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Abstract

Sparsification, sampling, and system identification in extended dynamic mode

decomposition

by

Nibodh Boddupalli

Data-driven analysis has seen explosive growth with widespread availability of data

and unprecedented computational power. Time-series data is of particular interest from

a systems theory perspective which seeks to predict behaviour of involved entities and

uncover unforeseen events. While system identification has been vastly successful in

constructing models for linear systems, the Koopman operator framework has gained

popularity due to its relations to nonlinear systems. The Koopman representation’s

linearity in functions of state and beyond local validity has been exploited by the dynamic

mode decomposition (DMD) class of algorithms for their ease of identifying system models

from data.

We study the effect of some attributes of data – number of time-points, power-

spectrum, periodicity, sampling, and number of trajectories – on the results of Extended-

DMD (EDMD). After a brief overview of the Koopman framework, we derive EDMD as a

projection onto a basis without assumptions on desired functions lying in the span of that

basis. We apply persistence of excitation (PE) to the Koopman framework and prove

necessary and sufficient condition on the data for accuracy of EDMD approximation of

the Koopman operator for nonlinear systems - using the basis at the data-points. Find-

ings from this motivated us to pursue an order reduction algorithm for EDMD that has

been known to suffer from the curse of dimensionality. We prove properties of matrices

introduced for EDMD to list conditions and give solutions compiled into Reduced Order

viii



EDMD (RODMD), an algorithm that modifies the EDMD basis such that it minimizes

the error in approximating desired functions while also keeping the dimension at its low-

est. Alongside, we use results on convergence of EDMD estimation to the Koopman

operator in literature to compare sampling characteristics of data used. For a certain

number of data-points, we prove quantitative convergence guarantee for transient be-

haviour in terms of number of trajectories that the data is spread across. We use these

derivations and proofs to show the rather basic relationship between EDMD and system

identification, and use it to show the PE condition on data for uncontrolled systems as

necessary for estimation of the Koopman operator.

We also present an application of dynamical systems theory to artificial neural net-

works to give an example of the interdisciplinary applicability of the Koopman framework.

Using a dynamical system perspective of the optimization of neural networks, we prove

the existence of explicit representation of some parameters of the neural network in terms

of the other parameters and data, thereby paving way for one-shot learning through DMD

algorithms.
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Chapter 1

Introduction

Many physical systems exhibit phenomena with unknown governing dynamics. These

systems can be high dimensional and partially modeled or completely unstudied. Self-

assembling complex systems, biological networks, Internet-of-Things infrastructure mod-

els, smart cities, and social networks are all examples of dynamically evolving systems

that frequently are represented by data. For example, in biological network modeling and

discovery, designing an informative set of experimental conditions can produce global bi-

ological models that capture multiple modes of dynamics, including invariant subspaces

and multiple equilibria. Recently, an emerging set of operator-theoretic tools have gained

traction, centered on discovering linear representations of nonlinear dynamical systems

in a lifted space of coordinates [1, 2, 3]. Originally derived for Hamiltonian systems [4],

popular numerical [5, 6, 7, 8] and theoretical [9] techniques for Koopman operator the-

ory enable input [10, 11, 12, 13, 14] and spectral modeling of nonlinear systems [2, 13],

deep-learning based models of nonlinear phenomena [15, 16, 17], and study of chaotic

and uncountable spectra arising in nonlinear phenomena [13, 7, 12, 1, 2].

We use the Koopman representation of dynamical systems introduced in chapter 2

that offers a linear perspective in the space of functions on the state-space of nonlinear
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Introduction Chapter 1

systems. We present a preliminary overview of the Koopman framework along the lines of

that in [18]. One of the primary interests in the development [1, 2] and further exploration

[9, 19] of Koopman operator framework is its relations to the properties of the underly-

ing dynamical systems as demonstrated in [20, 21, 13], etc. We begin with explaining

the basic viewpoint of using the Koopman operator semigroup instead of its generator

in section 2.1. We use this developed perspective to work with numerically tractable

vector and matrix representations of functions and operators respectively in section 2.2

which is the basis for our numerical implementations in the subsequent chapters. We

use the extended dynamic mode decomposition (EDMD) algorithm [7], a popular modal

decomposition algorithm whose linearity – when achieved – has proved useful for predic-

tions for nonlinear systems [14, 15]. Unfortunately, there are few identifiability metrics

for quantifying the richness, or the informativity, of datasets of nonlinear systems. In

these scenarios, the accuracy of a model discovery algorithm is often confounded with

the informativity or richness of a dataset used to train the model.

The motivation behind chapter 3 is the question of “how much data is sufficient in

dynamic mode decomposition?”. This serves two purposes: 1) make computations more

economical by avoiding overuse of resources and 2) determine if the approximation via

dynamic mode decomposition (DMD) algorithms like DMD [5], Extended-DMD (EDMD)

[7], Hankel-DMD [8], etc. an accurate representation of the underlying system. These

findings directly translate to design of experiments where sufficiently rich initial condi-

tions can be used such that an experiment can be used to elicit as much information about

the underlying system as possible to identify an accurate model. For this, we first have

to quantify the information content of data, or more specifically time-series data. For-

tunately, the notion of information content or “informativity” of data has been explored

historically as part of system identification. However, the framework is for linear control

systems while our interest is for nonlinear uncontrolled systems. We apply this notion

2



Introduction Chapter 1

to EDMD using the input-Koopman framework [12, 11] and model the initial conditions

as impulse inputs. We revisit this in section 4.6 exclusively for uncontrolled dynamical

systems without the use of a transfer functions and show relationship between EDMD

and system identification using more fundamental concepts. This chapter is based on

[22], findings of which led to what follows in chapter 4.

We begin seeking sparsity in EDMD using properties of the involved matrices obtained

from projections in section 4.1 that culminate in an algorithm for numerical implemen-

tation in section 4.4. While the motivation behind seeking sparsity in computations is

degeneracy observed in chapter 3 due to possible lower order system, the applications are

beyond that. EDMD-like algorithms use a predefined basis to approximate desired func-

tions. One known issue with user defined bases that the desired functions may not always

be known which lead to estimation based on apriori knowledge or guessing. The latter

is what causes the number of basis elements to combinatorially grow with the number

of state dimensions, known as the curse of dimensionality. This makes them less appeal-

ing to high-dimensional systems. DeepDMD [15] uses deep neural networks to construct

bespoke basis for every data-set. There can be basis functions that are redundant in

the sense that they are not required to express the desired observables. Discarding such

basis functions paves way for sparsity and makes EDMD-like algorithms tractable for

high-dimensional system. The sparsity we mention is different from sparsity promoting

algorithms like Sparse-DMD [23] and SINDY [24] in the sense that we seek the lowest

order model by discarding dictionary redundancies using rank deficiencies rather than

use regularization.

While studying properties of data matrices in EDMD for convergence of numerical

estimation to theoretical results as demonstrated in [25], we find that distribution of data

plays an important role in the guarantee of convergence as expounded in section 4.5. This

is also motivated by the fact that some sampling strategies give better prediction of tran-
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Introduction Chapter 1

sient behaviour than others for the same number of data-points. While this feels intuitive

from a linear regression perspective when data is sampled from multiple trajectories ver-

sus just one trajectory, we look at the conditions that guarantee convergence. Ergodic

systems or partitions benefit from Arnoldi-type methods in the limit of infinite data to

guarantee convergence of numerical methods like Hankel-DMD [8]. While this also holds

true by using EDMD, Korda and Mezić [25] have shown convergence guarantee for sys-

tems with non-trivial invariant sets also in the limit of infinite data-points samples from

independent and identical distributions. We use [25] and show how a sequential sampling,

specifically on dissipative systems, is not independent and identically distributed. This

result finds application in collecting data from experiments and simulations in synthetic

biology with prevalence of systems with stable attractors like the bacterial growth [26],

bistable toggle switch [27], repressilator [28], Stricker-Hasty oscillator [29], etc.

Finishing off, we provide conclusions from this study and challenges involved along

with future work in chapter 5. The motivation for section 5.2 is that convolutional neural

networks (CNNs) have proven their practical applicability on high resolution images.

Training CNNs generally requires large datasets, however recent years have seen many

impactful contributions that drastically reduce training requirements (e.g. ”few-shot”

learning [30]). We draw inspiration from the fact that successive CNN layers represent

increasingly complex features of an image and bypass the feature learning using expert

labeled features as convolutional kernels i.e. the weights. Then, rather than training an

entire neural network to learn the bias vectors, we implicitly define them to be functions of

the data and the expert-defined weights. We represent the gradient descent algorithm as

a dynamical system to prove the existence of such an explicit representation, by utilizing

the implicit function theorem, for datasets where (stochastic) gradient descent algorithms

converge onto an optimal bias vector. This is part of the growing interest of Koopman

operator framework from a machine learning perspective as recently shown in [31, 32].

4



Introduction Chapter 1

1.1 Contributions

The contributions of this thesis (in the order of appearance) are:

• A persistence of excitation condition to prescribe necessary power-spectrum char-

acteristics of the data used in EDMD-like algorithms (chapter 3, from [22])

• List of properties of matrices in EDMD-like algorithms where the user-defined basis

neither necessarily forms an invariant subspace for the Koopman operator nor spans

the desired observables (section 4.1 - 4.3)

• An algorithm for iteratively modifying EDMD basis that discards redundancies to

give reduced order dictionaries and seeks out potential elements from given bases

(section 4.4)

• Convergence guarantee for transient behaviour using data-points taken from various

trajectories compared to that of the same number of data-points taken from fewer

trajectories (section 4.5)

• Relationship between EDMD and system identification which gives PE conditions

for uncontrolled dynamical systems without using the transfer function (section

4.6)

• Preliminary result on application of dynamical systems theory to artificial neural

networks (section 5.2 from [33])

We begin with introducing EDMD as a numerical implementation of the Koopman

representation of dynamical systems in the next chapter. For this, we briefly introduce

the infinite-dimensional Koopman operator without delving into its spectral properties.

We then show how EDMD naturally arises from the Koopman framework as a Galerkin-

method.

5



Chapter 2

Koopman representation of

dynamical systems

Koopman operator theory is named after Bernard. O. Koopman [4] who used functions

in Hilbert space to describe flow (time-evolution from initial state) of a Hamiltonian

system. Since the system used was non-dissipative, the operator that governed evolution

of functions of state as a composition of the function with the flow turned out to be

unitary. While Koopman [4] used a measure-preserving system governed by an analytic

vector field and used square-integrable functions of state, the mathematical framework

developed in much recent years like [1, 2, 9] has broadened applicability to non measure-

preserving systems using functions in a Banach space with relaxed regularity conditions

that are suitable for hybrid systems [34, 35], switched systems [36, 35], stochastic systems

[19], etc. This shows that the framework is applicable even when the flow is not smooth

and the state-dynamics are discontinuous.

The theory of infinite-dimensional linear operators has been developed alongside stud-

ies on distributed systems [37]. The Koopman operator is a linear operator with proven

relationship to the spectral properties of the underlying nonlinear systems in [1, 2] and

6
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more recently in [9]. However, we will be focusing on the computational implementation

after a brief introduction to the theory. For detailed definitions and regularity conditions,

we direct the readers to [18].

2.1 Koopman framework

We consider a state x ∈ M ⊆ Rn whose evolution in time t ∈ R≥0 is given by the

non-singular flow of a dynamical system St :M→M as

x(t) = St(x(0)). (2.1)

The functions of state ψ :M→ C in Koopman operator literature are called “observ-

ables”. While observations are real-valued, complex-valued functions allow: 1) inclusion

of eigenfunctions of the Koopman operator as seen later, and 2) ease observing possible

periodicity of state in time. If an observable ψ belongs to a function space F which

is closed under composition ◦ with St, the Koopman operator (family) Kt : F → F

associated with system 2.1 is defined [9, 18] as

Ktψ = ψ ◦ St. (2.2)

The Koopman operator (family) Kt exists and is unique if the map St exists and is

unique. For existence and uniqueness of St, we can see associative property:

x(t1 + t2 + t3) = (St1St2)St3(x(0)) = St1(St2St3)(x(0)), (2.3)

7
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commutative property:

x(t1 + t2) = St1St2(x(0)) = St2St1(x(0)) = St1+t2(x(0)), (2.4)

and the identity element:

S0(x(0)) = x(0) (2.5)

of the semigroup St. Then using equations (2.3) and (2.4), Kt is a semigroup as seen

from:

Kt1Kt2ψ(x(0)) = Kt1ψ(St2(x(0)) = ψ(St1(St2(x(0))) = ψ◦St1+t2(x(0)) = Kt1+t2ψ(x(0)).

Using equation (2.5), an identity element also exists:

K0ψ(x(0)) = ψ ◦ S0(x(0)) = ψ(x(0)) = Iψ(x(0)).

While we used x(0) for illustration, note that the state can be dropped from the

equations with the Koopman operator (like equation (2.2)) giving a global perspective

on the state-space.

The linearity of the Koopman operator (semigroup) comes from the linearity of com-

position as seen from

Kt(α1ψ1 + α2ψ2) = (α1ψ1 + α2ψ2) ◦ Kt = α1ψ1 ◦ Kt + α2ψ2 ◦ Kt = α1(Ktψ1) + α2(Ktψ2),

(2.6)

with α1, α2 ∈ R. This linearity in observables is irrespective of the linearity of the un-

derlying system. However, the trade-off for linearity is dimensionality as the Koopman

operator (semigroup) is infinite-dimensional unless the underlying system is defined on a

8
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state-space of finite cardinality, e.g. finite memory on digital computers. For all practical

purposes, we consider the Koopman operator to be infinite-dimensional. In section 2.2,

we shall see finite-dimensional representations and approximations.

