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ABSTRACT OF THE THESIS

Learning Complex Functional Manipulations by Human Demonstration and Fluent

Discovery

by

Mark Joseph Edmonds

Master of Science in Computer Science

University of California, Los Angeles, 2017

Professor Song-Chun Zhu, Chair

Learning complex robot manipulation policies for real-world objects is extremely challenging,

and often requires significant tuning within controlled environments. In this thesis, we learn

an And-Or graph-based model to execute tasks with highly variable structure and multiple

stages, which are typically not suitable for most policy learning approaches. The model

is learned from human demonstration using a tactile glove that measures both hand pose

and contact forces. The tactile glove enables observation of visually latent changes in the

scene, specifically the forces imposed to unlock safety mechanisms. From these observations

a stochastic grammar model is learned to represent the compositional nature of the task

sequence, and the compatibility of that sequence with the observed tactile feedback. We

present a method for transferring this human-specific knowledge onto a robot platform, and

demonstrate that the robot can perform successful manipulations of unseen objects with

similar task structure.
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CHAPTER 1

Introduction

Manually developing policies for complex manipulation tasks is traditionally very challenging,

and conventional methods are often very brittle when presented with variability in the objects

or the underlying structure of the manipulation sequence. Learning from demonstration

is a compelling approach to this problem, as it does not require expert knowledge of the

domain dynamics. This thesis specifically focuses on using human demonstration to learn

manipulation policies for objects that have similar functional properties, but exhibit very

different geometries as well as internal configurations that affect how the object must be

manipulated. Specifically, we choose the task of opening a collection of child-proof bottles.

These bottles are available in a wide variety of shapes and sizes, and most importantly have a

variety of different internal locking mechanisms. Although two bottles may appear identical,

the procedure for opening them may be considerably different. The learned manipulation

policy must therefore provide reasoning on how to adaptively choose the appropriate sequence

of operations, as well as account for variations in geometry.

Determining the status of the manipulation task (e.g. if the cap is slipping because

it needs to be pushed first) requires tactile feedback, which is difficult or impossible for

the human to respond to when using kinesthetic teaching or tele-operation. Vision-based

methods have difficulty identifying the precise pose of the hand and lack knowledge regarding

the forces exerted by the demonstrator. Instead, we utilize human demonstrations using a

tactile glove designed to measure both hand pose and contact forces across the surface of the

hand. These demonstrations are performed naturally, and within a motion capture setup to

obtain ground-truth tracking of the objects and human wrist. Our tactile glove enables the

robot to observe visually latent causal changes during the demonstration, as forces exerted

1



(a) Data collection (b) Human modeling (c) Robot execution

Figure 1.1: Knowledge transfer sequence. (a) Collect data using tactile glove. (b) Model

collected data. (c) Transfer and execute modeled data on robot platform

by the hand are difficult if not impossible to observe from vision alone.

From these demonstrations, we learn a stochastic grammar model that represents the

compositional hierarchy of atomic actions. This grammar compactly captures the admissible

sequence of actions for all the bottles demonstrated, as well as the compatibility of the

tactile feedback for each action and between adjacent actions. The main contribution of

this work is to transfer the policy model learned from human demonstration onto the robot

and demonstrate successful manipulation of unseen but functionally similar objects. This

policy model captures latent relationships that are imperceptible from vision alone. The key

challenge is to address the correspondence problem [DH02] that relates the tactile sensing

from the human experience to that of the robot. To address this, we learn a mapping function

that directly relates hand pose and contact force from the human to the force-torque sensing

and gripper state of the robot, such that the robot can reason about its proprioceptive

measurements using the relations learned from human demonstration. These relations help

determine when actions are completed successfully or have failure conditions, as well as

determine the most likely choice for the subsequent action in the sequence being executed.

2



1.1 Related Work

1.1.1 Learning from demonstration (LfD)

LfD is a critical component to building general purpose robots. Humans quickly learn from

each other and from past experiences, often only requiring a single example to learn a new

task [LST15]. Teaching robots to achieve similar performance would enable robots to enter

many routine human activities.

LfD can be divided into two categories: demonstration and imitation. Demonstrations

are utilized through human kinesthetic teaching and teleoperation [ACV09]. Kinesthetic

teaching and teleoperation both enable direct mappings between demonstrations and execu-

tions. This approach eliminates the need for an embodiment mapping, a function that maps

states/actions in the demonstration to states/actions on the robot [ACV09]. In kinesthetic

teaching, the teacher physically maneuvers the robot whereas teleoperation relies on an ex-

ternal controller to maneuver the robot. Controllers vary, but common methods include data

gloves [CPB06, KFM14] and exoskeletons [LB04].

Imitation corresponds to a mismatch between the demonstrator’s components and the

robot. That is, the robot cannot directly utilize the human demonstration to maneuver;

the sensors/actuators between the demonstrator and robot are different. To accommodate

this mismatch, approaches seek to imitate at low-level motor functions or task-level func-

tions. Imitating low-level motor functions attempts to mimic the demonstrator’s execution

using an approximation of the demonstrator’s state (such as the trajectory of the demon-

strator’s hand). Examples of low-level imitation include maze-following [HD94], following

social affordance cues from a human [SGR17], and learn to clean a whiteboard [FJ13]. Task-

level imitation attempts to match the task goal of the demonstration, but does not directly

consider low-level motor functions of the demonstrator. Task-level imitation can be used to

learn how to pour liquid [LKG14] or assemble a structure using magnetic blocks [PJK16].

