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ABSTRACT OF THE THESIS

Machine Learning-Based Model Predictive Control of Diffusion-Reaction Processes

by

Aarsh Dodhia

Master of Science in Chemical Engineering

University of California, Los Angeles, 2021

Professor Panagiotis D. Christofides, Chair

In this work, we develop a machine-learning-based predictive control design for nonlinear

parabolic partial differential equation (PDE) systems using process state measurement time-series

data. First, the Karhunen-Loève expansion is used to derive dominant spatial empirical

eigenfunctions of the nonlinear parabolic PDE system from the data. Then, these empirical

eigenfunctions are used as basis functions within a Galerkin’s model reduction framework to derive

the temporal evolution of a small number of temporal modes capturing the dominant dynamics of

the PDE system. Subsequently, feedforward neural networks (FNN) are used to approximate the

reduced-order dominant dynamics of the parabolic PDE system from the data within a desired

operating region. Lyapunov-based model predictive control (MPC) scheme using FNN models

is developed to stabilize the nonlinear parabolic PDE system. Finally, a diffusion-reaction

process example is used to demonstrate the effectiveness of the proposed machine-learning-based

predictive control method.

Key words : Parabolic PDEs; Galerkin’s method; Neural network modeling; Model predictive

control; Diffusion-reaction processes.
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Chapter 1

Introduction

Diffusion-reaction processes have widespread industrial applications, for example, chemical vapor

deposition, catalytic reactors, and crystal growth processes. These processes are governed by

nonlinear parabolic partial differential equation (PDE) systems, and their dominant dynamic

behavior can be characterized by a finite number of degrees of freedom [5]. The traditional

approach to controlling systems governed by linear parabolic PDEs involves application of

eigenfunction expansion techniques for deriving a reduced-order model of finite dimensional

ordinary differential equations (ODEs) that describe the dominant dynamics of the PDE system

(e.g., [4, 6]). Specifically, the solution of the original PDE system is initially expanded as the sum

of an infinite series of the eigenfunctions of the spatial differential operator with time-varying

coefficients. This expansion is subsequently used to derive an infinite set of ODEs for the

coefficients of the expansion. Then, a finite-dimensional ODE model is derived by discarding an

infinite set of equations. The finite-dimensional ODE model is subsequently used as the basis

for the synthesis of finite-dimensional controllers. Significant work in the 90s was aimed at

constructing lower-order nonlinear ODE models to generate nonlinear low-order controllers for

nonlinear parabolic PDE systems [5]. These models were developed by combining Galrekin’s

method with the concept of approximate inertial manifolds and empirical eigenfunctions.

Most research in the area of model predictive control (MPC) has been focused on
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lumped-parameter process models. The challenge of deriving predictive controllers for distributed

parameter systems, modeled by PDEs has attracted considerably less attention. Specifically,

early work focused on using spatial discretization techniques such as finite differences to

derive higher-order ODE models. Model predictive control techniques were then applied to

these models, leading to computationally expensive designs which are difficult to implement

on-line [8]. Subsequently, MPC designs using low-order approximate models obtained via

nonlinear Galerkin’s method were developed including economic MPC designs [7, 12]. With

the rapid development of machine learning techniques in the past decade, and the ability of

neural networks to approximate nonlinear functions according to the universal approximation

theorem, they could be used to derive nonlinear prediction models for model predictive control

with superior computational efficiency. Moreover, in the case where the process model is

unknown, artificial neural networks can be trained off-line using process historical data to provide

function approximators for model-based controllers. Motivated by the above considerations, in

this work, we utilize neural network modeling techniques to model nonlinear parabolic PDE

systems. Subsequently, we use MPC, which is an advanced control method that solves a numerical

optimization problem to find the optimum control law. An important requirement for MPC is a

process model which can predict the states of the system with desired accuracy. This process

model can be derived by accounting for the physiochemical mechanisms that affect the process,

or be derived using data-driven approaches [1, 10, 11, 17] from process solution time-series data.

Machine learning techniques such as neural networks have been successfully utilized in recent

works in the design and implementation of model-based controllers, e.g., [2, 9, 16].

