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Federated Analysis for Privacy-Preserving Data Sharing: A 
Technical and Legal Primer

James Casaletto1,*, Alexander Bernier2,*, Robyn McDougall2, Melissa S. Cline1

1Genomics Institute, University of California, Santa Cruz, California, USA;

2Centre of Genomics and Policy, Faculty of Medicine and Health Sciences, McGill University, 
Montreal, Quebec, Canada;

Abstract

Continued advances in precision medicine rely on the widespread sharing of data that relate 

human genetic variation to disease. However, data sharing is severely limited by legal, regulatory, 

and ethical restrictions that safeguard patient privacy. Federated analysis addresses this problem 

by transferring the code to the data—providing the technical and legal capability to analyze the 

data within their secure home environment rather than transferring the data to another institution 

for analysis. This allows researchers to gain new insights from data that cannot be moved, while 

respecting patient privacy and the data stewards’ legal obligations. Because federated analysis 

is a technical solution to the legal challenges inherent in data sharing, the technology and 

policy implications must be evaluated together. Here, we summarize the technical approaches 

to federated analysis and provide a legal analysis of their policy implications.
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INTRODUCTION

Most diseases have a genetic component (49). While clinical genetic testing now offers 

individuals greater opportunities to understand and manage their heritable disease risk (39, 

79), its impact is limited by the many gaps in our understanding of human genetic variation. 

This is seen in the significant missing heritability of most diseases, with family history 

predicting disease risk more accurately than genetics (57, 91). It is also seen in the high 

rates of variant of uncertain significance (VUS) results in clinical testing, with recent studies 

reporting VUS results in approximately 20% of the patients tested with cancer susceptibility 
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gene panel tests (21, 40, 72). Patients of non-European ethnicities have a significantly higher 

rate of VUS results than their European counterparts, leading to greater mortality from 

heritable disorders (14, 68). These problems could be addressed by data sharing, particularly 

global data sharing. However, the sharing of human genetic data is limited by a complex 

network of legal, ethical, and regulatory restrictions that aim to protect patient privacy (6) or 

data sovereignty (44, 54, 71, 83). As a result, most human genetic data remain siloed and are 

inaccessible to most researchers and those making clinical inferences.

Often, however, these regulations permit the sharing of aggregated, nonidentifiable data, 

which can help advance research. For example, variant interpretation guidelines from the 

American College of Medical Genetics and Genomics and the Association for Molecular 

Pathology (67) include summary statistics that describe the enrichment or lack of disease in 

patients with a given genetic variant but do not directly require individual observations of 

those patients. If one can share the capabilities to generate these summary statistics, one can 

share knowledge without transferring the sensitive patient data.

Data federation achieves such sharing through a decentralized architecture, in which a 

network of data providers maintains full control over the data within a secure computing 

environment while enabling access to the data by external collaborators (81). Federated 

analysis is a form of data federation in which collaborators “bring the code to the data” to 

analyze data in situ, within the data providers’ computing environment (see Figure 1).

When federated analysis generates nonidentifiable results from patient-level data, those 

results can be shared externally even when the original patient-level data cannot. Federated 

analysis balances the needs of data stewards to restrict access to regulated data with 

the needs of the scientific and clinical community to gain new insights from data that 

cannot be transferred for legal, ethical, or technical reasons. Achieving this vision requires 

technologies that allow researchers to reliably analyze data that they cannot directly access, 

coupled with privacy safeguards that allow data stewards to assess the risks inherent in such 

analyses. In short, federated analysis offers technical solutions to legal restrictions on data 

use and data sharing. As such, to understand its potential and limitations, one must consider 

the technical and legal aspects of the situation together.

This article begins with a discussion of privacy in genomics and how that privacy can 

be compromised. Next, we discuss the central concepts underpinning the General Data 

Protection Regulation (GDPR), the principal legal framework that regulates the use of 

personal data in the European Union and European Economic Area. The GDPR has been 

selected instead of other national and international data protection and privacy norms 

because it is among the strictest and most influential data protection laws in the world. 

The conclusions of the article are nonetheless generalizable to ensure compliance with 

most other national data protection norms, such as the Health Insurance Portability and 

Accountability Act (HIPAA) in the United States. We next summarize approaches to 

federated analysis, presenting examples of successful applications and evaluating both the 

technical approaches and legal implications. Finally, we review areas for further progress on 

both the technical and legal fronts, presenting overall recommendations for the technical and 

organizational implementation of federated data analysis.

Casaletto et al. Page 2

Annu Rev Genomics Hum Genet. Author manuscript; available in PMC 2024 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PRIVACY AND PRIVACY ATTACKS

The sequencing of the human genome enabled unprecedented opportunities for the 

biomedical research community to make discoveries that are actionable in human health 

and precision medicine. It used to be that preserving the privacy of participants in 

biomedical research equated to maintaining the confidentiality of personally identifiable 

information and protected health information by either publishing aggregated data or 

removing these types of data. However, over the years, researchers have found ways to 

uncover protected information from such datasets. In 2008, the Wellcome Trust and the 

National Institutes of Health removed access to genomic datasets after it was shown that 

people could be reidentified from data aggregated from genome-wide association study 

(GWAS) experiments. For some organizations, removing personally identifiable information 

and protected health information or publishing only aggregate data was not sufficient to 

protect the privacy of research participants (38).

Privacy Threat Model

A privacy threat model defines the most probable attacks on private data, the actors 

perpetrating the attack, and how the actors would carry out the attack. The actors in a 

privacy threat model are the entities (people, groups, or organizations) that have some form 

of access to the data. It is impossible to protect against every attack, so it is necessary to 

focus on either the most likely or the most detrimental attacks.