2.1.1 Generator of the Koopman semigroup and state-dynamics

The semigroup of (bounded) operators Kt is said to be strongly continuous – denoted

C0 – if

lim
t→0+
‖Ktψ − ψ‖F = 0, (2.7)

where ‖.‖F is the norm on F (e.g. L2 norm if F = L2) and the limit is one-sided as

semigroups Kt,St need not necessarily be defined for t ∈ R<0. The left hand side can

then be rewritten using equations (2.2,2.5) as

lim
t→0+
‖ψ ◦ St − ψ‖ = lim

t→0+
‖ψ(St(x))− ψ(x)‖ = lim

t→0+
‖ψ ◦ St − ψ ◦ S0‖.

Since the compositions of continuous functions is continuous, given an observable that is

continuous on state we see that the Koopman semigroup is C0 if the flow St is continuous

in time which is also represented by C0 (in time). Additionally from [18]: 1) if St is C0

in t, then Kt is C0 over functions that are square-integrable on an open forward-invariant

set or 2) if St is uniformly Lipschitz-continuous in t, then Kt is strongly continuous over

smooth functions with support on a compact forward-invariant set. For C0 semigroups,

an infinitesimal generator L of the semigroup can be defined (when the limit exists) as

Lψ := lim
t→0+

Ktψ − ψ
t

, (2.8)

∀ ψ ∈ G which is some dense subset of F . A set G is a dense subset of F if the closure

Ḡ is the set F itself. This is analogous to the a ∈ C in eat or A ∈ Cn×n in eAt but

9
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not quite the same. A series expansion of the exponential eLt := Kt doesn’t necessarily

converge when the argument is an infinite-dimensional operator L : G → F which is not

necessarily bounded.

If the flow St of the dynamical system in equation (2.1) is generated by state-dynamics

ẋ governed by a vector field f of the same dimension as its argument x

ẋ = f(x), (2.9)

L can be given [38] by

Lψ = f · ∇ψ, (2.10)

which shows that L is the Lie derivative of ψ along f . The above equations can be used

to make some noteworthy points.

• From equation (2.8) and equation (2.7), we see that the generator L may not exist

for a Koopman semigroup Kt without strong continuity

• From equation (2.9) and equation (2.1), state-dynamics f can be discontinuous for

maps St that are not differentiable everywhere, e.g. non-smooth systems [34]

• From equation (2.10), the generator of the semigroup L cannot be used to work

with observables like discontinuous eigenfunctions encountered in [20]

To avoid care with regularity conditions, we work with the Koopman semigroup itself.

From equation (2.2), Kt exists and is unique for St that exists and is unique. For our

work in the subsequent sections, we work with the Koopman operator semigroup Kt

defined on the Hilbert space, so F = L2(M) =: H and Kt : H → H. Since we deal with

data-points x at discrete points in time t, we use the map S := S1 or S∆t

x(t+ 1) = S(x(t)) (2.11)

10
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and the discrete Koopman operator formulation K := K1 or K∆t

Kψ = ψ ◦ S. (2.12)

2.2 Matrix representations and approximations in

Hilbert space

For extended dynamic mode decomposition as a Galerkin method [7, 25], we use

a finite number nD of observables {di}nD
i=1 : M → C in the Hilbert space. The space

spanned by these observables H̃ := span{d1, d2, . . . , dnD
} is a nD-dimensional subspace

of the Hilbert space H̃ ⊂ H. These nD observables are called “dictionary functions” in

literature. When the dictionary functions span a basis for H̃, we simply call them a basis.

2.2.1 Vector representation of scalar observables

We initiate the representation of observables in terms of dictionary functions for a

scalar observable ψ that lies in the span of the dictionary {di}nD
i=1 in this subsection. For

now, we assume that the set of dictionary functions is a basis and therefore is linearly

independent. For any ψ ∈ H̃,

ψ(x) =

nD∑
i=1

cidi(x) (2.13)

for some coefficients {ci}nD
i=1. For a method to extract these coefficients, refer to section

2.2.5 By denoting the coefficients and basis as vectors, we can clear the clutter like

11
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summation symbols and focus on the essentials. Denoting

d(x) :=



d1(x)

d2(x)

...

dnD
(x)


c :=



c1

c2

...

cnD


,

equation (2.13) can be rewritten as

ψ(x) = cTd(x) = c · d(x) (2.14)

where (.)T denotes the transpose. This shows how a (scalar) observable is represented by

a vector in the basis of choice. This representation of the observable remains unchanged

with the argument, allowing us to drop the argument x and make the equations concise.

2.2.2 Matrix representation of the Koopman operator

If the infinite-dimensional Koopman operator on the Hilbert space K : H → H is

invariant on a subspace of its domain H̃ ⊂ H as ψ ∈ H̃ =⇒ Kψ ∈ H̃, then its

restriction to that subspace K|H̃ has a finite-dimensional representation as a matrix.

Similar to that taken in [7], this ensures that the composition of observable with the flow

of the system lies in the span of the dictionary functions. Then, using equation (2.14) in

equation (2.12), let

Kψ = ψ ◦ S = cTd, (2.15)

where c := [c1, c2, . . . , cnD
]T is the vector of coefficients in the basis expansion of ψ ◦ St

similar to equation (2.14). The above can be rewritten as an expansion like that in

12
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equation (2.13):

Kψ(x) = K
nD∑
i=1

cidi(x) =

nD∑
i=1

ciKdi(x).

From our assumption of Koopman invariance in this subsection, ψ ∈ H̃ =⇒ Kψ ∈ H̃.

This implies that each {Kdi}nD
i=1 is a linear combination of the basis. If Kdi =

∑nD

j=1 kijdj

where the first subscript denotes the coefficient corresponding to di, then the above

equation can be written as

Kψ = cT



∑nD

j=1 k1jdj∑nD

j=1 k2jdj
...∑nD

j=1 knDjdj


= cT



k11 k12 · · · k1nD

k21 k22 · · · k2nD

...
...

. . .
...

knD1 knD2 · · · knDnD





d1

d2

...

dnD


=: cTKTd. (2.16)

This can be viewed as the action of the restriction of the Koopman operator to the

subspace K|H̃ given as a matrix K called the “Koopman matrix” for convenience. It

acts on the observable ψ represented as c in basis d to give the the composition of the

observable with the flow which is the vector c in the right hand side of equation (2.14).

Writing out the columns of the Koopman matrix (square by dimensions) as vectors

Kψ = (Kc) · d =: cT



kT1

kT2
...

kTnD


d, (2.17)

gives a different perspective of the Koopman matrix. For example, if the observable ψ

is the basis d1, then the vector representation would be e1 which becomes k1 under the

13
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action of the Koopman operator/matrix as seen below:

d1 = e1 · d = eT1 d, Kd1 = (Ke1) · d = kT1 d.

The above example might seem trivial once shown but it illustrates the thought

process of the derivation in case when H̃ is not Koopman invariant.

2.2.3 Matrix approximation of the Koopman operator

With the same observable ψ, we look at Kψ without the assumption on Koopman

invariance i.e. ψ ∈ H̃ ; Kψ ∈ H̃. This means that Kψ cannot be represented as a

linear combination of the basis functions and we do not have a matrix representation of

the Koopman operator as in equation (2.17). We emphasise that matrix representation

a linear operator is to do with the chosen basis and not the observable – which is also

evident from equation (2.16). From K : H → H, Kψ ∈ H. Since H̃ is a (closed)

linear subspace of H, we can project Kψ onto H̃ using an orthogonal projection operator

P : H → H̃ and equation (2.12) as

P(ψ ◦ S) = arg min
f∈H̃

‖f − ψ ◦ S‖H, (2.18)

with the usual properties of an orthogonal projection

P2 = P =⇒ (I − P) ⊥ H̃ ∵ P(I − P) = P − P2 = 0. (2.19)

From this, we know that the projection of Kψ, P(Kψ), lies in H̃ since the range space

14
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R(P) = H̃ and the null-space N (P) ⊥ H̃ and

ψ ◦ S = I(ψ ◦ S) = (I + P − P)(ψ ◦ S) = P(ψ ◦ S)︸ ︷︷ ︸
∈R(P)

+ (I − P)(ψ ◦ S)︸ ︷︷ ︸
∈N (P)

. (2.20)

From equation (2.16), this projection would be the linear combination of the projec-

tions of each of the terms on its right hand side onto the space H̃:

P(ψ ◦ S) = P(Kψ) = P(cT



Kd1

Kd2

...

KdnD


) = cT



P(Kd1)

P(Kd2)

...

P(KdnD
)


. (2.21)

Each of the above components can be given as

P(Kdi) =

nD∑
j=1

〈Kdi, d̂j〉dj where 〈d̂i, dj〉 = δij

where d̂ is the dual-basis of H̃ and 〈·, ·〉 denotes the inner products, which is the reason

why we restrict ourselves to F = H in this work. For now, we take this inner product

overM. We later address the key role played by limits for the inner products. However,

with finite dimensional subspaces of L2, the dual basis formulation can be messy so we

will derive the projection without them. Using equation (2.20, 2.21):

P(Kdi) = Kdi − (I − P)(Kdi). (2.22)

From the fact that (I − P)(Kdi) ⊥ H̃, we take inner products with each basis function

15
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of H̃ denoted with a different index, dj on both sides of the above equation:

〈P(Kdi), dj〉 = 〈Kdi, dj〉 − 〈(I − P)(Kdi), dj〉.

The second term on the right hand side in the above equation is an inner product of a

function that is orthogonal to H̃ with one of its basis functions and is equal to 0. Let

P(Kdi) =

nD∑
j=1

k̃ijdj (2.23)

Taking j = 1, 2, ..., nD, we find the nD coefficients of expansion in the right hand side of

equation (2.23) with each of the nD basis functions to get nD corresponding equations

for every {P(Kdi)}nD
i=1 as:

ki1〈d1, dj〉+ ki2〈d2, dj〉+ · · ·+ kinD
〈dnD

, dj〉 = 〈Kdi, dj〉 −
��

���
���

��:0
〈(I − P)(Kdi), dj〉

We denote

G :=



〈d1, d1〉 〈d1, d2〉 · · · 〈d1, dnD
〉

〈d2, d1〉 〈d2, d2〉 · · · 〈d2, dnD
〉

...
...

. . .
...

〈dnD
, d1〉 〈dnD

, d2〉 · · · 〈dnD
, dnD
〉


, (2.24)

called the Gram matrix and write the above equations as

[
k11 k12 · · · k1nD

]
G =

[
〈Kd1, d1〉 〈Kd1, d2〉 · · · 〈Kd1, dnD

〉
]
.

The distinction of a dictionary and a basis is important here as basis functions are

linearly independent of each other whereas a user-defined dictionary need not necessarily

be. The reason for calling {di}nD
i=1 a “dictionary” rather than a “basis” becomes apparent
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when one considers a dictionary with redundancies where some dictionary observable

could be linearly dependent on the others. This is possible when one considers bases

capable of universal function approximation like radial basis functions (RBFs) [39] or

sigmoidal functions [40] alongside other functions of interest within their span. Since

we aim to approximate the map x(t + 1) = S(x(t)), we desire a basis that spans the

components of S. However, if we include component of S that are in the span of the

basis, alongside the basis itself, then the dictionary would become linearly dependent and

Gram matrix G non-invertible. The state x itself is often a desired observable. If any

{xi}ni=1 lies within the span of basis, including it makes the dictionary linearly dependent

as shown over a set Xp:

xi =

nD∑
j=1

cijdj(x), i = 1, 2, · · · , n, ∀ x ∈Xp

D = {d1, d2, · · · , dnD
, x1, x2, · · · , xn} =⇒ dim(R(G)) = nD, dim(N (G)) = n.

In such a case, the dictionary of functions would not be a proper basis. The former

implies that G is invertible whereas the latter might not give this and requires best-

fit solution using the Moore-Penrose (MP) pseudoinverse – denoted (·)†. This leads to

the expression of the Koopman matrix presented in [7], although a transpose due to a

transposed orientation of the data. For now, we assume that the dictionary is linearly

independent making the Gram matrix G invertible.

By stacking the coefficients [k11, k12, · · · , k1nD
]T =: k̃1 in the above equation, we get

the vector representation k1 of the projection P(Kd1) in the basis of H̃ as

[
k̃T1

]
=

[
〈Kd1, d1〉 〈Kd1, d2〉 · · · 〈Kd1, dnD

〉
]
G−1,

which when used in equation (2.23) gives P(Kd1). From equation (2.21), we know that

17
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projection of Kψ onto H̃ requires the projections of each of {Kdi}nD
i=1. We repeat the

above for each of {Kdi}nD
i=2 to give the rest of the projections and stack them together as

a matrix:

k̃T1

k̃T2
...

k̃TnD


=



〈d1 ◦ S, d1〉 〈d1 ◦ S, d2〉 · · · 〈d1 ◦ S, dnD
〉

〈d2 ◦ S, d1〉 〈d2 ◦ S, d2〉 · · · 〈d2 ◦ S, dnD
〉

...
...

. . .
...