In this work, we first obtain empirical eigenfunctions using the Karhunen-Loève (K-L)

expansion technique. Through Galerkin’s method, ODE models are then derived to capture

the dominant dynamics of the nonlinear parabolic PDE system using the obtained empirical

eigenfunctions as basis functions. Subsequently, feedforward neural networks (FNN) are trained

from PDE solution time-series data projected on the empirical eigenfunctions to describe the

temporal evolution of the dominant modes. A Lyapunov-based MPC (LMPC) scheme using the
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FNN model is then developed following the formulations in [13, 17] to stabilize the nonlinear

parabolic PDE system. Closed-loop simulations of a diffusion-reaction process under the LMPC

using low-order FNN models are compared with that using high-order discretization of the PDE

model in the LMPC to demonstrate the efficacy of the proposed machine-learning-based predictive

control method.

The rest of this thesis is organized as follows: in Chaper 2, the class of nonlinear systems

is considered, the Karhunen-Loéve expansion and the formulation of Galerkin’s method for

model reduction are given. In Chapter 3, we discuss the machine learning modeling of temporal

evolution of the PDE system. In Chapter 4, we propose and develop a Lyupanov-based model

predictive controller (LMPC) which stabilizes the nonlinear parabolic PDE system and discuss the

computational methodology applied ranging from development of the neural network model to

LMPC computational procedures. In Chapter 5, we use a diffusion-reaction chemical process

example to illustrate the application of machine learning modeling and predictive control of

parabolic PDE systems; closed-loop simulations of the diffusion-reaction process under the

aforementioned LMPC using low-order neural network models are analyzed.
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Chapter 2

Preliminaries

2.1 Class of Parabolic PDE Systems

Consider a class of nonlinear parabolic partial differential equation systems of the form:

∂ x̄
∂ t

= A
∂ x̄
∂ z

+B
∂ 2x̄
∂ z2 +Wu(t)+ f (x̄(z, t)) (2.1)

subject to the boundary conditions:

x̄ = 0, z = 0;

x̄ = 0, z = π;
(2.2)

and the initial condition:

x̄(z,0) = x̄0(z) (2.3)

where x̄(z, t) = [x̄1(z, t) · · · x̄nx(z, t)]
T denotes the state vector of the system, f (x̄(z, t)) denotes a

nonlinear vector function, z ∈ [0,π] is the spatial coordinate, t ∈ [0,∞) is the time, A,B,W are

matrices and vectors of appropriate dimensions and u(t) denotes the nu-dimensional manipulated

input vector and is subject to the following input constraints:

umin ≤ u(t)≤ umax (2.4)
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where umin and umax are the lower and upper bound vectors of the manipulated input u(t).

2.2 Karhunen-Loève Expansion

The derivation of finite dimensional approximations of PDEs is imperative to design controllers for

such nonlinear PDE systems. The principal hurdle in developing a general model reduction scheme

for systems of the form of Eq. 2.1 is the presence of nonlinear terms. To overcome this problem,

the Karhunen-Loève (K-L) expansion technique is applied to an ensemble of process solution data

to derive a small set of empirical eigenfunctions which describe the dominant spatial patterns of

the nonlinear PDE system. These computed eigenfunctions will be used as basis functions within

the Galerkin’s model reduction framework [3, 14]. Specifically, we first generate a large ensemble

set of the solutions of our system described by Eq. 2.1, which is denoted by {v̄k} consisting of N

states, v̄k(z) sampled at uniform time intervals for computational ease. The ensemble average is

defined as follows:

〈v̄k〉=
1
K

K

∑
n=1

v̄n(z) (2.5)

where K is the number of data samples. To obtain the most typical and characteristic functions

φ(z), we analyze the fluctuations in sample states {v̄k}, given by the equation below:

vk = v̄k−〈v̄k〉 (2.6)

Subsequently, we define B as follows:

Bκk =
1
K

∫
π

0
vκ(z)vk(z)dz (2.7)

and obtain the eigenvalues by solving the following equation:

Bc = λc (2.8)
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where c = [c1, ...,cK] denotes the eigenvectors matrix, which can be used to construct φ(z) with

the following equation:

φ(z) = ∑
k

ckvk(z) (2.9)

When the eigenfunctions are ordered such that the eigenvalues satisfy λ1 > λ2... > λl+1, then the

following equation holds for a given decomposition of a state:

vk(z) =
L

∑
l=1

γlφl(z) (2.10)

The projection on the subspace spanned by the empirical eigenfunctions will on average contain

the most energy possible compared to all other linear decompositions for any L. The calculated

eigenvalues, once normalized, represent the percentage of energy, or equivalently, time that the

solution of the PDE system spends along the spatial structure of the empirical eigenfunction.

