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ABSTRACT OF THE DISSERTATION

New Algorithms in Computational Microscopy

by

Minh Pham

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2020

Professor Stanley Osher, Chair

Microscopy plays an important role in providing tools to microscopically observe objects

and their surrounding areas with much higher resolution ranging from the scale between

molecular machineries (angstrom) and individual cells (micrometer). Under microscopes,

illumination, such as visible light and electron-magnetic radiation/electron beam, interacts

with samples, then they are scattered to a plane and are recorded. Computational mi-

croscopy corresponds to image reconstruction from these measurements as well as improving

quality of the images. Along with the evolution of microscopy, new studies are discovered

and algorithms need development not only to provide high-resolution imaging but also to

decipher new and advanced researches.

In this dissertation, we focus on algorithm development for inverse problems in mi-

croscopy, specifically phase retrieval and tomography, and the application of these tech-

niques to machine learning. The four studies in this dissertation demonstrates the use of

optimization and calculus of variation in imaging science and other different disciplines.

Study 1 focuses on coherent diffractive imaging (CDI) or phase retrieval, a non-linear

inverse problem that aims to recover 2D image from it Fourier transforms in modulus taking

into account that extra information provided by oversampling as a second constraint. To

solve this two-constraint minimization, we proceed from Hamilton-Jacobi partial differential

equation (HJ-PDE) and Hopf-Lax formula. Introducing generalized Bregman distance to

the HJ-PDE and applying Legendre transform, we derive our generalized proximal smooth-
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ing (GPS) algorithm under the form of primal-dual hybrid gradient (PDHG). While the

reflection operator, known as extrapolating momentum, helps overcome local minima, the

smoothing by the generalized Bregman distance is adjusted to improve convergence and

consistency of phase retrieval.

Study 2 focuses on electron tomography, 3D image reconstruction from a set of 2D

projections obtained from a transmission electron microscope (TEM) or X-ray microscope.

Notice that current tomography algorithms limit to a single tilt axis and fail to work with

fully or partially missing data. In the light of calculus of variations and Fourier slice theorem

(FST), we develop a highly accurate tomography iterative algorithm that can provide higher

resolution imaging and work with missing data as well as has capability to perform multiple-

tilt-axis tomography. The algorithm is further developed to work with non-isolated objects

and partially-blocked projections which have become more popular in experiment. The

success of real space iterative reconstruction engine (RESIRE) opens a new era to the study

of tomography in material science and magnetic structures (vector Tomography).

Study 3 and 4 are applications of our algorithms to machine learning. Study 3 develops

a backward Euler method in a stochastic manner to solve K-mean clustering, a well-known

non-convex optimization problem. The algorithm has been shown to improve minimums and

consistency, providing a new powerful tool to the class of classification techniques. Study

4 is a direct application of GPS to deep learning gradient descent algorithms. Linearizing

the Hopf-Lax formula derived in GPS, we derive our method Laplacian smoothing gradient

descent (LSGD), simply known as gradient smoothing. Our experiment shows that LSGD

has the ability to search for better and flatter minimums, reduce variation, and obtain higher

accuracy and consistency.
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CHAPTER 1

Introduction

1.1 Background

1.1.1 History of microscopy

Mankind history sees the evolution of microscopy and technological innovation has enabled

humans to explore and visualize the microworld microscopically. Under a light microscope,

humans saw cells and bacteria for the first time, and hence they learned about the basic

units of living organisms. With the latest breakthrough, humans can further see the complex

structure of samples with resolutions in the tens of nanometers, and observe its change in

time (4D imaging). Localization of individual molecules or atom positions can be specified

with high accuracy under fluorescent and electron microscopes, respectively.

Along with the development of microscopes, humans also see the evolution of computer

technology helps scientists to store and process extremely large data with high performance

and efficiency. Last but not least, the development of computational mathematics has signif-

icantly benefit scientists in deciphering those biological structures and inorganic materials.

Microscopy provides us images of samples that; however, have been modified by the optical

system while recovering the original images is considered as inverse problems. Depending on

microscope setting, reconstruction can be mathematically designed to decode images with

various options according to the demand of scientists.

To understand these inverse problems, we can take a look at the history of microscopy.

The principle of microscopy is based on the diffraction theory of light which has been de-

veloped for the last couple of centuries. The earliest “wave theory of light” proposed by
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Christian Huygens in 1678, stated that “each point on a wavefront can be considered as

a new source of a secondary source.” The theory was verified by the famous double slit

interference experiment by Thomas Young in 1804. During the gap between these two land-

marks, Isaac Newton proposed the “corpuscular theory” of light, stating that light is made

up of small discrete particles called ”corpuscles” (little particles) which travel in a straight

line with a finite velocity and possess impetus.

In 1860, Maxwell formed a set of partial differential equations that, together with

the Lorentz force law, set the foundation of classical electromagnetism and optics. Even

though Maxwell’s equations later become more famous in mathematics and electromag-

netism, Maxwell first used those equations to propose that light is an electromagnetic phe-

nomenon.

However in early 1818, Fresnel presented the calculation of diffraction patterns that,

with highly accuracy, was later mathematically formulated by Kirchhoff in 1882 and further

developed by Rayleigh and Sommerfeld. Kirchhoff’s diffraction formula (also known as

Fresnel–Kirchhoff diffraction formula) expresses the wave disturbance and its propagation

in space when a monochromatic spherical wave passes through an opening in an opaque

screen. From the formula were derived Fraunhofer and Fresnel diffraction which established

the fundamentals of modern microscopy.

1.1.2 Optical microscopy & phase retrieval

1.1.2.1 Optical microscopy

Microscopy is the technical field of using microscopes to view objects and areas of objects

with higher resolution ranging from a couple of micrometers to angstroms [2]. There are

three well-known branches of microscopy: optical, electron, and scanning probe microscopy,

along with the emerging field of X-ray microscopy.

Optical and electron microscopy use visible lights or electron beams to interact with

specimens, and then collect the radiation that is scattered from the beam under diffraction,
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reflection and refraction. This process may be carried out by wide-field irradiation of the

sample (for example standard light microscopy and transmission electron microscopy) or by

scanning a fine beam over the sample (for example confocal laser scanning microscopy and

scanning electron microscopy).

In optical microscopy, a single lens or multiple lenses allows visible light to transmit

through or reflect from the sample and magnify its view. The resulting image can be

detected directly by the eye, or captured digitally by a camera (CCD). There are diverse

techniques in optical microscopes according to interest in research. Bright field microscopy

is the standard and simplest optical-microscopy technique, widely used in most microscopy

labs. However, to improve specimen contrast or highlight certain structures in a sample,

special techniques must be used. On the other hand, dark field microscopy can improve

the contrast of unstained, transparent specimens by trying to minimize the quantity of

directly transmitted (unscattered) light entering the image plane, and collect only the light

scattered by the sample. When one would like to highlight a certain chemical-compound

characteristic, fluorescent dyes can be used to stain these structures or chemical compounds

and this introduces fluorescence microscopy. Another important technology is confocal that

can prevent out of focus and help improve resolution slightly.

There are more microscopy technologies to enhance visualization of samples such as phase

contrast, cross-polarized light, etc; however, the fundamental of resolution improvement is

using light sources with smaller wavelengths. For example, electron beams can replace

farther resolution and see structures of couple angstrom. Even though less common, X-

ray with resolution lying in between that of light and electron microscopy has also been

developed since the late 1940s.

1.1.2.2 Phase retrieval

Fresnel diffraction formula, approximating the Kirchhoff–Fresnel diffraction in the near field,

implies that the electromagnetic field at a distance away from the diffraction object plan is

proportional to its Fourier transform [12]. The diffraction patterns obtained at camera show
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their intensities, which are the squared amplitude of the electromagnetic field, i.e. diffraction

pattern can be approximated from Fourier transform. Recovering the image from diffraction

patterns is an inverse problem, and is equivalent to retrieving the phase.

Early iterative algorithms that were developed to solve the phase retrieval problem such

as error reduction, and hybrid input-output fundamentally work based on alternating projec-

tion between real space and Fourier space. Important applications of phase retrieval include

X-ray crystallography, transmission electron microscopy and coherent diffractive imaging

where the last one is a “lensless” technique and was first demonstrated in 1999 by Miao.

The phase retrieval problem encountered difficulties such as “shrink wrap” [52] where

the reconstructed image stagnates and produces features of both object and its conjugate.

Note that both image f(x) and its conjugate f ∗(x) have the same Fourier modulus; hence

inadequate measurement can cause stagnation in the reconstruction. Thanks to the ad-

vanced technology in digital imaging, the invention of high-resolution CCD cameras allows

us to collect measurements with a finer grid, i.e. oversampling. This experimental technique

provides useful information for the development of phase retrieval algorithms. Being com-

bined with reflection operator as extrapolating momentum, HIO [51] has been practically

shown to obtain good reconstructions with oversampling ratio in the range [3, 4]. However,

consistency and robustness of the algorithm are still big question marks. Optimization is

supposed to help fill in the gap and improve the reconstruction.

Other approaches have been exhaustively studied in the past few decades such as phaselift

[19] and Wirtinger flow [20] but those methods are not widely used in practices. They

are both expensive, under-performance, and only attract interest from the theoretical and

analysis community.

We finish this part by stating that the success of CDI opened up X-ray microscopy to

the realistic possibility of imaging non-crystalline specimens in a truly diffraction and dose-

limited manner while development in instrumentation can push spatial resolution better

than 10 nm [130]. As coherent diffractive X-ray microscopy enters the mainstream, it is now

a still-growing yet proven technique.
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1.1.3 Electron microscopy & tomography

1.1.3.1 Electron microscopy

Electron microscopes use a beam of accelerated electrons as a source of illumination. With a

far shorter wavelength than that of visible light (about 100,000 times), electron microscopy

has a higher resolving power than light microscopes and can reveal the structure of smaller

objects such as atoms and particles. There are two main techniques under electron mi-

croscopy: transmission electron microscopy (TEM) that sends an electron beam through

a very thin slice of specimen, and scanning electron microscopy (SEM) that can visualize

details on surfaces of specimens.

In 2005, TEM resolution was shown to push up to 0.5Å [45] and obtain atomic structures

such as atoms and particles. Different from optical microscopy, TEM can also work with

image mode when the objective aperture is inserted in a back focal plane (BFP) of the

objective lens (where diffraction spots are formed). Depending on the use of objective

aperture, bright field image (BF image) or dark field image (DF image) is obtained. With

the help of Intermediate and Projector lenses, the selected signal is magnified and projected

on a screen (or camera), forming an image of the sample.

TEM and its modification scanning transmission electron microscope (STEM) allow us

to perform tomography by collecting images at different tilt angles [83]. This extension of

traditional TEM is known as electron tomography, opens a new study to high-resolution 3D

imaging of physical and biological samples, including atomic electron tomography (AET)

that studies 3D atomic structures of point and crystal defects such as dislocation, chemical

order/disorder, grain and anti-phase boundaries.

1.1.3.2 Tomography

The first X-ray tomography experiment was first demonstrated by Oldendorf in 1963, but

the mathematical theory had been built much earlier in 1917 by Johann Radon [115, 116].

The Austrian mathematician invented Radon transform and mathematically showed that a
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function can be reassembled from an infinite set of its projections. In 1937, Polish math-

ematician Stefan Kaczmarz [74] developed a method, along with Allan McLeod Cormack’s

theoretical and experimental work, to find an approximate solution to a large system of linear

equations, and laid the foundation for algebraic reconstruction technique ART [31, 60].

Tomography algorithms have been developed for decades and mainly fall into two cat-

egories: one-step method filtered back projection (FBP) [42] and iterative reconstruction

(IR) [64, 72]. FBP performs well with adequate measurements, and shows efficiency in

computational cost and time. On the other hand, IR, despite more computational expense,

refines better images relative to FBP, especially when measurements are limited or missing.

Since tomography becomes popular in both commercial use and research, numerical

methods are developed to obtain fast and efficient reconstructions [140]. Another important

trend of research is to improve performance and generalize Tomography to the multiple-tilt-

axis case, for example generalized Fourier iterative reconstruction GENFIRE [112].

To finish this part, we report that TEM has found diverse applications in cancer research,

virology, and materials science as well as pollution, nanotechnology and semiconductor re-

search, but also in other fields such as paleontology and palynology. Together with that

build-out, algorithm development in Tomography has been shown to be very important to

improving high-resolution 3D imaging.

1.2 Contribution

To that end, the main objective of this dissertation is to develop advanced algorithms for

inverse problems: phase retrieval and tomography, in microscopy. To proceed with these

objectives, I apply optimization techniques and calculus of variation. Carefully reformulating

these problems, I mathematically derive a better algorithm and design a suitable numerical

scheme for each case. This dissertation is organized into three aims. The first and second

aim contain one chapter for each, focusing on algorithm development for phase retrieval and

tomography. The third aim contains two chapters, showing applications of these techniques

in machine learning, especially in k-means clustering and deep learning algorithms.
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1.2.1 Aim 1: Algorithm development for phase retrieval

Project 1: Develop a high-performance phase retrieval algorithm. The objective goals

are composed of two following parts. First, the algorithm must have the ability to overcome

local minima and achieve lower objective values. Second, the method needs to improve

consistency and robustness to noise.

Chapter 2: Generalized proximal smoothing (GPS) for phase retrieval

We recall that oversampling technique provides useful information and acts as a second

constraint in the phase retrieval problem. Thanks to oversampling, the minimization then

becomes reconstructing a 2D image that satisfies two constraints: Fourier modulus constraint

and “real, positive and support” constraint. I apply generalized proximal smoothing, where a

generalized Bregman metric replaces the usual Euclidean distance, to relax these constraints

into two generalized “sum of squared errors” fidelity terms. The relaxation, interpreted as

a solution to an unusual Hamilton-Jacobi partial differential equation, smooths out the

non-convex & non-smooth function in the sense of bringing down maxima, lifting up bad

minima, and widening good minima. The smoothing improves capability of escaping bad

local minima (sharp & narrow) and robustness to noise. Finally, primal-dual hybrid gradient

(PDHG) [22] algorithm is borrowed to solve this bi-objective function.

1.2.2 Aim 2: Algorithm development for tomography

Project 2: Develop a highly accurate tomographic iterative algorithm. The method needs

not only providing a high-qualitative imaging but also robust to noise, especially must work

with missing-wedge data. In addition, it must have capability to work with generalized

multiple-tilt-axis case and partially-blocked projection.

Chapter 3: RESIRE: real space iterative reconstruction engine

Considering calculus of variations, I reformulate tomography as l2 minimization prob-

lem and derive the corresponding Euler-Lagrange equation. Simple gradient descent can be

applied to iteratively refine reconstructions. The significant impact is that the new formu-
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lation mathematically allows working with partial missing data, i.e. only part of projection

images is given. This capability benefits the reconstruction where projections of samples are

partially blocked, for example by a cap. Equivalently, this functionality can be extended

to work with non-isolated objects or thin film where the size of sample is larger than its

field of view (FOV). Along with deriving the new formulation, I also implement an effective

and efficient iterative method while considering Fourier slice theorem to improve accuracy of

forward projection. The success of this algorithm opens a new study to tensor tomography

where scientists are interested in exploring vector fields caused by magnetic material.

1.2.3 Aim 3: Application to machine learning

1.2.3.1 K-mean clustering

Project 3: Develop an iterative algorithm to improve the performance of K-mean clustering

considering a combination of stochastic gradient descent and backward Euler method.

Chapter 4: Stochastic backward Euler: an implicit gradient descent algorithm for K-

means clustering

Motivated from “deep relaxation” [26], an optimization method in deep learning, I sim-

plify the algorithm and apply it to the K-means problem, minimizing a non-convex “sum of

squared errors” function f(x). The simplified method is a coupling of stochastic gradient

descent and backward Euler where the later one can be processed by a few iterations of fixed-

point method. This is an interpretation of Hopf-Lax formula, solution under implicit form

to a viscous Hamilton-Jacobi partial differential equation (HJ-PDE). The aim is to minimize

a smoothing of f(x), termed fHJ(x), obtained from the viscous HJ-PDE. The combination

provides a “better descent” direction than the usual GD method since it goes toward the

descent direction of fHJ(x) instead of f(x). Through simulation and practical experiments,

we show that stochastic backward Euler (SBE) provides more faithful clustering with lower

objective values and higher consistency. The probability of escaping from local minima is

improved since SBE can always avoid those traps by descending in a better direction.
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1.2.3.2 Laplacian smoothing gradient descent

Project 4: Develop an iterative method for deep learning to improve convergence and

consistency by gradient smoothing.

Chapter 5: Laplacian smoothing gradient descent

Taking a different motivation than the method in “deep relaxation” [26], we aim to

correct the descent direction in the GD method by applying smoothing on the gradient. In

this new approach, we instead focus on the non-viscous HJ-PDE where we further modify

the Hamiltonian by a generalized metric. This modification yields a backward Euler (BE)

equation with a modified gradient. When simplifying the BE and smoothing is taken into

account, we obtain the Laplacian smoothing gradient descent (LSGD). Experimental testing

shows that LSGD acquires better minima with more consistency.