〈dnD
◦ S, d1〉 〈dnD

◦ S, d2〉 · · · 〈dnD
◦ S, dnD

〉


G−1

=: AG−1

(2.25)

The above equation has a direct relation to data-driven computations shown in section

4.2. Using the above in equation (2.23), we obtain the projection P(ψ ◦S) from equation

(2.21) as

P(Kψ) = P(ψ ◦ S) = cT



k̃T1

k̃T2
...

k̃TnD


d =: cTK̃Td (2.26)

we see the similarity to equation (2.17) in the previous section where we obtained a

matrix representation of the Koopman operator in a subspace invariant to the action

of the Koopman operator. Without the invariance in this section, we obtain a matrix

representation K̃ of the projection of the Koopman operator PK. We remind the readers

that if ψ ∈ H̃ then Pψ = ψ. This means that the formulation in the present section

can be applied to a Koopman invariant basis also and the results would be the same as

section 2.2.1.
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2.2.4 Matrix representation of vector observables

The notion of vector observables is presented in Koopman operator theory literature

as a natural extension from observables. For instance, it is introduced in [12] as stacking

a number of observables into a vector. Since each of the observables in the domain of

the Koopman operator can be acted on, this can naturally be extended to each of the

components of a vector observable as they are observables themselves. This is similar to

the familiar gradient ∇ or the Laplacian ∇2 operators which act on scalars or vectors.

This similarity is evident from generator1 of the Koopman semigroup L = f · ∇ which

is a Lie derivative along the vector field f that can act on scalars and vectors. In fact

when we wrote equations (2.16, 2.21), the right hand sides already had the action of the

Koopman operator on a vector-observable. Let ψ1, ψ2, · · · , ψp ∈ H

Kψ1 = ψ1 ◦ S

Kψ2 = ψ2 ◦ S
...

Kψp = ψp ◦ S


=⇒ K



ψ1

ψ2

...

ψp


=



ψ1

ψ2

...

ψp


◦ S.

For ψ1, ψ2, · · · , ψp ∈ H̃ in this subsection, we can proceed with the representation

of the above vector-observable in the basis d using expansion of the individual scalar

observables {ψi}pi=1 like that done in equation (2.13):

ψi(x) =

nD∑
j=1

cijdj(x) for i = 1, 2, · · · , p.

The coefficients of expansion can be written as individual vectors like in equation (2.14)

1Observables need to be taken as row vectors for dimensional consistency
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without the dependence on the argument x as demonstrated already in section 2.2.1)

ψ :=



ψ1

ψ2

...

ψp


=



cT1 d

cT2 d

...

cTp d


=



cT1

cT2
...

cTp


d =: CTd. (2.27)

The vector representations of each of the observables can be collectively viewed as a

matrix representation C of the vector observable ψ. The matrix representation – visually

– switches the orientation from a scalar observables placed in different rows of a vector

observable to vector representations of each observable placed in different columns of a

matrix. We can see the similarity of the above with equation (2.26), where (PK)ψ acted

on the basis vector d to give a matrix representation of PKd as K̃Td. This analogy

applies to equation (2.17) too. Building on the examples that follow the aforementioned

equations where we showed that the vectors in each column of the Koopman matrix are

a vector representation of di ◦ S, the Koopman matrix K is a matrix representation of

the vector-observable d ◦ S in the basis d.

Now we can use equation (2.26) with equation (2.27) to project the action of the

Koopman operator on the vector-observable Kψ onto subspace H̃:

P(Kψ) =



P(ψ1 ◦ S)

P(ψ2 ◦ S)

...

P(ψp ◦ S)


=



cT1

cT2
...

cTp


K̃Td = (K̃C)Td (2.28)
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2.2.5 Matrix approximation of vector observables

We briefly outline one method of estimating the vector representations of observables

in the subspace H̃. This is an orthogonal projection similar to that done in section 2.2.3

– which means that this approach can also be taken if the observables do not entirely lie

in the span of the basis d. The projection operator P is the same as the domain of the

orthogonal projection is the same. The projection operator’s action on each observable

similar to equation that in (2.22) can be stacked as done in equation (2.28):

Pψ = ψ − (I − P)ψ,

and we take inner products of each of the p-components of the above vector-observable

with each basis function like what followed equation (2.22). Using the notation for

observables from equation (2.27) along the lines of equation (2.23), let

Pψi = c̃Ti d (2.29)

be the approximation via projection in H̃. By repeating the steps from equation (2.22)

to equation (2.25), we obtain:

C̃T =



〈ψ1, d1〉 〈ψ1, d2〉 · · · 〈ψ1, dnD
〉

〈ψ2, d1〉 〈ψ2, d2〉 · · · 〈ψ2, dnD
〉

...
...

. . .
...

〈ψp, d1〉 〈ψp, d2〉 · · · 〈ψp, dnD
〉


G−1 =: BG−1. (2.30)

With C̃, we obtain the projection of the vector observable ψ as follows:

Pψ = C̃Td = C̃ · d. (2.31)
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2.3 Summary

We introduced the Koopman framework as an operator representation of finite-

dimensional systems that are not necessarily linear. We showed its linearity and other

semigroup properties that allow the Koopman representation to be viewed as an infinite-

dimensional linear system in function space (section 2.1). We showed how the generator

of the Koopman semigroup gives a representation analogous to state-dynamics in func-

tion space. In this process, we also showed how the generator requires stronger regularity

conditions that are not necessary in many data-driven applications and briefly explained

with examples why we work with the Koopman semigroup itself. However, we did not

present the spectral properties which provide insight into characteristics of the underlying

system as we are interested in application of EDMD for predictions purposes.

We introduced EDMD as a Galerkin method for numerical implementation of Koop-

man representation in section 2.2. Using a discrete Koopman operator, we began with

a scalar observable assumed to lie in a known finite-dimensional subspace and used a

basis for that subspace to obtain its vector representation. Similarly, we assumed this

subspace to be Koopman-invariant to give a matrix representation of the Koopman op-

erator restricted to that subspace. We extrapolated the idea from this to give matrix

representation of vector-observables and the Koopman operator as a projection onto a

desired basis without assumption on the basis being invariant to the Koopman operator

or spanning the all components of the vector observable. As EDMD is a data-driven

method, we explore the sufficiency of data for satisfactory EDMD execution in the next

chapter.
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Chapter 3

System identification in the

Koopman framework

System identification deals with using data to estimate a model for the underlying sys-

tem that generates input-output data [41]. This framework was traditionally based upon

the theory of stochastic processes and has proved useful in signal processing and control

systems as well. In the relevance to control systems, the transfer function is heavily re-

lied upon for single-input-single-output (SISO) systems whereas identifying state-space

representation (like that in DMD algorithms) is a subcategory called “subspace iden-

tification” which is more apt for multivariate systems as explained in [42]. However,

one particular concept from system identification called “persistence of excitation” PE

[41] (also known as Sufficiency of Richness [43]) is of our interest due to its conditions

prescribing sufficiency of data for identifiability.

PE is an implementation of the idea that inputs given to a system should excite

the it enough to produce outputs that can be used to unambiguously identify a model.

Evidently, the challenge here is that the algorithms of our interest like EDMD are for

uncontrolled dynamical systems while PE is a concept which ties inputs of control systems
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to identifiability of their transfer function. More subtle is that even with frameworks like

Koopman with inputs and control (KIC) [12], we need to find a way to apply PE to

uncontrolled systems to quantify the informativity of data. We use the exogenous inputs

as shown in [11] to translate PE to the Koopman operator framework, thus providing

sufficiency conditions on data used as impulse inputs for disambiguation of the model

identified through finite approximations seen in section 2.2. EDMD does not have an

inherent criterion that informs whether its results are satisfactory or not. This depends on

the data, making the PE condition relevant to EDMD. We return to system identification

and PE in section 4.6 without the use of a transfer function and show that it is a necessary

but not sufficient condition.

3.1 Preliminaries

We first provide definitions from system identification in terms of an (additive) input

u ∈ Ro to a linear system in the state x ∈ Rn based on [43].

Definition 3.1.1 (Autocovariance). A sequence u(t), t ∈ N is said to have autocovari-

ance Ru(k), k ∈ I if and only if the following limit exists

lim
m→∞

1

m

m∑
t=1

u(t)u∗(t+ k) =: Ru(k) (3.1)

The autocovariance matrix is Hermitian R∗u(0) = Ru(0). For sequences that are

quasi-stationary (which includes wide-sense stationary and ergodic processes), the fol-

lowing holds

Ru(k1, k2) = Ru(k2 − k1).

Definition 3.1.2 (Persistence of Excitation). A quasi-stationary sequence u(t), t ∈ R≥0
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is said to be persistently exciting of order n (in m steps) if the covariance matrix

Ru(n) :=


Ru(0) · · · Ru(n− 1)

...
. . .

...

Ru(−(n− 1)) · · · Ru(0)

 (3.2)

is positive definite.

This definition says that the input u(t) can then be used to identify n parameters of

the impulse response of a system. With the need for inputs, we introduce Koopman with

inputs and control (KIC) as demonstrated in [12, 11].

3.1.1 Koopman with Inputs and Control

Given a discrete-time nonlinear system on state x with input u

x(t+ 1) = S(x(t),u(t)), y(t) = ψ(x(t)),

Proctor et al. [12] showed that an observable ψ :M×Ro → Cp can lift the above system

to H such that:

Kψ(x(t),u(t)) = ψ(S(x(t),u(t)),u(t+ 1)) = ψ(x(t+ 1),u(t+ 1))

For an exogenous memoryless input, Liu et al. [11] demonstrated that the above

can be modified by splitting dictionary elements d(x,u) into components dx(x) and

du(x,u), where dx(x) is a stack of dictionary functions from d(x,u) that do not depend

on u, and du(x,u) is the stack of all remaining dictionary functions. This results in the
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decomposed representation

dx(x(t+ 1)) = KT
x dx(x(t)) +KT

u d̃u(z(t))

y(t) = CTd(x(t),u(t))

(3.3)

where d̃u(z(u(t))) ≡ du(x,u) and z(t) is a stacked vector of all multivariate terms of u(t)

and x(t), Kx and Ku are from the block matrix as shown in [11]. This is a representation

of the nonlinear system dynamics that is linear in the lifted state dx(x) and the lifted

input-state mixture of dictionary functions du(x,u) = d̃u(z(t)). We thus can define the

Koopman discrete time transfer function using the z-transform as

GK(z) = CT (zI −KT
x )−1KT

u

where we have assumed that y(t) = CTdx(x(t)). The zeros and the poles of the transfer

function are defined in the usual manner, but with respect to the transformations on the

state dx(x(t)) and input d̃u(z(u(t))).

3.1.2 Initial conditions as impulse inputs

We treat the system’s initial condition d(x(0)) = d(x0) as an input. Then, for the

system (equation (2.11)), the initial conditions using a Kronecker delta for impulse input

in equation (3.3) with the output as the state itself can be given as

d(x(t+ 1)) = KTd(x(t)) + d(x0)δt,0

ψ(x(t)) = CTd(x(t))

Accordingly, we abuse notation slightly and define the input of the system as d(x0)δt,0 ≡

ϕ(u(t)) for our convenience. This yields the classic input-state Koopman representation
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for a nonlinear system

d(x(t+ 1)) = KTd(x(t)) +ϕ(u(t))

x(t) = CTd(x(t))

(3.4)

Now, we use ϕ(u(t)) as the input and prove PE results for the Koopman framework

using the definitions mentioned earlier in this section.

3.2 Persistence of excitation in Koopman framework

Theorem 3.2.1. The initial condition x0 is persistently exciting for the nonlinear dy-

namical system (2.11) if and only if the Fourier transform of the auto-covariance matrix

Rϕ(k) i.e. the power spectrum

Φϕ(ω) =
∞∑

k=−∞

Rϕ(k)e−ιkω

has nD distinct frequencies ω1, ..., ωnD
where Φϕ(ω) does not vanish, i.e. nD positive

spectral lines.

Proof. Covariance matrixRϕ(nD) is clearly positive-semidefinite from equation (3.2) that

can be rewritten as

Rϕ(nD) =
1

m

m∑
t=1

(
ϕ(u(t+ 1))

...

ϕ(u(t+ nD))


[
ϕ∗(u(t+ 1)) · · · ϕ∗(u(t+ nD))

])
.

Thus the autocovariance function Rϕ(k) is positive-semidefinite by definition. Then,∑nD

i,j=1 g
∗
iRϕ(j − i)gj ≥ 0. Now, since Rϕ(k) is defined on integers, using the Herglotz’s

theorem: a complex valued function defined on integers in positive-semidefinite if and
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only if Rϕ(k) can be represented as the inverse Fourier transform:

Rϕ(k) =

∫ π

−π
eιkωΦϕ(ω)dω.

From positive-semidefiniteness:

nD∑
i,j=1

g∗i
[ ∫ π

−π
eι(j−i)ωΦϕ(ω)dω

]
gj ≥ 0.

Swapping finite sums with limiting sums:

∫ π

−π

( nD∑
i,j=1

g∗i e
−ιiωΦϕ(ω)eιjωgj

)
dω ≥ 0,

Distributing sums across integrands:

∫ π

−π

(( nD∑
i=1

e−ιiωg∗i
)
Φϕ(ω)

( nD∑
j=1

eιjωgj
))
dω ≥ 0.

Defining filters G(eιω) ,
∑nD

k=1 e
−ιkωg∗k, the above becomes:

∫ π

−π

(
G(eiω)Φϕ(ω)G∗(eiω)

)
dω ≥ 0.