2.3 Galerkin’s Method

In this section, we use Galerkin’s methods to derive low-order dynamic systems of nonlinear

ordinary differential equations that represent the dominant dynamics and thereby solutions of the

nonlinear PDE system of Eq. 2.1. To simplify the presentation, we assume that we have available

an orthogonal and complete set of analytical eigenfunctions which span the entire domain of the

nonlinear process as basis functions φk(z) which satisfy the boundary conditions listed in Eq. 2.2.

In practice, φk(z) will be the set of empirical eigenfunctions computed through K-L expansion.

We formulate the PDE system as an infinite dimensional system in the Hilbert space

H ([0,π]; IRnx), with H being the space of measurable vector functions defined on [0,π], with

inner product and norm:

(ω1,ω2) =
∫

π

0
(ω1(z),ω2(z))IRnx dz,

‖ω1‖2 = (ω1,ω1)
1
2

(2.11)

where ω1,ω2 are two elements of H ([0,π]; IRnx) and the notation (·, ·)IRnx denotes the standard
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inner product in IRnx . The state function x(t) on the state-space H is defined as

x(t) = x̄(z, t), t > 0, 0≤ z≤ π, (2.12)

and the operator A is defined as

A x = A
dx̄
dz

+B
d2x̄
dz2 , 0≤ z≤ π. (2.13)

Then, the system of Eq. 2.1 takes the following infinite-dimensional quasi-linear form:

ẋ(t) = A x(t)+Bu(t)+F (x(t)), x(0) = x0 (2.14)

where x0 = x̄0(z), Bu(t) =Wu(t), and F (x(t)) is a nonlinear vector function in the Hilbert space.

For the operator A , the eigenvalue problem takes the form

A φk = λkφk, k = 1, . . . , ∞ (2.15)

subject to

φk(0) = 0,

φk(π) = 0
(2.16)

where φk is an eigenfunction corresponding to the k-th eigenvalue of the operator A .

Under the assumption that most diffusion-reaction processes have large separations of slow and

fast modes of the spatial operator, the eigenspectrum of operator A can be partitioned into a finite

part consisting of m slow eigenvalues and a stable infinite complement containing the remaining

fast eigenvalues [12]. We apply standard Galerkin’s method to the infinite-dimensional system of

Eq. 2.14 to derive a finite-dimensional system. Let Hs and H f be modal subspaces of A defined as

Hs = span{φ1,φ2, . . . ,φm} and H f = span{φm+1,φm+2, . . .}. Let Ps and Pf denote the orthogonal

projection operators that project the state x onto the subspaces Hs and H f of A , respectively (i.e.,
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xs = Psx ∈Hs and x f = Pf x ∈H f ). The state x of the system of Eq. 2.14 can be decomposed as

follows:

x = xs + x f = Psx+Pf x (2.17)

Applying Ps and Pf to the system of Eq. 2.14 and using the above decomposition for x, the system

of Eq. 2.14 can be re-written in the following equivalent form:

ẋs(t) = Asxs(t)+Fs(xs(t),x f (t))+Bsu(t), xs(0) = Psx(0) = Psx0

ẋ f (t) = A f x f (t)+F f (xs(t),x f (t))+B f u(t), x f (0) = Pf x(0) = Pf x0

(2.18)

where As = PsA , Bs = PsB, A f = Pf A , B f = Pf B, F f = Pf F , Fs = PsF . In the above

system, As = diag{λ j}, j = 1, . . . , m is a diagonal matrix of dimension m×m and may contain

unstable eigenvalues (i.e., Re(λ j) > 0). The operator A f is an unbounded exponentially stable

differential operator. Neglecting the fast modes, the resulting ODE system is

ẋs(t) = Asxs(t)+Fs(xs(t),0)+Bsu(t), xs(0) = Psx0 (2.19)

which is a finite-dimensional system that describes the slow (dominant) dynamics of the PDE

system of Eq. 2.1.
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Chapter 3

Machine Learning Modeling of Temporal

Evolution

In this chapter we discuss the order reduction of x̄(z, t) using the dominant empirical functions

φk(z) as basis functions in a Galerkin’s model reduction framework. Applying the model reduction

on available process data gathered from open-loop simulations of the PDE system of Eq. 2.1, we

intend to train and develop machine-learning-based feedforward neural network models which

capture the dynamics of the nonlinear PDE system with a sufficiently high accuracy.

