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USING FREQUENCY- AND ORIENTATION- TUNED CHANNELS
TO DETERMINE SURFACE SLANT

PAUL KUBE

The Institute of Cognitive Studies
and
The Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

INTRODUCTION

The thesis that spatial frequency analysis of the retinal image plays a fundamental role in
the early stages of visual processing has received considerable evidential support recently, both
from psychophysics (e.g., (Campbell & Robson 1968), (Sachs, Nachmias & Robson 1971),
(DeValois & DeValois 1980), (Daugman 1984a)) and neurophysiology (e.g., (Campbell et al. 1969),
(Maffei & Fiorentini 1973), (Schiller, Finlay & Volman 1976), (DeValois, Yund & Hepler 1982)).
What role the spatial frequency information so extracted plays in later stages of processing
remains an open question, though one that has increasingly received the attention of theoreticians
and modellers (e.g., (Ginsburg 1978), (Watson 1983), (Janez 1983), (Daugman 1984b)). Here we
present results which show how this information could be used in the determination of the orien-
tation of environmental surfaces, and discuss the limits of such a model as an account of human
perceptual capacities.

ANISOTROPY, SLANT, AND SPECTRUM

Suppose a planar environmental surface is oriented perpendicular to the line of sight and
produces an irradiance pattern /(z,y) on the retina, relative to some suitably chosen retinal coor-
dinate frame. Rotating the environmental surface about a line parallel to the retinal y axis by an
angle o now foreshortens the retinal image: if the distance to the surface is large enough with
respect to the size of the surface for orthographic projection to be a good approximation, the reti-
nal irradiance pattern becomes I'(z,y)=1(z,y/cosc).!

1 Ignoring effects due to any change in angle between the surface normal and the illuminant
vector.
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If appropriate assumptions can be made about what the unforeshortened retinal image is
like, the slant angle o can be recovered from the foreshortened image I’. It has been suggested
(e.g., by Witkin (Witkin 1981)) that il the retinal image is a foreshortened isotropic image, it
should be so interpreted. That is, if I'(z,y) is such that, for some o, I'(z,ycosu) is isotropic, then
the imaged surface should be supposed to be slanted at angle o.

Witkin counts an image isotropic if the distribution of tangent directions along contours in
the image (or an edge-enhanced version of the image) are approximately uniform on [0,7]. Here,
we suggest that an image be considered isotropic if its Fourier power spectrum is approximately
circularly symmetric. This is an acceptable condition for isotropy for the following reason. Con-
sider the definition of the two-dimensional Fourier transform of the retinal image I(z,y):

x =

f(m,ﬂ) s fJ- ¢ izv{choaeiyulinﬁ)f(z,y) dy dz

This expresses the spectrum f in polar coordinates of frequency ® and orientation 6. Fix 6=0.

Now

[(w0) = ffc -i2mzw [(z,y) dy dz
= j. e 127Iw _’-I(:,y] dy dz

But this is just a one-dimensional Fourier transform of the function I(z) such that

I(z) = ff(z,y) dy

I(z) represents what I(z,y) is like, ‘on average’, in the direction parallel to the z axis, and f(w,0)
just encodes this information as a function of frequency. Now since the orientation of the retinal
coordinate frame was arbitrary, it’s clear that a ‘slice’ through the two-dimensional spectrum
f (w,8) for any fixed 6 represents what the image is like ‘on average’ in the direction making angle
0 with the z axis; and thus if the spectrum is circularly symmetric, so will the image be. And a
circularly symmetric image is intuitively isotropic.

But circular symmetry of images is too strong a necessary condition of isotropy. Requiring
only that the Fourier power spectrum F(w,8) = |f(w,0)|? be circularly symmetric relaxes the con-
dition in a satisfying way. Now isotropy is insensitive to translations of the retinal coordinate
frame (since translation only affects the phase of the spectrum, not its magnitude) and to other
perturbations of phase of components of the spectrum. Moreover, the power spectrum represents
the foreshortening effects of slant in a systematic way. By the similarity theorem of Fourier
analysis (cf. (Bracewell 1978) , p. 244), if F(w,0) is the power spectrum of the image /(z,y), then

F'(w,0) = cos?c F |(w?cos?d+w?sin®Bcosd)!'2, arctanﬁlm—% (1)
cos

is the power spectrum of [(z,y/cosc).