In a federated environment where the upstream data contributors, the data custodians, and 

the downstream data users belong to different organizations, the threat model becomes 

more complex because the system could be threatened by participants in any of these 

organizations. One cannot assume that all participants are 100% reliable, but one might 

assume that some of the participants are reliable, as otherwise there would be no incentive 

to participate in the system. In short, the safest assumption is that some entity within the 

system is a potential threat.

A few privacy threat models have been developed and proposed, including the Cloud 

Security Alliance (CSA), the European Network Information and Security Agency (ENISA), 

and Link-ability, Identifiability, Non-Repudiation, Detectability, Disclosure of Information, 

Unawareness, and Non-Compliance (LINDDUN) (96). Whereas the CSA does not provide 

specific details for how to preserve privacy, ENISA and LINDDUN, while comprehensive, 

require a significant investment in time and training to understand and incorporate into a 

secure, privacy-preserving framework. More purpose-designed approaches, such as cloud 

privacy threat modeling, may be better suited for designing, implementing, and deploying 

federated solutions when time and resources are not abundant (34).

Cyber Attacks

Cyber attacks are attempts to read, modify, or delete information through unauthorized 

access to computer systems. They put the integrity or availability of an otherwise trusted 

system at risk. For example, a denial-of-service attack is one in which the attacker runs 

a workload against a service that renders some or all the service either compromised or 
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unavailable. Man-in-the-middle attacks involve an unknown third party that can intercept 

network communications between two otherwise honest entities and impersonate one or 

both of them. One of the most common and severe cyber attacks is Structured Query 

Language (SQL) injection, in which malicious or malformed SQL code is inserted in a 

web form that is subsequently unwittingly processed by a SQL service on the back end 

of the web form. Such attacks can obtain unrestricted access to databases with sensitive 

information, resulting in identity theft, loss of information, and fraud (37).

In the context of federated computing, cyber attacks can be largely mitigated by following 

commonsense IT security protocols. Federations should require all members to belong 

to the same virtual private network to block outside traffic. They should use public key 

cryptography and sufficient authorization requirements within the federation to prevent 

any leakage of personally identifiable information or protected health data between 

federation members. And they should leverage other security measures, such as firewalls 

and multifactor user authentication, across the federation and on a per-host basis.

There are more subtle forms of attack, however, that can be levied within federated 

environments or in the models that are built and published from federated environments, 

as described in the following sections.

Reidentification Attacks

Some privacy attacks require some external data source that contains overlapping data 

or metadata such that the datasets may be joined to provide a more comprehensive 

description of an entity such as a person. The ability to join data from multiple sets on 

some common identifier is called linkability, and the attacks that exploit it are called 

linkage attacks. Such an external data source might not be available today but might 

become available in the future. A reidentification attack occurs when data that have been 

anonymized or pseudonymized become personally identifiable, an example of which is the 

1997 reidentification of Massachusetts governor William Weld (80). This reidentification 

attack required having full ZIP codes, complete birth dates, and genders specified in both 

health plan data and voter registration data; this linkage enabled the connection between 

Governor Weld’s identity in the voter registration data and his medical records in the health 

plan data. This attack could be prevented by masking ZIP codes to two digits and using 

only birth years, for example. If those covariate data do not contribute to the utility of the 

shared dataset, then they should be omitted entirely. This illustrates the principle of data 

minimization, a fundamental principle of computational data privacy (73).

Reconstruction Attacks

A reconstruction attack is the ability to partially or entirely reconstruct private data from 

published aggregate data. In this scenario, a trained model or aggregated dataset is produced 

from data that contain potentially sensitive information and then shared; subsequently, 

attackers attempt to infer or reconstruct the sensitive information. This broad form of attack 

includes membership inference and property inference.

A membership inference attack exploits the ability to determine whether a person comes 

from a source dataset. Methods by which membership attacks may be leveraged were well 
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documented by Shokri et al. (77). One example of membership inference is the attack 

proposed by Homer et al. (42), in which they demonstrated that it is possible to determine 

whether a person’s genomic data were used in the creation of published statistics in a 

GWAS. Given knowledge of the allele frequencies in the population, the allele frequencies 

in the GWAS mixture, and the genotype information of the person of interest, the attacker 

uses the allele frequencies to calculate how far the person of interest is from the reference 

population and the GWAS mixture; the further away the person is, the higher the confidence 

in the membership inference becomes. In another example (78), researchers demonstrated 

that an attacker who possesses a person’s genomic sequence can determine that person’s 

membership in a Beacon, including Beacons that relate to disease, and in this way the 

Beacon network could leak some of that person’s protected health information.

A property inference attack attempts to infer some aggregate information about the training 

set as a whole, such as the environment where the data were produced or the percentage 

of the data that comes from a particular class (i.e., exploiting skewness) (2, 32). It requires 

that the attacker have auxiliary datasets that contain some property of interest. With these 

auxiliary datasets, the attacker can build shadow models for each property of interest and 

then create a classifier that compares results from the target model against these shadow 

models to distinguish whether the property in question belongs to the target model. For 

example, Humbert et al. (45) demonstrated that certain single-nucleotide polymorphisms 

(SNPs) of family members related to Henrietta Lacks could be inferred using available 

genomic data, family relationship structure, rules of Mendelian inheritance, minor allele 

frequencies of the SNPs, and linkage disequilibrium among the SNPs.

Model-Poisoning Attacks

In contrast to the types of attacks discussed above, model-poisoning attacks may occur 

within a federation while a model is being built or analysis is being performed on private 

data. Possible objectives include (a) a denial-of-service attack that simply renders the model 

ineffective for predictions using out-of-distribution data and (b) label flipping, which targets 

a subpopulation of the training data such that model predictions involving that subpopulation 

are erroneous. Yet another, more sophisticated objective of model poisoning is using that 

information after the model is built to make inferences about the dataset (e.g., property or 

membership inference attacks) (47).