1.3 Summary to dissertation

In summary, the four studies presented in this dissertation combine three main topics: al-

gorithm development in (1) diffraction imaging, (2) 3D reconstruction, and (3) applications

to machine learning. In terms of optimization, this collection of work provides advanced

techniques to inverse problems in microscopy. Mathematical optimization is the key to

their success, and open new studies in microscopy, for example material science and mag-

netic structure. The far-reaching goal of this work is application of these algorithms in a

plethora of imaging modalities across disciplines. As technology continues to develop, more

microscopy problems will emerge and algorithm development always plays a crucial part in

imaging science.
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CHAPTER 2

Generalized proximal smoothing (GPS) for phase

retrieval

In this study, we report the development of the generalized proximal smoothing (GPS)

algorithm for phase retrieval of noisy data. GPS is a optimization-based algorithm, in

which we relax both the Fourier magnitudes and support constraint. We relax the support

constraint by incorporating the Moreau-Yosida regularization and heat kernel smoothing,

and derive the associated proximal mapping. We also relax the magnitude constraint into a

least squares fidelity term, whose proximal mapping is available as well. GPS alternatively

iterates between the two proximal mappings in primal and dual spaces, respectively. Using

both numerical simulation and experimental data, we show that GPS algorithm consistently

outperforms the classical phase retrieval algorithms such as hybrid input-output (HIO) and

oversampling smoothness (OSS), in terms of the convergence speed, consistency of the phase

retrieval, and robustness to noise.

2.1 Introduction

Phase retrieval has been fundamental to several disciplines, ranging from imaging, mi-

croscopy, crystallography and optics to astronomy [102, 100, 131, 90]. It aims to recover an

object only from its Fourier magnitudes. Without the Fourier phases, the recovery can be

achieved via iterative algorithms when the Fourier magnitudes are sampled at a frequency

sufficiently finer than the Nyquist interval [94]. In 1972, Gerchberg and Saxton developed

an iterative algorithm for phase retrieval, utilizing the magnitude of an image and the

Fourier magnitudes as constraints [55]. In 1982, Fienup generalized the Gerchberg-Saxton
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algorithm by developing two iterative algorithms: error reduction (ER) and hybrid input-

output (HIO), which use a support and non-negativity as constraints in real space and the

Fourier magnitudes in reciprocal space [50]. In 1998, Miao, Sayre and Chapman proposed,

when the number of independently measured Fourier magnitudes is larger than the number

of unknown variables associated with a sample, the phases are in principle encoded in the

Fourier magnitudes and can be retrieved by iterative algorithms [94]. These developments

finally led to the first experimental demonstration of coherent diffractive imaging (CDI) by

Miao and collaborators in 1999 [95], which has stimulated wide spread research activities in

phase retrieval, CDI, and their applications in the physical and biological sciences ever since

[100, 25, 120].

For a finite object, when its Fourier transform is sampled at a frequency finer than the

Nyquist interval (i.e. oversampled), mathematically it is equivalent to padding zeros to the

object in real space. In another words, when the magnitude of the Fourier transform is over-

sampled, the correct phases correspond to the zero-density region surrounding the object,

which is known as the oversampling theorem [94, 93]. The phase retrieval algorithms iterate

between real and reciprocal space using zero-density region and the Fourier magnitudes as

dual-space constraints. A support is typically defined to separate the zero-density region

from the object. The support constraint, which is also known as the non-negativity con-

straint, is applied to the density inside the support. In the ER algorithm, the no-density

region outside the support and the negative density inside the support are set to zero in

each iteration [50]. The HIO algorithm relaxes the ER in the sense that it gradually reduces

the densities that violate the support constraint instead of directly forcing them to zero [50].

This relaxation often leads to good reconstructions from noise-free patterns. However, in

real experiments, the diffraction intensities, which are proportional to the square of Fourier

magnitudes, are corrupted by a combination of Gaussian and Poisson noise and missing

data. In the presence of experimental noise and missing data, phase retrieval becomes much

more challenging, and the ER and HIO algorithms may only converge to sub-optimal solu-

tions. Simply combining ER and HIO still suffers from stagnation and the iterations can get

trapped at local minima [51]. To alleviate these problems, more advanced phase retrieval
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algorithms have been developed such as the shrink-wrap algorithm and guided HIO (gHIO)

[28, 90]. In 2010, a smoothness constraint in real space was first introduced to improve the

phase retrieval of noisy data [117]. Later, a noise robust framework was implemented for en-

hancing the performance of existing algorithms [91]. Recently, Rodriguez et al. proposed to

impose the smoothness constraint on the no-density region outside the support by applying

Gaussian filters [123]. The resulting oversampling smoothness (OSS) algorithm successfully

reduces oscillations in the reconstructed image, and is more robust to noisy data than the

existing algorithms.

Since phase retrieval can be cast as a non-convex minimization problem, many efforts

have been made to study phase retrieval algorithms from the viewpoint of optimization. For

example, Bauschke et al. [11] related HIO to a particular relaxation of the Douglas-Rachford

algorithm [39] and introduced the hybrid projection reflection algorithm [10, 11]. Using

similar ideas, researchers further proposed several projection algorithms such as iterated

difference map [44] and relaxed averaged alternation reflection [88]. In [30], Chen and

Fannjiang analyzed a Fourier-domain Douglas-Rachford algorithm for phase retrieval. By

taking noise into account, the Wirtinger Flow [20] replaces the amplitude constraint by the

intensity constraint which is then relaxed into a least square fidelity term that measures

the misfit of measured Fourier intensity data, to which gradient descent is applied. Other

methods in this line include alternating direction methods [23, 24, 141] that have been

widely used in image processing, as well as lifting approaches [21] such as PhaseLift [18, 19]

by Candès et al. and its variants [139, 146].

In this paper, we propose an optimization-based phase retrieval method, termed gen-

eralized proximal smoothing (GPS), which effectively addresses the noise in both real and

Fourier spaces. Motivated by the success of OSS [123], GPS incorporates the idea of Moreau-

Yosida [103, 148] regularization with heat kernel smoothing, to relax the support constraint

into a continuous penalty term. We further relax the magnitude constraint into a least

squares fidelity term, for de-noising in Fourier space. To minimize the resulting primal-

dual formulation, GPS iterates back and forth between efficient proximal mappings of the

two relaxed functions, respectively. Our experimental results using noisy experimental data
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of biological and inorganic specimens demonstrate that GPS consistently outperforms the

state-of-the-art algorithms HIO and OSS in terms of both speed and robustness. We also re-

fer readers to the recent paper [147] about training quantized neural networks, which shows

another success of using Moreau-Yosida regularization to relax the hard constraint.

Notations. Let us fix some notations. For any complex-valued vectors u, v ∈ Cn, u is the

complex conjugate of u, whereas u∗ := u> is the Hermitian transpose. Re(u) and Im(u) are

the real and imaginary parts of u, respectively.

〈u, v〉 := u∗v =
∑n

i=1 uivi is the Hermitian inner product of u and v. u � v is the

element-wise (Hadamard) product of u and v given by (u � v)i = uivi. ‖u‖ :=
√
〈u, u〉

denotes the `2 norm of u. Given any Hermitian positive semi-definite matrix K ∈ Cn×n, we

define ‖u‖K :=
√
〈u,K u〉.

arg(u) := tan−1
(Im(u)

Re(u)

)
denotes the argument (or phase) of a non complex-valued

vector u = Re(u) + i · Im(u). For convenience we set arg(0) = 1.

IX is the indicator function of a closed set X ⊂ Cn given by IX (x) = 0 if x ∈ X and

IX (x) =∞ otherwise

projX (u) := arg minv∈X ‖v − u‖ is the projection of u onto X ,

proxf (u) := arg minv

{
f(v) + 1

2
‖v − u‖2

}
is the proximal mapping of the function f .

h∗(y) := sup
u∈C

{
Re〈y, u〉 − h(u)

}
is the extended Legendre transformation to the complex

plane of a real-valued function h.

2.2 Proposed model

We first fix some settings of the phase retrieval problem. Consider the reconstruction of a

2D image u defined on a discrete lattice Ω := {(i, j) : 1 ≤ i ≤ n1, 1 ≤ j ≤ n2}.

For simplicity, we represent u in terms of a vector in Rn by the lexicographical order with

n = n1×n2. Then ui represents the density of image at the i-th pixel. Due to oversampling,
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the object densities reside in a sub-domain S ⊂ Ω known as the support, and u is supposed to

be zero outside S. Throughout the paper, we assume that the support S is centered around

the domain Ω. The support constraint is S := {u ∈ Rn : ui ≥ 0 if i ∈ S, ui = 0 otherwise}.

The Fourier magnitude data is obtained as b = |Fu|, where F : Rn1×n2 → Cn1×n2 is the

discrete Fourier transform (DFT). We denote the magnitude constraint by T := {u ∈ Rn :

|Fu| = b}.

In the absence of noise, phase retrieval (PR) problem is simply to

find u ∈ Rn, such that u ∈ S ∩ T . (2.1)

This amounts to the following composite minimization problem

min
u∈Rn

f(u) + g(Fu), (2.2)

where f(u) := IS(u) and g(z) := I|z|=b(z) are two indicator functions that enforce the

object and Fourier magnitudes constraints, respectively. Note that f is a closed and convex

function while g is closed but non-convex. This gives rise to the non-convex optimization

problem of (2.2).

2.2.1 A new noise-removal model

In real experiments, the Fourier data are contaminated by experimental noise. Moreover,

the densities outside the support are not exactly equal to zero. In the noisy case, the

image to be reconstructed no longer fulfills either the Fourier magnitudes or the support

constraint. The ER algorithm (a.k.a. alternating projection), which performs alternatively

projects onto these two constraints, apparently does not take care of the noise. The HIO

“relaxes” the support constraint on densities wherever it is violated. This relaxation only

helps in the noiseless case. In the presence of noise, the feasible set S ∩ T can be empty,

and alternating projection method and its relaxation, like ER and HIO, may fail to converge

and keep oscillating. The OSS [123] improves the HIO by applying extra Gaussian filters to

smooth the densities outside the support at different stages of the iterative process. None

of them, however, seems to properly address the corruption of the Fourier magnitudes.
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Introducing the splitting variable z = Fu ∈ Cn, we reformulate (2.2) as

min
u,z∈Cn

f(u) + g(z) subject to z = Fu. (2.3)

In the presence of noise, we seek to relax the indicator functions f and g that enforce hard

constraints into soft constraints. To this end, we first relax g into a least square fidelity,

which is the sum of squared errors as follows

gσ(z) =
1

2σ
‖|z| − b‖2. (2.4)

This fidelity term has been considered in the literature by assuming the measurements being

corrupted by i.i.d. Gaussian noise; see [23] for example. In practice, we observe that it works

well even with a combination of Gaussian and Poisson noise. This relaxation is related to the

Moreau-Yoshida regularization [103, 148], which will be explained in detail in the appendix.

Following this line, we further relax f = IS into

fG(u) := inf
v

{
f(v) +

1

2
‖v − u‖2

G−1

}
= inf

v∈S

1

2
‖v − u‖2

G−1 (2.5)

for some Hermitian positive definite matrix G. The choice of G here is tricky, and will be

discussed later in section 3. The relaxation of both constraints thus leads to the proposed

noise-removal model

min
u,z∈Cn

fG(u) + gσ(z) subject to z = Fu. (2.6)

This constraint optimization can be solved by a splitting method, such as alternating direc-

tion method of multipliers (ADMM) [57, 16, 144] or primal dual hybrid gradient (PDHG)

algorithm [22, 46, 58, 107].

2.2.2 A primal-dual formulation

We solve the constraint optimization problem (2.6) by introducing the Lagrangian

L(u, z; y) = fG(u) + gσ(z) + Re〈y,F∗z − u〉, (2.7)
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where F∗ = F−1 is the adjoint of F or the inverse DFT. The corresponding Karush-Kuhn-

Tucker (KKT) condition is

y ∈ ∂fG(u), −Fy ∈ ∂gσ(z) ⇐⇒ F∗z = u ∈ ∂f ∗G(y), −Fy ∈ ∂gσ(z), (2.8)

where the right hand side equivalence is obtained by the convex conjugate property and is

exactly the KKT condition of the following min-max saddle point problem

min
z

max
y

gσ(z)− f ∗G(y) + Re〈z,Fy〉, (2.9)

with f ∗G(y) is the generalized Legendre-Fenchel transformation of f ∗G and has an explicit

form thanks to Moreau-Yoshida decomposition

f ∗G(y) = f ∗(y) +
1

2
‖y‖2

G, (2.10)

where f ∗ is the Legendre-Fenchel transformation of f defined as

f ∗(y) = sup
v∈S

Re〈y, v〉 =





0 if Re(y) ≤ 0 on S,

∞ otherwise.

(2.11)

For notational convenience, we denote S∗ := {y ∈ Sn : Re(y) ≤ 0 on S} the dual constraint

set of S. Our finalized min-max problem is thus given by

min
z

max
y∈S∗

1

2σ
‖|z| − b‖2 − 1

2
‖y‖2

G + Re〈z,Fy〉. (2.12)

2.3 Generalized proximal smoothing (GPS) algorithm

We carry out the minimization of the saddle point problem (2.9) or (2.12) by a generalized

primal dual hybrid gradient (PDHG) algorithm [22, 46, 58, 107], which iterates




zk+1 = proxtgσ

(
zk − tFyk

)

yk+1 = proxsf∗G

(
yk + sF−1(2zk+1 − zk)

) (2.13)
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for some step sizes s, t > 0. The update of zk+1 calls for computing the proximal mapping

of tgσ [23], whose analytic solution is given by

proxtgσ(z) = arg min
v∈Cn

1

2σ
‖|v| − b‖2 +

1

2t
‖v − z‖2 =

b� exp(i · arg(z)) + (σ/t)z

1 + σ/t
, (2.14)

which is essentially a weighted average between z and its projection onto the magnitude

constraint {z ∈ Cn : |z| = b}.

Moreover, we need to find the proximal mapping of sf ∗G for updating yk+1, which reduces

to

proxsf∗G(y) = arg min
v∈Cn

f ∗G(v) +
1

2s
‖v − y‖2 = arg min

v∈Cn
f ∗(v) +

1

2
‖v‖2

G +
1

2s
‖v − y‖2

= arg min
v∈S∗

1

2
‖v‖2

G +
1

2s
‖v − y‖2. (2.15)

Eq. (2.15) has closed-form solution only when G is a diagonal matrix. In the other case, we

provide an approximation.

We devise two versions of GPS algorithm based on different choices of G.

2.3.1 Real space smoothing

One choice of G is G = γ D>D. Here D is the discrete gradient operator, and then D>D is

the negative of discrete Laplacian. In this case,

f ∗G(y) = f ∗(y) +
γ

2
‖Dy‖2, (2.16)

which we shall refer as the real space smoothing. Since G is not diagonal, the closed-form

solution to Eq. (2.15) is not available. For small γ, we approximate the solution by 2 steps:

projection and smoothing,

proxsf∗G(y) ≈ (I + sγD>D)−1projS∗(y). (2.17)

The linear inversion is in fact the Laplacian smoothing that follows the projection to ensure

the smoothness of the reconstructed image after each iteration. The real space smoothing

is related to the diffusion process and can be approximated by a low-pass filter. Recall

17



Gt(x) := 1
(4πt)n/2

exp
(
− ‖x‖2

4t

)
is a (heat) Gaussian kernel and its Fourier transform Wt(ξ) =

exp(−4π2t|ξ|2) is a normalized Gaussian function. Then replacing the linear inversion by

the Gaussian kernel and convolution give a fast approximated implementation of Eq. (2.17)

for small γ

yk+1 = Gsγ ∗ projS∗
(
yk + sF−1(2zk+1 − zk)

)
, (2.18)

The projection on S∗ can be computed as follows

projS∗(y)i =





Re(yi)
− + i · Im(yi) if i ∈ S,

yi otherwise.

(2.19)

Here x− := min(0, x) and x+ := max(0, x) for x ∈ R. The remaining convolution can be

done via the efficient DFT by computing

Gγ ∗ u = Re
{
F−1

(
Wγ �Fu

)}
. (2.20)

Using Eq. (2.14), Eq. (2.19), and Eq. (2.20), we arrive at our first algorithm

Algorithm 3: GPS-R features low-pass filters for smoothing. Here we abuse notation

γ to imply the filter. Inspired by OSS [123], we choose a sequence of increasing spatial

frequency filters {γl} (a sequence of finer filters). In our experiments, we do 1000 iterations

with a total of 10 stages. Each stage contains 100 iterations, in which the filter frequency is

held constant. We monitor the R-factor (relative error) during the iterative process, which

is defined as

RF (uk) =

∑
i

∣∣|Fuk|i − bi
∣∣

∑
i bi

. (2.21)

The reconstruction with minimal RF at each stage is fed into the next stage. By applying

the smoothing on the entire domain, GPS-R can remove noise in real space and obtain the

spatial resolution with fine features.

2.3.2 Fourier space smoothing

Another simple choice of G is the diagonal matrix G = γDiag(r� r) where r ∈ Rn and ri is

the distance in the original 2D lattice between the i-th pixel and the center of image. Note
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Algorithm 1 GPS-R: GPS with smoothing in real space.