The power spectrum characterization of isotropy and Witkin’s tangent distribution charac-
terization agree for many images. We have adopted the spectrum characterization because it
establishes a relationship between the presence or absence of isotropy in the retinal image and the
activation of biologically plausible tuned channels in a way that permits the extraction of slant

information from some kinds of images. This relationship will be developed in the remainder of
the paper.
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THE TUNED CHANNEL MODEL

To say that there are spatial frequency- and oriention-tuned channels in the visual system is
just to say that there are neurons in visual cortex whose firing rates are elevated only when the
power spectrum of the retinal image shows energy in certain regions of the Fourier plane. The
power spectrum of the retinal image can be well represented by the activation level in many such
channels.

The point spread functions (‘receptive fields’) and spectral response of two channels are
shown in Figure 1. Channels vary in their nominal orientation and frequency but are assumed to
be identical in orientation and relative frequency bandwidth at 30 degrees and one octave respec-
tively. These bandwidth parameters are those used by Janiez (Janez 1983) and are close to the
average observed in cortex (DeValois, Yund & Hepler 1982); Watson (Watson 1983) and Daug-
man (Daugman 1984a) propose slightly different parameters. In the present application, what’s
important is that the channels be fairly narrowly tuned in frequency and orientation, and that
there be enough of them at enough different nominal frequencies and orientations to cover the
Fourier plane over the frequency range of interest.

(a) (b)

Figure 1

Point spread (above) and frequency response (below) functions for two tuned channels:
(a) frequency wg, orientation 0°; (b) frequency 2w,, orientation 30°. Each channel has
half-amplitude bandwidth of one octave in frequency and 30 degrees in orientation.
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The activation in a single tuned channel responding to a retinal image is calculated as fol-
lows. Let the power spectrum of the image I; be described by the function of frequency and
orientation F,(w,8), and that of the response of channel centered at frequency w, and orientation
8o be F,_ ¢ (w,0); then we say that the activation produced by the image in the channel at f,8 is

£ 27

[ [ Fi(,8) F,0,(w8) d6 do
Pasali) = = (2)

= 27

J [Fq,0,w0) do dw
=0

That is, channel power is the sum of image frequency power weighted by the response of the
channel, and normalized by the total frequency-plane area of the channel.

DETERMINING THE SLANT OF SCALING NOISE SURFACES

The distribution of markings on surfaces in the natural environment is typically random in
some sense; highly regular, structured patterns are rare. Here we consider the class of surfaces
marked with isotropic scaling noise, a class of markings that seem to model some naturally
occuring textures.2 We define such surfaces as those which have spatial radiance functions whose
power spectra are of the form

Fg(w,8) = k 0P

with B=0, and with random phase. Here B is a parameter that determines how rapidly changing
the radiance across the surface is; as B increases, the power at high spatial frequencies on the sur-
face decreases, and so the surface has a more slowly varying pattern marked on it (k is a propor-
tionality constant that can be taken as unity if the markings are suitably normalized). Note that
the spectrum is independent of orientation 8, so we should expect such a surface to look statisti-
cally the same in every direction (thus isotropic scaling noise).

Images of isotropic scaling noise surfaces with varying B are shown in Figure 2(a-d) viewed
with zero slant, i.e., ‘straight-on’, with line of sight normal to the surface. An extreme case is
B=0 which produces two-dimensional white noise, perhaps resembling the surface of a fractured
granite rock. B=1.0 gives a surface which looks like a gravelled walk; B =2.0 has a more gradually
varying texture, a fair rendering of a kind of tree bark; B=3.0 looks like a gently sun-dappled
patch of lawn. As noted, each has a power spectrum proportional to 1/w®, independent of 8. We
next consider how the power spectrum of the image changes when these surfaces are viewed at a
nonzero slant.

Given Cartesian coordinate axes z',y’ in the surface parallel to the image plane, the distri-
bution of surface markings is some two-dimensional isotropic scaling noise function I3(z',y'). The
orthographically projected image of this surface is the same function I3(z,y) relative to axes z,y
in the image which are projections of z',y'. Now rotate the surface about its z’ axis by a slant
angle o: this causes foreshortening along the y direction in the image proportional to 1/coso, and
no foreshortening along the =z direction; that is, the image is now described by
Ig o(z,y) = Ig(z,y/cosc), which is no longer an isotropic scaling noise. (Examples of images of

2 This class is a superset of the surfaces marked with isotropic fractional Brownian plane-to-
intensity functions ((Mandelbrot 1983) , ch. 25-27), which restrict B to the range 2 to 4. The
imaging of unmarked nonplanar surfaces whose shape is described by an isotropic fractional
Brownian plane-to-elevation function is another matter, and it doesn't seem to have been yet
adequately treated (Pentland’s fractal Brownian surfaces (Pentland 1984) are not fractal in
elevation).
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(b)

Figure 2

(a)-(d): Images of scaling noise surfaces, B= 0, 1, 2, and 3 respectiveiy; slant o=0.