Hence, the initial condition x0 is persistently exciting for filters with nD distinct

parameters if and only if power spectrum is full rank at at least nD frequencies. This

completes the proof of PE in lifted space. �

From our simulation studies in section 3.3, we found that most initial conditions

are PE up to order nD, for their respective Koopman operator and dynamical sys-

tem. If we consider the design problem of selecting an initial condition x0 such that

d(x0) = Yp is PE, or a set of d(X0) are PE of Koopman-order nD, we can express the
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problem in terms of the positive definiteness of Rϕ(nD), adjusting the signal d(x0) or

more generally the timing of the input to ensure the positive definiteness of the auto-

covariance matrix. Alternatively, when working with a collection of initial condition

signals d(x0) ∈ d(X0) it is straightforward to visualize the power spectrum using the

transformed signal δt,0(d(x0) ∈ d(X0)) = Yp. Initial conditions can be selected or drawn

randomly from the phase space until a suitable collection of initial conditions and nD

spectral lines are identified. We show this in using a numerical implementation below.

3.3 Various initial conditions for an example

The repressilator is a classical genetic circuit used in synthetic biology to implement

circadian rhythms or synthetic oscillations. The architecture is that of a 3 node Goodwin

oscillator, with three genes that produce proteins or mRNA that serve to repress the

downstream or target gene’s function. Each gene represses its downstream target, with

the final gene repressing the original gene to form a cycle of negative feedback. When the

gain of the individual genes are balanced with respect to each other [44], the genetic circuit

admits a limit cycle in the phase portrait and a single basin of attraction surrounding

the origin.

There are many models of the repressilator, with varying degrees of complexity and

intricacy to capture the underlying biophysical dynamics. We consider a simplified three

dimensional model from the first experimental implementation of the repressilator [28],

that captures the limit cycle and basin of attraction, to study the role of the initial
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condition in PE of the nonlinear system. Consider the model:

ṁ(i) = −m(i) +
α

1 + pn(j)
+ α0 ṗ(i) = −β(p(i) −m(i))

(i, j) = {([lacI], [cI]), ([tetR], [lacI]), ([cI], [tetR])}

n = 2, α0 = 0, α = 100, β = 1

(3.5)

An example set of commonly used initial concentrations is 1, 0, 0, 0, 0, 0 nM for LacI,

λ-cI, TetR, mLacI, mλ-cI, and mTetR. We model the degradation and dilution rate of

all proteins as a lump term with average kinetic rate δ = 0.5. Figure 3.1a (and 3.2a)

shows simulations (solid lines) of the repressilator from different initial conditions. The

repressilator exhibits a strongly attracting limit cycle and a single unstable equilibrium

point at the origin. Several initial conditions in the phase space mapped through the

observable function have low gain, specifically those within B1(0) (unit ball in R6). We

noted that these initial conditions, when mapped through higher order polynomials, lead

to over-fitting due to the vanishing of the signal in higher-order terms. This EDMD

implementation uses Hermite polynomials of order up to 3 as the dictionary.

We considered training the repressilator model with initial conditions drawn from

two different regions of the phase space. First, initial conditions within the unit disc

centered at the unstable equilibrium point (solid lines in Figure 3.1b) and secondly,

initial conditions outside the unit disc centered at the same point (solid lines in Figure

3.2b). We simulated using 6 initial conditions and evaluated test predictions from other

points. For example, we would train within the unit disc (Figure 3.1b) or outside it

(Figure 3.2b) and evaluate prediction accuracy of the Koopman operator for trajectories

initiated outside the unit ball (Figures 3.1c and 3.2c respectively) using a norm based

error between the predicted and simulated trajectories.
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Figure 3.1: The repressilator trained from inside a unit ball centered at 0 and predicted
from subsequent points in time using the Koopman operator. (3.1a) States oscillating
with time as simulated (solid lines). Koopman operator trained up to t = 25 (sampled
at ∆t = 0.1) for prediction (dotted lines) then onward. (3.1b) Simulated (solid)
trajectories growing into limit cycles and prediction (dotted) of the limit cycles. (3.1c)
Simulated (solid) and predicted (dotted) trajectory which was not used to estimate
the Koopman operator.
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Figure 3.2: The repressilator trained from inside a unit ball centered at 0 and predicted
from subsequent points in time using the Koopman operator. (3.2a) States oscillating
with time as simulated (solid lines). Koopman operator trained up to t = 25 for pre-
diction (dotted lines) then onward. (3.2b) Simulated (solid) trajectories growing into
limit cycles and prediction (dotted) of the limit cycles. (3.2c) Simulated (solid) and
predicted (dotted) trajectory which was not used to estimate the Koopman operator.
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Notice the rank is greater for the power spectrum in Figure 3.3a than in Figure 3.3b,

which correlates with the failure to predict long-term global behavior in Figure 3.1.
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Figure 3.3: (3.3a) Rank of Power Spectrum of trajectories up-to t = 25 used to
train the Koopman Operator that provided unsatisfactory predictions. (3.3b) Rank
of Power Spectrum of trajectories up-to t = 25 used to train the Koopman Operator
that provided satisfactory predictions

Interestingly, the rank of the power spectrum was not as high as the dimension of

the list of dictionaries, indicating that the true Koopman observable space is of a lower

dimension than the dimension of dictionary functions. The cause of rank of power spec-

trum tapering off at higher frequencies is explained in section 4.6.1 through inaccuracies

in autocovariance estimated at higher lag. Motivated by this possible reduced order rep-

resentation, the next chapter will investigate the iterative processes for identifying the

minimal set of dictionary functions and also address distribution of the data-points.
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Chapter 4

Results in extended dynamic mode

decomposition

Developed in [7], this method extends the Dynamic Mode Decomposition to approxi-

mate finite-section representations of the Koopman operator using data as seen in sec-

tion 2.2. Dynamic Mode Decomposition (DMD) was introduced in [45] as a method to

extract coherent structures in fluid flows. With numerous extensions, variations, and

other algorithms in the same spirit it has become a class of algorithms that use data

to approximate the behaviour of systems as a linear system. Since system identification

involves an input-output perspective, the term might be misplaced here as the framework

connecting Koopman representation to properties of the system has been mostly done

for uncontrolled dynamical systems. This is possibly why the literature does not use

the term “system identification” and uses terms like “data-driven” [7] and “identifying

governing equations” [24]. While modal analysis techniques like the Proper Orthogonal

Decomposition (POD) have existed earlier, DMD doesn’t enforce normality of the modes

– thus preserving the corresponding frequency characteristics. This allows a non-normal

modal approximation of systems. The connection of this to Koopman representation of
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the underlying system was shown in [6]. While Schmid [5] uses an Arnoldi-type method

that was shown in [6] to be one method to compute the Koopman modes of the system,

we elaborated on the Galerkin perspective of Koopman representations in section 2.2

which is the basis for extended DMD (EDMD) as mentioned in [7] and [25].

The accuracy of EDMD depends on the user’s choice of basis as mentioned in [7]

where knowing the desired observables’ composition under the Koopman operator would

allow us to use them as the dictionary. Given an observable, only one dictionary function

is ideally sufficient to span its composition under the Koopman operator – the function

itself. The curse of dimensionality in EDMD arises because that function is unknown

and a number of basis functions are used in each dimension of state to approximate

it. This causes the dictionary to grow combinatorially with state dimension. As with

any computation involving matrices, larger dimensions make EDMD computationally

expensive. We begin with properties of the matrices involved in EDMD and propose an

algorithm that makes a dictionary sparse while also seeking additional elements to span

the desired functions. We build on the idea of reducing the dictionary in sections 4.1 -

4.4 and call it “Reduced Order EDMD” (RO-EDMD).

With the obvious role that data plays in numerical estimation, we quantify how the

sampling of snapshots affects convergence [25] of EDMD approximation to the Koopman

operator. Snapshots in EDMD [7] are not necessarily sequential as it is a Galerkin method

which differs from the sequential snapshots required in the Arnoldi-type Hankel-DMD [8]

and the original idea of DMD [5, 6]. We explore the effect of sequential sampling in EDMD

on its accuracy of approximating the Koopman operator in terms of the distribution of

snapshots. By comparing the distributions governing sampling along a trajectory to

that of sampling without such restrictions, we show that the guarantee of convergence

in the latter requires lesser data. Section 4.5 compares data-points spread across various

trajectories in terms of convergence for approximating transient behaviour using EDMD.
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4.1 Properties of matrices involved

We check for linear dependence so that model reduction can be applied. We show

linear dependence of vector observables’ relation to column rank degeneracy of the cor-

responding matrices. We study properties of C̃, K̃, K̃C̃, and the data matrices to give

conditions under which a lower order dictionary can be constructed and conditions under

which additional dictionary elements are needed (and how they relate to the dictionary).

4.1.1 Properties of the matrix approximation of observables

The rows and columns of C̃ give additional insight into the relationship between the

basis and the observables. The dimensions on the right hand side of the above equation

show that C̃ is not necessarily square. In EDMD implementations using radial basis

functions (RBFs), the matrix of coefficients – also called the coefficient matrix – is often

tall due to the large number of basis functions used to approximate even a small number

of observables. To span p linearly independent functions, a minimum of p dictionary

functions are required.

Definition 4.1.1 (Linearly Independent Functions). A set of functions are said to be

linearly dependent if there is a non-trivial linear combination that sums to 0 over an

interval of the argument

We first provide a basic result on linear dependence under projections which might

seem trivial but is used in the rest of the section as the skew-projections are residuals

which need to be minimized in numerical algorithms.

Lemma 4.1.1. If orthogonal projections of linearly independent functions are linearly

dependent, then their skew-projections must be linearly independent
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Proof. Let the functions ψi, ψj, ψk be linearly independent functions, projections of whose

are linearly dependent as

Pψk = αPψi + βPψj

for some constants α, β ∈ R\0. Using equation (2.20), Pψ = ψ− (I −P)ψ in the above:

ψk − (I − P)ψk = α(ψi − (I − P)ψi) + β(ψj − (I − P)ψj)

ψk − αψi − βψj = (I − P)ψk − α(I − P)ψi − β(I − P)ψj

But since the non-trivial linear combination of functions on the left hand side cannot

sum to 0, neither can the right hand side. This shows that the skew-projections must be

linearly independent. �

Remark 1. If linearly independent functions become linearly dependent when projected

onto a basis, only expanding the dictionary by adding orthogonal basis elements can re-

cover the linearly independent components of those functions

While the row and column ranks of a matrix are equal, they provide different insights.

Lemma 4.1.2. Column rank deficiency in C̃ is equivalent to linearly dependent projected

observables

Proof. Column rank deficiency in C̃ is equivalent to linearly dependent columns. Let

three columns of C̃ be linearly dependent as

αc̃i + βc̃j − c̃k = 0,

for some constants α, β ∈ R \ 0. From equation (2.31), Pψ = C̃ · d = C̃Td. Then, the

above is equivalent to

αc̃Ti d+ βc̃Tj d = c̃Tk d.
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From equation (2.29), the above is equivalent to

Pψk = αPψi + βPψj.

This means that the Pψk can be calculated from a linear combination of Pψi,Pψj,

making the former redundant in matrix computations. �

Remark 2. p > rank(C̃)⇔ if (from equation (4.8)) the dictionary is linearly indepen-

dent and so are the observables (from Lemma 4.1.1) then orthogonally richer dictionary

is required. Else, redundant projected observables can be discarded.

Corollary 4.1.2.1. Column rank deficiency in C is equivalent to linearly dependent

observables

The above shows that we need not work with all three of the above observables.

Discarding one of them saves computational resources by reducing dimensionality of

C̃ for computations. The redundant observable can be directly calculated as a linear

combination when desired. This can also be seen from the estimation of the coefficient

matrix in equation (2.30). With the G being full rank if the basis functions are linearly

independent, the transpose of B would have linearly dependent columns if any of the

observables are linearly dependent.

Linear dependence amongst rows does not indicate any such redundancy across ob-

servables since it translates to relation amongst coefficients of each observable within

itself unlike vector representations ci observables ψi presenting opportunities to reduce

computational costs. Say, 3 rows of the coefficient matrix are linearly dependent. Then,

α

[
c1i · · · cpi

]
+β

[
c1j · · · cpj

]
=

[
c1k · · · cpk

]
=⇒

[
c1k · · · cpk

]
dk =

(
α

[
c1i · · · cpi

]
+ β

[
c1j · · · cpj

])
dk.

(4.1)
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We see that the kth coefficients are redundant but discarding them does not bring com-

puting advantage in the form of reduction in sizes of involved matrix multiplications

and inversions. This would be a common occurrence for vector-observables with C̃ often

being “tall” due to the typically larger number of dictionary functions compared to the

number of observables. This tall structure means that there would be linearly dependent

rows even when the columns are linearly independent since the row and column ranks are

equal. We show later in section 4.3 that though it could be possible that some columns

d(xj) of Yp lie in the null space of C̃, C̃TYp cannot be degenerate for C̃ estimated

through a linearly independent dictionary.

Next, we look at 0-valued entries in equation (2.27) which can immediately show

relationship between the observables and the dictionary–even when it is a set of linearly

independent basis functions.

Lemma 4.1.3. 0-rows in C̃ are equivalent to dictionary elements redundant in expressing

the projected vector-observable

Proof. For any row [
c̃1j c̃2j · · · c̃pj

]
= 0T .