Input: measurements b, regularization parameters {γl}10
l=1, step sizes s, t > 0

Initialize: z0, y0.

Rbest
F = 1, zbest = z0

for l = 1, . . . , 10 do

y0 = ybest, z
0 = zbest

for k = 1, . . . , 100 do

zk+1 = proxtgσ
(
zk − tFyk

)

yk+1/2 = projS∗
(
yk + sF−1

(
2zk+1 − zk

))

yk+1 = Gγl ∗ yk+1/2

if Rk
F < Rbest

F , then Rbest
F = Rk

F , zbest = zk, end if

end for

end for

Output: Re
(
F−1zbest

)+

that G is not invertible since ri = 0 for the pixel at the center. By Eq. (A.10),

fG(u) =





∑
i

∣∣u−projS(u)

∣∣2
i

2γ r2i
if ui ≥ 0 at the center,

∞ otherwise.

(2.22)

So fG(u) is a weighted sum of squares penalty on u. The weight is inversely proportional to

the squared radius, which is infinity for density in the center. The further the density off

the center, the smaller the penalty for the support constraint being violated.

By Parseval’s identity, for a square-integrable function u, we have
∫ ∣∣∣ d

dξ
û(ξ)

∣∣∣
2

dξ =

∫
|xu(x)|2dx, (2.23)

where û is the Fourier transform of u. In the discrete setting, this amounts to

‖DFu‖2 = ‖r � u‖2, (2.24)

Therefore, by Eq. (2.10),

f ∗G(y) = f ∗(y) +
γ

2
‖r � y‖2 = f ∗(y) +

γ

2
‖DFy‖2. (2.25)
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This means that we are smoothing f ∗(y) by regularizing with the `2 gradient of Fourier

coefficients of y. We thus refer to it as Fourier space smoothing.

Since G is diagonal, Eq. (2.15) has the closed-form solution

proxsf∗G(y) =
1

1 + sγr2
� projS∗(y) ≈ exp(−sγr2)� projS∗(y). (2.26)

Define W sγ

4π2
:= exp(−sγr2). The above quantity can be approximated by a direct multipli-

cation for small γ. We update yk+1 as

yk+1 = W sγ

4π2
� projS∗

(
yk + sF−1(2zk+1 − zk)

)
. (2.27)

GPS with smoothing in Fourier space (GPS-F) is summarized in Algorithm 2.

Algorithm 2 GPS-F: GPS with smoothing in Fourier space.

Input: measurements b, regularization parameters {γl}10
l=1, step sizes s, t > 0.

Initialize: z0, y0.

Rbest
F = 1, zbest = z0

for l = 1, . . . , 10 do

y0 = ybest, z
0 = zbest

for k = 1, . . . , 100 do

zk+1 = proxtgσ
(
zk − tFyk

)

yk+1/2 = projS∗
(
yk + sF−1(2zk+1 − zk)

)

yk+1 = W sγl
4π2
� yk+1/2

if Rk
F < Rbest

F , then Rbest
F = Rk

F , zbest = zk, end if

end for

end for

Output: Re
(
F−1zbest

)+

We illustrate the core of GPS algorithm as a flowchart in Fig. 2.1

2.3.3 Incomplete measurements

In practice, not all diffraction intensities can be experimentally measured. For example, to

prevent a detector from being damaged by an intense X-ray beam, either a beamstop has
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Initialize
z0=b�ei·θ
y0=0

ẑ = zk−tFyk zk+1=(1−ε)b�ei·arg(ẑ)+εzk

ŷ=projS∗(yk+sF−1(2zk+1−zk))
yk+1=Gγ ∗ ŷ (GPS-R)

or
yk+1=Gγ�ŷ (GPS-F)

uk+1=Re
(
F−1zk+1

)+

Figure 2.1: Flowchart of GPS algorithm for stage 1. For simplicity, we denote ε = σ
σ+t

in

Eq. (2.14). The input z0 is initialized with random phases and magnitudes are equal the

measurements, while y0 is a zero vector. The projS∗ and the convolution ∗ follows Eq. (2.19)

and Eq. (2.20) respectively. zk and yk with the smallest RF will be fed as an input into the

next stage where a Gaussian kernel Gγ with larger γ is applied.

to be placed in front of the detector to block the direct beam or a hole has to be made at

the center of the detector, resulting in missing data at the center [98]. Furthermore, missing

data may also be present in the form of gaps between detector panels. For incomplete data,

the alternating projection algorithms skip the projection onto the magnitude constraint in

this region. Similarly, we only apply the relaxation gσ = 1
2σ

∑
i

∣∣|zi|− bi
∣∣2 on the known data

for GPS. A simple exercise shows that

zk+1
i =





(
proxtgσ

(
zk − tFyk

))
i

if bi is known,

(
zk − tFyk

)
i

otherwise.

(2.28)

2.4 Experimental results

2.4.1 Reconstruction from simulated data

We expect GPS to be a reliable PR algorithm in the reconstruction of the images of weakly

scattering objects, in particular biological specimens, which have become more popular [96].

Since OSS has been shown to consistently outperform ER, HIO, ER-HIO, NR-HIO [123],

we perform both quantitative and qualitative comparisons between GPS and OSS.

Due to the discrete nature of photon counting, experimentally measured data inherently
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Figure 2.2: First row: vesicle model with log-scaled diffraction pattern (left) , zoom-in image

(center) and residual (right). Second row: HIO: RF = 12.87%, Rreal = 21.14%. Third row:

OSS: RF = 6.08%, Rreal = 3.59%. Fourth row: GPS-R RF = 5.90%, Rreal = 2.85%. Fifth

row: GPS-F RF = 5.89% and Rreal = 0.7%. Third column: residual.
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Figure 2.3: Histogram (first row), and convergence (second row) of RF and Rreal on Vesicle

data using HIO, OSS, GPS. GPS consistently produces smaller RF and Rreal than HIO or

OSS. Moreover, GPS converges fastest with the fewest oscillations.

contain Poisson noise that is directly related to the incident photon flux on the object.

In addition to Poisson noise, the data is also corrupted with zero-mean Gaussian noise to

simulate readout from a CCD. Any resulting negative values are set to zero. Therefore, an

accurate simulation of bi can be calculated as

bi =

√
Poisson

( |Fuo|2i · flux

‖Fuo‖2

)
+N (0, σ), (2.29)

where uo is the noise-free model, and b are noisy Fourier magnitudes. σ is proportional to

the readout noise. [133]. We use Rnoise to quantify the relative error with respect to the

noise-free Fourier measurements

Rnoise =

∑
i

∣∣bi − |Fuo|i
∣∣

∑
i |Fuo|i

, (2.30)

For simulation, the Fourier magnitudes of the vesicle model are corrupted with Poisson and

Gaussian noises by Eq. (2.29). The corresponding relative error is Rnoise ≈ 6%.
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Figure 2.4: The (scaled) means and variances of the best five of 500 independent reconstruc-

tions by HIO, OSS, GPS-F and GPS-R

In some cases, the reconstructed image yields a small relative error RF but has low

quality. This is the issue of over-fitting, an example of which can be seen in certain re-

constructions using ER-HIO [123]. Smoothing is a technique to avoid data over-fitting. To

validate results and show that our algorithm does not develop over-fitting, we measure the

difference between the reconstructed image and the model by

Rreal =

∑
i

∣∣uki − uoi
∣∣

∑
i u

o
i

. (2.31)

In addition, we also look at the residual Res = ‖Fu| − b‖ which measures the difference

between the Fourier magnitudes of the reconstructed image and the experimental measure-

ments. The residual can validate the noise-removal model, telling how much noise is removed.

Fig. 3.1 shows the reconstruction of vesicle model from simulated noisy data using HIO,

OSS, GPS-R, and GPS-F. GPS-F and GPS-R obtain lower RF and Rreal than OSS. More-

over, GPS-F can get very close to the ground truth with RF = 5.90% and Rreal = 0.7%. In

addition to lower R values, GPS-R and GPS-F converge to zero outside the support. They

both obtain lower residuals than OSS, specifically GPS-F produces the least residual. If

we choose larger parameter for the `2 gradient regularizer in Fourier space, we will get a
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smoother residual. Overall for realistic Gaussian and Poisson noise in Fourier space, GPS-F

is a suitable noise-removal model.

Fig. 2.3 shows the histogram and the convergence of RF and Rreal on 100 independent,

randomly seeded runs using HIO, OSS and GPS on the simulated vesicle data. The his-

togram shows that GPS is more consistent and robust than OSS. It has a higher chance to

converge to good minima with lower RF and Rreal than OSS. Furthermore, RF and Rreal of

OSS scatter widely due to the initial value dependency. In contrast, GPS is more selective

and less dependent on initial values. RF and Rreal of GPS are seen at a lower mean minimum

with less variance.

Similar to HIO and ER, OSS keeps oscillating until a finer low-pass filter is applied. In

contrast, GPS converges faster and is less oscillatory than OSS. In the presence of noise,

alternating projection methods (ER, HIO, OSS) keep oscillating but do not converge. Ap-

plying smoothing and replacing the measurement constraint by the least squares fidelity

term gσ(z) = 1
2σ
‖|z| − b‖2 helps to reduce the oscillations; hence, the method can converge

to a stationary point. Note that larger σ reduces more oscillations, but also decreases the

chance to escape from local minima. Alternating projection methods have σ = 0 since they

impose measurement constraints. GPS obtains both smaller RF , Rreal, and lower variance.

Even though RF are close to each other, Rreal of GPS is much smaller than OSS. This means

GPS recovers the vesicle cell with higher quality than OSS.

Next, we test the consistency of GPS algorithm for vesicle model. Since OSS has been

shown to outperform HIO, ER-HIO and HR-HIO [123], it suffices to carry out the comparison

among HIO, OSS and GPS. We look for the mean and variance of the best five of 500

independent reconstructions by HIO, OSS, GPS-F and GPS-R (lowest RF ). Fig. 2.4 shows

that GPS has much smaller variance than OSS and HIO. These tests shows that GPS is

more reliable and consistent than OSS and HIO.

25



HIO OSS GPS

Figure 2.5: S. pombe yeast spore log-scaled diffraction pattern, size 500× 500 (top). Means

(first row) and variance (second row) are computed from the best 5 of 500 independent

reconstructions. HIO: RF = 15.697% ± 0.526%, OSS: RF = 9.775% ± 0.202%, and GPS:

RF = 8.672%± 0.025%.

Figure 2.6: Top: histogram of RF in 500 independent runs (top). Bottom: the convergence

curves of a singe construction of RF on S. pombe yeast spore by GPS-RF, OSS, and HIO.
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2.4.2 Reconstructions from experimental data

2.4.2.1 S. pombe yeast spore

To demonstrate the applicability of GPS to biological samples, we do phase retrieval on the

diffraction pattern in Fig. 2.5 taken of a S. Pombe yeast spore from an experiment done

using beamline BL29 at SPring-8 [68]. We do 500 independent, randomly seeded reconstruc-

tions with each algorithm and record RF , excluding the missing center. We choose default

parameters for these experiments: t = 1, s = 0.9. The sequence of low-pass filters are chosen

to be the same as in OSS [123]. For the first 400 iterations, σ = 0.01, then is increased to

σ = 0.1 for the remaining 600 iterations. The left column of Fig. 2.5 is the mean of the

best 5 reconstructions obtained by the respective algorithm. The right column shows the

variance of the same 5 reconstructions. It is evident from the variance that GPS achieves

more consistent reconstructions. Figure 2.6 shows the histogram and convergence of RF .

We can conclude that not only are GPS-R results the most consistent, but also the most

faithful to the experimental data.

2.4.2.2 Nanorice

To demonstrate the generality of GPS, we also do testing with experimental data of inorganic

samples. The diffraction patterns shown in the top row of Fig 2.7 from ellipsoidal iron oxide

nanoparticles (referred to as ‘nanorice1’and ‘nanorice2’) were taken at the AMO instrument

at LCLS at an X-ray energy of 1.2keV [76]. This data is freely available online on the CXIDB

[89]. We choose default parameters for these experiments: t = 1, s = 0.9. The sequence of

low-pass filters are chosen to be the same as in OSS [123]. The fidelity parameter σ is chosen

small for the first 800 iterations, specifically σ ∈ [0, 0.01], to produce oscillations which is

necessary for the algorithm to skip bad local minima. Once the reconstruction arrives at

a good local minimum region, we increase σ to reduce oscillations. This later value of σ

depends on noise level and data. We test different values of σ and σ = 1 has been found to
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Figure 2.7: Diffraction pattern of nanorice1 and nanorice2 253 × 253 (first column) and

reconstructions using OSS: RF = 18.23%, 16.32% and GPS-F: RF = 17.40%, 15.83% re-

spectively. GPS obtains less noise on the boundary and lower relative error RF .

Figure 2.8: Histogram (first row) and convergence (second row) of OSS and GPS-F on

nanorice1 (first column) and nanorice2 (second column). The results of HIO are omitted

due to lack of convergence.
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be the optimal for both nanorice data. Figure 2.7 shows OSS(second row) and GPS-F(third

row) reconstructions of the two nanorice particles. Figure 2.8 shows again that GPS obtains

more consistent and faithful reconstructions as compared to those obtained by OSS. GPS-F

with σ = 1 converges to lower relative error than OSS at all times. OSS cannot get lower

relative error because σ = 0 does not work for this case. In general, alternating projection

methods do not treat noise correctly. For example, in this case, HIO keeps oscillating but

does not converge. Therefore, its results are omitted here. The better approach, OSS model,

can reduce oscillations by smoothing but this is not enough. In contrast, the least squares

gσ(z) = 1
2σ
‖|z|−b‖2 of GPS works for noise removal since relaxing the constraints allows GPS

to reach lower relative error. The values of σ depend on noise level and type. To optimize

the convergence of GPS-F on nanorice2, we apply σ = 0.01 for the first 400 iterations,

σ = 0.1 for the next 300 iterations, and σ = 1 for the last 300 iterations. This test shows the

effect of σ on the convergence. OSS (σ = 0) oscillates the most. GPS with σ = 0.01, 0.1, 1

oscillates less and less. As σ increases, GPS also gets to lower RF . The algorithm finally

reaches a stable minimum as σ goes up to 1. Continuing to increase σ does not help with

RF . Choosing large σ in the beginning may reduce oscillations but also limit the mobility

to skip local minima. We recommend start with small σ and then gradually increase it until

the iterative process reaches a stable minimum.

2.5 Conclusion

In this work, we have developed a fast and robust phase retrieval algorithm GPS for the

reconstruction of images from noisy diffraction intensities. Similar to [147], the Moreau-

Yosida regularization was used to relax the hard constraints considered in the noiseless

model. GPS utilizes a primal-dual algorithm and a noise-removal technique, in which the `2

gradient smoothing is effectively applied on either real or Fourier space of the dual variable.

GPS shows more reliable and consistent results than OSS, HIO for the reconstruction of

weakly scattered objects such as biological specimens. Looking forward, we aim to explore

the role of dual variables in non-convex optimization. Smoothing the dual variable, which
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is equivalent to smoothing the gradient of convex conjugate, represents a new and effective

technique that can in principle be applied to other non-smooth, non-convex problems.

In the next chapter, we will explore tomography, another problem in image processing.

In contrast to phase retrieval, tomography is linear and convex. With the development

in electron tomography (ET), resolution can reach further to the scale of micrometer and

Angstrom. However, missing data in ET causes the problem under-determination and makes

a challenge to reconstruction algorithms. We will use l2 minimization approach with exten-

sion to continuous tomography in order to improve “forward & back projection” operators.
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CHAPTER 3

RESIRE: real space iterative reconstruction engine for

Tomography

Tomography has made a revolutionary impact on diverse fields, ranging from macro-/mesoscopic

scale studies in biology, radiology, plasma physics to the characterization of 3D atomic struc-

ture in material science. The fundamental of tomography is to reconstruct a 3D object from

a set of 2D projections. To solve the tomography problem, many algorithms have been

developed. Among them are methods using transformation technique such as computed to-

mography (CT) based on Radon transform and Generalized Fourier iterative reconstruction

(GENFIRE) based on Fourier slice theorem (FST), and direct methods such as Simultane-

ous Iterative Reconstruction Technique (SIRT) and Simultaneous Algebraic Reconstruction

Technique (SART) using gradient descent and algebra technique. In this paper, we propose

a hybrid gradient descent to solve the tomography problem by combining Fourier slice the-

orem and algebraic technique. By using simulated and experimental data, we show that the

state-of-art RESIRE can produce more superior results than previous methods; the recon-

structed objects have higher quality and smaller relative errors. More importantly, RESIRE

can deal with partially blocked projections rigorously where only part of projection infor-

mation is provided while other methods fail. We anticipate RESIRE will not only improve

the reconstruction quality in all existing tomographic applications, but also expand the to-

mography method to a broad class of functional thin films. To facilitate the use of RESIRE,

the MATLAB code of RESIRE algorithm is freely accessible on our website.
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3.1 Introduction

Tomography has widespread applications in physical, biological and medical sciences. Elec-

tron tomography lately has become a revolution in high-resolution 3D imaging of physical

and biological samples. In the physical sciences, atomic electron tomography (AET) has

been developed to determine the 3D atomic structure of crystal defects such as grain bound-

aries, anti-phase boundaries, stacking faults, dislocations, chemical order/disorder and point

defects, and to precisely localize the 3D coordinates of individual atoms in materials without

assuming crystallinity [101, 125, 29, 143, 61]. Using the advanced X-ray sources, coherent

diffractive imaging (CDI) methods [95] can be combined with tomographic reconstruction

for 3D quantitative imaging of thick samples with resolutions in the tens of nanometers

[99, 106, 68, 34, 69, 100, 65].