(a")}-(d"): Images of scaling noise surfaces, = 0, 1, 2, and 3 respectively; slant 0=70
degrees.
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scaling noise surfaces slanted at 70 degrees are shown in Figure 2(a’-d’); their anisotropy should
be evident at least when B is large.) By the similarity theorem (cf. (1) above) the power spectrum
of the image Iy ,, which in the unslanted case v =0 was

Fa(w,®) = kw P,
becomes, for 8=m/2 (i.e., parallel to the foreshortened y-axis):
Fg (w,m/2) = cos?c k (wcosa) ¥,
and, for =0 (i.e., normal to the foreshortened direction):
Fgo(w,0) = cos?okw P.
The ratio of the power in these two orientations, as a function of spatial frequency, is then?

Fu_q(tﬂ, Ti'r’fz)

= (cosc) P
Fy () (cosa) P, (3)

RB,d{w) =

and we can write

(4)

Thus, we can determine the slant of the imaged surface if we can measure both B and Ry ,. But
this is easy to do, given the availability of frequency and orientation tuned channels of the sort
introduced above. Say we have four channels with orientations at 0 and n/2 centered at each of
two any distinct frequencies w and aw. Then, since a is known, a good estimate of B can be
obtained from either the fact that

Py.ollp,s) - Fg 4(w,0) _ cos’c kw® _ 4
Pouollpes) Fjy o(aw,0) cos’c k (aw) P

logR o(w) l ‘

O = arccos exp [

or

P z2lp,s) - Fg o(w,m/2) _ _cos’s k (cos’ow) P _ of
Py =2(1p,0) Fg y(aw,m/2) cos?a k (acos?ow) B

and then, with B known, and Ry, estimated directly from

Pm,ﬂxZ(Iﬁ.cr) - -Pam,mz{!ﬂ,rr)
Pm,D(IB,:'I') Pﬁm.ﬂ(lﬂ.u) '

the slant o can be determined by (4).*

Since the channels in the model have appreciable orientation bandwidth, they respond to
image power in a range of orientations. This means that P, . 5(/3,) will tend to be somewhat less
than Fg,(w,m/2), and P, o(f3,) will tend to be somewhat larger than Fj ,(»,0), which in turn
means that the estimate of Ry, obtained in this way will be smaller than it should be, and so will
lead to an underestimate of slant o. But as can be seen by inspecting the results of simulating
the model on images of isotropic scaling noise surfaces at various slants shown in Figure 3, the
errors are not substantial.’

3 The fact that Ry , depends not on w is the reason for calling these marking functions scal-
ing noises.

4 In practice, P ¢ can be observed at a large assortment of frequencies, and the resulting es-
timates of B and o can be subjected to averaging or a more sophisticated type of evidence com-
position.

5 The case of the white noise surface is excluded; =0 leaves (4) undefined. For such a sur-
face, slanting does not break the isotropy of its image's power spectrum, and only changes its
contrast: it is theoretically impossible to determine the slant of such a surface from a normal-
ized image. Perhaps this is what Pentland ((Pentland 1984), p. 673) has in mind when he says
“Characterization of an image in terms of radial slices of the Fourier domain ... constrains the
shape of the 3-D surface hardly at all ... [lumination effects can account for most variation in
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DETERMINING THE SLANT OF CIRCLES AND DISKS

The results of the previous section are not applicable only to stochastically textured sur-
faces; any surface marked with a function whose power spectrum is approximately proportional
to w P can have its slant estimated in the same way [rom a power spectrum of its image. In this
section, we demonstrate how this works for isolated circles and disks.

Let a planar environmental surface be marked with a circle of radius r,
cl(z',y’) = d((z'%+y'?)*—r), where & is the unit impulse function. The orthographically pro-
jected image of this surface at zero slant is ¢/, (z,y) which has power spectrum

F,(0,8) = (2mrJo(2mwr))? .

Here J, is the Bessel function of the first kind of order zero, which can be closely approximated
when z >7 by (cf. (Kreyszig 1972), p. 129)

1
Vg

Jo(z) = V2 sin(z +7/4) ;

so, if w is not too small, we have
Fw8) = 2L gn?2ner+X).
w 4

Thus, an unslanted circle’s power spectrum has an envelope like kw ® with B=1; and though the
phase of the spectrum is not random as it is for scaling noise surfaces, the same tuned-channel
techniques will work for slanted circles. The projection of a circle slanted at angle o is the ellipse
¢l (z,y/cosa), which has power spectrum in the relevant directions 6=0,7/2

F, o(w,m/2) = cos®c sin?(2mwrcoso+ %)

cosar
F, ,(0,0) = cos’c 2L sing(Zﬂmr+%).
w

Now the ratio F, ,(w,n/2)/F, ;(w,0) will be undefined for some w since the denominator will vanish,
but the averaging effect of the tuned channels (due to their having appreciable frequency
bandwidth) will prevent the observation of zeros in F, , and will extract the envelope of the spec-
trum well enough to determine =1 and then o in the same way as for scaling noise surfaces.