Most similar to our work, Huang et al. used a data glove, force torque sensors, and

motion capture to learn policies to open a set of traditional bottles. However, their work
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focuses largely on satisfying low-level imitation observed from the demonstrator and uses an

apparatus to simplify grasping the bottle lid. Our work uses a similar experimental setup

but focuses on causal and task-level knowledge transfer between the human and the robot.

Although kinesthetic teaching and teleoperation simplify knowledge transfer by eliminat-

ing the correspondence problem (i.e. learning the embodiment mapping; mapping between

the demonstrator’s and robot’s embodiment), producing demonstrations is extremely time

consuming and requires highly specialized domain knowledge, namely how to operate the

robot. Imitation learning is a popular approach for applications with repetitive or simplistic

motion trajectories, but becomes much more difficult with complex tasks. This work seeks

to abstract much of the low-level motor control that is typical of most imitation learning

work and instead places emphasis on learning task-level functions of the demonstration. This

abstraction uses a collection of motion primitives that operate in task space, and allows us

to focus on learning high-level policies that are semantic in nature. In contrast with previous

work, our method focuses on physical measurements not observable from vision.

Other approaches to endow robots with functional knowledge include policy search, re-

inforcement learning, and optimization. In [LWA15], a robot learns manipulation tasks as

a guided policy search problem. The approach is model- and example-free using linear-

Gaussian controllers to guide robotic movement. There has also been a recent surge in

reinforcement learning-based robot manipulation tasks. Such interest includes end-to-end

training using deep convolutional neural networks (CNNs) [LFD16]. Mordatch et al. intro-

duce an optimization-based method to unify contact activity (i.e. whether or not a given

end-effector should be in contact during this motion) and movement [MTP12, MLT15].

While these methods are effective, we argue they are not realistic for robots expected to

interact in collaborative environments. Learning from demonstration is an essential skill in

environments where robots are expected to interact and learn from humans on a regular

basis.
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1.1.2 Tactile Glove

To capture visually hidden states, we use a tactile glove to record human pose and force

applied at each proximal and distal phalanx and a 4-by-4 grid of sensors to detect forces

exerted by the palm. Pose sensor gloves use a wide array of sensors. Most data gloves

use IMUs to track finger pose [TKM13, KSR14, SLS15], though curvature sensors are also

used [KMS11, KSE08]. However, the flex sensor typically decreases a user’s natural motion

and dexterity. Filtering is commonly used to improve pose accuracy [SLS15] and Kalman fil-

tering is used to increase the robustness of state estimation [KSR14, LS13, KAS15]. Another

designs include: an exoskeleton coupled a DC motor and a time-of-flight sensor to obtain

hand pose without using a glove directly [CHC16], a Vicon motion capture sensor to track

wrist, index finger, and thumb angles [BBA16].

To read force, some data gloves use a FlexiForce [GSL15, BBA16] sensor, though there

has been an emerging interest in using Velostat, a piezoresistive conductive film, as a force

sensor [PMT16, LKY15, JLK11]. Other approaches include a liquid-metal embedded elas-

tomer sensor to measure forces across the palm [HMW14]. Our tactile glove takes a similar

approach to [KSR14] for finger pose and utilizes Velostat sensors to measure force.

1.1.3 And-Or Graph

Our learning framework relies on a spatial, temporal, and causal And-Or (STC-AOG) graph,

which has successfully modeled human action and attention from videos [XSX16, WZZ13,

SPY11, FZ13b]. Other work uses syntactic grammars to successfully synthesize robot plans

to solve the Tower of Hanoi [LSK13]. To our knowledge, this is the first work to learn a

STC-AOG with a tactile glove as the demonstration data source.

This thesis focuses on the detection and utilization of visually latent states in the human

demonstration. These states are crucial for our tasks, and the demonstrator must convey the

necessity of unlocking the safety lock on the child-proof bottles. The tactile glove provides

perceptual causality that is hidden from a visual observer. Perceptual causality attempts to

infer causal relationships solely from observation [ST00, FZ13a].
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We use our tactile glove and a Vicon motion capture system to observe the poses and

forces exerted by the human demonstrator and infer an embodiment mapping between the

human and robot to transfer spatial, temporal, and causal knowledge to the robot. Our

primary contribution is the ability for the robot to utilize complex task policies by mapping

its proprioceptive measurements into the human perceptual space to utilize models learned

from human demonstration.
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CHAPTER 2

Tactile Glove Design

Tactile gloves have been proposed for a wide range of applications. We use a tactile glove to

capture the pose and applied forces during human demonstrations. The glove reconstructs

the pose of each finger using 15 IMUs, and detects force using Velostat force sensors. An

IMU is place on each phalanx of the hand and forward kinematics is used to compute the

pose of each phalanx. Hand pose reconstruction relies on the 15 IMUs, each of which report

an orientation. The IMUs measure the attitude of each phalanx and the palm. From these

orientations, a kinematic model of the hand is used to reconstruct hand pose. The kinematic

model is fixed; this introduces slight error given different phalanx lengths of each user.