The two types of model-poisoning attacks involve either data misconduct or model 

misconduct (51). Model misconduct involves changing how the analysis is performed to 

alter the outcome, while data misconduct requires that the adversary insert data sufficient 

to alter the model predictions. For example, if a model that classifies images is trained 

using images available on the internet, then an attacker can poison that model by uploading 

poisoned images to the internet. The ways to mitigate this risk include limiting the 

contribution of any single entity, analyzing the nature of the updates to the global model 

on a per-contributor basis, and performing outlier detection after the model is built. 

However, models can be poisoned unintentionally as well. For example, the unintentional 

underrepresentation of non-European populations in GWASs arguably poisons GWAS 

models against these underrepresented populations (63).
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INTRODUCING THE GENERAL DATA PROTECTION REGULATION

The GDPR regulates the use of identifiable personal data: data relating to a person who 

is identified or identifiable. For data to be considered identifiable, there must be a “means 

likely reasonably to be used either by the controller or by any other person to identify the 

[concerned individual]” (10, p. 2). This is not the case if reidentification is “practically 

impossible on account of the fact that it requires a disproportionate effort in terms of time, 

cost and man-power, so that the risk of identification appears in reality to be insignificant” 

(10, p. 9). If the data controller and proximate third parties do not have a mechanism 

enabling the reidentification of the concerned individual that is “likely reasonably to be 

used,” then the data are considered to be anonymized and therefore not regulated by the 

GDPR (9).

There is an apparent tension between the manner in which the Court of Justice of the 

European Union characterizes this legal test (10) and the manner in which it is articulated 

in the text of the GDPR (28). The GDPR calls for a contextual assessment of the 

reasonable likelihood of reidentification, which suggests that in circumstances in which 

reidentification is possible but either improbable or impracticable, the data should be 

considered nonidentifiable and therefore not regulated (28). The Court of Justice of the 

European Union, on the other hand, appears to characterize data as identifiable unless 

reidentification is nearly impossible (10). Nonetheless, both appear to confirm a contextual, 

risk-based approach to the evaluation of data identifiability (30).

The more restrained reading of the GDPR identifiability criteria should be preferred, as 

this interpretation limits the application of the GDPR’s onerous procedural requirements to 

information that poses a material risk of causing individual reidentification, assessed from 

the perspective of the data controller. If too many data are considered regulated personal 

data despite posing a limited risk of reidentification, this could frustrate the functioning of 

data protection legislation. Furthermore, if identifiability is assessed not from the perspective 

of the data controller and data processor but from the perspective of all third parties, it 

becomes difficult or impossible for regulated parties to determine the boundaries of their 

legal responsibilities (10, 28, 64).

The broad framing of identifiable personal data is a potentially unfortunate public policy 

choice. GDPR-regulated entities have limited financial, human, and technical resources for 

ensuring their compliance with the data protection regulation. If data identifiability standards 

are framed to capture a broad range of data that have a limited risk of reidentification, 

this framing could prompt regulated actors to scale down their data-sharing activities 

due to the high burden of regulation. It also encourages regulated actors to direct their 

limited compliance resources to the majority of the data that these actors process rather 

than structuring their compliance activities in a risk-adjusted manner (i.e., directing their 

legal compliance resources at the data that have the highest chance of being reidentified). 

This could lead to actors performing subpar data protection compliance because they lack 

sufficient resources to ensure appropriate compliance. It could also lead to actors reducing 

their data sharing due to the potential for GDPR noncompliance, even in circumstances 
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where the data sharing offers large benefits to society or the individual and poses privacy 

risks that are limited or nonexistent (7).

If data are identifiable, one must consider the role and the associated legal responsibilities 

that the GDPR ascribes to the actors that use data or that determine how data are used. The 

GDPR uses the concepts of controller, joint controller, and processor to determine the legal 

obligations of an actor who uses identifiable personal data. Each of these roles bears distinct 

legal responsibilities. The determination of whether an actor is a controller, joint controller, 

or processor is left to the supervisory authorities (i.e., national regulators) and courts. This 

means that these roles and responsibilities are determined not by the actor’s choice but rather 

by the manner in which the actor uses data.

The GDPR defines data processing as “any operation or set of operations which is 

performed on personal data or on sets of personal data, whether or not by automated means” 

(28, article 3). It goes on to enumerate a nonexhaustive list of examples. In essence, all 

actions that entail the use or storage of identifiable personal data fall within the definition of 

data processing (28).

Controllers determine the “purposes and means” of personal data processing (28, 

article 3). Processors perform personal data-processing activities at the instruction of 

controllers. In short, data controllers decide what will be done with personal data, while 

processors implement these decisions. Accordingly, the data controller bears greater legal 

responsibilities than the data processor (28).

In some instances, multiple actors will collaborate in determining the purposes and means 

of personal data processing. This could be the case, for example, if a central organization 

coordinates and determines the conditions according to which third parties will collect 

and use personal data for their own purposes (27, 28). In such instances, the law 

would categorize these multiple actors as joint controllers (28). The GDPR requires joint 

controllers to establish their respective and overall responsibilities among themselves, using 

contracts or another form of arrangement. If the collective joint controllers are held liable 

for some data breach, then each joint controller can be held fully responsible for harms that 

arise from the action of other controllers in the network. The sole ground that enables any 

single controller to not be held liable for the actions of the others is for this controller to 

“[prove] that it is not in any way responsible for the event giving rise to the damage” (28, 

article 82). Figure 2 shows a graphical depiction of legal entities and their relationships in 

GDPR.

DATA PROTECTION IMPLICATIONS OF FEDERATED COMPUTING

Providing guidance on compliance with the substance of the GDPR lies outside the ambit 

of this article. Rather, we aim to aid health sector data stewards in determining how 

the structure of their federated data analysis networks, from both a technical and an 

organizational standpoint, determines the characterization of their activities according to 

the GDPR—i.e., whether the GDPR would understand them to be controllers, processors, 

or neither. The characterization first considers whether the concerned actor is engaged in 
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the processing of identifiable personal data, and then considers whether this actor could be 

characterized as a controller (bearing more responsibilities) or a processor (bearing fewer 

responsibilities).