Many reconstruction algorithms have been developed for tomography in the last decades.

Among them is the famous filtered back projection (FBP) [53, 72, 64], a one-step method that

can work fast and greatly when there are a large number of projections and no missing data.

The fundamental of FBP is based on the relationship between Fourier slice theorem (FST)

and Radon transform [17, 85] whose inverse corresponds to the reconstruction of 3D objects.

Since working on the polar coordinate, inverse Radon transform requires the knowledge of

all tilt angles in order to obtain a good reconstruction. In the cases of low radiation dose

and geometric restrictions which produce inadequate data, FBP fails to reconstruct faithful

objects and suffers artifacts.

Real space iterative methods such as algebraic reconstruction technique (ART) [60] can

partially compensate for the artifacts. Modifications of ART such as simultaneous algebraic

reconstruction technique (SART) [4] and simultaneous iterative reconstruction technique

(SIRT) [56] show significant improvement compared to FBP. These algorithms are developed

based on a least square optimization problem to minimize the difference between measured

and calculated projections. Gradient descent, an iterative method, is employed to refine

reconstructions. Simplicity, fast running-time, and parallelization are the advantages of

these methods.
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Lately, Fourier-based iterative algorithms [145, 97, 108], using information in both real

and Fourier space as constraints in implementations, dramatically improve the performance.

Equal slope tomography (EST) [97], an example of such algorithm, has been success-

fully applied in AET to reconstruct the 3D atomic structure of crystal defects in mate-

rials, which shows successful recovery of diffraction pattern in the missing wedge direction

[125, 101, 29, 143]. Additionally, with significantly lower radiation dose, EST can still pro-

duce reconstructions comparable to modern medical CT techniques [48, 151, 49]. However,

the drawback of EST is the strict requirement that the tilt angles must follow equal slope

increments along a single tilt axis, which limits its broader applications.

The EST development is followed by GENFIRE [145, 112], a generalized Fourier iterative

reconstruction algorithm, which has been reported to produce high-resolution 3D imaging

from a limited number of 2D projections. Using FST, GENFIRE transforms measurement

constraint (measured projections) on real space into Fourier constraint on reciprocal space.

The problem then becomes finding a 3D image that satisfies spatial constraints (real, non-

negativity and compact support) and Fourier constraint. The alternating projection method,

known as GENFIRE, is exploited to solve this classical two-constraint minimization problem.

In addition, GENFIRE requires gridding [54, 132] to obtain on-Cartesian-grid Fourier values,

and oversampling [94, 93] to improve accuracy of the gridding. These procedures are major

drawbacks of GENFIRE since they require more memory (due to oversampling) and cause

numerical error (caused by interpolation).

In this research, we motivate ourselves to develop a highly accurate Tomography gradient

descent method by solving the least square error (LSE) problem. In the light of calculus

of variations [8], we derive the gradient of the “sum of squared errors” (SSE). FST and

interpolations are employed to compute the gradient which involves “forward projection” and

“back projection,” termed that we borrow from ART [4]. The 3D image is then reconstructed

iteratively with gradient descent method. These crucial points institute our proposed real

space iterative reconstruction engine (RESIRE).
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3.2 Method

3.2.1 RESIRE algorithm

3.2.1.1 Gradient descent

Tomography is formulated as a least square optimization problem, minimizing the sum of

squared errors (SSE)

min
O

ε(O) =
1

2

∑

θ

‖Πθ(O)− bθ‖2
F (3.1)

where Πθ is the linear projection operator with respect to the tilt angle θ and bθ is the

corresponding measure projection. In a simple case where there is one rotation axis (either

x,y, or z), tilt angles are just single values. In the case of multiple rotation axes, a tilt angle

can be expressed as Euler angles, a set of three angles, to describe the rotation of objects

with respect to a fixed coordinate system, and this topic will be discussed in later part. The

error metric ε is a net sum of every εθ caused by each measure projection bθ. We get a more

explicit form for each error εθ

εθ(O) =
1

2

∑

x,y

|Πθ(O){x, y} − bθ{x, y}|2 (3.2)

We compute the gradient of the error metric ε w.r.t. the object O in the sense of

calculus of variation method [8]. The following derivation is a simplified (discrete) version

of a continuous problem. Furthermore, in order for the derivation to be logical, we must

assume the object is continuous. At a pixel or spatial variable {u, v, w}, the gradient reads:

∂εθ
∂O{u, v, w} =

∑

x,y

(
Πθ(O){x, y} − bθ{x, y}

) ∂

∂O{u, v, w}
∑

z

O
{
Rθ




x

y

z



}

= Πθ(O){x, y} − bθ{x, y} where




u

v

w


 = Rθ




x

y

z


 for some z

(3.3)

The first line of Eqn. 3.3 is obtained by vanilla chain rule while the second line uses an as-

sumption that pixels of object are independent from each other, i.e. ∂O{x, y, z}/∂O{u, v, w} =
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1 if {x, y, z} = {u, v, w} and 0 otherwise. Using the fact that the transpose of a rotation

matrix is its inverse, we derive the following transformation


x
y


 =


R1,1 R2,1

R1,2 R2,2




u
v


+


R3,1

R3,2


w (3.4)

where Ri,j is the (i, j)th element of the rotation matrix Rθ. Note that all the pixels {u, v, w}
are on the Cartesian grid (integer coordinates) while {x, y} are not. To understand the

formula, we decompose the procedure into two steps and borrow terminology in ART for

explanation.

Step 1: computing “forward projection.” The projection Πθ(O) is computed from the

current iterative object O via FST. To improve the accuracy, the 3D object is padded with

zeros before the Fourier transform. The oversampling ratio of this padding procedure is in

range [2, 4] providing a good trade-off between accuracy and efficiency. We now apply FST,

i.e. the 2D Fourier transform of a projection w.r.t tilt angle θ represents a 2D plane slicing

through the origin of the 3D Fourier transform of that object. Taking the inverse Fourier

transform of this 2D slice and cropping the size back to the original projection size, we obtain

the desired projection. This process is similar to the “forward projection” step in ART.

However, ART presents the “forward projection” as a matrix (vector) multiplication while

RESIRE employs FST and interpolation. As a result, accuracy of the “forward projection”

is improved with RESIRE.

Step 2: computing “back projection.” The measured projections are subtracted from the

forward projections to obtain the difference Πθ(O) − bθ. Now the task is to compute the

gradient ΠT
θ (Πθ(O)−bθ), i.e. apply ΠT on Πθ(O)−bθ. Eqn. 3.4 shows how to “back project”

a 2D image to a 3D image. Specifically, each (u, v) slice of the gradient (with w varied) is a

linear transformation of the difference. Further notice that those (u, v) slices where w 6= 0

are translations of the (u, v) slice at the origin (w = 0). The amount of translation is exactly

the zero order term [R3,1 R3,2]Tw in Eqn. 3.4.

On the other hand, SIRT presents the “back projection” as a row-normalized transpose
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of the “forward projection”

Ok+1 = Ok − t
∑

i

aiO
k − bθ,i
aiaTi

aTi = Ok − tÂT
(
AOk − bθ

)
(3.5)

where A is the projection operator defined by ART, {ai}i are its row vectors, and Â is its

row-normalized matrix, i.e. the row vector âi of Â is normalized as âi = ai/(a
T
i ai). bθ,i

is the ith element of bθ. SIRT in fact uses vector multiplication form (the first equality in

Eqn. 3.5) rather than matrix multiplication form (the second equality). This strategy allows

SIRT to enforce parallel computing on CPU or GPU [109]. However, the downside of SIRT

is its limitation to 2D case (single tilt axis). When extending to the multiple-tilt-axis case,

computing and storing matrix A is infeasible. Furthermore, A is defined differently than

Πθ as ART does not require the linear transformation as RESIRE does. Instead, ART can

choose arbitrary equidistant points for its line integral approximation [4]. The restricted

linear transformation in RESIRE is the major difference between these two algorithms and

explains why RESIRE outperforms the other.

To finish this part, we recap that RESIRE derives the gradient of the SSE in Eqns.

3.1 & 3.2 through calculus of variation to improve the accuracy of the forward and back

projections. Furthermore, interpolation plays an important role in our algorithm as it is

required in both steps. It first helps to apply FST by computing 2D slices through the origin

of a 3D Fourier transform in “forward projection” and then compute linear transformations

in “back projection”.

3.2.1.2 Step size analysis

This is the tricky part of the gradient descent method. We hope to approximate the Lipschitz

constant L of the gradient such that the following inequality holds

‖∇ε(O1)−∇ε(O2)‖ ≤ L‖O1 −O2‖ ∀ O1, O2 (3.6)

Hence, we can choose the step size to be 1/L for convergence guarantee. Assuming that the

sum of intensity is conserved under projection operator and using the fact that l2 norm is

invariant under rotation, we can reduce the step size analysis to the simple case where tilt
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angle θ = 0. We further simplify the analysis to 2D case under assumption of one tilt axis.

Without loss of generality, we can assume the 2D object has dimension Nz × Nx and the

projection is applied along z direction (the first dimension). Hence, the forward projection

matrix is just a simple row vector Π = 11×Nz where all elements are ones. Similarly, the

back projection operator ΠT = 1Nz×1 is a column vector of ones, i.e. ΠT/Nz uniformly

distributes 1D image back to 2D image. Then the composed operator ΠTΠ = 1Nz×Nz is an

all-one matrix. We can easily check its l2 norm ‖ΠTΠ‖ = Nz. We now derive the Lipschitz

constant

‖∇εθ(O1)−∇εθ(O2)‖ = ‖ΠTΠ(O1 −O2)‖ ≤ ‖ΠTΠ‖ ‖O1 −O2‖ = Nz ‖O1 −O2‖ (3.7)

Since there are n projections that contribute to the gradient, the lipschitz constant increases

by a factor of n, i.e. the accumulated Lipschitz constant becomes L = nNz. Then the

gradient descent step size can be presented as t/(nNz) where t ∈ (0, 1] is normalized step

size. When objects are sparse, larger t can work. Our experimental results show that the

algorithm still converges with t = 2. This value of t is also selected for all experiments in

this paper. We finalize our gradient descent method by showing the governing formula. At

the (k + 1)th iteration, the update reads

Ok+1{u, v, w} = Ok{u, v, w} − t

nNz

∑

θ

(
Πθ(O

k){x, y} − bθ{x, y}
)

(3.8)

As mentioned above, tilt angles are single values in the case of one rotation axis. However,

multiple-rotation-axis Tomography appears more often in practice. In this case, Euler an-

gles, a set of three angles, are used to describe the orientation of a 3D object with respect

to a fixed coordinate system. Hence a rotation can be presented as a sequence of rotations

about standard x,y and z axes. We prefer the Euler convention ZYX to demonstrate ob-

ject rotations, i.e. each tilt angle is expressed as a triple set (φ, θ, ψ) which corresponds

to rotations about z, y, and x axes in this respected order. The composed rotation matrix

R{φ,θ,ψ} = ZφYθXψ is a product of 3 basic rotation matrices Zφ, Yθ and Xψ where Yθ rep-

resenting a rotation matrix about Y axis by an angle θ. Similar definitions are for Zφ and

Xψ.
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3.2.1.3 Pseudocode

The method is summarized in algorithm 3 as a pseudocode. Bi-linear interpolation is used

in both “forward projection” and “back projection” due to its simplicity, efficiency, and fast

running time.

Algorithm 3 RESIRE algorithm

Input: set of N projections {bθi}Ni=1 and corresponding tilt angles {θi}Ni=1, number of itera-

tions K, step size t

Initialize: O0.

for k = 1, . . . , K do

for i = 1, . . . , N do

compute “forward projection” Πθi(O
k) using FST and interpolation.

compute residual Ri(O
k) = Πθi(O

k)− bθi
compute “back projection” (or gradient) ∇εθi(Ok) from Ri(O

k) by formula 3.3 using

interpolation.

end for

Ok+1 = Ok − t
nN

∑N
i=1∇εθi(Ok)

end for

Output: OK

3.3 Experimental results

3.3.1 Reconstruction from a numerical simulation: biological vesicle

A model of a biological vesicle of size 64×64×64 pixels was used in this test to demonstrate

the performance of the RESIRE algorithm. We assume Y is the only rotation axis, then

the other two Euler angles φ and ψ are identically zeros. Using FST, we calculate 41

projections whose tilt angles θ range from −700 to 700 with step size 3.50. Gaussian noise was

added to projections to make simulation data more realistic. Reconstructions are performed

using RESIRE, GENFIRE, FBP and SIRT. To monitor convergence, we use R-factor RF
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Figure 3.1: A vesicle model of 64 × 64 × 64 pixel size from which 41 noisy projections

simulated and 3D reconstructions using RESIRE, GENFIRE, FBP and SIRT. (a-c) Three

10-pixel-thick central slices of the vesicle model in the XY, XZ and YZ planes, respectively.

The corresponding three reconstructed slices with RESIRE (d-f), GENFIRE (g-i), FBP (j-l),

and SIRT (m-o), where the missing wedge axis is along the z-axis. The FSC between the

reconstructions and the model shows that RESIRE produces a more faithful reconstruction

than the other algorithms at all spatial frequencies.
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(relative error) as a metric to compare the relative difference between forward and measured

projections.

RF =
1

n

∑

θ

[∑

x,y

|Πθ(O){x, y}| − bθ{x, y}|
/∑

x,y

|bθ{x, y}|
]

(3.9)

All iterative reconstruction algorithms RESIRE, GENFIRE and SIRT perform with 400

iterations. ASTRA Toolbox [138, 137] is employed to achieve SIRT reconstruction while FBP

reconstruction is performed using IMOD [92]. The obtained R-factors are 28.59, 38.98, 35.44,

30.46% for RESIRE, GENFIRE, FBP and SIRT, respectively. Since directly minimizing the

least square, RESIRE and SIRT obtain lower RF than the other methods. FBP obtains the

largest RF because it is a one-step method. The RF of GENFIRE is also high due to the

numerical error in the gridding.

Figure 3.1 show 10-pixel-thick central slices of the 3D reconstructions in the XY (first

row), XZ (second row) and YZ (third row) planes by RESIRE, GENFIRE, FBP and SIRT

respectively, where the z-axis is the missing wedge direction. Because there is no missing

data in this direction, the XY central slices from all methods exhibit good agreement with

the model. However, along the missing wedge direction z, FBP and SIRT reconstructions

show degradation, noise, and missing wedge artifact (shadow and smearing) while features

obtained by RESIRE and GENFIRE appear to be finer and more isotropic. GENFIRE

reduces but still shows some artificial noise in the XZ and YZ central slices because of the

high numerical error in the gridding. On the other hand, RESIRE reduces significant noise,

and obtains the finest and clearest images.

To quantify the results, we use Fourier shell correlation (FSC) to measure the normalized

cross-correlation coefficient between the model and each reconstruction over corresponding

shells in Fourier space (as a function of spatial frequency correlation). The FSC curves in

Figure 3.1 confirms that the RESIRE reconstruction is superior at all spatial frequencies

compared to the other algorithms.
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RESIRE SIRT FBP

Figure 3.2: Reconstruction of a frozen-hydrated marine cyanobacterium, capturing the pen-

etration of a cyanophage into the cell membrane. (a-c) 5.4-nm-thick (3-pixel-thick) slices of

the cell in the XY plane reconstructed by RESIRE, SIRT, and FBP respectively, where the

y axis is the tilt axis and the beam direction is along the z axis. (d-e) Magnified views of

the penetration of a cyanophage for the RESIRE, SIRT and FBP reconstructions in the XY,

respectively. The high quality projections result in good reconstructions. However, since

RESIRE and SIRT use iterations, their reconstructions and R-factors are much better than

FBP. RF = 2.50%, 4.39% and 40.63% for RESIRE, SIRT and FBP respectively. RESIRE

obtains not only smaller RF but also better quality and resolution than SIRT and FBP. The

membrane surrounding the cyanophage is more visible with RESIRE.
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3.3.2 Reconstruction of a frozen hydrated cell

We run the reconstruction of a frozen-hydrated marine cyanobacterium in a late stage of

infection by cyanophages. 42 projections were collected from a single tilt series, ranging

from −58o to +65o with an increment of 3o. The projections were binned by 4 × 4 pixels

and resulted in images with approximately 1.8×1.8 nm2 per pixel. The detail of experiment

and pre-processing were explained in the GENFIRE paper [112]. In this single tilt axis case,

we can perform a comparison among RESIRE, SIRT and FBP algorithms. Both RESIRE

and SIRT reconstructions were performed with 150 iterations.