To detect forces applied during demonstrations, a network of Velostat sensors used. Velo-

stat is a conductive material which changes resistance under pressure. A 4x4 grid of Velostat

sensors are placed on the palm, and each phalanx has a sensor on the distal and proximal

link. Each Velostat sensor must be calibrated with known forces, as each sensor has a unique

contact area and therefore a unique resistive response to pressure. This glove provides 71

degrees of freedom including all pose and force measurements. The glove provides an accu-

rate model of state of the human hand and the forces exerted by each phalanx. The overall

glove system architecture is shown in Figure 2.1.

2.1 Hardware Implementation

In this section, the details and capabilities of the tactile glove are outlined. The hardware

system is reproducible and low-cost. The tactile glove opens the opportunity for a wildly

utilized research glove for human demonstrations. Due to the glove’s modularized design, it

7



Figure 2.1: Overall system schematic

(a) Palmar view (b) Dorsal view

Figure 2.2: The tactile glove consisting 6 integrated Velostat force sensor with 26 sensors on

the palmar aspects of the hand and 15 IMUs on the dorsum of the hand.

can be adapted for new research areas, such as virtual reality. A prototype of the glove is

shown in Figure 2.2.

2.1.1 Pose Sensing Pipeline

The hand pose is reconstructed using 15 9DoF IMUs. An IMU is placed on each phalanx

of the hand, with three on each finger and two on the thumb. The final IMU is mounted

on the palm of the hand. Each IMU is a Bosch BNO055, and each contains a 12-bit triaxial

8



(a) Velostat sensor con-

struction

(b) Velostat sensor circuit

Figure 2.3: Velostat force sensor construction and circuit layout

accelerometer, a 16-bit triaxial gyroscope, and a triaxial geomagnetometer. The sensor data

is fused using a proprietary, black-box Bosch algorithm on a 32-bit microprocessor. This

yields a global-frame quaternion for each IMU.

The BNO055 is mounted on a custom 250 × 250 mil2 (6.35 × 6.35 mm2) breakout PCB.

Each IMU has a footprint is 5 × 4.5 mm2, making it small enough to enable natural motion.

The IMUs are connected to a pair of I2C buses in a star configuration. Each I2C bus is

multiplexed using a TCA9548A I2C multiplexer. Each multiplexer is connected to a single

Raspberry Pi 2 Model B through two on-board I2C buses. The Raspberry Pi acts as the

master controller of the system. This design is largely based on the work by Kortier et

al. [KSR14]. In this work, a similar design yields a measurement error of approximately 1

degree. The glove components are connected using a highly flexible, silicone-coated 29-gauge

wire. The IMUs are glued into small 3D-printed housings, and each housing is then sewn

into the glove’s Lycra fabric at each corresponding phalanx.

2.1.2 Force Sensing Pipeline

A network of Velostat sensors are used to detect the forces exerted by the human demon-

strator on objects. Figure 2.3a shows the multi-layer structure of the Velostat sensor. The

sensor consists of a contact patch, where the Velostat material is sandwiched between two

layers of conductive thread and conductive fabric. The outer layer of the sensor consists of

a layer insulated fabric. Lead wires connect the conductive thread and provide a connection

9
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Figure 2.4: Force-voltage relation of one constructed Velostat sensing unit. A logarithmic

law fit performs slightly better than a power law fit.

to the rest of the system.

The Velostat sensors on the palm are connected to a pair of 74HC4051 analog multiplex-

ers, and the sensors on the fingers are connected to a single CD74HC4067 analog multiplexer.

The multiplexers are controlled using the Raspberry Pi 2’s GPIO. The Raspberry Pi 2 reads

the values from a SPI-enabled ADS1256 ADC at approximately 40 samples per second.

In order to calibrate the force sensor, a series of experiments are conducted using known

weights, in a setup similar to [LS16]. The weights are applied to each 2 × 2 cm2 patch

of Velostat. The weights range from 0.1kg to 1.0kg, with 0.1kg increments in between.

Additional weights with values of 1.2kg, 1.5kg, and 2.0kg are used. The calibration circuit is

identical to the circuit in Figure 2.3b, except that the Velostat sensor of interest is connected.

Following a similar methodology as [LS16], a voltage divider is used to tune the sensing range

of each sensor. The force-voltage relation follows a power law with 𝐹 = −1.067𝑉−0.4798 +3.244

with 𝑅2 = 0.9704, where 𝐹 is the applied force and 𝑉 is the output voltage. However, a force-

voltage relation based on a logarithmic law yields a better relation, with 𝐹 = 0.569log(44.98𝑉)

with 𝑅2 = 0.9902. The force-voltage (weight-voltage) relationships are shown in Figure 2.4.

10



2.2 Software Implementation

The tactile glove software implementation consists of three major components: 1) hand

pose calculation, 2) force vector calculation, 3) visualization. The software system is built

on top the ROS environment to enable widespread adoption within the robotics commu-

nity [QCG09].