A broader public policy context animates this analysis. The GDPR has been strongly 

criticized as an impediment to the research use of data, the advancement of precision 

medicine, and the functioning of the healthcare system in general (36). Several arguments 

support this position. Inherent ambiguities in the language of the GDPR create difficulties 

in determining how to ensure compliance, even when actors behave in good faith (59). 

Determinations regarding the appropriate use of data, which are traditionally left to 

health sector data stewards and research ethics committees, are shifted to generalist data 

protection regulators, who do not necessarily possess the specialized, domain-specific 

knowledge required to apply the standards of the GDPR to the health sector (89). 

Procedural requirements, such as maintaining data-processing reports and documenting 

self-assessments, can overwhelm the limited resources available to many institutions (58). 

Finally, the consequences of noncompliance, which can include poor public perception, 

administrative fines, and civil liability, can deter health sector institutions from exploring 

data-sharing activities (31). This perverse incentive is especially strong when one 

institution’s participation would greatly benefit the larger network, but participating in the 

network would not benefit that institution as greatly (31).

Bearing in mind the foregoing critiques of the GDPR, we can identify the critical roles 

in a federated data analysis network as follows (81): (a) nodes that are responsible for 

collecting data from individuals and for contributing such data to the network; (b) nodes 

that act as technical data stewards by providing the infrastructure that supports the data 

storage and processing; (c) nodes that act as institutional data stewards, determining which 

actors can participate in the network as upstream contributors or as downstream recipients 

of analysis results (and the conditions of such participation); and (d) nodes that act as 

downstream recipients of analysis results and can submit analysis queries to the network 

and receive responses (81). Since each node that must perform GDPR compliance activities 

bears compliance costs in entering the network, the burden of compliance activities scales in 

proportion to the number of nodes in the network (81).

One principal advantage of federated data analysis is to enable scalable access to larger 

quantities of data. There is a tension between the scalable nature of the federated analysis 

network from a technical perspective and the inexorable growth of activities required 

to ensure the network’s compliance. That is, certain legal compliance activities, such 

as performing data protection impact assessments, retaining records of data-processing 

activities, or ensuring the alignment of data-processing activities with the principles of the 

GDPR, can require intensive and repetitious human effort. This can lead to circumstances in 

which data processing is cost-effective and scalable, but establishing records of compliance 

with select formalistic, procedural elements of the GDPR is prohibitively cost-intensive (28). 

It is advantageous to structure networks to reduce the number of regulated data controllers 

and data processors, in order to enable more streamlined compliance and ensure that the 

network remains open to a broad range of prospective nodes, including those that lack the 

significant resources required to perform burdensome regulatory compliance activities.
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In short, nodes in a federated data analysis network should use technical and organizational 

measures to ensure that the benefits of data analysis are maximized without most network 

nodes engaging in personal data processing, whether as controllers or processors (41). If 

the data analysis is structured such that most participating nodes do not process potentially 

identifiable data, using both organizational and technical safeguards, then these nodes will 

not be required to engage in GDPR compliance activities, and the other nodes are not 

required to consider these nodes as part of their own GDPR compliance efforts. This ensures 

that the compliance of the network is cost-effective and simple.

DATA FEDERATION AND PRIVACY MECHANISMS

Most applications run on a single system. A distributed application is written to run across 

more than one system to leverage the compute, memory, and/or storage resources of multiple 

systems. For such applications, the programmer must be provided an abstraction that 

ignores the physical location of the data (52). Federated computing is a form of distributed 

computing wherein some or all of these data are subject to the stewardship of an entity 

other than that which provides and/or runs the application. That is, the analytical software 

is transferred to the location where the data reside rather than the data being exported for 

analysis. This approach is particularly well suited for datasets that are either too large or too 

sensitive to move between organizations (15, 81).

There are many forms of federated computing. In federated learning, for example, models 

are trained over remote datasets in siloed data centers, personal computers, cell phones, and 

other edge devices while keeping data localized (53). A federated database, by contrast, is 

a collection of databases that operate as if they were a single database from a unified portal 

(76). The Gene Expression Omnibus is a federated database of microarray, next-generation 

sequencing, and other high-throughput functional genomics data (18). Federated analytics, 

yet another form of federated computing, distributes predictive or descriptive analytic tasks 

over one or more systems (92). In this article, we focus on descriptive analytics using 

genomic data. Figure 3 depicts the different ways in which data are analyzed based on their 

physical location.

All federated methods involve cooperation between people and organizations and sharing 

some form of potentially sensitive information. In this section, we discuss different privacy 

mechanisms that may be used within a federation to eliminate any privacy leakage between 

federation members.

Secure Multiparty Computation

Secure multiparty computation (SMC), also known simply as multiparty computation, was 

originally formulated as a research question called the millionaire’s problem, in which two 

or more people are interested in knowing which of them is richer without revealing their 

actual wealth and without the help of a trusted third party (60, 97). The foundation of SMC 

entails secret sharing that leverages zero-knowledge proofs, techniques that enable a prover 

to prove a claim to one or more verifiers in such a way that they are convinced of its truth 

without the prover revealing the assertion or any party witnessing the interaction (35). SMC 

protocols have a correctness requirement that guarantees that either the output is correct or 
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the protocol terminates early. The number of adversaries (t) that the protocol can tolerate 

and still be correct (i.e., either produce correct output or terminate the protocol) depends on 

the type of secret sharing. Using additive secret sharing, the protocol can tolerate all but one 

honest participant (t < n). Using Shamir’s secret sharing, the protocol can tolerate up to t 
< n/2 passive adversaries and up to t < n/3 active adversaries. Examples of SMC in GWAS 

analyses include work by Constable et al. (19), presented at the 2015 iDASH Privacy and 

Security Workshop, and by Cho et al. (17), which used data from the Database of Genotypes 

and Phenotypes (dbGaP).