To this end, we first reduce the PDE system to an ODE model. Using Galerkin’s method,

we obtain a higher-order ODE system describing the temporal evolution of the amplitudes of the

corresponding m slow and dominant eigenfunctions. The state x̄(z, t) can be written as:

x̄(z, t) =
m

∑
i=1

ci(t)φi(z) (3.1)

Substituting the above equation in Eq. 2.14, we obtain:

Mċ(t) = MAsc(t)+Fs(c(t))+Bs(u(t)) (3.2)

where c(t) = [c1(t), c2(t), · · · , ci(t), · · · , cm(t)]T with elements ci(t) ∈ IR associated with the

amplitudes of the first m eigenfunctions. The matrix As = diag{λi} is a m×m matrix (i.e.,
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i = 1, . . . , m), the matrices Bs and the nonlinear vector fields Fs can be constructed through the

appropriate inner product, e.g.,

Bs,i =



(φ1(z), u(t))

(φ2(z), u(t))
...

(φm(z), u(t))


(3.3)

where M is a m×m matrix given by:

M =



(φ1(z), φ1(z)) (φ1(z), φ2(z)) . . . (φ1(z), φm(z))

(φ2(z), φ1(z)) (φ2(z), φ2(z)) . . . (φ2(z), φm(z))
...

(φm(z), φ1(z)) (φm(z), φ2(z)) . . . (φm(z), φm(z))


. (3.4)

The initial conditions of the ODEs in Eq. 2.14 are

Mc(0) =



(φ1(z), x̄(z,0))

(φ2(z), x̄(z,0))
...

(φm(z), x̄(z,0))


, (3.5)

After obtaining the eigenfunctions from K-L expansion which capture the dominant dynamics

of the nonlinear system, we run extensive open-loop simulations within the region of interest by

manipulating actuator inputs u(t) and initial states of the system x̄(0). Inputs u(t) are implemented

in a sample-and-hold fashion, as a piecewise constant function over a sampling period ∆ and

the system of Eq. 2.1 is integrated using the finite differences method with a sufficiently small

integration time step h < ∆. Using the eigenfunctions, we decompose the higher-order states of the

system attained from the open-loop simulations to obtain temporal evolution of the amplitudes of

the eigenfunctions for the PDE system c(t) = [c1(t), c2(t), · · · , ci(t), · · · , cm(t)]T . Using the data

set generated by these simulations, we train a feedforward neural network (FNN) to capture the
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Figure 3.1: The schematic of feedforward neural network, where H1 and H2 are the hidden layers,
c(tk) is the state vector of the temporal modes, c(tk+h) is the predicted state vector of the temporal
modes and u(tk) is the manipulated input vector.

process dynamics within the operating region. The FNN model is developed with 2 hidden layers,

with H1 and H2 neurons in each layer. Fig. 3.1 denotes the skeleton of the FNN model, which

takes the current state of the reduced system c(tk) and the manipulated input profile u(t) as inputs

and returns the predicted state of the system at the next time step, c(tk +h) as its output, where h is

the integration time step. The data sets generated by the set of ensembles is then partitioned using

the split functions in Python to training, validation and testing sets. This concludes the formulation

of the FNN model which captures the nonlinear dynamics of the system.

Remark 3.1. The matrix M would be an identity matrix, Im in case of analytically derived

eigenfunctions. But in most data-driven approaches when the process model is unknown or K-L

expansion is used over an ensemble of states to compute empirical eigenfunctions, the matrix M is

close to Im and hence should be accounted for to reduce errors.