The tactile has 71 DoF, while the human hand contains only 20 DoF. Twenty six of the

tactile glove DoF arise from the force sensors, which are not considered for the human hand.

Each metacarpophalangeal (MCP) joint has 2 DoF, with 1 for the proximal interphalangeal

(PIP) joints, and 1 DoF for distal interphalangeal (DIP) joints. Due to these constraints,

each finger can be modeled as a 4 DoF kinematic chain where the palm is the base frame and

the distal phalanx is the end-effector frame. To simplify modeling, the thumb is represented

by a 3 DoF kinematic chain comprised solely of its interphalangeal and carpometacarpal

joints.

The hand pose reconstruction is computed using forward kinematics, with each finger

representing a kinematic chain. Figure 2.5 shows the kinematic chain along the index finger.

The palm is the root frame of the chain, and the proximal, middle, and distal phalanges are

frame 2 through 4. The lengths 𝑙1, 𝑙2, 𝑙3 denote the length of the proximal, middle, and

distal phalanges. We denote the abduction/adduction and flexion/extension angles of the

MCP joint by 𝛽 and 𝜃1, respectively. The flexion/extension angles of the PIP and DIP joints

are denoted 𝜃2 and 𝜃3. The offset between the palm’s center and the MCP joint is denoted

𝑑𝑥 and 𝑑𝑦 for the 𝑥 and 𝑦 directions, respectively.

Using notation, we compute the standard Denavit-Hartenberg (D-H) parameters for each

frame. Table 2.1 shows the D-H parameters. Also using this notation, we can compute a

general homogeneous transformation matrix 𝑇 from the previous frame, 𝑖 − 1 to the current

frame, 𝑖:

11



𝑖−1
𝑖 𝑇 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑐𝑜𝑠(𝜃𝑖) −𝑠𝑖𝑛(𝜃𝑖) 0 𝑎𝑖−1

𝑠𝑖𝑛(𝜃𝑖)𝑐𝑜𝑠(𝛼𝑖−1) 𝑐𝑜𝑠(𝜃𝑖)𝑐𝑜𝑠(𝛼𝑖−1) −𝑠𝑖𝑛(𝛼𝑖−1) −𝑠𝑖𝑛(𝛼𝑖−1)𝑑𝑖

𝑠𝑖𝑛(𝜃𝑖)𝑠𝑖𝑛(𝛼𝑖−1) 𝑐𝑜𝑠(𝜃𝑖)𝑠𝑖𝑛(𝛼𝑖−1) 𝑐𝑜𝑠(𝛼𝑖−1) 𝑐𝑜𝑠(𝛼𝑖−1)𝑑𝑖

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.1)

The pose of each phalanx relative to the palm can be computed by concatenating each

homogeneous transformation. We impose motion constraints on finger joints as in [LWH00]

with the joint limits in Equation 2.2. These limits restrict the possible motion to what is

achievable by the human hand and eliminate unnatural motion due to sensor noise or error.

0∘ ≤ 𝜃1 ≤ 90∘

0∘ ≤ 𝜃2 ≤ 110∘

0∘ ≤ 𝜃3 ≤ 90∘

−15∘ ≤ 𝛽 ≤ 15∘.

(2.2)

IMUs have no global reference measurement and are subsequently subject to drift over

time. To account for this error, a canonical pose is used to calibrate the glove. The hand is

held in a flat, finger-extended pose during calibration. The glove’s reference frame is defined

by an 𝑥-𝑦 plane with the 𝑥-axis extending along the user’s middle finger and the 𝑦-axis

extending to the left of the user’s hand. The orientation of the palm IMU is measured with

Table 2.1: General standard Denavit-Hartenberg parameters of a finger

Link ID 𝛼𝑖−1 𝑎𝑖−1 𝜃𝑖 𝑑𝑖

1 0 𝑑𝑥 𝛽 𝑑𝑦

2 𝜋/2 𝑙1 𝜃1 0

3 0 𝑙2 𝜃2 0

4 0 𝑙3 𝜃3 0
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Figure 2.5: Frame attachment and the kinematic chain of the index finger.

respect to this coordinate system, and the remaining IMUs are measured with respect to the

palm IMU.

From the hand pose reconstruction and Velostat force readings, the location, direction,

and magnitude of the forces applied by the human demonstrator can be computed. Each

force vector is comprised of the force magnitude reported by the Velostat sensor and the

direction is defined by the pose of the IMU. The pose of the phalanx reported by forward

kinematics translates the force vector in the frame of the glove.

The reconstructed pose is visualized in ROS using the Unified Robot Description Format

(URDF). URDF is an XML-based robot model definition format that describes a robot’s

linkages and joint constraints. The hand is modelled similarly to a robot; the URDF defines

the length of each phalanx and imposes the joint limits in Equation 2.2.
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CHAPTER 3

Task Representation

To learn from demonstration, we represent the task using a STC-AOG. Our method relies

on the following knowledge: (1) spatial knowledge to encode the poses of objects and ma-

nipulators, (2) temporal knowledge to encode action sequencing, and (3) causal knowledge

to encode how changes in the spatial and temporal domains achieve the task.