SMC is an ideal protocol to leverage in a genomics federation. It is purpose built for 

minimizing privacy leakage while maximizing utility among multiple participants operating 

on local data to construct global results.

Homomorphic Encryption

Encryption is the process of encoding data in such a way that they cannot be interpreted 

without decoding. The stronger the encryption is, the less likely it is that the data can be 

decoded by brute force. In homomorphic encryption (33), data are encrypted with a public 

key and sent to an outside, potentially untrusted source to perform computations. That party 

never decrypts the data, but instead operates on the data in their encrypted format. The party 

sends the encrypted results back to the originator, who, with a private key, can decrypt the 

results.

Encryption and decryption are notoriously slow, so performing large-scale genomic analyses 

on encrypted data has been prohibitively time-consuming. However, recent work has 

improved those algorithms through parallelization—a programming technique that divides 

an application workload into multiple parts, each of which can be run simultaneously 

on different systems, processors, or cores. In 2018, the winning team of the iDASH 

Secure Genome Analysis Competition implemented a logistic regression approximation for 

GWASs that was 30 times faster than the competing SMC solution (8). They did so by 

parallelizing the execution of matrix operations, efficiently encoding the encrypted data, 

leveraging approximate arithmetic, and optimizing several cryptographic subroutines. These 

improvements generalize beyond GWAS computation, enabling homomorphic encryption 

solutions in other domains that require large-scale statistical analyses on encrypted data. The 

following year, the winning iDASH team reduced the time necessary to perform imputation 

on 80,000 SNPs to less than 25 seconds (50).

Differential Privacy

Differential privacy is a privacy mechanism that adds noise to a database query result such 

that the entity submitting the query cannot determine whether any particular individual 

is a member of that database or not. This approach addresses membership inference 

and reidentification attacks. The more noise the mechanism adds, the less likely it is to 

infer membership, which provides stronger privacy guarantees; however, stronger privacy 

guarantees may render the data less useful.

The concept of epsilon-differential privacy mathematically formulates the privacy guarantee 

through a parameterized epsilon value that defines an inverse privacy budget—the higher 
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the value, the lower the privacy (25). In a study that used differential privacy in a GWAS, 

Uhlerop et al. (86) advocated for the reasonable release of minor allele frequencies for 

both cases and controls in a way that does not compromise privacy and permits sharing of 

chi-squared statistics and p values for relevant SNPs.

Controlled Access

One form of privacy-preserving technology is a suite of services that permit an end user 

to sign in at a portal (authentication) and access different federated resources depending 

on the privileges assigned to that user (authorization). Users who apply for access to 

controlled data resources generally must demonstrate a legitimate research purpose and 

appropriate qualifications. The controlled access mechanism is how most institutions protect 

their privacy-sensitive genetic and genomic data. The National Institutes of Health, for 

example, mandates that all the data from the research it funds be made publicly accessible 

via controlled access. dbGaP is one such collection of National Institutes of Health data 

under controlled access (55). One way to implement the controlled access approach is to 

channel data requests through a data access committee—a group of individuals who serve 

as key institutional data stewards to evaluate access requests on a case-by-case basis. It is 

common for a data access compliance office to coordinate the review of data access requests 

to enable the streamlined and cost-effective administration thereof (48). Cheah & Piasecki 

(16) suggested that a data access committee should not only protect privacy but also promote 

data sharing, motivate data producers, and encourage data reuse with transparent, simple, 

and clear application procedures. Rahimzadeh et al. (65) contended that automated decision 

support for data access requests improves the auditability, consistency, and efficiency of 

the data access process and ultimately yields fairer outcomes for the research community. 

The Data Use Oversight System is the Global Alliance for Genomics and Health (GA4GH) 

implementation of an automated decision support system for automating the genomic data 

access process (11).

Computational Abstractions

There are several computational abstractions that may be leveraged in a federated 

environment. In this section, we discuss each of these abstractions with respect to privacy 

and security.

Hardware-assisted secure computation.—In most operating systems, there exists a 

user identity called a privileged user that has access to all the data on the system, including 

data on disk, in main memory, and in the processor caches. If this identity is compromised, 

then any privacy-sensitive data on that system are at risk of being compromised as well, 

which is referred to as a back-door threat. Intel Software Guard Extensions (SGX) was first 

introduced in 2015 with the aim of providing a trusted execution environment in which 

applications can protect critical code and data against malicious privileged system code. 

In SGX, the code is divided into a trusted part (which processes protected data) and an 

untrusted part (which does not process protected data). Privileged users do not have access 

to the trusted part of the application when it is running on the SGX processor, thereby 

eliminating the back-door threat (20). The SGX chip has been leveraged to securely run 

genomics analyses on systems in order to prevent other applications running on the same 
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system from having access to private data. Two examples include works by Carpov & 

Tortech (12) and Sadat et al. (69) that leveraged SGX to protect privacy and simultaneously 

accelerate computational performance in a GWAS.

Physical machines, virtual machines, and containers.—A physical machine, also 

known as a bare-metal machine, is the collection of hardware components (e.g., disk, CPU, 

and memory) and software components (e.g., kernel and applications) dedicated to and 

managed by a single operating system. By contrast, a virtual machine is an application that 

runs on a physical machine’s operating system, abstracting the physical components to allow 

multiple operating systems to run concurrently on a single physical machine. Containers 

are lightweight virtual machines that abstract only the elements of an operating system and 

application stack that must be provided for a given purpose, excluding components of the 

operating system that are not needed for that purpose. For federation, both virtual machines 

and container architectures allow for software to be distributed readily and portably among 

federation members (62). While there are known security risks associated with running 

certain types of container software that expose privileged user access, these risks are being 

reduced via newer container architectures (61).