Remark 3.2. FNN models are developed in Python using Keras (an open source network of

libraries). The optimization problem of minimizing fitting error is solved by using the Adam

estimation method, with the loss function calculated as the mean squared error between the

predicted and true states.
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Chapter 4

Lyupanov-based Model Predictive Control

In this chapter, we develop a Lyupanov-based model predictive controller (MPC) using the FNN

model derived for the nonlinear process with a sufficiently small modeling error. We assume there

exists a stabilizing feedback controller u = Φ̂nn(c) that renders the origin of the system of Eq. 2.14

exponentially stable in a neighborhood around the origin. The stabilizability assumption implies

there exists a control Lyapunov function V̂ (c) such that the following inequalities hold for all c in

a neighborhood D around the origin:

α̂1|c|2 ≤ V̂ (c)≤ α̂2|c|2, (4.1a)

∂V̂ (c)
∂c

Fnn(c,Φ̂nn(c))≤−α̂3|c|2, (4.1b)∣∣∣∣∂V̂ (c)
∂c

∣∣∣∣≤ α̂4|c| (4.1c)

where α̂1, α̂2, α̂3, α̂4 are positive constants, and Fnn(c,u) represents the FNN model of Eq. 3.2 (i.e.,

MFnn(c,u) := MAsc(t)+Fs(c(t))+Bs(u(t))). We first search the entire state-space to characterize

a set of states φ̂u where Eq. 4.1 holds under u = Φ̂nn(c) ∈U , and U is the control action constraint

set U := {umin ≤ ui ≤ umax, i = 1,2, ...,m} ⊂ Rm. Then, we characterize the closed-loop stability

region Ωρ̂ for the nonlinear system of Eq. 2.14 as a level set of Lyapunov function within the set

φ̂u, Ωρ̂ := {c ∈ φ̂u | V̂ (c)≤ ρ̂}, ρ̂ > 0.

12



Based on the stabilizing control law u = Φ̂nn(c) ∈U , the Lyapunov-based MPC design using

neural network model is given by the following optimization problem [17]:

J = min
u∈S(∆)

∫ tk+N

tk
L(c̃(t),u(t))dt (4.2a)

s.t. ˙̃c(t) = Fnn(c̃(t),u(t)) (4.2b)

u(t) ∈U, ∀ t ∈ [tk, tk+N) (4.2c)

c̃(tk) = c(tk) (4.2d)

˙̂V (c(tk),u)≤ ˙̂V (c(tk),Φ̂nn(c(tk)), if c(tk) ∈Ωρ̂\Ωρnn (4.2e)

V̂ (c̃(t))≤ ρnn, ∀ t ∈ [tk, tk+N), if c(tk) ∈Ωρnn (4.2f)

where c̃ is the state trajectory predicted by the neural network, S(∆) is the set of piecewise constant

functions with period ∆, and N is the number of sampling periods in the prediction horizon. The

control Lyapunov function V (c) = cT Pc is designed with a positive definite P matrix. ˙̂V (c,u) is

used to represent ∂V̂ (c)
∂c (Fnn(c,u)). The optimal input trajectory computed by the LMPC is denoted

by u∗(t), which is calculated over the entire prediction horizon t ∈ [tk, tk+N). The control action

computed for the next sampling period of the prediction horizon u∗(tk) is sent by the LMPC to be

applied over one sampling period and the LMPC is re-evaluated with new state measurements at

the next sampling time.

4.1 Computational Methodology

This section discusses the computational procedures for the development of FNN models and

optimization of LMPC. A diffusion-reaction process example will follow the section, where the

detailed algorithm of methodology discussed in this section is implemented. The detailed steps of

the LMPC system flowchart are shown in Fig. 4.1 and are presented as follows:

13



4.1.1 Development of FNN models

1. Since the analytical process model accounting for the various physiochemical mechanisms

that affect the process may be unknown, we employ a data-driven approach to obtain an ensemble

data set of the system states from extensive open-loop simulations of the PDE system.

2. Perform K-L expansion on this ensemble data set to obtain a set of empirical eigenfunctions.

The calculated eigenvalues, once normalized, represent the percentage of energy, or equivalently,

time that the solution of the PDE system spends along the spatial structure of the empirical

eigenfunction.

3. Generate a set of the first m eigenfunctions in descending order of their eigenvalues, and

compute the fraction of energy stored in this set over the total ensemble of data. If the fraction of

energy stored in the set is large enough (>99%) then proceed to step 5, else continue to step 4.

4. Since the energy stored in the set of empirical eigenfunctions is not large enough, we add

one more eigenfunction to this set and repeat step 3.

5. The set now accounts for >99% energy in the ensemble, and will be used as the set of

dominant empirical eigenfunctions. Convert the ensemble < x̄(z, t) > of open-loop simulations

to < c(t) > using Galerkin’s method for model reduction using the set of dominant empirical

eigenfunctions as basis functions.