Figure 3.2 shows a 5.4-nm-thick (3-pixel-thick) slice of the 3D reconstruction in the XY

plane, capturing the penetration of a cyanophage into the cell membrane during the infection

process. The SIRT and RESIRE reconstructions look similar and much better than FBP. The

FBP reconstruction suffers peripheral noise through which features could not be seen clearly.

This is because FBP is a one-step method; hence, it cannot resolve the feature well with

missing data. On the other hand, both RESIRE and SIRT iterate to fit the measurements

(measured projections). As a result, features in RESIRE and SIRT are resolved with higher

quality. These results are also consistent with R-factors where RESIRE (2.5%) and SIRT

(4.39%) obtain much lower values than FBP (40.46%). Because the projections have high

quality and the noise level is low, both RESIRE and SIRT achieve good results. Therefore,

their difference is marginal, and it is difficult to justify with the naked eye. Under careful

comparison, the reconstruction by RESIRE can be verified to be better with sharper and

clearer features, especially at the edges. In addition to this reasoning, the lowest R-factor

reveals that RESIRE reconstruction fit the measurement better than other methods.

3.3.3 Reconstruction from an experimental data: Seriatopora aculeata coral

skeleton

The Seriatopora aculeata sample used in this test is a pencil-thick, short and tapered

branch termed nubbin. Experiment was performed to obtain high-angle annular dark-field

(HAADF-STEM) tomography data which includes a total of 69 images collected with a tilt
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Figure 3.3: Reconstruction of a Seriatopora aculeata coral skeleton by RESIRE, GENFIRE,

FBP, and SIRT: projections and 30.3-nm-thick (3-pixel-thick) central slices in the XY, XZ

and YZ planes respectively.
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range from -60 to 76 degrees in 2 degrees of increment. The projections were pre-processed

with alignment, constant background subtraction and normalization. Details of this exper-

iment and pre-processing can be found elsewhere [87].

After the pre-processing, Tomography reconstructions of the S. aculeate sample were

performed by RESIRE, GENFIRE, FBP, and SIRT algorithms. Figure 3.3 shows the re-

constructed projections and 30.3-nm-thick (3-pixel-thick) central slices in XY, XZ and YZ

planes. RESIRE is shown to completely outperform the other algorithms as the features

obtained by RESIRE are finer, clearer and more visible in all directions. Especially in the

missing wedge direction, the YZ projections reconstructed by FBP and SIRT are corrupted

by blurring and smearing. GENFIRE achieves a better reconstruction where significant ar-

tifacts are reduced; however, the features are still blurred. RESIRE, in contrast, obtains the

finest solution among these four algorithms. The features indicated by the red arrow in the

YZ projection can be only obtained clearly and visibly with RESIRE.

3.3.4 Reconstruction of a nickel platinum nanoparticles

The NiPt nanoparticles were synthesized using procedures published elsewhere [66] and de-

posited on 5-nm-thick silicon nitride membranes. The tomography tilt series was acquired

from a NiPt nanoparticle using the TEAM I microscope operated at 300 kV in annular dark-

field scanning transmission electron microscopy (ADF-STEM) mode. 56 projections were

collected with a tilt range from -72 to 66 degrees in approximated 2.5 degrees of increment.

Similar to other experimental data, pre-processing was performed to polish the projections,

including denoising, constant background subtraction, alignment, and normalization. The

projections then went through angle refinement [112] where reconstruction and angles are

simultaneously updated. Along the refinement, RF improves, and so does the reconstruc-

tion. At the final round when the optimal angle set has been found, we perform the final

reconstruction on the NiPt sample.

Figure 3.4 shows the reconstruction of 1.40-Å-thick (3-pixel-thick) central slices of NiPt

nanoparticle sample in the YZ plane where y is the rotation axis and z is the missing wedge
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Figure 3.4: Reconstruction of 1.40-Å-thick (3-pixel-thick) central slices of nickel platinum al-

loy in the YZ plane. In this missing wedge direction z, the atom reconstructed by GENFIRE

suffers elongation and blurring because GENFIRE favors over-smoothed images. RESIRE,

in contrast, produces sharper and non-blurred images. The atoms are reconstructed more

separably, distinctly, and isotropically with RESIRE. The contrast also exhibits better than

the one with GENFIRE.
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direction. Since GENFIRE refines images based on Fourier constraint, it generates over-

smoothed solutions. The particles suffer blurring and cannot be distinguished from each

other in some regions. RESIRE, on the other hand, produces sharper and more distinct

particles. The Pt particles obtained by RESIRE have higher intensity than the ones by

GENFIRE. This result is very helpful for atom-type classification [145] since the atoms’

intensities of the two types are more separable from each other.

3.4 Discussion

In this article, we present RESIRE, a Tomography iterative reconstruction algorithm for

high-resolution 3D images. The method is designed to work with multiple tilt axes, the gen-

eral case of Tomography. Through numerical simulation and experimental data of material

science and biological specimens, RESIRE has been shown to produce superior reconstruc-

tions to several algorithms. RESIRE can work well with limited projections and missing

wedge while other methods fail and suffer artifacts such as elongation, blurring, and shearing.

Basically, RESIRE uses gradient descent to solve the least square problem ‖ΠO − b‖2.

Instead of pre-computing and storing the (forward) projection operator Π as a matrix (such

as SIRT does), RESIRE uses bi-linear interpolation and FST. FST helps to improve the

forward projection while bi-linear interpolation saves enormous memory in the multiple-

tilt-axis case where computing and storing operator matrix is extremely expensive. These

two techniques are the major points that constitute our “real space iterative reconstruction

engine” RESIRE.

From a mathematical point of view, ART, SIRT and SART approximate the forward

projection (line integral) as a discrete sum. However, they do not specify how to choose

grid points for this finite sum. RESIRE, in contrast, does as Eqn. 3.4 points out the linear

transformation; therefore, our method significantly improves the performance compared to

SIRT. Moreover, RESIRE can exploit the refining technique (dividing a pixel into 4 sub-

pixels) as Radon transform [17, 85] does to further improve the “forward operator.”

For global-transform-based methods such as GENFIRE, it converts measurements (pro-
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jections) on real space to constraint on the reciprocal space via FST. This technique causes

numerical error due to the gridding process (interpolation from non-grid points). Further-

more, favoring smoothed solutions, reciprocal constraint prevents GENFIRE from obtaining

high resolution but blurred images instead. On the other hand, using a hybrid model (com-

pute forward projection via FST and back projection via bi-linear interpolation), RESIRE

can solve the downside issues of these methods. This explains why RESIRE has the ability

to work with high noise and produce more faithful reconstruction with higher resolution and

finer and sharper features.

Furthermore, the extension of RESIRE to the thinfilm case allows us to work with non-

isolated or extending samples which are very popular in material science. Methods using

global transform, such as FBP and GENFIRE, fail in this case because they interpret objects

that appear in high tilt angles as noise. Through RESIRE, we can simply correct this case.

Tomography is an ill-posed inverse problem and might need regularizer to compensate

for the under-determination [32]. The optimal solution can be achieved after some iterations

based on a suitable discrepancy principle [82]. This principle tells us a criteria where to stop

the iterations according to prior noise information. The refinement will take place until the

R-factor hits that certain value. Further iteration will improve the R-factor but not the

result. Instead, the solution will move away from the optimal one.

Thanks to the simplicity, efficiency, and flexibility, RESIRE can have intensive appli-

cations in 3D image reconstructions, such as cryo-ET and vector tomography [36, 37, 38]

where reconstructing the 3D magnetic field of magnetic materials is a big interest. Look-

ing forward, we expect RESIRE can be applied to a plethora of imaging modalities across

different disciplines.

Together with the developed algorithm GPS in chapter 2, we have provided two advanced

reconstruction techniques in phase retrieval and 3D tomography. Both algorithms are built

on mathematics and optimization with detailed derivations and explanations. Those two

algorithms can find cooperation in further applications, such as ptychographic-tomography

which will be addressed in conclusion.
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Moreover, those techniques do not only serve image processing but also find their exten-

sion in other disciplines, such as machine learning. In the next two chapters, we will explore

how Hopf-Lax formula and Hamilton-Jacobi partial differential equations are applied into

K-means clustering and training algorithms in machine learning.
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CHAPTER 4

Stochastic Backward Euler: An Implicit Gradient

Descent Algorithm for K-Means Clustering

In this paper, we propose an implicit gradient descent algorithm for the classic k-means

problem. The implicit gradient step or backward Euler is solved via stochastic fixed-point

iteration, in which we randomly sample a mini-batch gradient in every iteration. It is the

average of the fixed-point trajectory that is carried over to the next gradient step. We

draw connections between the proposed stochastic backward Euler and the recent entropy

stochastic gradient descent (Entropy-SGD) for improving the training of deep neural net-

works. Numerical experiments on various synthetic and real datasets show that the proposed

algorithm practically finds the global minimum (or its neighborhood) with high probability,

when given the correct number of clusters. Stochastic backward Euler provides better clus-

tering results than the state-of-the-art k-means algorithms in the sense that it goes deeper

in minimization and is much more robust to the choice of initial centroids.

4.1 Introduction

K-means is originally a method of vector quantization in signal processing, which now has

become popular for clustering analysis in data mining. In the seminal paper [86], Lloyd

proposed a two-step alternating algorithm for minimizing quantization error that quickly

converges to a local minimum. Lloyd’s algorithm is also known as an instance of the more

general Expectation-Maximization (EM) algorithm applied to Gaussian mixtures. In [14],

Bottou and Bengio cast Lloyd’s algorithm as Newton’s method, which explains its fast

convergence.
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Aiming to speed up Lloyd’s algorithm, Elkan [43] proposed to keep track of the distances

between the computed centroids and data points, and then cleverly leverage the triangle

inequality to eliminate unnecessary computations of the distances. Similar techniques can be

found in [35]. It is worth noting that these algorithms do not improve the clustering quality

of Lloyd’s algorithm, but only achieve acceleration. [7] introduced a smart initialization

scheme such that the initial centroids are well-separated, which gives more robust clustering

than random initialization.

Mini-batch [126, 135] was later introduced to adapt k-means for large scale data with

high dimensions. The centroids are updated using a randomly selected mini-batch rather

than all of the data. Mini-batch (stochastic) k-means has a flavor of stochastic gradient

descent whose benefits are twofold. First, it dramatically reduces the per-iteration cost for

updating the centroids and thus is able to handle big data efficiently. Second, similar to its

successful application to deep learning [80], mini-batch gradient introduces noise in mini-

mization and may help to bypass some bad local minima. Furthermore, the aforementioned

Elkan’s technique can be combined with mini-batch k-means for further acceleration [105].

In this paper, we propose a backward Euler based algorithm for k-means clustering.

Fixed-point iteration is performed to solve the implicit gradient step. As is done for stochas-

tic mini-batch k-means, we compute the gradient only using a mini-batch of samples instead

of the whole data, which enables us to handle massive data. Unlike the standard fixed-point

iteration, the resulting stochastic fixed-point iteration outputs an average over its trajec-

tory. Extensive experiments show that, with proper choice of step size for backward Euler,

the proposed algorithm empirically locates the neighborhood of global minimum with high

probability.

4.2 Stochastic backward Euler

The celebrated proximal point algorithm (PPA) [121] for minimizing some function f(x) is:

xk+1 = proxγf (x
k) := arg min

x
f(x) +

1

2γ
‖x− xk‖2. (4.1)
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PPA has the advantage of being monotonically decreasing, which is guaranteed for any step

size γ > 0. Indeed, by the definition of xk+1 in (4.1), we have

f(xk+1) ≤ f(xk)− 1

2γ
‖xk+1 − xk‖2.

When γ ∈ [c, 1
L(∇f)

) for any c > 0 with L(∇f) being the Lipschitz constant of ∇f , the

(subsequential) convergence to a stationary point is established in [73]. If f is differentiable

at xk+1, it is easy to check that the following optimality condition to (4.1) holds

∇f(xk+1) +
1

γ
(xk+1 − xk) = 0.

By rearranging the terms, we arrive at implicit gradient descent or the so-called backward

Euler:

xk+1 = xk − γ∇f(xk+1). (4.2)

Fixed point iteration is a viable option for solving (5.4) if ∇f has Lipschitz constant L(∇f)

and γ < 1
L(∇f)

.

Proposition 1. If γ < 1
L(∇f)

, then we have

(a) f(x) + 1
2γ
‖x − xk‖2 is strongly convex, and the proximal problem (4.1) has a unique

solution y∗.

(b) The fixed point iteration

yl+1 = xk − γ∇f(yl) (4.3)

generates a sequence {yl} converging to y∗ at least linearly.

This result is standard, and we omit the proof here.

Let us consider k-means clustering for a set of data points {pi}Ni=1 in Rd with K centroids

{xj}Kj=1. We assume each cluster contains the same number of points. Denoting x =

[x1, . . . , xK ]> ∈ RKd, we seek to minimize

min
x∈RKd

φ(x) :=
1

2N

N∑

i=1

min
1≤j≤K

‖xj − pi‖2. (4.4)
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Note that φ is non-differentiable at x if there exist pi and j1 6= j2 such that

j1, j2 ∈ arg min
1≤j≤K

‖xj − pi‖2.

This means that there is a data point pi which has two or more distinct nearest centroids

xj1 and xj2 . The same situation may happen in the assignment step of Lloyd’s algorithm. In

this case, we simply assign pi to one of the nearest centroids. With that said, φ is basically

piecewise differentiable. By abuse of notation, we can define the ’gradient’ of φ at any point

x by

∇φ(x) =
1

N
[
∑

i∈C1

(x1 − pi), . . . ,
∑

i∈CK

(xK − pi)]>, (4.5)

where Cj denotes the index set of the points that are assigned to the centroid xj. Similarly,

we can compute the ’Hessian’ of φ as was done in [14]:

∇2φ(x) =
1

N
Diag

(
|C1|1(|C1|), . . . , |CK |1(|CK |)

)
,

where 1(n) is an n-D vector of all ones. When the number of points N is large and xj’s

are distinct from each other, the jumps at discontinuities of ∇φ caused by the ambiguity in

the assignment of data points to centroids are very small. Thus with (4.5), one can roughly

consider ∇φ to be Lipschitz continuous with the Lipschitz constant L(∇φ) ≈ 1
K

by ignoring

these tiny jumps. In what follows, we analyze how the fixed point iteration (4.3) works on

the piecewise differentiable φ with discontinuous ∇φ.

Definition 1. g is piecewise Lipschitz continuous on Ω with Lipschitz constant L if Ω can

be partitioned into sub-domains ΩI and g is Lipschitz continuous on each sub-domain ΩI ,

i.e., for each ΩI we have

‖g(x)− g(y)‖ ≤ L‖x− y‖ ∀x, y ∈ ΩI

According to the definition, we can see that ∇φ is approximately piecewise 1
K

-Lipschitz

continuous. But in the extreme case where just one point is assigned to each of the first

K − 1 clusters and N − K + 1 points to the last cluster, ∇φ only has piecewise Lipschitz

constant of N−K+1
N

. Our main result proves the convergence of fixed point iteration on

k-means problem.
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Theorem 1. Suppose ∇φ is piecewise L-Lipschitz. If γ < 1/L, then the fixed point iteration

for minimizing h(x) := φ(x) + 1
2γ
‖x− xk‖2 given by

yl+1 = xk − γ∇φ(yl)

with initialization y0 = xk satisfies

(a) h(yl+1) ≤ h(yl)− ( 1
2γ
− L

2
)‖yl+1 − yl‖2 and ‖yl+1 − yl‖ → 0 as l→∞.

(b) {yl} is bounded. Moreover, if any limit point y∗ of a convergent subsequence of {yl}
lies in the interior of some sub-domain, then the whole sequence {yl} converges to y∗

which is a fixed point obeying

y∗ = xk − γ∇φ(y∗).

Proof. (a) We know that φ is piecewise quadratic. Suppose yl ∈ ΩI (note that yl could be

on the boundary), then φ has a uniform expression restricted on ΩI which is a quadratic

function, denoted by φΩI . We can extend the domain of φΩI from ΩI to the whole RKd, and

we denote the extended function still by φΩI . Since φΩI is quadratic, ∇φΩI is L-Lipschitz

continuous on RKd. Then we have the following well-known inequality

φΩI (y
l+1) ≤ φΩI (y

l) + 〈∇φΩI (y
l), yl+1 − yl〉+

L

2
‖yl+1 − yl‖2

= φ(yl) + 〈∇φ(yl), yl+1 − yl〉+
L

2
‖yl+1 − yl‖2.