Local versus cloud computing.—On-premise (local) computing is a collection of 

servers, storage devices, networking equipment, power supplies, and so on that operate 

within the boundaries of an organization. Having dedicated infrastructure in-house entails 

both the capital expense of purchasing the equipment and the operating expense of 

managing and running it. Cloud computing is infrastructure that organizations can rent. 

Cloud consumers still incur the expense of renting time but do not incur any expense to 

purchase or manage the equipment. Cloud computing is especially beneficial for small 

organizations that do not have resources to own and run their own computing infrastructure 

or for any organization that wants to focus its human resources on tasks other than the 

management of computing infrastructure. Moreover, secure cloud platforms are gaining 

traction in genomics as a mechanism to share controlled access to data that cannot move for 

privacy or technical reasons (70, 84, 85).

FEDERATED COMPUTING TRUST ARCHITECTURES

In this review, we consider a federation to be a group of one or more organizations, each 

with its own privacy-sensitive datasets, that form a single network in which those datasets 

may be shared in a legally compliant, privacy-preserving manner. Apart from the many 

technical details that are required to deploy such a solution, at the core of the federation is 

the trust that participants will comply with the policies set forth to protect the privacy of the 

individuals who have provided their data and the protocols that enforce the integrity of the 

federation results. We define three trust architectures of federated computing for genomic 

data: clustered with centralized trust, clustered with distributed trust, and nonclustered 

autonomous trust (see Figure 4).
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Centralized Trust

The trusted organization in a centralized trust architecture is an authority that each member 

of the federation relies upon to establish and maintain overall protocol integrity. In federated 

learning, for example, updates to the global model are periodically aggregated by the 

central broker and distributed to each of the federation members. In a controlled access 

environment, the central authority issues certificates, stores public keys, and provides 

identity services to authenticate and authorize user access to systems and files (1). 

One solution leveraging a centralized trust architecture is the Genomics Research and 

Innovation Network, which consists of a database of phenotypes and genotypes federated 

over three participating hospitals, harmonizing the institutional research board protocols 

of each participating hospital (56). This solution requires obtaining the original research 

participants’ consent to use their data in this broader context and to recon-tact them in order 

to collect additional data, enroll them in additional studies, or inform them of potentially 

medically actionable results.

For GDPR compliance, the creation of a centralized trust raises questions regarding the 

GDPR role of each organization. It is imperative to categorize each of the organizations 

acting as network nodes as data controllers, joint data controllers, data processors, or 

nonregulated actors not engaged in the processing of identifiable personal data. For 

federated analysis, it is optimal to structure a centralized trust as follows. Each node 

(i.e., organization) that contributes personal data to the federation should be considered 

a controller of the personal data that it processes. If the identifiable data are processed 

using third-party hardware or virtual computing resources, then the third parties should be 

considered the data processors (41). The results that each node contributes to the central 

analysis node should not contain personal data. Consequently, once the overall federated 

analysis is synthesized from the organizations acting as network nodes, the final output 

should not contain personal data.

The result of this structure is that each node processes the personal data at its disposal and 

must ensure legal compliance for its own personal data-processing activities alone. Because 

no nodes act as joint controllers, the potential liability of each node is limited to that which 

results from the analysis of personal data that it processes. Neither the central node nor the 

recipients of downstream analysis outputs act as data controllers or data processors (27, 29, 

95). To achieve this result, each participating node should create a list of the data elements 

it processes and determine whether these constitute personal data. Each participating node 

should also create a list of the data elements that it shares with the central analysis node and 

confirm that none of these data elements constitute personal data. The central node should 

confirm that the data elements it receives do not constitute personal data, either alone or in 

combination with one another. The organizations engaged in the federation should ensure 

that the final outputs of the analysis are not identifiable. Each node should separately ensure 

that it does not have at its disposal a “means likely reasonably to be used” to perform the 

reidentification of the concerned individuals, using the available information (9, 10, 64).

Additional measures can be implemented to further ensure that the information that a 

node shares with and receives from other nodes in the network does not create a risk of 

reidentification. For example, pre-onboarding trust verification mechanisms can be adopted 
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to ensure that nodes participating in a federation can be presumed trustworthy and will not 

engage in conduct that could create a risk of individual reidentification, e.g., by ensuring 

that each node has a bona fide scientific or clinical purpose for engaging in the federation 

and engages personnel with the necessary technical and scientific training to implement 

the intended analysis in a manner that reduces the risk of individual reidentification. A 

second measure is to use contracts that bind the institutions participating in the centralized 

trust to perform their role in compliance with its policies and to avoid conduct that could 

lead to individual reidentification (41). A third critical consideration is ensuring that the 

final federation outputs do not enable the reidentification of the research participants that 

contributed data to the analysis; one approach is to release the outputs in a registered access 

or controlled access database, and another is to add noise or perform other modifications to 

the data to reduce the risk of individual reidentification.

Decentralized Trust

One criticism of the centralized model is that it concentrates power in a single organization. 

In an inherently distrustful environment (e.g., a federation among industry competitors), 

this may preclude an organization from joining the federation. Conversely, in an inherently 

trustful environment, there is no need to select a central authority. In a decentralized trust 

architecture, there is no central authority. Trust and agreement among members of the 

federation are arrived at variously by peer-to-peer majority voting, zero-knowledge proofs, 

or some other distributed consensus protocol.

Swarm learning.—Warnat-Herresthal et al. (93) introduced swarm learning, which 

achieves decentralized trust by exchanging the role of the central federation authority 

among the federation members. Swarm learning still uses a central server, but that server is 

elected among the federation members and changes over the life cycle of model training. 