3.1 And-Or Graph

In this section, we will introduce our representation for modeling demonstration data onto

the robot platform. An AOG is a generative grammar, allowing the robot to encode compo-

sitional variability in the demonstrated task sequences. The And-Or Graph is represented

by a 4-tuple:

u�And-Or = ⟨𝑁 = 𝑈 ∪ 𝑉,𝑇,u�⟩ (3.1)

In Equation 3.1, 𝑁 represents the set of non-terminal nodes in the graph. An And-node

𝑢 ∈ 𝑈 represents a decomposition of the graph into sub-graphs. The sub-graphs are connected

through a set of relations 𝑟1,…,𝑟𝑘 ∈ ℛ. An Or-node 𝑣 ∈ 𝑉 acts as a switch among multiple

alternate sub-configurations. The terminal nodes 𝑇 = {𝑡1,…,𝑡𝑚} is a set of sub-components

representing the lowest level of resolution in the graph. For opening bottles, the terminal

nodes correspond to atomic actions (Section 3.2) executed during the task. 𝐴 represents a

set of attributes derived from the terminal nodes. In this thesis, 𝐴 is a set of fluent functions

(Section 3.3) that operate on terminal nodes.
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The collected data contains spatial, temporal and causal knowledge. Spatial knowledge

captures the physical configuration of the robot environment, temporal knowledge encodes

the sequence of atomic action to complete the task, causal knowledge expresses the status

change of an object caused by an action. All three components are simultaneously modeled

in a STC-AOG.

3.2 Atomic Actions

Both the human and robot actions are modeled using atomic actions [PSY13]. Atomic

actions are equivalent to movement primitives in traditional robotics motion control litera-

ture [SPN05, PDP13]. An atomic action represents the finest resolution at which to consider

planning problems. We denote the human dictionary of atomic actions to be Δℎ, and each

𝑎𝑖
ℎ ∈ Δℎ represents a human atomic action.

We endow the robot with a dictionary of atomic actions, denoted Δ𝑟, and manually map

a correspondence between human and robot action labels. This correspondence reduces the

complexity of the robot planning problem; without it, the robot would search within its

action and its action sequence space at the same time. This thesis addresses searching in

the action sequence space alone. Examples of endowed robot actions are summarized below

in Table 3.1

Table 3.1: Example robot atomic actions

Name Description

Approach Moves end-effector towards a target

Grasp Closes end-effector

Move Moves end-effector to a position

Push Applies force through translation of the arm

Twist Rotates the wrist of the robot by a given degree
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(a) Consecutive atomic actions (b) Consecutive atomic actions under causal assumption

Figure 3.1: Atomic actions and their fluents

3.3 Fluents

We model the causal knowledge as changes in the spatial domain or temporal domain using

fluent changes between the pre- and post-condition of each action. Each fluent function

maps the system configuration, 𝑠𝑡, to a real value, 𝑓(𝑠𝑡) ↦ ℝ. A fluent change represents a

transition between two system configurations, Δ𝑓(𝑠𝑖, 𝑠𝑗) = 𝑓(𝑠𝑗)−𝑓(𝑠𝑖). We denote the action

at time 𝑡 as 𝑎𝑡. We denote the system configuration of the pre-condition as 𝑠𝑡−1 and the

post-condition as 𝑠𝑡. Each action can be characterized by the changes it imposes across all

fluents, denoted Δ𝑓 = {Δ𝑓𝑖(𝑠𝑡−1, 𝑠𝑡), 𝑖 = 1...𝑛}.

Using this representation, our learning task is to discriminate the fluent changes of each

human action such that we can compute 𝑝(𝑎𝑡|𝑓(𝑠𝑡−1),𝑓(𝑠𝑡)), the probability of action 𝑎𝑡,

given the corresponding pre- and post-condition. We also seek to learn an embodiment

mapping to translate between robot and human configurations in the fluent space. We

assume the human demonstrator/robot is the only causal agent in the environment and the

inertial action assumption [MT97]. These two assumptions imply a causal chain between

the agent’s previous action and the next action; i.e. the post-condition of the previous action

is the pre-condition of the current action, shown in Figure 3.1.
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CHAPTER 4

Data Collection

A human demonstrator performed opening various types of bottles, shown in Figure 4.1.

Some of the bottles contain child-safety locking mechanisms which require a procedure be-

yond simply twisting to unscrew the cap. Most child-safety locks require a particular force

to be exerted on a particular part of the bottle. These forces are difficult to infer from visual

observation alone. We collected human data on bottles 2, 3, and 5. The remaining bottles

were reserved for testing.

To estimate object states, we use a Vicon motion capture system and attach fiducials on

each bottle and its lid. We also attach fiducials to the tactile glove to capture wrist pose

in world space. Vicon requires a minimum of 3 fiducials to be visible at all times. Due the

closeness of the bottle, the lid, and the glove during demonstration, the fiducials are mounted

Figure 4.1: Bottles used in experiments. (1) bottle with push-and-twist safety mechanism.