Using the above inequality and the definition of φ, we have

h(yl+1) = φ(yl+1) +
1

2γ
‖yl+1 − xk‖2 ≤ φΩI (y

l+1) +
1

2γ
‖yl+1 − xk‖2

≤ φ(yl) + 〈∇φ(yl), yl+1 − yl〉+
L

2
‖yl+1 − yl‖2 +

1

2γ
‖yl+1 − xk‖2

= φ(yl) + 〈∇φ(yl), yl+1 − yl〉+ (
L

2
− 1

2γ
)‖yl+1 − yl‖2

+
1

2γ
‖yl − xk‖2 +

1

γ
〈yl+1 − xk, yl+1 − yl〉

= h(yl)− (
1

2γ
− L

2
)‖yl+1 − yl‖2 + 〈1

γ
(yl+1 − xk) +∇φ(yl), yl+1 − yl〉

= h(yl)− (
1

2γ
− L

2
)‖yl+1 − yl‖2.
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In the second equality above, we used the identity

1

2
‖a− b‖2 + 〈a, b〉 =

1

2
‖a‖2 +

1

2
‖b‖2

with a = yl+1 − yl and b = yl+1 − xk. Since γ < 1
L

, {h(yl)} is monotonically decreasing.

Moreover, since h is bounded from below by 0, {h(yl)} converges and thus ‖yl+1 − yl‖ → 0

as l→∞.

(b) Since h(y) → ∞ as y → ∞, combining with the fact that h(yl) ≤ h(yl+1), we have

{yl} ⊆ {y ∈ RKd : h(y) ≤ h(y0)} is bounded. Consider a convergent subsequence {ylm}
whose limit y∗ lies in the interior of some sub-domain. Then for sufficiently large lm, {ylm}
will always remain in the same sub-domain in which y∗ lies and thus limlm→∞∇φ(ylm) =

∇φ(y∗). Since by (a), ‖yl+1− yl‖ → 0, we have ‖∇φ(yl+1)−∇φ(yl)‖ = 1
γ
‖yl− yl−1‖ → 0 as

l→∞. Therefore,

0 = lim
lm→∞

ylm − xk + γ∇φ(ylm−1) = lim
lm→∞

ylm − xk + γ∇φ(ylm)

= y∗ − xk + γφ∇(y∗),

which implies y∗ is a fixed point. Furthermore, by the piecewise Lipschitz condition,

‖ylm+1 − y∗‖ = γ‖∇φ(ylm)−∇φ(y∗)‖ ≤ Lγ‖ylm − y∗‖.

Since Lγ < 1, when lm is sufficiently large, ylm+1 is also in the same sub-domain containing

y∗. By repeatedly applying the above inequality for l > lm, we conclude that {yl} converges

to y∗.

4.2.1 Algorithm description

Instead of using the full gradient ∇φ in fixed-point iteration, we adopt a randomly sampled

mini-batch gradient

∇lφ =
1

M
[
∑

i∈Cl1

(x1 − pi), . . . ,
∑

i∈ClK

(xK − pi)]>
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at the l-th inner iteration. Here, Cl
j denotes the index set of the points in the l-th mini-

batch associated with the centroid xj obeying
∑K

j=1 |Cl
j| = M . The fixed-point iteration

outputs a forward looking average over its trajectory. Intuitively averaging greatly stabilizes

the noisy mini-batch gradients and thus smooths the descent. We summarize the proposed

algorithm in Algorithm 4. Another key ingredient of our algorithm is an aggressive initial

step size γ0 ≈ 1
L(∇φ)

≈ K, which helps pass bad local minimum at the early stage. Unlike in

deterministic backward Euler, diminishing step size is needed to ensure convergence. But γ

should decay slowly because large step size is good for a global search.

Algorithm 4 Stochastic backward Euler for k-means.

Input: number of clusters K, step size γ0 ≈ K, mini-batch size M , averaging parameter

α > 0, step size decay parameter β / 1.

Initialize: centroid x0.

for k = 1, . . . , omaxit do

y0 = xk−1

xk = y0

for l = 1, . . . , imaxit do

Randomly sample a mini-batch gradient ∇lφ.

yl = xk−1 − γ∇lφ(yl−1)

xk = αxk + (1− α)yl

end for

γk = βγk−1

end for

Output: xomaxit

4.2.2 Related work

Chaudhari et al. [26] recently proposed the entropy stochastic gradient descent (Entropy-

SGD) algorithm to tackle the training of deep neural networks. Relaxation techniques

arising in statistical physics were used to change the energy landscape of the original non-
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convex objective function f(x) yet with the minimizers being preserved, which allows easier

minimization to obtain a ’good’ minimizer with a better geometry. More precisely, they

suggest to replace f(x) with a modified objective function fγ(x) called local entropy [9] as

follows

fγ(x) := − 1

β
log
(
Gβ−1γ ∗ exp(−βf(x))

)
,

where Gγ(x) = (2πγ)−d/2 exp
(
− |x|2

2γ

)
is the heat kernel. The connection between Entropy-

SGD and nonlinear partial differential equations (PDEs) was later established in [27]. The

local entropy function fγ turns out to be the solution to the following viscous Hamilton-

Jacobi (HJ) PDE at t = γ

ut = −1

2
|∇u|2 +

β−1

2
∆u (4.6)

with the initial condition u(x, 0) = f(x). In the limit β−1 → 0, (4.6) reduces to the non-

viscous HJ equation

ut = −1

2
|∇u|2,

whose solution is closely related to the proximal operator proxtf (x):

u(x, t) = inf
y

{
f(y) +

1

2t
‖y − x‖2

}
=

1

t
proxtf (x).

The gradient descent dynamics for fγ is obtained by taking the limit of the following system

of stochastic differential equation as the homogenization parameter ε→ 0:

dx(s) = −γ−1(x− y)ds

dy(s) = −1

ε

[
∇f(y) +

y − x
γ

]
ds+

β−1/2

√
ε
dW (s) (4.7)

where W (s) is the standard Wiener process. Specifically, we have

−∇fγ(x) = −γ−1(x− 〈y〉)

with 〈y〉 = limT→∞
1
T

∫ T
0
y(s)ds and y(s) being the solution of (4.7) for fixed x. This gives

rise to the implementation of Entropy-SGD [27]. We remark that stochastic backward Euler

is equivalent to Entropy-SGD with the step size of the gradient flow being equal to γ.
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4.3 Experimental results

We show by several experiments that the proposed stochastic backward Euler (SBE) gives

superior clustering results compared with the state-of-the-art algorithms for k-means. SBE

scales well for large problems. In practice, only a small number of fixed-point iterations

are needed in the inner loop, and this seems not to depend on the size of the problem.

Specifically, we chose the parameters imaxit = 5 or 10 and the averaging parameter α = 0.75

in all experiments. Moreover, we always set γ0 = K.

4.3.1 2-D synthetic Gaussian data

We generated 4000 synthetic data points in 2-D plane by multivariate normal distributions

with 1000 points in each cluster. The means and covariance matrices used for Gaussian

distributions are as follows:

µ1 =


−5

−3


 , µ2 =


 5

−3


 , µ3 =


0.0

5.0


 , µ4 =


2.5

4.0


 ;

Σ1 =


0.8 0.1

0.1 0.8


 , Σ2 =


1.2 0.6

0.6 0.7


 , Σ3 =


 0.5 0.05

0.05 1.6


 , Σ4 =


 1.5 0.05

0.05 0.6


 .

For the initial centroids given below, Lloyd’s algorithm (or EM) got stuck at a local mini-

mum; see the left plot of Fig. 4.1.

x1 =


−5.5989

−2.7090


 , x2 =


−4.4572

−4.0614


 , x3 =


−0.1082

5.2889


 , x4 =


2.3485

3.5286


 .

Starting from where EM got stuck, we can see that SBE managed to jump over the trap of

local minimum and arrived at the global minimum; see the right plot of Fig. 4.1.

4.3.2 Iris dataset

The Iris dataset, which contains 150 4-D data samples from 3 clusters, was used for compar-

isons between SBE and the EM algorithm. 100 runs were realized with the initial centroids

randomly selected from the data samples. For the parameters, we chose mini-batch size
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Figure 4.1: Synthetic Gaussian data with 4 centroids. Left: Computed centroids by EM

and SBE corresponding to the objective values 1.34 and 0.89, respectively. Right: Plot of

objective value v.s. number of iteration. EM converged quickly but got trapped at a local

minimum. SBE passed this local minimum and reached the global minimum by jumping

over a hill.

M = 60, initial step size, imaxit= 40, omaxit= 10, and decay parameter β = 1
1.01

. The

histograms in Fig. 4.2 record the frequency of objective values given by the two algorithms.

Clearly there was 29% chance that EM got stuck at a local minimum whose value is about

0.48, whereas ESGD managed to locate the near global minimum region valued at around

0.264 every time.

4.3.3 Gaussian data with MNIST centroids

We selected 8 hand-written digit images of dimension 28 × 28 = 784 from MNIST dataset

shown in Fig. 4.3, and then generated 60,000 images from these 8 centroids by adding

Gaussian noise. We compare SBE with both EM and mini-batch EM (mb-EM) [126, 135]

on 100 independent realizations with random initial guess. For each method, we recorded

the minimum, maximum, mean and variance of the 100 objective values by the computed

centroids.

We first compare SBE and EM with the true number of clusters K = 8. For SBE,

mini-batch size M = 1000, maximum number of iterations for backward Euler omaxit=150,

maximum fixed-point iterations imaxit= 10 for SBE. We set the maximum number of
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Figure 4.2: The Iris dataset with 3 clusters. Left: histogram of objective values obtained

by EM in 100 trials. Middle: histogram of objective values obtained by SBE (proposed) in

100 trials. Right: computed centroids by EM (black) and SBE (red), corresponding to the

objective values 0.48 and 0.264, respectively.

Figure 4.3: 8 selected images from MNIST dataset. 60,000 sample images are generated

from these 8 images by adding Gaussian noise.
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K Method Batch size Max iter Min Max Mean Variance

8
EM 7500 50 15.6800 27.2828 20.0203 6.0030

SBE 1000 (150,10) 15.6808 15.6808 15.6808 1.49×10−10

6
mb-EM 500 100 20.44 23.4721 21.8393 0.67

SBE 500 (100,5) 20.2989 21.2047 20.4939 0.0439

8
mb-EM 500 100 15.9193 18.5820 16.4009 0.7646

SBE 500 (100,5) 15.6816 15.6821 15.6820 1.18×10−9

10
mb-EM 500 100 15.9148 18.1848 16.1727 0.4332

SBE 500 (100,5) 15.6823 15.6825 15.6824 1.5×10−9

Table 4.1: Gaussian data generated from MNIST centroids by adding noise. Ground truth

K = 8. Clustering results for 100 independent trails with random initialization.

iterations for EM to be 50, which was sufficient for its convergence. The results are listed in

the first two rows of Table 4.3.3. We observed that the global minimum was around 15.68

and that SBE always found the global minimum up to a tiny error due to the noise from

mini-batch.

In the comparison between SBE and mb-EM, we reduced mini-batch size to M = 500,

omaxit= 100, imaxit= 5 and tested for K = 6, 8, 10. Table 4.3.3 shows that with the same

mini-batch size, SBE outperforms mb-EM in all three cases, in terms of both mean and

variance of the objective values.

4.3.4 Raw MNIST data

In this example, We used the 60,000 images from the MNIST training set for clustering test,

with 6000 samples for each digit (cluster) from 0 to 9. The comparison results are shown

in Table 4.2. We conclude that SBE consistently performs better than EM and mb-EM.

The histograms of objective value by the three algorithms in the case K = 10 are plotted in

Fig. 4.4.
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K Method Batch size Max iter Min Max Mean Variance

10
EM 6000 50 19.6069 19.8195 19.6725 0.0028

SBE 1000 (150,10) 19.6087 19.7279 19.6201 5.7×10−4

8
mb-EM 500 100 20.4948 20.7126 20.5958 0.0018

SBE 500 (100,5) 20.2723 20.4104 20.3090 0.0014

10
mb-EM 500 100 19.9029 20.2347 20.0146 0.0041

SBE 500 (100,5) 19.6103 19.7293 19.6354 0.0011

12
mb-EM 500 100 19.3978 19.7147 19.5136 0.0042

SBE 500 (100,5) 19.0492 19.1582 19.0972 6.2×10−4

Table 4.2: Raw MNIST training data. The ground truth number of clusters is K = 10.

Clustering results for 100 independent trails with random initialization.

Figure 4.4: Histograms of objective value for MNIST training data with ground truth number

of clusters K = 10. Top left: EM. Top right: SBE, mini-batch size of 1000. Bottom left:

mn-EM, mini-batch size of 500. Bottom right: SBE, mini-batch size of 500.
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K Method Batch size Max iter Min Max Mean Variance

10
EM 6000 50 1.6238 3.0156 2.1406 0.0977

SBE 1000 (150,10) 1.6238 1.6239 1.6239 2.7×10−10

8
mb EM 500 100 2.3428 3.5972 2.7157 0.0666

SBE 500 (100,5) 2.2833 2.4311 2.3274 0.0015

10
mb EM 500 100 1.6504 2.6676 2.1391 0.0712

SBE 500 (100,5) 1.6239 1.6242 1.6240 1.37×10−9

12
mb EM 500 100 1.5815 2.6189 1.7853 0.0661

SBE 500 (100,5) 1.5326 1.5891 1.5622 9.8×10−5

Table 4.3: MNIST features generated by LeNet-5 network. The ground truth number of

clusters is K = 10. Clustering results for 100 independent trails with random initialization.

4.3.5 MNSIT features

We extracted the feature vectors of MNIST training data prior to the last layer of LeNet-5

[79]. The feature vectors have dimension 64 and lie in a better manifold compared with the

raw data. The results are shown in Table 4.3 and Fig. 4.5 and 4.6.

4.4 Discussions

At the k-th iteration, SBE solves x = xk − γ∇φ(x). Since ∇φ is technically only piecewise

Lipschitz continuous, the backward Euler may have multiple solutions, and we will obtain

these solutions with certain probabilities. For example, in this 1D example, we get two

solutions xBE,1 in the leftmost valley and xBE,2 in the second from the left. xk+1 by SBE is

the extrapolation of these solutions in expectation. The averaging step helps reduce variance.

If xBE,2 is far to the right, then xk+1 is dragged away from the leftmost valley to the second

valley, i.e. xk+1 passes the local minimum. During the above process, the objective value

φ(xk+1) may increase, which explains the jump of objective value showed in the right plot

of Fig. 4.1. In some cases, however, the jump simply does not appear. The reason can be
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Figure 4.5: Histograms of objective value for MNIST feature data with ground truth number

of clusters K=10. Top left: EM. Top right: SBE, mini-batch size of 1000. Bottom left: mn-

EM, mini-batch size of 500. Bottom right: SBE, mini-batch size of 500.

Figure 4.6: Objective Value for MNIST training features with 60, 000 data points of size 64.

The ground truth number of clusters is K = 10. EM got trapped at local minimum around

2.178. Initializing SBE with this local minimizer, global minimum around 1.623 was found.
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Figure 4.7: Comparison the updates between SGD and SBE. Left: At the (k+1)-th update,

SGD gives ESGD[xk+1] = xk−γ∇f(xk) while SBE solves the Backward Euler for two solution

xBE,1 and xBE,2, and updates xk+1
SBE as the interpolation between these solutions. Right:

SBE converges to the global minimum of local entropy fγ: the average of solutions to the

Backward Euler. Therefore, we let γ → 0 in order that SBE converges to the global minimum

of f .

that the second valley is wider and deeper, and thus xBE,2 is further to the right. The xk+1

could be pulled to the second valley with the smaller objective value with some probability.

To finish this chapter, we conclude that the combination of backward Euler and stochas-

ticity provides a “better” direction for gradient-based method. The joining is numerical

implementation to Hopf-Lax formula that, the implicit-form solution in time to viscous HJ-

PDE , yields to a regularizer on f . This smoothing technique helps the algorithm to avoid

bad local minima (sharp & narrow) and seek for better ones (wide). In the next chapter,

we will examine another regularizer technique, termed gradient smoothing, by considering a

modification of HJ-PDE and apply it to gradient-based training algorithm in deep learning.
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CHAPTER 5

Laplacian smoothing gradient descent

We propose a class of very simple modifications of gradient descent and stochastic gradient

descent. We show that when applied to a large variety of machine learning problems, ranging

from logistic regression to deep neural nets, the proposed surrogates can dramatically reduce

the variance, allow to take a larger step size, and improve the generalization accuracy.

The methods only involve multiplying the usual (stochastic) gradient by the inverse of a

positive definitive matrix (which can be computed efficiently by FFT) with a low condition

number coming from a one-dimensional discrete Laplacian or its high order generalizations.

It also preserves the mean and increases the smallest component and decreases the largest

component. The theory of Hamilton-Jacobi partial differential equations demonstrates that

the implicit version of the new algorithm is almost the same as doing gradient descent

on a new function which (i) has the same global minima as the original function and (ii)

is “more convex”. Moreover, we show that optimization algorithms with these surrogates

converge uniformly in the discrete Sobolev Hp
σ sense and reduce the optimality gap for convex

optimization problems.

5.1 Introduction

Stochastic gradient descent (SGD) [119] has been the workhorse for solving large-scale ma-

chine learning (ML) problems. It gives rise to a family of algorithms that enables efficient

training of many ML models including deep neural nets (DNNs). SGD utilizes training data

very efficiently at the beginning of the training phase, as it converges much faster than GD

and L-BFGS during this period [15, 62]. Moreover, the variance of SGD can help gradient-
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based optimization algorithms circumvent local minima and saddle points and reach those

that generalize well [124, 67]. However, the variance of SGD also slows down the convergence

after the first few training epochs. To account for the effect of SGD’s variance and to ensure

the convergence of SGD, a decaying step size has to be applied which is one of the major

bottlenecks for the fast convergence of SGD [13, 129, 128]. Moreover, in training many ML

models, typically the stage-wise schedule of learning rate is used in practice [127, 124]. In

this scenario, the variance of SGD usually leads to a large optimality gap.