It is expected that each federation member will be an aggregation server at some point 

over the life cycle of the federation. This method leverages a blockchain to manage a 

distributed ledger and a smart contract for onboarding new federation members, electing 

the federation authority, and merging model parameters. Warnat-Herresthal et al. (93) used 

their swarm learning approach to train a classifier on transcriptomic data for predicting 

disease states in COVID-19, tuberculosis, and leukemia. By decentralizing the federation, 

swarm learning keeps sensitive data in place; requires no exchange of raw data (encrypted 

or plaintext); guarantees secure, transparent, and fair onboarding of federation members 

without a central custodian; allows parameter merging with equal rights for all members; 

and protects machine learning models from man-in-the-middle attacks.

Incremental learning.—Another variation of federated learning that uses decentralized 

trust is incremental learning (75). This solution entails a classifier of datasets distributed 

across multiple organizations. Models are trained at one organization using its local data, 

after which the model parameters are sent to the next organization, which updates the 

model parameters using its local data. The model is passed through all the organizations 

participating in the federation and is updated according to their local data. The model 

may cycle through the organizations for multiple rounds of training until it converges or a 

specified number of rounds is reached.
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From the perspective of data protection law, similar methods of achieving compliance can 

be recommended for the decentralized trust as for the centralized trust. The centralized trust 

is preferred when one of the participating organizations is a logical candidate to securely 

aggregate local analysis results. In instances in which there is no evident custodial node, a 

decentralized trust might be beneficial. In a decentralized trust, the following distinctions 

can be relevant in assessing and mitigating the risk of individual reidentification and in 

assigning responsibilities among network participants.

The federation members should establish a contractual agreement that defines the 

commitments, organizational measures, and technological precautions that each node must 

adopt. This can be challenging to achieve if there is no central node that bears formal 

organizational responsibilities for data custodianship. That is, often there is no central 

custodial node that is suitable to bear responsibility for ensuring that each other node 

respects the contractual commitments applicable to the nodes in the network.

To resolve this challenge, each federation member can bind itself to a multilateral contract 

between that node and all other participating nodes, establishing the responsibilities of 

each node. This contract can elaborate the categories of organizations and actors that are 

authorized to act as network nodes and the technical and organizational measures that 

such nodes must implement to ensure that the information shared between nodes remains 

nonidentifiable (27, 41). The measures described should be sufficient to safeguard against 

reidentification attacks, model-poisoning attacks, and other attacks that one or a small 

number of malicious nodes might attempt to perpetrate through their participation in the 

federation. Because there is no central custodial node that is responsible for performing 

the verification of compliance on the part of each federation member, it is a best practice 

to integrate into the multilateral contract a right for each participating node to compel 

an audit of another specified node for compliance. Alternatively, each node could be 

subject to independent third-party audits of their compliance with the specified technical, 

organizational, and contractual terms at prespecified intervals (27, 41).

Autonomous Trust

In an autonomous trust environment, there is a distinct trust agreement established 

between the organizations responsible for the stewardship of identifiable personal data 

and the downstream organizations that request that analyses be performed on such data. 

Organizations acting as stewards of identifiable personal data may well be unaware of 

one another. An example of an autonomous trust federation for processing genomic data 

comes from Casaletto et al. (13), who developed and shared a container with BioBank 

Japan to run against a genomic variant dataset from a case–control study of BRCA1 and 

BRCA2 variants. Due to data protection regulations, the data were not allowed to be 

shared outside the institution. By running a containerized workflow on the data in situ, the 

authors were able to classify genomic variants that were previously unclassified. In a second 

example, a team of pediatric cancer researchers from the Treehouse platform shared an RNA 

sequencing analysis container with partner hospitals that were treating pediatric patients 

with tumors that had proven difficult to treat (88). While these hospitals were not at liberty 

to share the actual RNA sequencing data, they were able to share the gene expression calls 
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estimated by the container; through comparative gene expression analysis against a larger 

cancer cohort, the research team was able to provide useful new insights for approximately 

70% of these patients. One approach for safeguarding autonomous trusts, to test that such 

containers produce the agreed-upon output (and do not leak sensitive data), is for the data 

steward to create a small test dataset, run the container against it, and examine the output.

The autonomous approach may also be used in situations where the data are not necessarily 

sensitive but rather are too large to transfer. Keeping the data in place and moving analytic 

code to the data is the central theme of the big data paradigm. The autonomous approach 

may further be used in situations where the data controller does not have the means to 

analyze its own data and thus engages a data processor to perform the analyses.

For purposes of compliance with data protection law, each node acting as a data steward 

would be considered a data controller, while each third-party service provider that provides 

computational resources to a data steward node would be a processor. The nodes performing 

direct analyses should not be construed as controllers, joint controllers, or data processors, 

since these nodes do not have access to identifiable personal data and do not determine 

the purposes and means of personal data processing. To ensure this, contractual agreements 

should be implemented between each producer node and each user node that provides 

analysis software, establishing that the local nodes act as controllers and that the requesting 

users’ role is to receive nonidentifiable anonymized data resulting from the local analyses.

The data steward nodes should ensure that none of the outputs shared with analysis recipient 

nodes constitute identifiable personal data. The data steward nodes should further accept 

formal responsibility for selecting, implementing, and/or vetting the analyses that the 

user nodes submit. To ensure that the analysis recipient nodes are not construed as data 

controllers or data processors, technical mechanisms should be used to limit the queries 

that the analysis recipient nodes can submit to the data steward nodes. The data steward 

nodes should have an organizational and/or technical procedure for reviewing and approving 

the analysis queries that analysis recipient nodes submit prior to their implementation. This 

helps to ensure that the data steward nodes continue to act as the sole controllers of the 

concerned personal data, rather than acting as joint controllers in collaboration with the 

querying analysis recipient nodes (29, 82, 87).

Hybrid Architectures

Federated solutions for genomic data can mix different trust models in the same architecture; 

one example of this approach is the Canadian Distributed Infrastructure for Genomics 

(CanDIG) platform (24). The designers of this federated framework explicitly chose to 

decentralize authentication and authorization because members of the federation belong to 

different provinces in Canada. Authentication relies on the identity mechanisms of each of 

the participating sites, and users log in with their home site credentials rather than with a 

centralized CanDIG identity. Authorization decisions are made locally at each site, based on 

the trusted user identity and the nature of the request.

