liquid nitrogen for Western blot, lipidomics, and transcriptomic 
analyses. Tissues were fixed with 10% neutral-buffered formalin for 24 hours for histological analyses. 
Blood glucose and serum insulin levels were determined by glucometer readings (Bayer Contour) and ELI-
SA (Alpco), respectively. Serum IGF1 (R&D MG100) and GH (MilliporeSigma EZRMGH-45K) levels 
were determined by ELISA. For ITT, mice were fasted for 4 hours (0900–1300 hours) followed by i.p. injec-
tion of  2 U/kg insulin (Novolin Novo Nordisk). Blood glucose levels were determined by tail prick using a 
handheld glucometer at the times indicated. HOMA-IR was calculated as a ratio of  fasting blood glucose 
(mg/dL) to fasting serum insulin (mU/L) divided by 405 (62). Total fat mass was determined by dual-en-
ergy x-ray absorptiometry. All clinical chemistry was done on terminally collected serum from mice fasted 
16 hours and done at the University of  California, Davis, Comparative Pathology Lab Core. For acute GH 
studies, CON and JAK2A mice were injected (i.p.) with vehicle (0.03 M NaHCO3 and 0.15 M NaCl, pH 
9.5) or 5 mg/kg recombinant mouse GH (AF Parlow, National Hormone and Peptide Program, UCLA) 
daily at 0900 hours for 7 days and sacrificed 4 hours after a fast and the final injection.

Hepatic TAG and cholesterol measurements and Western blots. Bits of  frozen liver were weighed and resus-
pended in 1× cell lysis buffer (Cell Signaling Technology 9803) with protease (Roche 4693132001) and 
phosphatase (Roche 4906845001) inhibitor cocktail at a final volume of  50 mg/mL and homogenized using 
the OmniTH homogenizer. Twenty microliters of  lysates was used to determine cholesterol (Wako 999-
02601) and triglyceride (Infinity reagent, Thermo Fisher Scientific TR22421) levels. Alternatively, lysates 
were run out on 4% to 12% gradient gels and probed with anti–p(T389) p70S6K (Cell Signaling 9205) and 
anti-p70S6K (Cell Signaling 2708) antibodies. Western blots were developed with SuperSignal West Femto 
reagent (Thermo Fisher Scientific 34095) and developed using a ChemiDoc Imaging System (Bio-Rad). 
Densitometric quantification was carried out using ImageJ (NIH) software as described previously (63).

Liver histology and pathological analyses. Tissues were collected and fixed in 10% neutral-buffered forma-
lin for 24 hours. Subsequently, tissues were washed and stored in 70% ethanol until embedding and section-
ing. Sectioning and staining were carried out by the UCSF Liver Center core. H&E, trichrome, reticulin, 
and immunohistochemical stains were reviewed and evaluated by a blinded gastrointestinal/liver pathol-
ogist. Livers were evaluated and scored according to methods by Kleiner and Brunt (64). Liver tumors 
were evaluated by H&E, trichrome, and reticulin patterns and further evaluated by immunohistochemical 
staining for CK19, glutamine synthetase, and glypican-3. Immunohistochemical staining was performed by 
Peninsula Laboratories International.

Lipidomics. Lipidomics were done exactly as described previously (20).
Statistics. All statistical tests and figures were done using GraphPad Prism v8.0. The type of  ANOVA 

test (1 or 2 way) and resulting P values are indicated in the figure legends. P values of  less than 0.05 were 
considered significant. All scatter dot plots shown are plotted as the mean ± SEM.
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