6. Train FNN models in Python on the data set < c(t)> which represents dominant temporal

patterns of the nonlinear PDE system. The FNN model takes the current state of the reduced

system c(t) and the manipulated input profile u(t) as inputs and returns the predicted state of the

system at the next time step, c(t +h) as its output.

7. Calculate the modeling error of the FNN model. If it is less than the modeling error threshold

ψ , proceed to step 9, else continue to step 8.

8. Since the modeling error is still large, retrain FNN model by modifying network parameters

and repeat step 7.

9. After obtaining the FNN process model, proceed to model predictive control. This step ends

the development of FNN models.
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4.1.2 LMPC Computation Procedure

1. Obtain a measurement of the current state x̄(z, tk) at t = tk.

2. Convert x̄(z, tk) to < c(tk) > using Galerkin’s method for model reduction with the set of

dominant empirical eigenfunctions obtained from K-L expansion as basis functions.

3. Solve the LMPC optimization problem of Eq. 4.2 and obtain the optimal input u∗(t) which

is calculated over the entire prediction horizon t ∈ [tk, tk+N).

4. Control action computed for the first sampling period of the prediction horizon u∗(tk) is sent

to the nonlinear PDE system.

5. At the next sampling time, LMPC receives a new state measurement, and is resolved

following steps 1-4. The LMPC is executed iteratively until the end of the operation period.
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Figure 4.1: A flowchart for the Lyapunov-based model predictive controller integrated with the
finite difference actuator process to avoid potential state constraint violations.
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Chapter 5

Application to a Diffusion-Reaction Process

In this chapter, we use a diffusion-reaction chemical process example to illustrate the application

of machine learning modeling and predictive control of parabolic PDE systems. We first present

the model of the diffusion-reaction process and compute the empirical eigenfunctions using K-L

expansion. Then, we apply Galerkin’s method to derive a reduced-order model, and generate

an FNN model that accounts for temporal variations based on data generated from open-loop

simulations of the PDE system. Finally, we carry out closed-loop simulations of the PDE system

under the LMPC using the reduced-order FNN model.

5.1 Process Description

Consider a diffusion-reaction process given by the following nonlinear parabolic PDE equation:

∂ x̄
∂ t

=
∂ 2x̄
∂ z2 +βT (e

−γ

1+ x̄ − e−γ)+βU(b(z, t)u(t)− x̄) (5.1)

where x̄ denotes the state vector of the system, γ , βT and βU are dimensionless process parameters,

u(t) = [u1(t) u2(t)]T is the input vector, and b(z, t) = [b1(t) b2(t)] is a function which controls how
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the inputs are distributed in space and time. The system is subject to Dirichlet boundary conditions:

z = 0 : x̄(0, t) = 0

z = L : x̄(L, t) = 0

t = 0 : x̄(z,0) = x̄0(z)

(5.2)

where γ = 4, βT = 50, βU = 2 and L = π . The process has two equidistant actuators, b1(t) =
δ (z−π/3)

βU
and b2(t) =

δ (z−2π/3)
βU

, where δ is the standard Dirac delta function.

5.2 Computation of Empirical Eigenfunctions and Galerkin’s

Method

To compute the set of empirical eigenfunctions, we construct an ensemble of solutions by solving

a higher-order discretization of Eq. 5.1. For an initial condition x̄(z,0) = 5, and a series of

time-varying manipulated input profiles, we generate 25,000 state profiles, from which we extract

5,000 “snapshots” at equal time intervals. Then, we use as an ensemble to compute empirical

eigenfunctions using the K-L expansion technique. We compute three eigenfunctions that describe

the dominant spatial development patterns in the ensemble of solutions, accounting for more than

99% energy included in the ensemble. Fig. 5.1 shows the three dominant empirical eigenfunctions

arranged in descending order of eigenvalues (i.e., λ1 > λ2 > λ3).

Using the three empirical eigenfunctions as basis functions of the PDE, and employing

Galerkin’s method, we construct a third-order reduced model for the PDE system. Fig. 5.2

compares the evolution of the state of the system from the higher-order discretized (numerical)

solution and from the third-order reduced model solution for the same initial conditions and

time-varying manipulated input profiles. Using the reduced-order model framework, we derive the

temporal evolution of the temporal modes (i.e., ci’s in Eq. 3.1), capturing the dominant dynamics of

the PDE system. This will be used as our training data set for developing neural network models.
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Figure 5.1: Three dominant empirical eigenfunctions extracted from K-L expansion for an
ensemble of data which are used as basis functions in Galerkin’s method.