In addition to using the decentralized model for authentication and authorization, CanDIG 

supports controlled access for registered research users. Controlled access is explicitly 
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granted by data access committees, and researchers with controlled access credentials can 

access and query datasets. Registered access users sign up and agree to terms of service but 

have very limited querying ability, and can only query datasets that explicitly allow such 

access.

LIMITATIONS TO ADOPTING FEDERATED SOLUTIONS

Common impediments to broader uptake of federated analysis include the absence of data 

standards or limited adherence to existing standards, and often irreconcilable interpretations 

of applicable data protection norms.

A significant rate-limiting factor is that there is not yet clear guidance on best practices for 

regulatory compliance. National regulators and institutions often interpret data protection 

norms differently. Furthermore, clinical sites and research institutions frequently share data 

on a voluntary basis to contribute data to the biomedical data commons and foster its 

productive downstream use; however, the prospect of such contributions entailing legal 

liability for the data contributors can deter voluntary data sharing. While best practices are 

starting to emerge (4, 26, 74, 94), there is no current standard of practice, so each individual 

regulator and regulated party determines its own approach to regulatory compliance. This 

can lead to fragmented data protection compliance emerging in different jurisdictions and 

among different institutions that produce, use, or share data. Ultimately, what will drive 

progress is the development of broadly accepted policy frameworks, promulgated both by 

regulators and organizations representing regulated parties and civil society (66).

Other impediments to the adoption of federated solutions involve the complexity of 

designing, implementing, and deploying federated solutions that preserve privacy. In 

particular, the lack of software development standards and infrastructure deployment 

best practices for privacy-preserving federated solutions impedes organizations from 

participating in an interorganizational federation. Federated analysis requires that the data 

a priori meet quality and formatting standards, given that the method developers cannot 

directly interact with the actual input data. While the type of input data varies somewhat by 

the method, most methods require some form of genetic variation data and some form of 

phenotypic data. Genetic variants are commonly represented in Human Genome Variation 

Society (HGVS) (23) or Variant Call Format (VCF) (22) nomenclatures, which are well 

understood but somewhat imprecise. The GA4GH Variant Representation Specification (90) 

addresses these issues but is not yet widely adopted. For phenotypic or clinical data, the 

advent of electronic health records has spurred the adoption of the Health Level 7 (HL7) 

Fast Healthcare Interoperability Resources (FHIR) standard (3, 5) and, more recently, the 

GA4GH Phenopacket standard (46), but where these standards are not yet adopted, mapping 

unstructured electronic health records to a structured data standard remains a difficult 

problem (43). Consequently, there is a limited volume of data that meets data standards, 

with additional data following ad hoc standards or remaining unstructured. This may be a 

temporary situation, however; as more software tools emerge that work with data standards, 

adhering to the standards will ultimately become a cost-saving decision.
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CONCLUSION

The major impediments to sharing genomic data arise more from ambiguous regulatory 

requirements than from technological limitations. In principle, federated analysis can 

overcome these impediments to enable data sharing while respecting data privacy or data 

sovereignty restrictions. While the exact approaches differ, the principle remains consistent: 

By keeping the sensitive data under the control of the data controller and sharing analysis 

software to execute on the data controller’s secure system, federated analysis can distill 

sensitive information down to information that is less sensitive and can therefore be shared 

more openly while still helping to advance knowledge. Nonetheless, the uptake of federated 

analysis approaches has been hindered by uncertainties around regulatory compliance, of 

which the GDPR has been the most noteworthy. Few organizations engaged in complex, 

consortium-level data-sharing activities have the appetite to bear significant regulatory risk. 

These risks can prove considerable for organizations that are categorized as data controllers 

and data processors, as the interpretive ambiguities inherent in data protection law create a 

potential for unintentional noncompliance. For organizations categorized as joint controllers, 

the additional prospect of bearing liability for the activities of other collaborating controllers 

creates heightened compliance risks. These risks can deter data sharing altogether.

In essence, by ensuring that any data egress from the controller’s node consists only 

of nonidentifiable, nonpersonal data and that any reidentification of these data is highly 

unlikely, organizations can minimize the practical risks of personal data disclosure and the 

related risk of data protection law noncompliance. Recent advances in computational data 

privacy have produced a family of approaches that are robust against many forms of cyber 

threats, and some even offer a quantifiable level of security; while the computational cost 

of these methods currently discourages widespread adoption, new hardware developments 

are making them more tractable. But while technical, organizational, and contractual privacy 

safeguards can mitigate risk, they cannot eliminate it completely, and the data steward or 

data controller still bears the largest legal compliance burden. In the future, legislators 

and regulators must implement both laws and regulatory guidance that diminish both the 

compliance costs and the prospect of liability for data controllers and data processors that 

are engaged in prosocial uses of information to facilitate healthcare and research.
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Figure 1. 
Illustrating the logic of “bringing the code to the data,” either because the data are much 

larger relative to the analytical code [f(Data)] or because of restrictions on exporting the data 

across organizational boundaries.
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Figure 2. 
The General Data Protection Regulation: roles and responsibilities.
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Figure 3. 
Different ways in which data are analyzed to build models and databases. (a) Siloed datasets 

used for local analysis, where models and databases do not contain other datasets. (b) 

Centralized datasets exported from multiple organizations to a single place where models 

and databases are built. (c) Data federated from multiple institutions to build a single model 

or database.
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Figure 4. 
Trust architectures. (a) A centralized trust running external to the federation. (b) A 

decentralized trust in which any central coordination is distributed across the cluster. (c) A 

nonclustered environment in which trust is established pairwise between the data consumer 

and each data owner.
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