Then, from equation (2.29), the coefficient of dj in the expansion of all the observables

according to equation (2.13) would be 0. �

Remark 3. If the jth row = 0T in C̃ =⇒ The corresponding basis function dj can be

discarded if it is also not needed in expressing P(ψ ◦ S).

From the equation (2.27), we can visually see this: 0-valued entries at cij in ci mean

that even in a set of linearly independent basis functions, the corresponding basis func-

tion dj is not needed to express that observable. This can be extrapolated to multiple

observables as shown above. We emphasise that this redundancy is for a particular ob-
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servable and not necessarily carries over to redundancy for the observable that it gets

mapped to by the Koopman operator since ψ = CTd ; ψ ◦ S = CTd. Naturally, we

look at 0-columns next:

Lemma 4.1.4. 0-columns in C̃ are equivalent to observables that are orthogonal to the

dictionary

Proof. For any column c̃i = 0. From equation (2.29)

Pψi = c̃Ti d = 0Td = 0.

Using the above in equation (2.20),

ψi = Pψi + (I − P)ψi = (I − P)ψi ⇐⇒ ψi ⊥ H̃

�

Remark 4. c̃i = 0 =⇒ rank(C̃) < p ⇔ Orthogonally richer dictionary is required if

(from equation (4.8)) the dictionary is linearly independent and so are the observables

(from Lemma 4.1.1). Else, redundant projected observables can be discarded.

4.1.2 Properties of the matrix approximation of the Koopman

operator

We saw properties of the coefficient matrix give insight into observables in the previous

section but this only tells half of the story – literally – as the functions that the observables

get mapped to under the action of the Koopman operator are equally important at being

represented in the chosen basis.
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Like the properties of the coefficient matrix, we can deduce similar facts from the

Koopman matrix. As seen in section 2.2.3, the Koopman matrix is to d ◦S what the co-

efficient matrix is to ψ. This means that the properties of the coefficient matrix exploited

for scope of sparsifying basis can still be applied to sparsifying basis in representation of

d ◦ S. So, this shows the scope of sparsifying basis without specific observables in mind

but depending on the chosen basis and the flow of the system.

Lemma 4.1.5. Linearly dependent columns (and consequently rows) in the Koopman

approximation K̃ shows redundancy in projections of dictionary functions when composed

with flow

Proof. As seen from Lemma 4.1.2, linearly dependent columns k̃i, k̃j, k̃k of the Koop-

man approximation correspond to linearly dependent projections of observables P(di ◦

S),P(dj ◦ S),P(dk ◦ S) respectively. From linearity of the composition operator shown

in equation (2.6)

αP(di ◦ S) + βP(dj ◦ S)− P(dk ◦ S) = 0.

From linearity of the projection operator:

P((αdi + βdj − dk) ◦ S) = 0.

�

From Lemma 4.1.1,

(αdi + βdj − dk) ◦ S = 0 =⇒ P((αdi + βdj − dk) ◦ S) = 0

but

P((αdi + βdj − dk) ◦ S) = 0 6=⇒ (αdi + βdj − dk) ◦ S = 0.
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Remark 5. nD > rank(K̃) =⇒ Orthogonally richer dictionary is required and is the

only solution if (from equation (4.7)) the dictionary is linearly independent.

Corollary 4.1.5.1. Linearly dependent columns or consequently rows in the Koopman

representation K shows linearly dependent dictionary functions

Linearly dependent dictionary functions composed with (non-singular) flow show that

the basis functions are linearly dependent which means redundancy. Linearly dependent

columns of the Koopman matrix immediately show singularity of the Koopman matrix

signifying a null-space. We can say that singularity of the Koopman matrix show scope

for sparsifying the dictionary functions.

We saw in the previous section how linearly dependent rows in the coefficient matrix

showed redundant coefficients. While this happens whenever the coefficient matrix is

tall, the Koopman matrix is square. Linearly dependent rows mean that the matrix has

a nontrivial null-space. However, we can say that this also means that the dictionary

functions can be sparsified for non-singular flows.

Zero columns or rows of the Koopman matrix have the same effect as that in the

coefficient matrix: from Lemma 4.1.4 the 0-column k̃i = 0 means that (for a non-singular

flow) di ◦ S is orthogonal to the basis and from Lemma 4.1.3 that a 0-jth-row 0T means

that the dj is not needed in expressing any of the components of d ◦ S. But what we

can infer from these observations has more to it. If the composition of a basis function

with the flow is orthogonal to the chosen dictionary, then the basis needs to be enriched

– which likely would not be easy to do by adding a single element because all of our

chosen dictionary functions are orthogonal (over the available/desired subsets of M).

Without that, this could be interpreted as singularity of the flow. Unlike done with the

observable, we cannot discard di because it could be useful in approximating the other

dictionary elements’ composition with flow or the observables. A 0-row on the other hand
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shows that the corresponding basis is not needed to approximate any of the components

of d ◦S, rendering that basis dj redundant. In either case, the Koopman matrix is rank

deficient as in Figures (3.3, 4.1).

Remark 6. k̃i = 0 =⇒ rank(K̃) < nD ⇔ A richer dictionary is required and is the

only solution if (from equation (4.7)) the dictionary is linearly independent

Remark 7. If the jth row = 0T in K̃ =⇒ The corresponding basis function dj can be

discarded if it is also not needed in expressing P(ψ). This is addressed in Remark 9.

Also, jth row = 0T =⇒ rank(K̃) < nD and shows requirements on richer dictionary if

(from equation (4.7)) the dictionary is linearly independent

4.1.3 Relationship between Koopman matrix and coefficient

matrix

Rank deficiency of the Koopman matrix immediately shows that the observables that

lie in the null-space get mapped to 0. From equation (2.27):

K̃c̃i = 0 =⇒ c̃i ∈ N (K̃).

c̃i ·d gets mapped to an observable that is orthogonal to the dictionary showing the need

for enrichment.

Remark 8. c̃i ∈ N (K̃) =⇒ shows observable getting mapped to 0-function despite

non-singular flow. Shows requirement on richer dictionary if (from equation (4.7)) the

dictionary functions are linearly independent

Conversely, a row of the Koopman matrix can lie in the null-space of C̃T since
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dim(N (C̃T )) ≥ p. When this happens,

C̃T



k1i

k2i

...

knDi


= 0

we find from Lemma 4.1.3 that the corresponding basis function di is not required in

representing the vector-observable ψ ◦ S.

Remark 9. ith row of K̃ ∈ N (C̃T ) =⇒ discard di if it is also not needed in expressing

P(ψ)

4.2 Numerical estimation

Numerical estimation of the Koopman matrix is not very different from that seen

in section 2.2. We do not assume that the chosen dictionary of observables is invariant

to the action of the Koopman operator. Using equation (2.25), we write for linearly

dependent dictionary functions:

K̃T = AG−1.

Both the matrices on the right hand side of the above equation have elements that are

inner products between functions. Accuracy of the numerical estimation would depend

on our numerically computed approximations of those inner products. One subtle aspect

of these inner products that goes unnoticed with the 〈·, ·〉 is the limits of integration.

Ideally, the inner product would be taken over the entire set of values that the dynamical

system takes which is the domain of the flow map S which is M. If we would like this
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inner product taken over a subsetMk ⊆M with a measure µk supported only onMk.

〈ψi, ψj〉 =

∫
M
ψ∗i (x)ψj(x)µk(x)dx =

∫
Mk

ψ∗i (x)ψj(x)µ(x)dx (4.2)

Crudely speaking, the inner product can be taken over desired subsets of M like

invariant set: attractors, basins of attraction, etc. This also can include trajectories

which are forward invariant sets. Consider the following sets of points

Xp := {x1,x2, · · · ,xm}. (4.3)

Then, an empirical measure µm can be defined over these points using the Dirac measure

δxi
as done in [25]

µm =
1

m

m∑
i=1

δxi
,

with

〈ψi, ψj〉µm =

∫
M
ψ∗i (x)ψj(x)µm(x)dx =

1

m

m∑
k=1

ψ∗i (x(k))ψj(x(k)). (4.4)

We denote other another setXf and values of the dictionary functions at those points

in Xp,Xf as matrices Yp,Yf

Xf := {S(x1),S(x2), · · · ,S(xm)}

Yp :=

[
d(x1) d(x2) · · · d(xm)

]
Yf :=

[
d(S(x1)) d(S(x2)) · · · d(S(xm))

] (4.5)

Using equation (4.4), an estimate for the matrix entries of G,A required in the
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estimation of K̃ using the available data are:

Gij = 〈di, dj〉µm =
1

m

m∑
k=1

di(xk)d
∗
j(xk) =⇒ G =

1

m
YpY

∗
p

Aij = 〈di ◦ S, dj〉µm =
1

m

m∑
k=1

di(S(xk))d
∗
j(xk) =⇒ A =

1

m
YfY

∗
p .

(4.6)

And the numerically estimated K̃ using equation (2.25) is

K̃T = AG−1 =
1

m
YfY

∗
p (

1

m
YpY

∗
p )−1 = YfY

†
p ,

which is the form commonly presented as the interpretation of the Koopman matrix

being the best approximation of the flow as a linear map in the least-squares sense since

this is the the solution to the least-squares linear-regression problem:

K̃T = arg min
T

‖Yf − TYp‖F ,

which gives an exact matrix representation of the Koopman operator in the our chosen

basis d if the said basis is rich enough to span {di ◦ S}nD
i=1

In the above, we have assumed that the Gram matrix G is invertible. This happens

only for a dictionary with linearly independent functions which then form a basis of H̃.

Linear dependence amongst dictionary functions d is indicated by linearly dependent rows

of Yp,Yf or the rank of Yp is less that nD for certain data-points – say a period-k fixed-

point with k < nD. Either case makes YpY
∗
p non-invertible causing ill-posed inversion

of Gram matrix G. For a dictionary that is not necessarily linearly independent, we use

the MP-pseudoinverse as shown in [7]:

K̃T = AG† = (YfY
∗
p )(YpY

∗
p )†, (4.7)
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which becomes the inverse for invertible matrices.

Similarly, the coefficient matrix C̃ can be obtained. We denote the snapshots of

vector observables as:

Ψp :=

[
ψ(x1) ψ(x2) · · · ψ(xm)

]

Beginning with equation (2.30) and following the procedure that using the above equation

in equation (4.6), we have:

C̃T =
1

m
ΨpY

∗
p (

1

m
YpY

∗
p )−1 = ΨpY

†
p .

Again, this can be viewed as solving the linear-regression problem to obtain the minimum

norm solution of

C̃T = arg min
T

‖Ψp − TYp‖F

which is a linear regression to find the matrix C̃ which is the best approximation of the

vector observables ψ in the dictionary functions d. Clearly, if the vector observables lie

in the span of the dictionary functions, then this matrix representation could be exact.

However, if the dictionary functions were linearly independent then the Gram matrix

is not invertible as stated earlier and the solution is better represented as using the

MP-pseudoinverse as:

C̃T = (ΨpY
∗
p )(YpY

∗
p )†, (4.8)

Even with linearly independent dictionary functions and sufficient data points for

inversion, the above estimations of K̃, C̃ relies on the convergence of summations of

terms in the second equality of equation (4.6). This shows the importance of the samples

collected to compute the matrices. Lastly, looking at dimensions from the above, we see
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the requirements as

Remark 10. m ≥ nD ≥ p,

with typical EDMD being:

m > nD � p.

4.3 Properties of the data matrices

We mentioned in the beginning of section 2.2 how a dictionary of observables is not

necessarily a basis for a subspace of the Hilbert space. The space H̃ is a linear subspace

of H. Then, H̃ can be viewed as a vector space the same way as H is and any observable

ψi ∈ H̃ can be expressed as a linear combination of the dictionary elements {dj}nD
j=1.

However, linear dependence amongst dictionary elements shows redundancy that can be

eliminated to reduce computational cost.

Definition 4.1.1 can mean that a (non-trivial) linear combination of dictionary func-

tions can sum to 0 at most at m−1 data-points for the dictionary elements to be linearly

independent. We show that the condition numerically required is the following:

Lemma 4.3.1. The nD dictionary functions are linearly independent over Xp if and

only if

rank(Yp) = nD

Proof. Let the nD dictionary functions be linearly dependent over the m samples in Xp.

Then there exists at least one non-trivial combination of {di}nD
i=1 that sums to 0 over

{xi}mi=1. Let
nD∑
i=1

αidi(xj) = 0 ∀ xj ∈Xp.
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Given the matrix Yp, the above can be expressed as:

Y T
p



α1

α2

...

αnD


= 0,

which shows that the dictionary functions are linearly dependent for dim(N (Y T
p ) ≥ 1.

This means that the dictionary functions are linearly independent if and only if

dim(N (Y T
p ) < 1 ⇐⇒ dim(R(Yp) = nD

�

Remark 11. Rank(Yp) < nD ⇔ Linearly dependent dictionary elements can be discarded

Remark 12. Data sampled from k-periodic fixed-points for k < nD cannot give linearly

independent dictionary functions

Properties of the Gram matrix and directly related to that of the data matrix. From

equation (4.6), we see that the Gram matrix G is non-invertible if we have linearly

dependent dictionary functions overXp as rank deficiency of Yp ⇐⇒ rank deficiency ofG.