A natural question arises from the above bottlenecks of SGD is: C an we improve SGD

such that the variance of the stochastic gradient is reduced on-the-fly with negligible extra

computational and memory overhead and a larger step size is allowed to train ML models?

We answer the above question affirmatively by applying the discrete one-dimensional

Laplacian smoothing (LS) operator to smooth the stochastic gradient vector on-the-fly. The

LS operation can be performed efficiently by using the fast Fourier transform (FFT).

Another issue of GD and SGD is that when the Hessian of the objective function has a

large condition number, GD performs poorly. In this case, the derivative increases rapidly

in one direction, while growing slowly in another. As a by-product, numerically we will

show that LS can avoid oscillation along steep directions and help make progress in shallow

directions effectively [75]. The implicit version of our proposed approach is linked to an

unusual Hamilton-Jacobi partial differential equation (HJ-PDE) whose solution makes the

original loss function more convex while retaining its flat (and global) minima, and essentially

works on this surrogate function with a much better landscape. See [26] for related work.

5.1.1 Our contribution

In this study, we propose a new modification to the stochastic gradient-based algorithms,

which at its core uses the LS operator to reduce the variance of stochastic gradient vector on-

the-fly. The fundamental of LS is based on Hamilton-Jacobi (HJ) equation and generalized

Bregman metric distance. Our Laplacian smoothing gradient descent algorithm approxi-

mates solution to the HJ in a linearized sense. The algorithm can be also generalized to
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higher order and shows improvement on variance reduction as well.

5.1.2 Related work

There is an extensive volume of research over the past decades for designing algorithms to

speed up the convergence. These include using momentum and other heavy-ball methods,

reduce the variance of the stochastic gradient, and adaptive the learning rate. We will

discuss the related work from these three perspectives.

The first type of idea to accelerate the convergence of GD and SGD is to apply the

momentum. Around local optima, the surface curves can be much more steeply in one

dimension than in another [134], whence (S)GD oscillates across the slopes of the ravine while

only making hesitant progress along the bottom towards the local optimum. Momentum

is proposed to accelerate (S)GD in the relevant direction and dampens oscillations [113].

Nesterov accelerated gradient (NAG) is also introduced to slow down the progress before

the surface curve slopes up, and it provably converge faster in specific scenarios [104]. There

are lots of recent progress in the development of momentum; a relatively complete survey

can be found at [3].

Due to the bottleneck of the variance of the stochastic gradient, a natural idea is to reduce

the variance of the stochastic gradient. There are several principles in developing variance

reduction algorithms [15], including Dynamic sample size methods; Gradient aggregation,

control variate type of technique is widely used along this direction, some representative

works are SAGA [33], SCSG [81], and SVRG [70]; Iterative averaging methods.

Another category of work tries to speed up the convergence of GD and SGD by using

an adaptive step size, which makes use of the historical gradient to adapt the step size.

RMSProp [136] and Adagrad [41] adapts the learning rate to the parameters, performing

smaller updates (i.e., low learning rates) for parameters associated with frequently occurring

features, and more substantial updates (i.e., high learning rates) for parameters associated

with infrequent features. Both RMSProp and Adagrad make the learning rate to be historical

gradient dependent. Adadelta [150] extends the idea of RMSProp and Adagrad, instead

67



of accumulating all past squared gradients, it restricts the window of accumulated past

gradients to some fixed size w. Adam [77] and AdaMax [77] behave like a heavy ball with

friction, and they compute the decaying averages of past and past squared gradients to

adaptive the learning rate. AMSGrad [118] fix the issue of Adam that may fail to converge

to an optimal solution. Adam can be viewed as a combination of RMSprop and momentum:

RMSprop contributes the exponentially decaying average of past squared gradients, while

momentum accounts for the exponentially decaying average of past gradients. Since NAG is

superior to vanilla momentum, Dozat [40] proposed NAdam which combines the idea Adam

and NAG.

5.1.3 Notations

In this chapter, we use boldface upper-case letters A, B to denote matrices and boldface

lower-case letters w , u to denote vectors. For vectors, we use ‖ · ‖ to denote the `2-norm

for vectors and spectral norm for matrices, respectively. And we use λmax(A), λmin(A), and

λi(A) to denote the largest, smallest, and the i-th largest eigenvalues, respectively. For a

function f : Rn → R, we use ∇f and ∇2f to denote its gradient and Hessian, and f ∗ to

denote a local minimum of f . For a positive definite matrix A, we define the vector induced

norm by as ‖w‖A :=
√
〈w ,Aw〉. List {1, 2, · · · , n} is denoted by [n].

5.2 Laplacian Smoothing (Stochastic) Gradient Descent

5.2.1 Hamilton-Jacobi PDEs

The motivation for the proposed LS-SGD comes from the Hamilton-Jacobi PDE (HJ-PDE).

Consider the following unusual HJ-PDE with the empirical risk function, f(w), as initial

condition 


ut + 1

2

〈
∇wu,A

−1
σ ∇wu

〉
= 0, (w , t) ∈ Ω× [0,∞)

u(w , 0) = f(w), w ∈ Ω

(5.1)
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where Aσ is an elliptic operator, i.e. positive definite. By the Hopf-Lax formula [47], the

unique viscosity solution to (5.1) is represented by

u(w , t) = inf
v

{
f(v) +

1

2t

〈
v −w ,Aσ(v −w)

〉}
. (5.2)

This viscosity solution u(w , t) makes f(w) “more convex”, an intuitive definition and

theoretical explanation of ”more convex” can be found in [26], by bringing down the local

maxima while retaining and widening local minima. The viscous solution u(w , t) is explained

to be the minimum of f plus an penalty around w . According to the HJ-PDE, we can take

the penalty as generalized Bregman distance metric. Solving the problem 5.2 is equivalent

to finding solution to the following backward Euler

v = w − tA−1
σ f(v) (5.3)

Note that the viscous solution u(w , t) can be interpreted as a generalized convex envelope

of f(w), i.e. both the value and location of some local extrema of the viscous solution

are unchanged, while the regions of local extrema are widened. Hence, if we apply this

rule iteratively, we can solve for the minimum of f and its location but with smoother

convergence. The update reads backward Euler equation as follows

w k+1 = w k − tA−1
σ f(w k+1) (5.4)

Solving backward Euler equation is expensive and inefficient, especially in deep learning

problems. Instead, we approximate the solution by fixed point iteration method which

requires a couple of inner-iterations for each update. In the most simple case where only

one inner iteration is taken, we obtain the gradient descent, or forward Euler

w k+1 = w k − tA−1
σ f(w k) (5.5)

Since we replace backward Euler by gradient descent, the chosen step-size t needs to be

small for better approximation. The tasks now become defining smoothing operator Aσ and

designing an efficient implementation to Eqn. 5.5.
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5.2.2 Smoothing Operator

The smoothing operator Aσ applied on gradients is a circulant matrix

Aσ :=




1 + 2σ −σ 0 . . . 0 −σ
−σ 1 + 2σ −σ . . . 0 0

0 −σ 1 + 2σ . . . 0 0

. . . . . . . . . . . . . . . . . .

−σ 0 0 . . . −σ 1 + 2σ




(5.6)

for some positive constant σ ≥ 0. In fact, we can write Aσ = I −σL, where I is the identity

matrix, and L is the discrete one-dimensional Laplacian which acts on indices. If we define

the (periodic) forward finite difference matrix as

D =




−1 1 0 . . . 0 0

0 −1 1 . . . 0 0

0 0 −1 . . . 0 0

. . . . . . . . . . . . . . . . . .

1 0 0 . . . 0 −1




.

Then, we have Aσ = I − σD−D+, where D− = −DT
+ is the backward finite difference.

We summarize the benefits of this simple LS operation below:

• It reduces the variance of stochastic gradient on-the-fly, and reduces the optimality

gap when constant step size is used.

• It avoids local sharp minima empirically.

• It is more robust to the noisy gradient.

Moreover, as a straightforward extension, we generalize the LS to high-order smoothing

operators, e.g., biharmonic smoothing.
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5.2.3 Laplacian Smoothing Gradient Descent

We present our algorithm for SGD in the finite-sum setting. The GD and other settings

follow straightforwardly. Consider the following finite-sum optimization

min
w

F (w) :=
1

n

n∑

i=1

fi(w), (5.7)

where fi(w)
.
= f(w ,x i, yi) is the loss of a given ML model on the training data {x i, yi}.

This finite-sum formalism is an abstract of training many ML models mentioned above. To

resolve the optimization problem (5.7), starting from some initial guess w 0, the (k + 1)-th

iteration of SGD reads

w k+1 = w k − ηk∇fik(w k), (5.8)

where ηk is the step size, ik is a random sample with replacement from [n].

We propose to replace the stochastic gradient ∇fik(w k) by the Laplacian smoothed

surrogate, and we call the resulting algorithm LSSGD, which is written as

w k+1 = w k − ηkA−1
σ ∇fik(w k). (5.9)

Intuitively, compared to the standard GD, this scheme smooths the gradient on-the-fly by

an elliptic smoothing operator while preserving the mean of the entries of the gradient. We

adopt fast Fourier transform (FFT) to compute A−1
σ ∇f(w k), which is available in both

PyTorch [110] and TensorFlow [1]. Given a vector g , a smoothed vector d can be obtained

by computing d = A−1
σ g . This is equivalent to g = d−σv∗d , where v = [−2, 1, 0, · · · , 0, 1]T

and ∗ is the convolution operator. Therefore

d = ifft

(
fft(g)

1− σ · fft(v)

)
,

where we use component-wise division (here, fft and ifft are the FFT and inverse FFT, re-

spectively). Hence, the gradient smoothing can be done in quasilinear time. This additional

time complexity is almost the same as performing a one step update on the weights vector

w . For many machine learning models, we may need to concatenate the parameters into

a vector. This reshaping might lead to some ambiguity, nevertheless, based on our tests,
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both row and column majored reshaping work for the LS-GD algorithm. Moreover, in deep

learning cases, the weights in different layers might have different physical meanings. For

these cases, we perform layer-wise gradient smoothing, instead. We summarize the LSSGD

for solving the finite-sum optimization (5.7) in Algorithm 5.

In image processing and elsewhere, the Sobolev gradient [71] uses a multi-dimensional Lapla-

cian operator that operates on w , and is different from the one-dimensional discrete Lapla-

cian operator employed in our LS-GD scheme that operates on indices.

5.2.4 Generalized smoothing gradient descent

We can generalize Aσ to the n-th order discrete hyper-diffusion operator as follows

I + (−1)nσLn
.
= An

σ.

Each row of the discrete Laplacian operator L consists of an appropriate arrangement of

weights in central finite difference approximation to the 2nd order derivative. Similarly, each

row of Ln is an arrangement of the weights in the central finite difference approximation to

the 2nth order derivative.

Remark: The n-th order smoothing operator I + (−1)nσLn can only be applied to the

problem with dimension at least 2n+ 1. Otherwise, we need to add dummy variables.

Again, we apply FFT to compute the smoothed gradient vector. For a given gradient

vector g , the smoothed surrogate, (An
σ)−1g

.
= d , can be obtained by solving g = d +

(−1)nσvn ∗ d , where vn = (cnn+1, c
n
n+2, · · · , cn2n+1, 0, · · · , 0, cn1 , cn2 , · · · , cnn−1, c

n
n) is a vector

of the same dimension as the gradient to be smoothed. And the coefficient vector cn =

(cn1 , c
n
2 , · · · , cn2n+1) can be obtained recursively by the following formula

c1 = (1,−2, 1), cni =





1 i = 1, 2n+ 1

−2cn−1
1 + cn−1

2 i = 2, 2n

cn−1
i−1 − 2cn−1

i + cn−1
i+1 otherwise.

The computational complexities for different order smoothing schemes are the same when

the FFT is utilized for computing the surrogate gradient.

72



Algorithm 5 LSSGD

Input: fi(w) for i = 1, 2, · · · , n.

w 0: initial guess of w , T : the total number of iterations, and ηk, k = 0, 1, · · · , T : the

scheduled step size.

Output: The optimized weights w opt.

for k = 0, 1, · · · , T do

w k+1 = w k − ηkA−1
σ

(
∇fik(w k)

)
.

end for

return wT

5.3 Experimental results

5.3.1 Multi-class Logistic regression

Consider applying the proposed optimization schemes to train the multi-class Logistic re-

gression model. We run 200 epochs of SGD and different order smoothing algorithms to

maximize the likelihood of multi-class Logistic regression with batch size 100. And we apply

the exponentially decaying learning rate with initial value 0.5 and decay 10 times after every

50 epochs. We train the model with only 10 % randomly selected MNIST training data and

test the trained model on the entire testing images. We further compare with SVRG under

the same setting. Figure. 5.1 shows the histograms of generalization accuracy of the model

trained by SGD (a); SVRG (b); LS-SGD (order 1) (c); LS-SGD (oder 2) (d). It is seen

that SVRG somewhat improves the generalization with higher averaged accuracy. However,

the first and the second order LSSGD type algorithms lift the averaged generalization ac-

curacy by more than 1% and reduce the variance of the generalization accuracy over 100

independent trials remarkably.

Next, we show the evolution of the loss in training the multi-class Logistic regression

model by SGD, SVRG, LSGD with first and second order smoothing, respectively. As

illustrated in Figure 5.2. At each iteration, among 100 independent experiments, SGD

has the largest variance, SGD with first order smoothed gradient significantly reduces the
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(a) SGD (b) SVRG

(c) LS-GD: Order 1 (d) LS-GD: Order 2

Figure 5.1: Histogram of testing accuracy over 100 independent experiments of the multi-

class Logistic regression model trained on randomly selected 10% MNIST data by different

algorithms.

variance of loss among different experiments. The second order smoothing can further reduce

the variance. The variance of loss in each iteration among 100 experiments is minimized

when SVRG is used to train the multi-class Logistic model. However, the generalization

performance of the model trained by SVRG is not as good as the ones by LS-SGD, or higher

order smoothed gradient descent (Figure 5.1 (b)).
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(a) SGD (b) SVRG

(c) LS-GD: Order 1 (d) LS-GD: Order 2

Figure 5.2: Iterations v.s. loss for SGD, SVRG, and LS-SGD with order 1 and order 2

gradient smoothing for training the multi-class Logistic regression model.

5.3.2 LeNet with small batch size

Many advanced artificial intelligence tasks make high demands on training neural nets with

extremely small batch sizes. The milestone technique for this is group normalization [142].

In this section, we show that LS-SGD successfully trains DNN with extremely small batch

size. We consider LeNet-5 [79] for MNIST classification. Our network architecture is as

follows

LeNet-5: input28×28 → conv20,5,2 → conv50,5,2 → fc512 → softmax.

The notation convc,k,m denotes a 2D convolutional layer with c output channels, each of

which is the sum of a channel-wise convolution operation on the input using a learnable
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kernel of size k × k, it further adds ReLU nonlinearity and max pooling with stride size

m. fc512 is an affine transformation that transforms the input to a vector of dimension 512.

Finally, the tensors are activated by a multi-class Logistic function. The MNIST data is first

passed to the layer input28×28, and further processed by this hierarchical structure. We run

100 epochs of both SGD and LS-SGD with initial learning rate 0.01 and divide by 5 after

50 epochs, and use a weight decay of 0.0001 and momentum of 0.9. Figure. 5.3(a) plots the

generalization accuracy on the test set with the LeNet5 trained with different batch sizes.

For each batch size, LS-SGD with σ = 1.0 keeps the testing accuracy more than 99.4%,

SGD reduce the accuracy to 97% when batch size 4 is used. The classification become just

a random guess, when the model is trained by SGD with batch size 2. Small batch size

leads to large noise in the gradient, which may make the noisy gradient not along the decent

direction; however, Lapacian smoothing rescues this by decreasing the noise.

Figure 5.3: (a). Testing accuracy of LeNet5 trained by SGD/LS-SGD on MNIST with

various batch sizes. (b). The evolution of the pre-activated ResNet56’s training and gener-

alization accuracy by SGD and LS-SGD. (Start from the 20-th epoch.)

5.3.3 Improve generalization accuracy

The skip connections in ResNet smooth the landscape of the loss function of the classical

CNN [63, 84]. This means that ResNet has fewer sharp minima. On Cifar10 [78], we
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compare the performance of LS-SGD and SGD on ResNet with the pre-activated ResNet56

as an illustration. We take the same training strategy as that used in [63], except that we run

200 epochs with the learning rate decaying by a factor of 5 after every 40 epochs. For ResNet,

instead of applying LS-SGD for all epochs, we only use LS-SGD in the first 40 epochs, and

the remaining training is carried out by SGD (this will save the extra computational cost

due to LS, and we noticed that the performance is similar to the case when LS is used

for the whole training process). The parameter σ is set to 1.0. Figure 5.3(b) depicts one

path of the training and generalization accuracy of the neural nets trained by SGD and

LS-SGD, respectively. It is seen that, even though the training accuracy obtained by SGD

is higher than that by LS-SGD, the generalization is however inferior to that of LS-SGD.