(2) bottle with pinch-and-twist safety mechanism. (3) bottle with push-and-twist safety

mechanism. (4) bottle with push-and-twist safety mechanism. (5) bottle with no safety

mechanism.
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(a) Collected human data (b) Room configuration

Figure 4.2: Data capture configuration. (a) modeled data from human demonstration. (b)

data collection configuration consisting of demonstrator wearing the tactile glove, a motion

capture system, and a RGB camera

onto 3D-printed extenders. These extenders must be position into unique configurations for

proper localization within the motion capture system. The experimental setup is shown in

Figure 4.2.

We collect approximately 10 trials for each grasping strategy for each bottle. Bottle 2

only has one grasping strategy: pinch-and-twist. Bottle 3 has two strategies: push-and-twist

using the palm, or push-and-twist using fingers. Bottle 5 has three strategies since it lacks

a safety mechanism: twist, push-and-twist, or pinch-and-twist. While there may be multiple

ways to open each bottle, not all methods are considered equally. For instance, Bottle 5 has

no safety mechanism, so while push-and-twist and pinch-and-twist may succeed in opening

bottle 5, there is no reason to execute anything other than twist. We use this distinction

during evaluation of our method. Examples of collected data are shown in Figure 4.3.

Each demonstration is manually labeled. We manually label the data to mitigate the

correspondence problem between a human action and a robot action. The timestamps of

the labeling provide the transition boundaries between actions; i.e. the post-condition of

the labeled action and the pre-condition of the next action. This labeling procedure ensures

there is no external causal change between actions, as assumed in Section 3.2.

Actions such as grasp-and-push or grasp-and-pinch are labelled as a single action due to
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(a) Bottle 5, regular twist to open

(b) Bottle 3. pressing the lid to open

(c) Bottle 2, pinching lock to open

Figure 4.3: Action sequences and visualization of opening three types of bottles

the small time delay between actions; the bottle is grasped simultaneously as it is pushed

or pinched. This simplified labelling, however, it does make the corresponding robot atomic

actions more complex.
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CHAPTER 5

Learning from Demonstration

From the human data, we first learn a temporal And-Or graph (T-AOG) that encodes a gram-

mar of valid sequences of atomic actions. We induce the T-AOG from the labeled sequences

using the method presented in [TPZ13]. This method induces a stochastic context-free gram-

mar with probabilistic Or-nodes in the graph. We denote the training set as 𝑋, where 𝑥𝑖 ∈ 𝑋

represents a sequence of atomic actions, 𝑥𝑖 = (𝑎1,𝑎2,…,𝑎𝑚), from the demonstrator. The

grammar is induced by maximizing the posterior probability of the grammar, 𝐺, given the

data, 𝑋:

𝑝(𝐺|𝑋) ∝ 𝑝(𝐺)𝑝(𝑋|𝐺) = 1
𝑍

𝑒−𝛼||𝐺||
∏

𝑥𝑖∈𝑋
𝑝(𝑥𝑖|𝐺) (5.1)

The resulting T-AOG can be used to sample valid sequences of atomic actions used by the

human to achieve the task. Because the robot has a different embodiment and manipulators,

the grammar is not guaranteed to produce sequences that succeed when executed by the

robot. The induced grammars as additional human demonstrations are added are shown in

Figure 5.1.

5.1 Compatibility Model

Compatibility between robot states and actions is learned discriminatively from human

demonstration and robot executions using neural network architectures. During robot ex-

ecution, a compatibility check consists of two stages: 1) an embodiment mapping between

the robot and a low-dimensional human embedding and 2) a transition model to predict
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(a) Node legend (b) T-AOG from one example

(c) T-AOG from two examples (d) T-AOG from 65 examples

Figure 5.1: T-AOG generated from human data
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the current and next action from a low-dimensional human embedding using Equation 5.5.

From the human demonstration, an auto-encoder is trained to embed the space of ob-

served hand geometries and force distributions into a low dimensional subspace. Changes of

the hand configuration within this subspace are treated as fluent changes and are used to

infer the current and predicted action sequence with observed proprioceptive feedback. From

this subspace, we train the transition model to predict both the current and next action from

tactile observations of the pre- and post-condition of the current action.

The contact force and pose measurements from the tactile glove are reoriented to the

reference frame of the wrist, and concatenated into a feature vector with 159 dimensions.

An encoder-decoder architecture, illustrated in Figure 5.2, is used to learn a 6-dimensional

embedding and reconstruct the full feature vector from this embedding under a criteria that

minimizes the squared residuals between the original feature and the reconstruction.

The classification networks take their input from the embedding layer of the auto-encoder,

and learns a multi-class classifier to predict one of the 10 atomic actions. A softmax layer is

used to interpret this as a probability distribution using Equation 5.2.

𝜎(𝐱)𝑖 = 𝑒𝑥𝑖

∑𝐾
𝑘=1 𝑒𝑥𝑘

𝑖 = 1,…,𝐾 (5.2)

The network is trained by minimizing the normalized cross-entropy. All internal layers

are linear matrix operators, and use sigmoids for their non-linearities. All elements of the

network are trained simultaneously using tied weights between the auto-encoders for the pre-

and post-conditions.