Though this non-invertibility can be circumvented in practice with the MP-pseudoinverse,

the condition-number of G can become extremely high with additional basis bringing no

benefit. This is illustrated in Figure 4.1 where the rank and MSE are given for EDMD

implementation on simulation data from the repressilator mentioned in Chapter.(3). We

see that even Hermite polynomials which are an orthogonal basis for H(−∞,∞) turn out

to be linearly dependent over the available data-set and adding more basis only worsens

the conditioning of G and decreases the predictive accuracy.
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Figure 4.1: Example of effect of dictionary size on degeneracy of G and predictive
accuracy. Here, Hermite polynomials on the repressilator

4.3.1 Relationship with coefficient and Koopman matrices

Next, we show the relationship of the projection PΨp of a full rank observable matrix

Ψp with the data matrix Yp.

Lemma 4.3.2. Given a linearly independent dictionary and vector observable whose

projection on the dictionary is linearly independent in the components, at least p columns

of dictionary matrix Yp do not lie in the null-space of C̃T

Proof. From Lemma 4.1.2, linearly independent projections of observables means:

rank(C̃) = p⇐⇒ dim(N (C̃T )) = nD − p.

From Lemma 4.3.1, linearly independent observables means rank(Yp) = nD which means

that nD of the m columns of Yp are linearly independent. Suppose nD − p of them lie in

the null-space of C̃T , then there are at least p linearly independent columns that do not

lie in N (C̃T ). �
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Remark 13. rank(Ψp) > rank(C̃) ⇔ Linearly independent observables becoming lin-

early dependent under projection to H̃. A richer dictionary is required if (from equation

(4.8)) dictionary functions are linearly independent. Else, redundant projected observ-

ables can be discarded.

Additionally, we can say from Lemma.(4.3.1) that there does not exist c̃i such that

c̃i ⊥ R(Yp) if the dictionary functions are linearly independent over Xp. This has

relations to Arnoldi method interpretations mentioned in [6, 18]. However, these are not

applicable to K̃ as it should ideally be full-rank.

Remark 14. Rank(K̃) = rank(Yp) = nD =⇒ K̃TYp cannot have 0-row or 0-column

4.4 An algorithm for dictionary modification

Using our analysis on properties of matrices involved in EDMD, we propose the algo-

rithm 1 to modify dictionaries used in EDMD such that they are sparse while preserving

linear independence of involved functions at the given data-point. We refer to the re-

marks to results from section 4.1 and section 4.3. While the EDMD formulation requires

knowledge of state, we consider the observables to be more important. Though it was

stated in [7] that the observables can be unknown, they do work under the assumption

that the observables lie in the span of the dictionary. Here, we make do with projections

as introduced in section 2.2. To begin, we verify that the vector observable ψ is linearly

independent over the m snapshots of data. Using Lemma 4.3.1, we first check the degen-

eracy of Ψp in line (1) using the rank condition. From Remark 10, we give the constraints

on dimension of the dictionary nD in line (7). From the invertibility conditions on the

Gram matrix via linear independence of dictionary functions, we stated in Remark 11

that Yp needs to be full row rank. Using Remarks 2, 5, 6, 8, 13 from Lemmas 4.1.2,
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4.1.5, 4.1.4, 4.3.2, we see that this condition eliminates degeneracy of K̃, C̃ from non-

invertibility. This condition is used in line (8). This is followed by a check for Remark 10,

where we see that the identification of p linearly independent observables is not possible

with a dictionary of a size nD < p.

We mentioned earlier that we may not have a dictionary that spans all the observables

but we can work with projections. Remarks 2, 4, 13 from Lemmas 4.1.2, 4.1.4, 4.3.2 reflect

a dictionary is such that linearly independent observables that are taken as the vector

observable ψ, do not become linearly dependent under projection onto H̃. Line(14)

check lower rank of C̃ than that of Ψp under full-rank Yp, showing the need for more

dictionary elements that are orthogonal. From Remark 1, the loss in linear independence

under projection means that the functions are linearly independent because components

that are orthogonal to H̃.

We showed in section 2.2 the analogy between K̃ and C̃. We utilised this analogy in

presenting Lemma 4.1.5 as an extension using the composition operator of Lemma 4.1.2.

The Remark 5 that followed, is implemented in line (10) which includes the actions from

Remarks 6, 7, 8 as they all imply the nullity of K̃ which can only be solved by expanding

the dictionary if it it already linearly independent over Xp and Xf . Remark 7 is also

included here as its implication is the same on the nullity of K̃ and what is deduced from

it coincides with that of Remark 9

Lastly, if C̃ has not been reduced in the favor of expansion of dictionary, there is

scope for 0-rows in it. As shown in Remarks 3, 9, we discard dictionary functions not

required in either the expression of P(ψ) and P(ψ ◦ S) in line (23).

At the end, if the dictionary is rich enough to maintain linear independence of observ-

ables and their action under the Koopman operator while simultaneously sparse in terms

of the elements needed, the error is recorded. This is the error that is to be minimized over

all the dictionaries and their elements, even with full rank conditions (thereby meeting
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the requirements of PE in chapter 3). While line (26) looks like a multi-objective opti-

mization, the solutions are individually determined by equations (4.8, 4.7). We present

a basic result to show that full columns rank C̃, K̃ do not necessarily mean that the

dictionary is rich enough to span all the components of ψ or d ◦ S respectively.

Lemma 4.4.1. If projections of linearly independent functions are linearly independent,

their skew-projections are neither necessarily 0 nor necessarily linearly dependent

Proof. We provide the proof by counter example. Let ψ1 = α1x1 + β1x2 + γ1x3 + δ1x4

and ψ2 = α2x1 + β2x2 + γ2x3 + δ2x4 be two linearly independent functions such that

{α1, β1, γ1, δ1, α2, β2, γ2, δ2} ∈ R \ 0 such that γ1
δ1
6= γ2

δ2
. Projecting them onto the basis

{x1, x2}

Pψ1 = α1x1 + β1x2, Pψ2 = α2x1 + β2x2.

Then, the skew-projections from equation (2.20)

(I − P)ψ1 = γ1x3 + δ1x4, (I − P)ψ2 = γ2x3 + δ2x4

which are neither zero nor linearly dependent. �

Effect of the above can also be observed in Figure 4.1 where basis of dimension 6 and

13 have full-rank matrices G and A over the available data and consequently full rank

K̃ but the residuals are non-zero.
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Algorithm 1: Reduced Order EDMD

Result: To find a sparse EDMD dictionary
1 if rank(Ψp) < p then
2 Reduce rows from Ψp;
3 p = rank(Ψp);

4 Declare a list of bases (e.g. {Monomials, Hermite polynomials, RBFs, LRs});
5 for Dictionary taken as each set of bases do
6 Initialize nD = p;
7 while m ≥ nD do
8 if nD > rank(Yp), rank(Yf ) then
9 Reduce rows from same position such that rank(Yp) = rank(Yf );

10 if rank(YfY
∗
p ) < rank(Yp)(includes k̃i = 0, jth-row of K̃ = 0T ) then

11 K̃ = UKΣKV
∗
K ;

12 else
13 nD = rank(Yp);

14 if rank(ΨpY
∗
p ) < rank(Ψp) (includes 0-column in C̃) then

15 if Observables are not to be discarded then

16 C̃ = UCΣCV
∗
C ;

17 else
18 (Includes c̃i = 0)
19 Reduce rows from ΨpY

∗
p ;

20 p = rank(Ψp);

21 Reduce columns of V =
[
VK VC

]
;

22 Reduced dictionary = V ∗d;

23 if jth-row of C̃ = 0T and jth-row of K̃ ∈ N (C̃T ) then
24 Discard dj;
25 nD = nD− number of such rows;

26 minimum ‖Ψp − C̃TYp‖F and ‖Yf − K̃TYp‖F =⇒ break ;
27 nD = nD + 1

Remark 15. Iterative search in algorithm 1 does not exit until error is below user-defined

value even with full column rank of C̃ and K̃
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4.5 A sampling-strategy on systems with attractors

When the points in Xp lay on an ergodic invariant set like a limit cycle, fixed point,

n-Torus, etc., and the snapshots were sequentially sampled i.e.

xi+1 = Si(x1), i ∈ N,

then from Birkhoff’s ergodic theorem:

〈ψi, ψj〉 = lim
m→∞

1

m

m∑
k=1

ψ∗i (x(k))ψj(x(k)).

This makes the estimation in equation (4.6) converge to their theoretical values from data

on a single trajectory in the limit of infinite time. This is allows an efficient comput-

ing strategy that can be exploited for ergodic systems or ergodic partitions of systems,

paving the way for Hankel-DMD [8] that does not use a dictionary as the sampling of the

observable itself, which is an Arnoldi type algorithm. In dissipative systems with ergodic

attractors, such a sampling strategy can be used to analyze the attractor itself – but not

its basin of attraction. Without ergodicity, it was shown in [25] that when the samples

drawn – not necessarily from a single trajectory – are independent and identically dis-

tributed (i.i.d), the EDMD approximation converges in the limit of infinite data using the

strong law of large numbers (SLLN). In experiments, we often encounter transient data

that differs from asymptotics – meaning that it is not ergodic. Also, experimental data

need not necessarily be i.i.d. In fact, since time-series data from experiments is collected

at regular intervals – it is often data collected from the flow of the dynamical system

as a discrete map. A frequent test case for EDMD/DeepDMD is using simulation data

collected from a system of engineering importance that has attractors like fixed points,

limit cycles, n-tori, etc. Since trajectories in the basin of attraction of an attractor are
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forward invariant sets, the samples may not be independent when drawn from the same

trajectory. We again emphasize that with interest in computing the Koopman operator

restricted to the basin of attraction – not the attractor itself – we present the following

proofs with the assumption that the dictionary functions are linearly independent (to

guarantee invertibility of the Gram matrix).

Assumption 1. Let M = Rn. To draw samples around an attractor A in its basin of

attraction MA ⊂ M, we consider a compact subset Ω ⊂ M such that (Ω \ A) ⊂ MA.

Since the dynamical system 2.1 is evolving in a topological space, we can assume the Borel

σ-algebra B on Ω. B contains all open subsets Ωi ⊂ Ω. We consider µ as the measure

associated with B, normalized on Ω as ‖µ‖Ω =
∫

Ω
µ(x)dx = 1 which makes it a uniform

probability density on Ω. Since dim(A) < n, µ(A) = 0.

Lemma 4.5.1. Picking m data-points x1,x2, · · · ,xm from Ω using the probability density

µ gives m independent and identically distributed samples

Proof. From Assumption 1,

P(xi ∈ Ωj) =
µ(Ωj)

µ(Ω)
= µ(Ωj)

for any open-subset Ωj ⊂ Ω. Drawing a sample xi from any Ωj

P(xi ∈ Ωj) = µ(Ωj) = P(xk ∈ Ωj) ∀ Ωj, i, k ∈ 1, 2, · · · ,m

shows that {xi}mi=1 are identically distributed as stated in [46]. At this point we are not

addressing the dynamical system but simply drawing points from Ω as

P(xi ∈ Ωj | xk ∈ Ωl) = µ(Ωj) = P(xi ∈ Ωj) ∀ Ωj,Ωl, i, k ∈ 1, 2, · · · ,m,
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which shows that {xi}mi=1 are independent as stated in [47]. Thus, {xi}mi=1 are independent

and identically distributed (i.i.d). �

The above shows that the EDMD approximation in equation (4.6) converges to that

of the Galerkin method as m → ∞ by the SLLN. The m data points chosen above do

not follow any structure relating to the dynamical system. One way to impose structure

on these data points is to pick them along a trajectory initialized at the first data-point

x1. Then, any data-point xi would be xi ∈ St(x1), t ∈ R≥0. To give the probability

density that such data-points would follow, we state an assumption relevant to numerical

implementations of EDMD.

Assumption 2. Though no trajectory in the basin MA ⊂ M reaches the attractor A

(from invariance), data-points after certain time T would reach A in machine precision.

We consider such data-points on-attractor and disregard them from MA. This makes

trajectories upto time T , ST (xi) =: Ti, compact subsets of Ω. Such trajectories are

isomorphic to a compact subset of R as they never intersect themselves. On Ti, a Borel

σ-algebra containing all of its open subsets can be assumed with a measure νi normalized

on Ti as ‖νi‖Ti =
∫
Ti νi(x)dx = 1 which makes it a uniform probability density on Ti.

Lemma 4.5.2. Picking m data-points xi+1,xi+2, · · · ,xm+i from ST (xi) using the prob-

ability density νi gives m i.i.d samples on Ti

Proof. On every such trajectory Ti ⊂ Ω, we can follow the procedure similar to that of

Lemma 4.5.1 with Ti in the place of Ω, Ti+k in the place of Ωj, and νi in the place of µ.

However, the convergence of i.i.d samples as m → ∞ is valid only for trajectory Ti but

not over Ω as µ(Ti) = 0 for any xi ∈ Ω * R. �

While m→∞ samples from uniform distributions like µ and νi approximate compact

spaces, Gaussian distributions’ validity on non-compact spaces was stated in [25]. Also,
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time-series data from dynamical systems is collected sequentially. Even at irregular

sampling intervals, time-series data from a single initial condition can be collected only

unidirectional in time. We show that snapshots from sequential sampling – regular or

irregular – are not i.i.d.