5.3 Neural Network Modeling of Temporal Evolution

In this section we discuss how to generate an FNN model to approximate the reduced-order

dominant dynamics for the nonlinear parabolic PDE system of Eq. 5.1. Using the three

eigenfunctions obtained for our system from K-L expansion, we rewrite the high-dimensional state

x̄(t) as shown in Eq. 3.1. Various simulations are carried out for different initial conditions x̄0(t),

and manipulated input profiles u(t) = [u1(t),u2(t)]T . The ensemble of solutions for a given initial

condition and input scheme are generated over N sampling periods of size ∆ for c(t). The various

ensemble sets are congregated to create the whole data set for the FNN model in Python.

The FNN model is developed with 2 hidden layers, with 64 neurons each layer, connected to a

fully-connected layer. Fig. 3.1 denotes the skeleton of the FNN model, which takes the current

state of the reduced system c(tk) and the manipulated input profile u(t) as inputs and returns the

predicted state of the system at the next timestep, c(tk +h) as its output. The data set generated by

the set of ensembles is then partitioned using the split functions in Python to training, validation

and testing sets. The FNN model is trained using Keras, which is a state-of-the-art, open source
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(a)

(b)

Figure 5.2: (a) Higher-order discretized solution of the parabolic PDE, and (b) Third-order
Galerkin’s solution (reduced-order) generated using dominant empirical eigenfunctions as basis
functions.

20



machine learning library in Python. The Adam optimization algorithm associated with the mean

squared error loss function is used to optimize the weights in the model. To determine if the FNN

model is sufficiently accurate, we calculate the error between the temporal modes predicted from

the FNN model and Galerkin’s method as follows:

e(t) =
||cNN(t)− c(t)||2
||c(t)||2

(5.3)

where cNN(t) is the state predicted by the FNN model and c(t) is the solution obtained from

Galerkin’s method. Fig. 5.3 shows the prediction error of the FNN model for different initial

conditions and manipulated input profiles. The increase of error over time is due to compounding

of errors in prediction from the first instant; however, it is demonstrated that the modeling

error remains less than 2% and saturates after the system reaches the steady-state values, which

indicates that the FNN model can capture the nonlinear dynamics well. Fig. 5.4 compares the

state profiles from the prediction of the FNN model and the reduced-order Galerkin’s method

model (i.e., third-order Galerkin’s method approximation of the PDE with the first three empirical

eigenfunctions as basis functions) for the same initial conditions and time-varying input profiles.

Remark 5.1. Note that the inputs to the PDE system are implemented in a sample-and-hold

fashion. Inputs are fed as piece-wise constant functions of time u(t) = u(tk),∀t ∈ [tk, tk + ∆]

where ∆ is the sampling period. The system is integrated with a sufficiently small integration

time step h (which is much smaller than the sampling time ∆) for the calculation of the high-order

discretization solutions.

5.4 Lyapunov-based Model Predictive Control

In the optimization problem of Eq. 4.2, the control Lyapunov function V (c) = cT Pc is designed

with the positive definite identity P matrix I3. The LPMC cost function is defined as L(c(t),u(t)) =

100||c||1 + 0.001||u||22, such that origin is the minimum of L(c,u); quadratic costs were also
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Figure 5.3: Prediction error of FNN model from reduced-order model computed using Eq. 5.3 for
various input profiles and initial conditions in the operating region.
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(a)

(b)

Figure 5.4: (a) Feedforward neural network model prediction, and (b) Third-order model obtained
via Galerkin’s method for x0 = 7.5 and actuator inputs u(t) = −100 located at z = π/3 and z =
2π/3.
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considered but the one ultimately employed was found to give the best closed-loop performance.