The probability for a sequence of actions and corresponding fluent measurements is

𝑝(𝑓1…𝑡−1) = ∑
𝑎1…𝑡

𝑝(𝑓1…𝑡−1|𝑎1…𝑡)𝑝(𝑎1…𝑡). (5.3)

where 𝑝(𝑎1..𝑡) is the parse probability from the grammar. Because an action has to be

selected at every step, we only need to choose the most likely next action given the previous

observations, from which we use two time steps to capture the pre- and post-condition of
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Figure 5.2: Neural network architecture for classifying current and future actions using a

low-dimensional embedding of human tactile feedback.

the last executed action:

𝑎∗
𝑡 =argmax

𝑎𝑡
𝑝(𝑓𝑡−1,𝑓𝑡−2|𝑎2…𝑡)𝑝(𝑎1…𝑡) (5.4)

∝argmax
𝑎𝑡

𝑝(𝑎𝑡|𝑓𝑡−1,𝑓𝑡−2)𝑝(𝑎1…𝑡). (5.5)

where 𝑝(𝑎𝑡|𝑓𝑡−1,𝑓𝑡−2) is the probability learned by the network to classify the next action.

We approach the embodiment problem by learning a mapping between the proprioceptive

sensing on the robot and the tactile measurements from the human demonstration. Specifi-

cally, we supervise robot executions sampled from the T-AOG using the robot’s dictionary

Δ𝑟. The robot is supervised during executions to ensure only successful robot states are

mapped to successful demonstrator states. We denote 𝑠ℎ to represent the human state of

the demonstration and 𝑠𝑟 to represent the robot.

Our embodiment mapping seeks a function 𝑠ℎ = 𝑓(𝑠𝑟), which maps a robot state in the

robot’s configuration space to the low-dimensional human perceptual space. We train a neu-

ral network to learn this function from a small number of robot examples (approximately 15

examples). The embodiment mapping network is illustrated in Figure 5.2. The robot utilizes

this mapping to verify that the executed action is consistent with the tactile measurements

experienced by the human.

Using the transition model and embodiment mapping, the compatibility check projects

the robot’s state into the low-dimensional human embedding and uses the transition model
23



to predict the current action and next action the robot will execute. If the actions match,

the robot can infer this action execution was a success, otherwise, a failure.
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CHAPTER 6

Implementation

Our robot platform consists of a dual-armed 7-DoF Baxter robot from Rethink Robotics

mounted on a DataSpeed Mobility Base. The robot is equipped with a ReFlex TackkTile

gripper on the right wrist, and a Robotiq S85 parallel gripper on the left. In addition, we

use Simtrack [PK15] for object pose estimation and tracking using a Kinect V2. The entire

system runs on ROS [QCG09], and arm motion planning is computed using MoveIt! [SC13].

For object grasping, we implement a geometry based grasp planner to compute and generate

grasping poses from CAD models of the objects.

In our implementation, the S-AOG stores physical knowledge of all objects in the scene.

The S-AOG is updated using SimTrack and the robot state. The human T-AOG contains

human actions along the time axis, including geometry transformation and physics variation

of human hand pose which were retrieved from tactile glove. The robot T-AOG was con-

structed with the atomic actions segmented from human demonstration data. The C-AOG

corresponds to the fluent changes the transition model predicts when an action is executed.

Together, these form a unified STC-AOG which captures the spatial, temporal, and causal

components of the task.

Figure 6.1 shows the system architectures. Figure 6.1a shows the initial system used

for baseline for evaluation. This architecture is also used to supervise the robot’s execution

while learning the embodiment mapping. Once the mapping is learned, we use the system in

Figure 6.1b to sequentially choose atomic action using the Earley parser and compatibility

model. The robot STC-AOG is updated upon every successful bottle opening.
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(a) Sampled sequence (b) Sampled sequence with online learning

Figure 6.1: System architectures for evaluation: (a) Each sentence is sampled directly from

T-AOG and executed sequentially. (b) Each action is sampled one-by-one using the com-

patibility model.

6.1 Sampling action sequences using T-AOG

The T-AOG encodes the temporal sequence of actions and can be directly mapped between

the robot and human. This describes the order in which actions were executed, but does not

capture spatial or causal relationships. The And-node is generated sequentially, while the

Or-node is chosen with the probability that proportional to the learned Or-node probability.

After generating the entire action sequence from the grammar, the robot executes the

entire sequence without utilizing the compatibility model between two consecutive actions.

Due to the fact the T-AOG is a context-free grammar, the sampled sequence may adhere

to the grammar but not enforce long-range constraints of a task, leading to task failure or

misuse of actions. For example, the robot may select to pinch bottle 3, which requires a

push. Due to these failures, the training executions for the embodiment mapping must be

supervised; we only wish to encode robot states that correlate to successful demonstrations.
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6.2 Sampling action sequences with online learning

With online learning, the temporal sequence of actions are not generated by sampling from

AOG; each action is generated one by one using a graph parser. We adopt the Earley

parser [Ear70]. Once an action is generated from the Earley parser, a compatibility check is

performed to predict the current and the next action. The action selected is executed, and

if the action is successfully executed, the robot generates the next action.