Lemma 4.5.3. Sequentially picked data-points x1,x2, · · · ,xm along a single trajectory

do not produce i.i.d samples

Proof. After picking x1, we use a distribution νi from Assumption 2 to pick the next

point xi+1 sequentially on the trajectory Ti originating from xi for i ∈ 1, 2, · · · , (m− 1).

We show that xi and xj are not identically distributed if i 6= j. The (i+ 2)th sample lies

on the trajectory Ti+1 that originates at the (i+ 1)th sample

P(xi+2 ∈ Ti+1) =
νi+1(Ti+1)

νi+1(Ti+1)
= 1.

But, the probability of the (i+ 1)th sample itself lying in the same set Ti+1 is

P(xi+1 ∈ Ti+1) =
νi(Ti+1)

νi(Ti)
.

From forward invariance of trajectories

Ti+1 ⊂ Ti =⇒ νi(Ti+1) < νi(Ti) =⇒ P(xi+1 ∈ Ti+1) < 1.

Then,

P(xi+2 ∈ Ti+1) 6= P(xi+1 ∈ Ti+1) for i ∈ 1, 2, · · · , (m− 2).

To pick x1 somewhere in Ω, we use the distribution µ from Assumption 1 which is

different from any νi in Assumption 2. This shows that none of the sequentially sampled

{xi}mi=1 are identically distributed [46] and thus cannot be i.i.d. �
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A special case of sequential sampling is sampling at regular time-intervals. We take

snapshots at an interval of ∆t. Assuming ∆t = 1 without loss of generality, we get

the map xi+1 = S ◦ S · · ·S︸ ︷︷ ︸
i times

(x1). This shows that points are picked from a distribution

different from both µ in Assumption 1 and ν1, ν2, · · · , νm−1 in Assumption 2.

Lemma 4.5.4. Sequentially picked data-points x1,x2, · · · ,xm such that xi+1 = S(xi)

are not i.i.d samples

Proof. To necessitate xi+1 = S(xi), we use a Dirac measure δi on Ω which is supported

only on the point S(xi). Then,

P(xi+1 = S(xi)) =
δi(S(xi))

δi(Ω)
= 1.

But for any j 6= i

P(xj+1 = S(xi)) =
δj(S(xi))

δj(Ω)
= 0.

So, P(xi+1 = S(xi)) 6= P(xj+1 = S(xi)) for j 6= i shows that data-points {xi}mi=1 are

not identically distributed [46] and thus cannot be i.i.d. �

Now, we can compare sampling strategies for the best approximation of the Koopman

operator using EDMD. As mentioned in [25], i.i.d samples guarantee the convergence

of matrix entries in equation (4.6) and consequently the matrix representation of the

Koopman operator in the limit of infinite data. Before stating the main result, we

remind the readers that from equation (4.6), EDMD requires one additional data-point

corresponding to each of the m points under an iteration of St. Thus, the total number

of data-points required is 2m.

Theorem 4.5.5. The guarantee of convergence of the EDMD approximation of the Koop-

man operator restricted to a compact subset of the basin of attraction as a discrete-time
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operator projected on the basis P(K∆t|Ω) with 2m data-points from (a) requires m/l times

lesser data than the guarantee of convergence with 2m data-points from (b), where

(a) m data-points as initial conditions – none of which are chosen from the same tra-

jectory – and 1 point sampled after time ∆t along each of the trajectories from the

m initial conditions

(b) l (< m) data-points as initial conditions – none of which are chosen from the same

trajectory – and (2m− l)/l points sampled at intervals of time ∆t along each of the

trajectories from the l initial conditions

Proof. From equation (4.6), the terms required for EDMD approximation K̃ ≈ P(K∆t|Ω)

are

Gij =
1

m

m∑
k=1

di(xk)d
∗
j(xk) Aij =

1

m

m∑
k=1

di(S
∆t(xk))d

∗
j(xk),

which are entries in G and A that are required to compute K̃ using equation (2.25).

From [25], we have guarantee of convergence as limm→∞(K̃) = P(K∆t|Ω) in the limit of

infinite i.i.d samples on Ω.

For i.i.d samples, we use the fact that points picked according to Lemma 4.5.1 are

i.i.d on Ω. From Lemma 4.5.3, we know that data-points sampled sequentially from a

trajectory are not i.i.d. From Lemma 4.5.2, we know that samples chosen non-sequentially

from the same trajectory are i.i.d on that trajectory but not on Ω. Thus, the m initial

conditions in (a) and l initial conditions in (b) are i.i.d on Ω.

From Lemma 4.5.4, we can say that the m data-points sampled (per trajectory) as

{xi+1 = S∆t(xi)}mi=1 in (a) and the (2m − l) data-points sampled (per trajectory) as

{xi+k = S∆t(xi)}li=1, k = 1, 2, · · · , (2m− l)/l in (b) are not i.i.d on Ω.

Since the guarantee of convergence only applies to the samples that are i.i.d by the

SLLN, (a) is guaranteed to converge only as m → ∞ and (b) is guaranteed to converge
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as l → ∞. Which means that the guarantee for convergence in (b) requires m/l times

more data than that required for the guarantee of convergence in (a). �

Corollary 4.5.5.1. If we desire to approximate PK∆t|Ω using m snapshots, convergence

with lesser data is guaranteed from sampling once after ∆t time from m/2 different initial

conditions than sampling 2m− 1 times at intervals of ∆t from 1 initial condition

4.5.1 Numerical demonstration

Here, we show some numerical results for the Duffing equation

ẍ+ δẋ+ x(x2 − 1) = 0

with δ = 0.5. We use a domain of x =: x1 ∈ [−2, 2], ẋ =: x2 ∈ [−2, 2]. We use a

10x10 grid, with each point as an initial conditions. For the basis, we pick upto order-7

monomials of x which gives nD = 36 for n = 2. To mimic semi-infinite trajectories

from each initial point use a low ∆t = 0.02 over 2 time units. This is done using an

EDMD implementation available at github.com/nibodh/Dynamic-Mode-Decompositions.

The 100 data-points used to estimate K̃, C̃ are termed “training-data”. If training-data

is sampled upto time t1, any points after t1 on the same trajectories are termed “cross-

validation” and points that do not lie on these trajectories are termed “test-data”.

For 100 points taken along a single trajectory we find that desired inner products can

only be approximated along the training data in Figure 4.2d. This is in stark contrast

to 100 points distributed across the domain in Figure 4.2a where inner products are

approximated at the same number of points are in a way spread across the domain which

makes predictions for trajectories all over this domain (as in Figure 4.3a) feasible even

over 100-point prediction horizons as shown in Figure 4.4a.
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Figure 4.2: The different distributions in state-space of the 100 data-points used in
EDMD estimations
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Figure 4.3: Further transient trajectories of the corresponding points in Figure 4.2
that are to be predicted. The number of points along each is the prediction-horizon
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Figure 4.4: 99-step predictions (dashed) from randomly chosen initial conditions com-
pared to simulated trajectory (solid)

We find that for transient-data, Theorem (4.5.5) holds excellently. Using 100 training-

data points spread across the domain (Figure 4.2a), we find very low mean square error

for both cross-validation predictions and test predictions – which increases when the same

number of data-points are spread across fewer trajectories as shown in Figure 4.5.
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Figure 4.5: Reductions in EDMD error with increase in number of trajectories
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4.6 Relation to system identification and persistence

of excitation

We have shown the matrix approximation of the Koopman operator K̃ in equation

(2.25) as

K̃T = AG†.

In section 2.2, we derived the above by projecting dictionary functions acted on by

the Koopman operator d ◦ S∆t onto our dictionary. That was because we desired to

approximate the action of the Koopman operator through a single-step in time K̃ ≡

PK∆t. The same can be done to obtain an approximation of the multi-step map between

functions K̃k := PKk×∆t by projecting d ◦ Sk×∆t onto our dictionary. The result of this

would be similar to the above equation with only change in A. Let

Ak :=



〈d1 ◦ Sk, d1〉 〈d1 ◦ Sk, d2〉 · · · 〈d1 ◦ Sk, dnD
〉

〈d2 ◦ Sk, d1〉 〈d2 ◦ Sk, d2〉 · · · 〈d2 ◦ Sk, dnD
〉

...
...

. . .
...

〈dnD
◦ Sk, d1〉 〈dnD

◦ Sk, d2〉 · · · 〈dnD
◦ Sk, dnD

〉


. (4.9)

Then

K̃T
k = Ak G

†. (4.10)

The entries of the matricesAk,G when numerically estimated with the inner products

as a Dirac measure, we see that the entries correspond to those of the autocovariance

matrices from equation (3.1):

G = Rd(0) Ak = Rd(k),
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thus,

K̃T
k = Rd(k)Rd(0)†. (4.11)

This shows us how finite-section methods for approximation of the Koopman operator

as a matrix and some core aspects of system identification are connected. Immediately

we can see that the rank of K̃k is limited by the ranks of the covariance matrices Rd(0)

and Rd(n). Being a Hermitian matrix, we know that the Rd(0) is positive semidefinite.

However, for the invertibility of G, this shows that Rd(0) needs to be positive definite

that is guaranteed by linear independence of dictionary functions. In fact, consider the

series of approximations of K̃k form a dataset. For a non-singular flow, K̃k should be

positive-definite. For this, all the Rd(k) need to be positive-definite.

This is precisely the condition that we proved in persistence of excitation but it

shows here without addressing a transfer function. From section 4.1, we also see that

the above condition is necessary of an accurate estimation of the Koopman matrix but is

not sufficient. We have seen in Lemma 4.4.1 how all components of P(d ◦S) are linearly

independent but the dictionary could be rich enough that it is invariant to the action of

the Koopman operator. Using the above, we can say that PE is a necessary. This also

shows that if the residues are 0, then the PE condition is sufficient when projections are

considered using a measure supported on Xp as shown in equation (4.4).

4.6.1 Autocovariance from the Koopman matrix

With relationship between the Koopman matrix and the autocovariance, we now show

a utility of the same for finite data-points:

Proposition 4.6.1. With finite data, autocovariance at lower lag is better estimated than

autocovariance at higher lag

Proof. Definition 3.1.1 is not practical as sequences are of finite length. For a finite m,
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equation (3.1) has to be modified to accommodate the unavailability of u(t > m) as

follows:

Ru(k) :=
1

m− k

m−k∑
t=1

u(t)u∗(t+ k). (4.12)

At maximum allowable lag k = m− 1, and Ru(m− 1) is

Ru(m− 1) =
1

m− (m− 1)

m−(m−1)∑
t=1

u(t)u∗(t+ (m− 1))

= u(1)u∗(m),

which is of rank = 1. Using equation (4.12), autocovariance at k = m− k̃ is

Ru(m− k̃) =
1

k̃

k̃∑
t=1

u(t)u∗(t+ (m− k̃)).

Since rank(
∑

iAi) ≤
∑

i rank(Ai) on the right hand side, rank(Ru(m − k̃)) ≤ k̃ on

the left hand side. If m = o, (where u ∈ Ro), a linearly independent sequence of o

observations could give rank(Ru(0)) = o whereas rank(Ru(k > 0)) < o. Since Definition

3.1.1 does not necessitate such a restriction on the rank of Ru(k > 0), autocovariance at

lower lag is a better estimation than that at higher lag. �

Remark 16. The best estimation of autocovariance available with finite-data is that with

the least lag =⇒ Ru(0)

To circumvent the inaccuracy in calculation of the autocovariance at higher lags, like

that needed in Definition 3.1.2, we use equations (4.11, 2.31) under the caveats that

the dictionary is invariant to the Koopman operator and spans all the observables i.e.

K̃ = K, to give

Rd(k) = Rd(0)Kk

=⇒ Rψ̃(k) = C̃TRd(0)KkC̃

(4.13)
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4.7 Summary

We presented two main results in this chapter: 1) reduce EDMD dictionary size in

sections 4.1 - 4.4 and 2) compare sampling strategies for EDMD approximation in the

basin of attraction in section 4.5. To sparsity EDMD, we began with checking linear

dependence among observables as a reduction in them results in a smaller dictionary re-

quired to span them. But since we work with projections onto the dictionary, showed how

linearly independent observables that become dependent under projection warrants ex-

pansion of the dictionary orthogonally. Similarly, we showed requirement of orthogonally

expanding the dictionary when the projection is null. However, with these conditions

satisfied, we showed that zero-rows of C̃ indicate redundant dictionary elements in ex-

pressing the observables which can be discarded if the corresponding rows in K̃C̃ are also

zero-rows. Using the structural analogy noticed between K̃ and C̃ in section 2.2.4, we

applied analyzed K̃ in a similar way as C̃. We showed how projections of linearly inde-

pendent dictionary functions becoming dependent under composition with non-singular

flow means that the dictionary is not rich enough and requires orthogonally expanding

it. With a major difference being K̃ is square which means that the column-degeneracy

translates to row-degeneracy, the computational implications of other properties of K̃

were shown to require the same solution of expanding dictionary. Since EDMD is a nu-

merical implementation, we presented numerical computation of K̃ and C̃ from the data

matrices. Using this, we also showed how degeneracy in data matrices directly shows

linear dependence of dictionary functions on data-points. While this seems trivial, it

is a useful check when dictionary building is automated. We also showed that lack of

degeneracy in any of these does not necessitate zero-errors and used this error as a used

convergence criterion for the dictionary expansion. Using these, we gave the algorithm for

reduced order EDMD (RO-EDMD) which uses the singular value decomposition (SVD)
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to pick the broader of the reductions in K̃ and C̃ where linear combinations of dictio-

nary functions are used as new dictionary functions such that the dimensions of EDMD

computations are reduced. A key assumption here is that orthogonal dictionary elements

are readily available.