A disk

{ 1 when z2+y%<r,
pl(z,y) = 0 otherwise

has a w P power spectrum envelope as does a circle of the same radius ¢/, (z,y), but the scaling
exponent B is, somewhat surprisingly, very different in the two cases. The disk has power spec-
trum

Fr(‘”!a) = (wLJI(ZTrerz L)

where J; is the Bessel function of the first kind of order one, approximated when z >m by
1

/
Uy

Ji(z) = Vo sin(z —m/4) .

Thus the power spectrum can be approximated by

F.(w8) =

T sin?(2mwr——-)
3 4

such a description.’” But this is not true for values of g other than 0.
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which has an envelope like kw # with =3, compared to the circle’s B=1. Again, the same tuned
channel techniques permit an accurate estimation of the disk’s slant. The results of a simulation
of the model on these figures are displayed in Figure 3.

DISCUSSION OF THE MODEL

How suitable is this slant detection model as a model of human visual perception? One
striking feature is its unrealistically accurate performance on images of scaling noise surfaces with
small B: the model performs virtually flawlessly (cf. Figure 3) over nearly the entire range of
slants when B = 1, but such images seem to produce very weak slant illusion for human
observers and, even at a slant of 70 degrees do not have very salient anisotropies. As B increases,
however, the salience of anisotropy seems to increase until, at =3, Figure 2(d’) looks fairly con-
vincingly like a slanted patch of sun-dappled lawn.

This suggests that our model’s ‘adaptive’ determination of the scaling factor B tailored for
each image is unrealistic. Perhaps instead of (3), the visual system has

—F;;‘[:::‘(;)Q) = (cosa) "* (5)
or
Fgolom2)  Bo
Fyo(0,0) cosT
or
Ih 1 =i

2 |1 14Bo (Fpo(0ym/2)=Fp 4(,0))

or some other monotonic mapping between a measure of anisotropy in the frequency plane and
the possible range of slant angles with fized parameter B,. Given data from the psychophysical
experiment, it would be possible to fit one or another such function; as an example, the results of
a simulation of (5) with B,=4 are shown in Figure 4, and they are closer than the adaptive model
to what one might expect from human performance.

A problem with any such modification, however, is that to distinguish between the slant-
detectability of scaling noise surfaces with =1 and B=3 to fit human performance is ipso facto to
distinguish to the same extent between the slant-detectability of circles and disks.® And while the
experiments have not been done, it seems likely that circles and disks are very similar in respect
of slant-detectability, and B=1 and B =3 noise surfaces are very different.

[ suggest that the conclusion to draw is that the power in areas of an image’s global fre-
quency spectrum does not exhaust the information available to the perceptual system; spatial
information also exists. In fact, as has been noted elsewhere,” if spatial frequency analysis is per-
formed on the retinal image, it is performed locally, not globally; and the orientation- and

8 This is true if the lowest spatial frequencies are ignored. At frequencies low enough to
make the Bessel function approximations used here innacurate, or low enough to make the un-
dulations in the circle and disk spectra observable by octave-bandwidth channels, a spatial fre-
quency model could distinguish between noise on the one hand and circles and disks on the oth-
er. But low spatial frequencies are not the issue; low pass filtering the surfaces to remove these
frequencies appears to change the slant-detectability of a large circle hardly at all, while practi-
cally eliminating the already scarcely detectable anisotropies in an image of a slanted B=1
noise surface. Anisotropies in images of a 3 =3 surface remain salient.

7 For example, in (Daugman 1984a).
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frequency-tuned channels that exist are almost optimally designed, from an information-theoretic
point of view, to carry both spatial and frequency information. Now a scaling noise surface has a
very uninteresting spatial organization; practically all its distinctiveness comes from the statistics
of its radiance distribution, which is captured well in its power spectrum. Circles and disks and
their projections, however, have a determinate shape, and it should play a role in the judging of
slant. A parameterized tuned channel model of the sort sketched here may tell the story of slant
detection for stochastic surfaces, but it will not be the whole story of slant detection.
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