The constraint of Eq. 4.2b is the FNN model used to predict the states of the closed-loop system of

Eq. 5.1. Eq. 4.2c defines the input constraints applied over the entire prediction horizon. Eq. 4.2d

defines the initial condition c̃(tk) of Eq. 4.2b, which is the state measurement at t = tk. The

constraint of Eq. 4.2e forces the closed-loop state to move towards the origin if c(tk) ∈ Ωρ̂\Ωρnn ,

where Ωρnn is terminal set. However, if c(tk) enters Ωρnn , the states predicted by the FNN model

of Eq. 4.2b will be maintained in Ωρnn for the entire prediction horizon. The process is initially

operated at x0(z) = 7.5, which corresponds to c(t = 0) = [1.84,4.18,9.25]T using Eq. 3.5. The two

manipulated inputs are signals given by the left and right actuators with bounds |u1(t)|< 300 and

|u2(t)|< 300, respectively. The states of the closed-loop system are c(t) = [c1(t),c2(t),c3(t)]T and

the manipulated inputs are u(t)= [u1(t),u2(t)]T , with the origin being the desired equilibrium point

of the system. The control objective is to manipulate u(t) such that the process can be stabilized at

the origin under LPMC using the FNN models. The finite difference method with an explicit Euler

implementation is used to numerically simulate the dynamic model of Eq. 5.1 with an integration

time step h = 10−3. The nonlinear optimization of the LPMC of Eq. 4.2 is solved using the Python

module of the IPOPT ( [15]) software package named PyIpopt with a sampling period ∆ = 0.1 and

number of sampling periods in the prediction horizon N = 4.

Fig. 5.5(a) shows the evolution of the closed-loop state under the optimal manipulated input

trajectory u∗(t) computed by solving the LMPC using the FNN model. For t = 0.6, the system

enters Ωρnn and is maintained there for the remaining period. For t > 0.6, inputs oscillate around

0 in an attempt to maintain the system state in the region. Fig. 5.6(a) displays the optimal control

action obtained by solving the LMPC optimization problem of Eq. 4.2, where it can be seen that the

inputs meet the constraints for all times. Fig. 5.5(b) shows the evolution of the closed-loop state

under the LPMC using the higher-order discretized solution of the original PDE model, which

serves as a benchmark to compare the FNN process model MPC results. Fig. 5.6(b) displays the

optimal control action under the LMPC using the higher-order discretized model.

Comparing the results of Fig. 5.5 and 5.6, we observe that the closed-loop performance using

24



(a) (b)

Figure 5.5: Closed-loop state profiles under the LMPC of Eq. 4.2 using (a) FNN model, and (b)
higher-order discretization of the parabolic PDE, for the initial condition x0(z) = 7.5.
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Figure 5.6: Control action profiles u∗(t) under LMPC using (a) FNN model, and (b) higher-order
discretization of the parabolic PDE, for the initial condition x0(z) = 7.5.
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(a) (b)

Figure 5.7: Closed-loop state profiles for the LMPC using (a) FNN model, and (b) higher-order
discretization of the parabolic PDE, for the initial condition x0(z) = 2.

neural network model is close to that using higher-order discretized solution of the original PDE

model. In Fig. 5.6, it is observed that the neural network model remains aggressive in its efforts

to bring the state to the origin, leading to some correction towards the end of the operation period,

whereas the first principles solution maintains actuator input values below 0. Additionally, Fig. 5.7

and 5.8 show the closed-loop state and control action profiles for x0(z) = 2. Results obtained

for this case are consistent with those of the previous case, and the closed-loop state profiles

for both models are ultimately maintained within a small neighborhood around the origin. The

closed-loop simulation study demonstrates that the FNN model provides a desired approximation

of the nonlinear PDE system and can be used to stabilize the system in the framework of LMPC.
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Figure 5.8: Control action profiles u∗(t) under LMPC using (a) FNN model, and (b) higher-order
discretization of the parabolic PDE, for the initial condition x0(z) = 2.
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Chapter 6

Conclusion
In this work, we developed machine-learning-based MPC for diffusion-reaction processes. We

first derived dominant spatial empirical eigenfunctions of the nonlinear PDE system by applying

K-L expansion to process solution time-series data. These eigenfunctions were then used as basis

functions within a Galerkin’s model reduction framework to derive the temporal evolution of a

small number of modes capturing the dominant dynamics of the PDE system. Subsequently,

FNN models were trained using extensive open-loop simulations in an operating region to

approximate the reduced-order dynamics of the PDE system, with a sufficiently small modeling

error between the FNN model and the reduced-order model. The FNN model was then used in

an LPMC formulation to provide state predictions and achieve closed-loop stability. Finally, a

diffusion-reaction process was used to illustrate the effectiveness of FNN modeling in predictive

control of PDE systems.
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