In the second part, we proved that guarantee of convergence of the EDMD approx-

imation in the basin of attraction using data-points spread across various trajectories

requires lesser data than the same number of data-points sampled along fewer trajec-

tories. This follows the convergence of EDMD approximation to that of the Koopman

operator on dissipative systems in the limit of infinite i.i.d data. In the basin of attrac-

tion, we pick a compact set and use a Borel measure to normalized over the compact

set as a probability density function. Using this, we showed how various data-points

from the compact set are i.i.d. For numerical implementations where machine precision

comes into play, we distinguished transient data from on-attractor data and used the

transient data as a bound for trajectories within the basin of attraction. Using another

Borel measure normalized on trajectories, we showed that samples drawn are i.i.d on that

trajectory but not on the compact set. With the dynamical system in mind, we showed

how the probability distribution itself needs to be changed with every sample in order to

pick data-points sequentially (unidirectional in time) along trajectories. For time-series

data, we showed how a different probability function should be chosen to draw samples

sequentially at regular intervals. Both these showed that sequentially sampled data along

trajectories cannot be i.i.d as the distribution changes with each sample. We finally used

these proofs to compare guarantee of convergence of EDMD approximations using the

same number of snapshots depending on how they are sampled and demonstrated the

theorem numerically.
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Conclusions and future work

Beginning with the application of persistence of excitation to Kooopman framework, we

gave sufficiency conditions on data used in EDMD. This is an application of persistence of

excitation, a concept from linear systems theory, to nonlinear systems using the linearity

of the Koopman operator. The application is not direct and requires introduction of

input-Koopman framework and modeling data-points used in EDMD as a sequence of

impulse inputs. We prove the applicability of this concept in a finite dimensional function

space as a necessary and sufficient condition for accurate estimation of the Koopman

operator using EDMD. However, the necessity and sufficiency of PE is applicable with

a dictionary that spans a space invariant to the Koopman operator using a measure

supported on the data-points used. For uncontrolled systems, we showed the necessity but

not sufficiency of PE condition using EDMD formulation without an invariant dictionary.

PE will be explored further for controlled systems.

While deriving the formulation of EDMD as a Galerkin method, we have shown

the obtained matrix representation and approximation of the Koopman operator under

invariance of the basis to the action of the operator. We have also considered the ba-

sis’ capability to span observables or not and provided their vector representations and
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approximations. These vectors and matrices have been useful in studying possible re-

dundancy and insufficiency of EDMD basis that we addressed by providing an iterative

algorithm to modify EDMD basis such that the redundancies are eliminated while also

adding more basis elements to construct a bespoke dictionary that minimizes function

residues. However, the computational complexity of this algorithm would be high as it

searches element by element from each basis. While the reduction aspect is sorted out

using the SVD, there is room for improvements in terms of search algorithms to seek out

newer elements by employing something like the orthogonal matching pursuit algorithm.

DMD algorithms have often been treated as a least-squares fit and the approximation

plainly seen as increasingly accurate with larger number of data-points. One of the

purposes of our derivation of EDMD as a projection is that we can see the convergence

of EDMD estimations to the theoretical results in terms of convergence of summations

over data-points to that of integration based inner products. With this at hand, we used

convergence guarantee of EDMD from [25] to quantify the advantage offered by spreading

data-points across trajectories. This leads to the proof of sampling strategy provided.

While numerical estimations are exact only on the data-points considered, they become

accurate on the entire compact set considered in the limit of infinite data. This shows

that convergence guarantee over the entire basin of attraction can be achieved with lesser

data when not sampled from the same trajectories. The converse of this is the case where

data is taken from trajectories that are very close to an attractor which – in machine

precision – would be post-transient that are excellently handled with Hankel-DMD when

sampled sequentially. We are studying this because transients have been (numerically)

found to have little effect on long-term predictions in some cases while wreaking havoc

in others.
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5.1 Challenges

At the time of writing almost all the DMD algorithms include knowledge of the

state, and EDMD [7] suffers from the curse of dimensionality. This can be difficult as

the dynamical systems – especially high-dimensional ones – often have outputs that do

not give the entire state. Hankel-DMD [8] offers a paradigm shift where knowledge of

the state itself isn’t required. This is possible as this algorithm uses an observable and

its compositions with the flow which happen to be subsequent observations as the basis,

thus giving representations of the other functions in the subspace of functions available as

outputs. This is used as a Krylov subspace and the (ergodic) restriction of the Koopman

operator to this subspace can be shown using a companion matrix from an Arnoldi-

type algorithm. There are two major advantages and one disadvantage of Hankel-DMD

when compared with EDMD-like algorithms: it does not require the state variables

to construct a dictionary of basis functions and is thus applicable on systems without

knowledge of their state. The absence of a dictionary means that matrices involved

do not increase combinatorially with increasing dimensions of state. The disadvantage

however is that the theory is sound for ergodic measure preserving systems/partitions

which means that transients may not be captured well enough, though they can be

approximated with number of data points near the attractor going to infinity. The desire

is to develop a technique that makes the best of both – the Galerkin and the Arnoldi-

type – methodologies. Hankel-DMD for multiple observables exists but adding basis

functions to the fray, in a manner that does not violate the Krylov subspace and adds

computational advantage, is the challenge.
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5.2 Future work: an application to artificial neural

networks

This is a work in progress that is an application of dynamical systems theory to

convolutional neural networks and has already been presented in [33]. Loosely speaking,

an artificial neural network (ANN) is a collection of variables arranged to take inputs of

data to perform a canonical task on them in a manner that mimics empirically observed

human learning. Here, learning refers to experiencing objects through sight, sound, touch,

taste, etc. and performing (canonical) tasks like recognizing objects as one type, telling

apart two objects, creating a non-existent object based on the experiences, etc. Learning

involves updating the parameters of these simple functions and is called ’training’ the

ANN by showing it data to be learnt from. This training is accomplished by minimizing

a cost function which is defined a measure of the error in the task performed by the ANN

with respect to the expected task. The minimization of this error on an ANN of millions

of neurons itself is a computationally challenging – sometimes insurmountable – problem

and is an active research area with distributed computing and Graphical Processing Units

(GPUs). The most common approach for minimizing the cost function in a ANN is called

gradient descent.

5.2.1 Gradient descent algorithm

Gradient descent refers to a family of optimization algorithms with the objective of

minimizing a cost function. This is done by iteratively adjusting the variables using the

gradient of a scalar cost function of interest. In ANNs, these variables are the parameters

– weights w and biases b – of the neurons. In CNNs, it involves convolutional kernels W

– which are whole matrices unlike weights of individual neurons in DNNs – along with
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the biases B. For input data X with labels Y , the gradient descent algorithm with a

learning rate α in its tth iteration can be given by

W (t+ 1) = W (t)− α∇
∣∣∣
W=W (t)

J(B(t),W (t), X, Y )

B(t+ 1) = B(t)− α∇
∣∣∣
B=B(t)

J(B(t),W (t), X, Y ),

(5.1)

where J = ‖(WX +B)− Y ‖ is the cost function that is to be minimized. If J no longer

changes with respect to W and B, the gradients ∇BJ and ∇WJ become null and the

gradient descent algorithm has converged on a local (perhaps global) minimum. Then,

values of the kernels W and biases B converged upon are the optimal parameters of the

CNN and can be denoted by W ∗ and B∗ respectively. Then, this convergence of (5.1)

can be represented by some function H1 and H2 as

W ∗

B∗

 =

H1(X, Y )

H2(X, Y )

 . (5.2)

While well understood, gradient descent in its native form is too (computationally)

expensive for practical purposes on DNNs and CNNs. Stochastic gradient descent (SGD)

is a variant that uses randomly chosen subsets of training data (Xi, Yi) with each ini-

tialization of the iterative routine rather than use the whole dataset (X, Y ) for every

iterative routine. This causes a dependency of the optimal ANN parameters obtained

with each routine of SGD on the subset of data chosen for that routine. This dependency

can be represented as

W ∗
i

B∗i

 =

H1(Xi, Yi)

H2(Xi, Yi)

 ,
where Xi ⊂ X and Yi ⊂ Y . From the above, it can be seen that SGD does not necessarily
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give the same solutions as the desired point (5.2) which is a trade-off for computational

frugality. As (5.2) itself is the culmination of an expensive algorithm (5.1), finding H

seems infeasible. However, an alternative perspective that relates (5.1) and (5.2) can be

found in dynamical systems theory.

5.2.2 Gradient descent as a dynamical system

In neural networks, the parameters W and B which are updated with each iteration

k are the state variables W (t) and B(t) respectively. With slight abuse of notation,

the dataset (X, Y ) can be viewed as the constants which parametrize the dynamics that

can be represented by a map S : M → M. Such a (probably nonlinear) discrete-time

dynamical system can be given by

(W (t+ 1), B(t+ 1)) = S(W (t), B(k), X, Y ). (5.3)

The converged solution of the gradient descent routine (5.1) can be shown to be a

fixed point (of period one) of the above dynamical system and can be represented in

state-space as (W ∗, B∗).

At (W ∗, B∗), ∇
∣∣∣
B=B(t)

J(B(t),W (t), X, Y ) = 0 and ∇
∣∣∣
W=W (t)

J(B(t),W (t), X, Y ) = 0

which gives:

(W (t), B(t)) = S(W (t), B(t), X, Y ) ≡ (W ∗, B∗). (5.4)

Periodically oscillating solutions of (5.1) correspond to periodic (2 or higher) fixed

points of (5.3). They are an indicator of lack of convergence in a gradient descent routine

and hence are not addressed in the present work.
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5.2.3 Data-dependent bias functions

Here, we prove that in with the knowledge of the optimal weight W ∗, we can explicitly

obtain the biases B as a function of the weights and data as B = G(W,X, Y ). if certain

criteria are satisfied, G implicitly defines each of W and B in terms of the other and the

parameters (X, Y ) in the vicinity of the fixed point (W ∗, B∗). Below is the proof that

those criteria for the applicability of implicit function theorem (IFT) are satisfied when

a gradient descent converges to a locally optimal set of parameters and hence, B can be

represented as a function of W,X and Y .

Theorem 5.2.1. In some neighborhood N of a locally optimal convolutional kernel W ∗

for a given image data set of images X and labels Y , there exists a function G that can

explicitly express neural network biases B in terms of weights and data: (W,X, Y )

Proof. The implicit function theorem can be used to say that equation (5.1) implicitly

defines B as a function of the parameters X,W and Y over some neighborhood N if there

exists some function G : N → B on to neighbourhood B of B∗ such that G(W ∗, X, Y ) =

B∗ which satisfies ∇
∣∣∣
B=B∗

J(G(W ∗, X, Y ),W ∗, X, Y ) = 0 over N . This is possible if

∇B(∇
∣∣∣
B=B∗

J(B,W ∗, X, Y )) i.e. ∇2
∣∣∣
B=B∗

J(B,W ∗, X, Y ) exists and is invertible. Then,

B∗ can be written as a function of X with parameters W ∗ and Y defined as:

G : N → B
∣∣∣ B = G(X,W, Y ) =⇒ B∗ = G(X,W ∗, Y ) (5.5)

We know:

1. The gradient of the cost function at B∗ is 0 from (5.4).

2. The gradient of the cost function in N \B∗ is non-zero as (5.1) has to converge at

the fixed point.
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This suffices to say that the change in gradient of the cost gradient with respect to B is

non-zero. This implies:

‖∇2
∣∣∣
B=B∗

J(G(X,W ∗, Y ), X,W ∗, Y )‖ 6= 0

Meaning, the Jacobian of ∇BJ , when exists, is invertible. This proves the existence of

G. �

Utility of the above proof is while implementing template matching in CNNs. The

optimal convolutional kernels W ∗ are known to resemble features from images. The above

result can not only be used to find corresponding optimal biases B∗ but also changed

biases with the addition of new examples.

While the optimization problem of neural networks is non-convex and thereby finding

these optimal parameters non-trivial, numerical implementations of Koopman operator

framework can be exercised here. Recent contributions [32, 31] have show the applica-

bility of Koopman operator theory to speed up neural network training. We found that

DMD works well for predicting hyperbolic fixed points and oscillations of a continuum

of frequencies (around elliptic fixed points) but it does not sustain isolated oscillatory

behaviour like limit cycles. EDMD, on the other hand, can predict isolated oscilla-

tory behaviour like limit cycles as demonstrated in Figure 3.2 even from data that can

be considered transient. Considering the high-dimensional parameter space of neural

network, EDMD is intractable. We are working towards possible solutions that allow

implementation of EDMD to not only identify stable hyperbolic fixed points but also

to identify oscillatory behavior. The former corresponds to locally optimal network pa-

rameters which are desired whereas the latter corresponds to lack of convergence of GD

which helps us identify basins of attraction where GD initializations would not produce

optimal parameters.
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[23] M. R. Jovanović, P. J. Schmid, and J. W. Nichols, Sparsity-promoting dynamic
mode decomposition, Physics of Fluids 26 (2014), no. 2 024103.

[24] S. L. Brunton, J. L. Proctor, and J. N. Kutz, Discovering governing equations from
data by sparse identification of nonlinear dynamical systems, Proceedings of the
National Academy of Sciences 113 (2016), no. 15 3932–3937.

78
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