If an action sequence was successfully executed by Baxter, the action sequence will be

added to update the learned AOG. This loop enables the robot to integrate the knowledge

learned from human and explored by itself. Note that while the compatibility model is using

the robot state to predict the next action, it does not enforce context-sensitivity within the

the action. Thus, it is still possible for the robot to select to pinch bottle 3, which requires

a push. However, because the system is learning with each successful execution, it becomes

increasingly less likely the robot will select an inappropriate action due to the updated values

of probabalistic Or-nodes.
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CHAPTER 7

Experiments

7.1 Experiment Setup

Five bottles were used in the evaluation as shown in Figure 4.1. Bottle 2, 3, and 5 were used

in human data collection, while the remaining of the bottles were reserved for testing.

We classify robot executions into five different categories: 1) success, 2) success but using

extra unnecessary actions, 3) success but using at least one wrong action(s), 4) failure due to

using the wrong action, and 5) failure due to improper execution. While categories 2 and 3

are similar, they have a subtle difference for task completion. In category 2, the unnecessary

actions do not contribute to task completion. For example, the robot may twist the lid an

additional, unnecessary rotation. In category 3, the robot selects the wrong action, but the

action still contributes to task completion. For example, the robot may push on a bottle

with no safety lock. However, the push action’s definition includes grasping the lid, so the

action still contributes to the overall task completion.

An execution is deemed successful if the robot opens the bottle; otherwise, the execution

is a failure. If the robot opens the bottle before finishing the sampled execution, we consider

the action sequence that it performed is correct and discard remain actions. Each bottle was

tested approximately 20 times.

7.2 Results

We conduct experiments opening bottles with varying or absent child lock safety mecha-

nisms. Table 7.1 and 7.2 show the comparisons between baseline method and proposed
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Table 7.1: Baseline: executions sampling sequences from T-AOG (percentage)

Bottle 1 2 3 4 5

Success 0.00 0.05 0.05 0.00 0.36

Success (extra actions) 0.11 0.00 0.05 0.25 0.18

Success (wrong actions) 0.00 0.11 0.00 0.19 0.36

Failure (action) 0.00 0.16 0.15 0.15 0.05

Failure (execution) 0.89 0.68 0.075 0.44 0.05

Table 7.2: Proposed method: executions with online learning (percentage)

Bottle 1 2 3 4 5

Success 0.50 1.00 0.4 0.60 1.00

Success (extra actions) 0.00 0.00 0.00 0.00 0.00

Success (wrong actions) 0.00 0.00 0.00 0.00 0.00

Failure (action) 0.50 0.00 0.00 0.40 0.00

Failure (execution) 0.00 0.00 0.6 0.00 0.00

method. The baseline method only consider the action sequence from the T-AOG, whereas

the proposed method includes the compatibility model after executing each action. The

results demonstrate that the proposed method could utilize the compatibility model to cor-

rect the action sequence generated directly from T-AOG, improving the successful rate and

preventing the extra unnecessary actions or wrong actions.
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Figure 7.1: Successful robot execution sequence
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CHAPTER 8

Conclusion

In this work, we present a method to learn visually latent fluent changes from human demon-

stration and successfully complete the same task during robot execution. The tactile glove

provides a data collection method to capture visually hidden causal changes in the scene.

Using this latent encoding of the scene, we learn a model to predict the actions of the human

demonstrator. The human demonstrator’s action sequences are used to induce a temporal

And-Or graph. The T-AOG is used to supervise successful executions of opening a bottle.

The robot states of successful executions are mapped to successful demonstrations from

the human demonstrator using a low-dimensional embedding of the human tactile feedback.

The mapping function provides an embodiment mapping between the human and the robot

using a relatively small number of supervised robot executions. The robot utilizes this

mapping to infer whether or not the current action executed successfully. This inference

is then used to update the original T-AOG, enabling online learning and refinement of the

model learned from human demonstration.

This system presents a novel method of capturing visually hidden states of a task and

transfers them to the robot using a tactile glove, supervised learning, and online learning.

The robot successfully demonstrates its ability to utilize and improve the model learned from

human demonstrations.

8.1 Future Work

This work paves the way for additional work regarding visually latent states and correspond-

ing embodiment mappings. We would like to investigate methods to make the system less
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supervised, such as clustering the human demonstrations instead of labeling actions. The

method should be expanded to utilize more actions and investigate different tasks. As this

work focuses on a precision-based task, specifically opening a bottle, this method should also

be examined against power-based task, such as cracking a nut. Power-based tasks involve

dynamics, and our tactile glove may be useful in capturing visually latent forces exerted by

the hand. This information may lead to more robust models over traditional vision-based

dynamics reasoning methods. Another direction includes the examining the generality of the

learned STC-AOG. In [ZZZ15], the functional equivalent of tools was examined. The frame-

work presented here could potentially be used to attempt functionally equivalent tasks based

on reasoning similar to [ZZZ15]. In this way, the robot could demonstrate understanding

the which dynamics of the task need to be replicated and which can be safely ignored.
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