We conjecture that this is due to the fact that SGD gets trapped into some sharp but deeper

minimum, which fits better than a flat minimum but generalizes worse. We carry out 25

replicas of this experiments, the histograms of the corresponding accuracy are shown in

Figure 5.4.

SGD LS-SGD with σ = 1.0

Figure 5.4: The histogram of the generalization accuracy of the pre-activated ResNet56 on

Cifar10 trained by SGD and LS-SGD over 25 independent experiments.

77



5.3.4 Training Wassersterin GAN

Generative Adversarial Networks (GANs) [59] are notoriously delicate and unstable to train

[5]. In [6], Wasserstein-GANs (WGANs) are introduced to combat the instability in the

training GANs. In addition to being more robust in training parameters and network archi-

tecture, WGANs provide a reliable estimate of the Earth Mover (EM) metric which correlates

well with the quality of the generated samples. Nonetheless, WGANs training becomes un-

stable with a large learning rate or when used with a momentum based optimizer [6]. In this

section, we demonstrate that the gradient smoothing technique in this paper alleviates the

instability in the training, and improves the quality of generated samples. Since WGANs

with weight clipping are typically trained with RMSProp [136], we propose replacing the

gradient g by a smoothed version gσ = A−1
σ g, and also update the running averages using

gσ instead of g. We name this algorithm LS-RMSProp.

To accentuate the instability in training and demonstrate the effects of gradient smooth-

ing, we deliberately use a large learning rate for training the generator. We compare the

regular RMSProp with the LS-RMSProp. The learning rate for the critic is kept small and

trained approximately to convergence so that the critic loss is still an effective approxima-

tion to the Wasserstein distance. To control the number of unknowns in the experiment and

make a meaningful comparison using the critic loss, we use the classical RMSProp for the

critic, and only apply LS-RMSProp to the generator.

We train the WGANs on the MNIST dataset using the DCGAN [114] for both the critic

and generator. In Figure 5.5 (left), we observe the loss for RMSProp trained with a large

learning rate has multiple sharp spikes, indicating instability in the training process. The

samples generated are also lower in quality, containing noisy spots as shown in Figure 5.6 (a).

In contrast, the curve of training loss for LS-RMSProp is smoother and exhibits fewer spikes.

The generated samples as shown in Figure 5.6 (b) are also of better quality and visibly less

noisy. The generated characters shown in Figure 5.6 (b) are more realistic compared to the

ones shown in Figure 5.6 (a). The effects are less pronounced with a small learning rate,

but still result in a modest improvement in sample quality as shown in Figure 5.6 (c) and
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RMSProp LS-RMSProp, σ = 3.0

Figure 5.5: Critic loss with learning rate lrD = 0.0001, lrG = 0.005 for RMSProp (left) and

LS-RMSProp (right), trained for 20K iterations. We apply a mean filter of window size 13

for better visualization. The loss from LS-RMSProp is visibly less noisy.

(a) RMSProp (b) LS-RMSProp, σ = 3.0

(c) RMSProp (d) LS-RMSProp, σ = 3.0

Figure 5.6: Samples from WGANs trained with RMSProp (a, c) and LS-RMSProp (b, d).

The learning rate is set to lrD = 0.0001, lrG = 0.005 for both RMSProp and LS-RMSProp

in (a) and (b). And lrD = 0.0001, lrG = 0.0001 are used for both RMSProp and LS-

RMSProp in (c) and (d). The critic is trained for 5 iterations per step of the generator, and

200 iterations per every 500 steps of the generator.

(d).We also apply LS-RMSProp for training the critic, but do not see a clear improvement

in the quality. This may be because the critic is already trained near optimality during each
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iteration, and does not benefit much from gradient smoothing.

5.4 Discussion & Conclusion

5.4.1 Connection to Hamilton-Jacobi PDEs

We take an example to Hamilton-Jacobi PDEs and demonstrate its solution as a function of

time. Figure 5.7 shows that the viscous solution u(w , t) to Eqn. 5.1 for a given time t acts

as a surrogate to f(w) as it brings down the local maxima and shrink their concave regions

while retaining and widening the local minima.

If we could solve the backward Euler in Eqn. 5.4 with proper step size on the function

u(w , t), then we can reach the global or at least a flatter minima of the original nonconvex

function f(w).

Figure 5.7: f(w) = ‖w‖2
(
1 + 1

2
sin(2π‖w‖)

)
is made more convex by solving (5.1). The

plot shows the cross section of the 5D problem with σ = 1 and different t values.

Notice that the viscous solution u(w , t) is flattened more as t increases. Since we replace

the backward Euler by the gradient descent, small step-size t must be taken
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5.4.2 Conclusion

Motivated by the theory of Hamilton-Jacobi partial differential equations, we proposed

Laplacian smoothing gradient descent and its high order generalizations. This simple modi-

fication dramatically reduces the variance and optimality gap in stochastic gradient descent,

allows us to take a larger step size, and helps to find better minima. Extensive numerical

examples ranging from toy cases and shallow and deep neural nets to generative adversarial

networks and deep reinforcement learning, all demonstrate the advantage of the proposed

smoothed gradient.

This result shows an application of our HJ-PDE technique in machine learning and ends

the thesis of new algorithms in computational microscopy. We give summary to our finding

and discuss future research in the conclusion chapter.
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CHAPTER 6

Conclusion

6.1 Summary

My thesis demonstrated algorithm developments in microscopy inverse problems via opti-

mization techniques. Two main topics that were addressed are phase retrieval in coherent

diffracting imaging and 3D tomography reconstruction in electron microscopy. The optimiza-

tion techniques used in these researches were also found applications in machine learning,

specifically K-mean clustering and gradient-based algorithm for training process in deep

learning. The thesis is summarized into 3 aims with 4 studies as follows.

Aim 1: Algorithm development for phase retrieval

Study 1 reported algorithm development for phase retrieval in coherent diffractive imag-

ing. The method was developed from the motivation of Hamilton-Jacobi partial differential

equations (HJ-PDE), generalized Bregman distance, and Tikhonov regularizers. The phase

retrieval objective function, which is non-convex & non-smooth, was relaxed by generalized

proximal smoothing and resulted in a “better” smoothed function. Since we apply smooth-

ing/Tikhonov regularizer on objective function instead of object, minimizers barely change

when value γ of the regularizer is small enough. Therefore, we incorporated our algorithm

generalized proximal smoothing (GPS), derived from primal-dual hybrid gradient (PDHG),

with the increasing in γ along the iterations to improve the generalization of solutions.

Through simulation and experimental data, we demonstrated that the algorithm im-

proves image processing fidelity, minimums and consistency relative to hybrid input-output

(HIO) and oversampling smoothness (OSS). GPS was shown to have higher capability to
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overcome bad local minima (sharp & narrow) and stay in good ones (deep & wide). There-

fore, GPS can obtain lower objective values and achieve minimizers that have higher gener-

alization. The Tikhonov regularizer used in GPS helps to improve reliability and robustness

when working with noise. Moreover, the regularizer was also shown to obtain smoother

convergence and less oscillation than other algorithms. GPS now becomes a great asset to

the class of phase retrieval methods.

Aim 2: Algorithm development for tomography

Study 2 reported a new algorithm for 3D tomography reconstruction, named “real space

iterative reconstruction engine” RESIRE. In this research, we approached the goal via l2

minimization and took motivation from algebraic technique (ART). In the light of varia-

tional calculus and functional derivative, we derived a highly accurate “back projection”

operator. Through simulations and experimental data, RESIRE was shown to reconstruct

high resolution 3D imaging and superior results to other methods, such as filtered back pro-

jection (FBP), Simultaneously iterative reconstruction technique (SIRT), and generalized

Fourier iterative reconstruction (GENFIRE). RESIRE provided more faithful images with

less missing wedge artifacts, while noise and blur were significantly reduced.

Moreover, RESIRE was further developed to work with non-isolated objects and partially-

blocked projections where microscope could only capture parts of samples or samples are

blocked or grasped by caps. Those scenarios have become more popular in tomography and

challenged reconstruction algorithms. While other methods restrict their reconstructions to

only isolated objects, RESIRE provides a flexible but also rigorous technique to decipher

these dilemmas. Inductively, RESIRE can choose good regions of projections for reconstruc-

tions and masks out bad ones; therefore, maximizes field of view FOV. Additionally, the

flexibility allows reconstruction to be performed via partitioning. This functionality permits

sub-reconstructions with different depth as controlling the depth is believed to improve re-

construction quality. Last but not least, the partitioning enhances parallel computing and

allows reconstructions with larger samples.
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Aim 3: Application to machine learning

Study 3 and 4 reported applications of optimization technique used in study 1 to machine

learning, including K-means clustering and gradient-based algorithm for deep learning.

Specifically, study 3 developed stochastic backward Euler (SBE) algorithm from Hopf-

Lax formula, an implicit-form solution to HJ-PDE, to solve K-mean clustering. This tech-

nique was used in study 1 as a smoothing regularizer to a non-convex & non-smooth objec-

tive function when an unusual non-viscous HJ-PDE was being used. In this research, we

focused on viscous HJ-PDE instead and interpreted its Hopf-Lax formula as backward Euler

method in a stochastic sense. This corporation also provided a better “descent” direction

for gradient-based algorithms as GPS did. Through simulation and experimental data, SBE

was shown to achieve lower minimums with higher consistency. When naive K-mean gra-

dient descent got trapped in bad local minima, SBE was demonstrated to overcome these

traps by sampling “better” descent directions. This highlighted the advantage of such a

backward Euler scheme and function smoothing in non-convex & non-smooth optimization.

Another application of function smoothing via HJ-PDE was shown in study 4. The

derived algorithm, named Laplacian smoothing gradient descent (LSGD), relaxed gradients

by Laplacian smoothing to compensate for stochasticity in random sampling. LSGD reduced

the randomness in stochastic gradient and provided a smooth descent direction to avoid

bad local minima (shape & narrow) and seek for good ones (deep & wide minima). This

technique is also considered as function smoothing as in study 1 & 3. Through simulation

and experimental tests ranging from deep neural nets to generative adversarial networks and

deep reinforcement learning, LSGD was shown to achieve lower minimums with smoother

convergence and higher consistency. Especially in classification problems, LSGD was shown

to obtain higher accuracy in both training and testing, i.e. higher generalization.

The triumph of this thesis opens more applications and directions in future research

which is discussed in the final section.
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6.2 Future direction

Vector tomography

Magnetic metalattices are thought to exhibit multiple, topologically distinct magnetic phases

which sharply transition as a function of the applied field. This behavior makes the meta-

lattice a candidate for a new class of “spin-engineered” materials. We would like to explore

the vector field caused by magnetic metalattices via ptychographic tomography experiments

using X-ray microscopy technique. This opens a new area of research as well a new math-

ematical problem to microscopy community. Being pioneer in this field, we would like to

be the first in developing a new algorithm for vector tomography. The principle of this

development is based on the reconstruction algorithm developed in study 2. As discussion

in chapter 3, the flexibility in RESIRE provides the ability to extend 3D to 4D imaging.

Beside developing the algorithm, we would like to design an optimal experimentation

for vector tomography. Through simulation, we analyze the minimization problem, and

optimize experimental parameters in order to produce an optimal solutions, i.e. maximize

outcome and minimize error. The results represents an optimal strategy for experimentation.

Non-linear tomography with multiple scattering effects

Recent electron tomography assumes linearity in projections but does not take in account the

multiple scattering effect between quantum matter waves like electrons and solid material.

In order to improve imaging fidelity, this effect should be considered in tomographic re-

construction algorithms; hence non-linear tomography with multiple scattering effect arises

together with demand for algorithm development. The multiple scattering effect can be

simulated via a numerical non-linear iterative process, known as multislice method. Due

to computational expense, the simulation is too difficult to be integrated in reconstruction

process. To address this problem, we need to search for a faster and simpler simulation in

the trade-off with accuracy. Another possible approach is developing a non-linear tomog-

raphy model via statistical and probabilistic methods. By data fitting, we wish to obtain
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a correlation between linear and multislice projections. Basic non-linear operators such

as polynomials, exponents, and their combination can be examined as a candidate for the

correlation.

Super resolution ptychography

By diffraction limit, resolution of coherent diffractive imaging is defined by scattering angle

and wavelength of the illumination used in experiment. To improve the resolution, electro-

magnetic wave with shorter wavelength or aperture with structure that can obtain larger

scattering angle should be exploited. However, for a fixed illumination and aperture, numer-

ical method can help to obtain the resolution beyond diffraction limit. Many research in the

last decade revealed that a combination of structured aperture and expanding diffraction

pattern can improve the resolution by a factor of 2, and maybe up to 4. However diffraction

expansion causes instability in reconstruction process due to the increasing number of vari-

ables. As the degrees of freedom increase, the system becomes under-determined. Improving

resolution by a factor of 4 only happens in ideal systems. We wish to develop an advanced

algorithm with the help of a Tikhonov regularizer to overcome this under-constraint mini-

mization. The regularizer needs not to be biased and should be developed based on prior

knowledge of the reconstructed and diffractive images.
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APPENDIX A

Chapter 2-5 supplementary materials

A.1 Chapter 2 supplementary materials

Proximal mapping on complex domain

We extend the definition of the Moreau-Yosida regularization [103, 148] to complex domain.

Let G ∈ Cn×n be a Hermitian positive definite matrix. The Moreau-Yosida regularization of

a lower semi-continuous extended-real-valued function h : Cn → (−∞,∞], associated with

G, is defined by

hG(u) := inf
v∈Cn

{
h(v) +

1

2
‖v − u‖2

G−1

}
. (A.1)

We see that hG converges pointwise to h as ‖G‖ → 0+. In the special case where G = tI is

a multiple of identity matrix with t > 0, hG reduces to

ht(u) := inf
v∈Cn

{
h(v) +

1

2t
‖v − u‖2

}
. (A.2)

For any indicator function h = IX of a closed set X ⊂ Cn,

ht(u) :=
1

2t
inf
v∈X
‖v − u‖2 =

1

2t
‖u− projX (u)‖2 (A.3)

is 1
2t

of the squared `2 distance from u to the set X . Similar idea of relaxing an indicator

function into a distance function has been successfully applied to the quantization problem

of deep neural networks in [147]. Taking X = {z ∈ Rn : |z| = b} to be the magnitude

constraint set and σ > 0, we first relax g = I|z|=b in (2.3) into

gσ(z) :=
1

2σ
inf
|v|=b

‖v − z‖2. (A.4)
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Since proj|z|=b(z) = b� exp(i · arg(z)) is the projection of z onto the set {z ∈ Rn : |z| = b},
a simple calculation shows that

gσ(z) =
1

2σ
‖b� exp(i · arg(z))− z‖2 =

1

2σ
‖(b−|z|)� exp(i · arg(z))‖2 =

1

2σ
‖|z|− b‖2 (A.5)

is a least squares fidelity, which measures the difference between the observed magnitudes

and fitted ones.

Generalized Legendre-Fenchel transformation

We can express any function h : Cn → R as a function h̃ defined on R2n in the following way

h(u) := h̃
(
Re(u), Im(u)

)
= h̃(ũ), (A.6)

where ũ =
[
Re(u); Im(u)

]
∈ R2n and h̃ : R2n → R. We define that h is convex, if h̃ is convex

on R2n. Note that for any u, y ∈ Cn,

Re〈u, y〉 = 〈Re(u),Re(y)〉+ 〈Im(u), Im(y)〉 = 〈ũ, ỹ〉. (A.7)

We propose to generalize the Legendre-Fenchel transformation (a.k.a. convex conjugate)

[122] of an extended-real-valued convex function h defined on Cn as

h∗(y) := sup
u∈Cn

{
Re〈y, u〉 − h(u)

}
. (A.8)

Infimal convolution and Moreau-Yoshida decomposition

By Eq. (2.5), fG is the infimal convolution [111] between the convex functions f and 1
2
‖·‖2

G−1 .

The Moreau-Yoshida decomposition decouples the Legendre-Fenchel transformation of fG

f ∗G(y) = f ∗(y) +
(1

2
‖ · ‖2

G−1

)∗
(y), (A.9)

where
(

1
2
‖ · ‖2

G−1

)∗
(y) = 1

2
‖y‖2

G. Here we remark that G only needs to be positive semi-

definite in Eq. (2.5), as fG can take the extended value ∞. In this case, although G−1 does

not exist, since fG is convex and lower semi-continuous, and the strong duality f ∗∗G = fG
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holds here, we can re-define fG via the biconjugate as

fG(u) = f ∗∗G (u) =
(
f ∗G(y)

)∗
= sup

y∈Cn

{
Re〈u, y〉 − f ∗G(y)

}
= sup

y∈Cn

{
Re〈u, y〉 − f ∗(y)− 1

2
‖y‖2

G

}

= sup
y∈S∗

{
Re〈u, y〉 − 1

2
‖y‖2

G

}
. (A.10)
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