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Flow-enhanced transportation for anomaly detection
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(Received 31 January 2023; accepted 28 April 2023; published 31 May 2023)

Resonant anomaly detection is a promising framework for model-independent searches for new
particles. Weakly supervised resonant anomaly detection methods compare data with a potential signal
against a template of the Standard Model (SM) background inferred from sideband regions. We propose a
means to generate this background template that uses a flow-based model to create a mapping between
high-fidelity SM simulations and the data. The flow is trained in sideband regions with the signal region
blinded, and the flow is conditioned on the resonant feature (mass) such that it can be interpolated into the
signal region. To illustrate this approach, we use simulated collisions from the Large Hadron Collider
(LHC) Olympics dataset. We find that our flow-constructed background method has competitive sensitivity
with other recent proposals and can therefore provide complementary information to improve future
searches.

DOI: 10.1103/PhysRevD.107.096025

I. INTRODUCTION

While the Large Hadron Collider (LHC) has been opera-
tional for over a decade, no targeted search for physics
beyond the Standard Model has found significant evidence
for new particles or forces of nature. As a result, there has
recently been a growing interest inmodel-agnostic searches:
in such studies, the goal is to find anomalies while making
few assumptions about the underlying physics model that
could have produced them. This mode of analysis is highly
general, and it has gained momentum from recent advances
formodeling, classifying, and finding anomalies in data. For
a broad review of the role of modern machine learning (ML)
methods in searches for new physics, see [1]; for perfor-
mance summaries of ML-inspired methods on LHC-like
data, see the LHC Olympics [2] and Dark Machines
Anomaly Score Challenge [3] reports.
One class of anomaly detection searches is for resonant

anomalies. In this case, we assume that the beyond-the-
StandardModel (BSM) physics signaturewould be resonant

in at least one feature, typically some sort of mass. Such a
signal might correspond to the production of a new on-shell
particle. These “bump hunts” search for an excess in the
mass feature above the known Standard Model (SM)
background in a well-defined signal region. However, such
searches require the existence of accurate SM background
templates within the signal region.While particle generators
for SM physics exist, the resulting simulated data (even with
detector effects added) is not accurate enough to be used as a
background for bump hunts in hadronic final states: hard
process generators carry out perturbative calculations
only to NLO, showering simulators make use of heuristic
nonperturbative models, and detector simulators make
necessary simplifying assumptions about particle-detector
interactions in order to speed up runtime.
In response to this problem of subaccurate particle

generators, a number of studies have focused on construct-
ing SM background templates for LHC-like detected data
within a signal region. Broadly, methods can be categorized
on two qualities:
(1) Simulation-assisted vs data-driven. For simulation

assisted methods, the background template construc-
tion is informed by a set of simulated LHC-like
collider data representing SM processes; for data-
driven methods, data from sidebands mass regions is
used, where the sidebands are far enough from the
resonant process such that the data can be treated as
a proxy for SM background.

(2) Likelihood learning vs feature morphing. For the
former, methods learn the likelihood of a SM-only
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dataset (such as simulation, or detected data in
sidebands) where there are no signal events. This
learned likelihood is then interpolated into the signal
region to act as a SM background template above
which signal events might be detected. Alternatively,
methods can physically morph features from the
SM-only dataset to the detected, signal-containing
dataset.

A number of previous methods for SM background
construction are classified visually in Table I. This two-axis
scheme is not meant to be all-encompassing, as there exist
many methods for anomaly detection that cannot be so
neatly classified (see [4–7] for examples of such methods in
practice).
In this paper, we propose the “flow-enhanced trans-

portation for anomaly detection” (FETA) method to model
SM-like background at the LHC. FETA is simulation-
assisted and relies on feature morphing, therefore filling
the previously empty section of Table I.
In FETA, we train a normalizing flow1 [15] to learn a

mapping between simulation and data in sidebands regions.
We then apply the learned mapping to signal region
simulation to create a simulation-informed template for
signal region SM background. FETA benefits from being
simulation-assisted since it can use simulated SM data as a
physically-informed prior for the background template; the
method further benefits from using feature morphing since
it is robust to mapping between feature spaces with non-
overlapping support.
The structure of this paper is as follows. In Sec. II, we

provide a concise background of normalizing flows and
outline how they will be applied to physics-specific data-
sets. In Sec. III, we illustrate the effectiveness of flow-based
models for creating context-dependent mappings with a toy
example of triangular datasets. In Sec. IV, we exchange the
toy models for LHC-like data and use FETA to create a
model for LHC-like detected SM data. In Sec. V, we test
the performance of FETA in a series of realistic anomaly
detection tasks. In Sec. VI, we conclude and suggest
avenues for further study.

II. METHODOLOGY

A. Normalizing flows as morphing functions

Normalizing flows are constructed from invertible neural
networks between sets of variables sampled from different
probability densities. Given a random variable X sampled
from a reference distribution pR, one can define a trans-
formation T that produces another random variable Z,
i.e., Z ¼ TðXÞ. The density of Z is then given by
pZðZÞ ¼ pRðXÞj det ∂T∂X j−1. By chaining together a number
of transformations Ti, one can produce an arbitrarily
complex mapping between the initial reference density
pR and a target distribution pT . Typically, the target density
is taken to be a standard normal distribution. (Hence the
name “normalizing” flow.)
In this work, we use the normalizing flow both for

its density estimation power and its ability to construct
morphing functions between nontrivial reference XR ∼ pR
and target XT ∼ pT distributions. Our reference density is
derived from Standard Model simulation (XSIM ∼ pSIM),
and our target dataset is derived from detected data
(XDAT ∼ pDAT).
More explicitly, we define a set of N event observ-

ables such that events in the reference and target are
N-dimensional vectors XSIM and XDAT, which respectively
are sampled from the N-dimensional feature densities pSIM
and pDAT. We then train a flow to learn the mapping T
between pSIM and pDAT. In training the flow, we must
ensure that the learned mapping is between simulated
Standard-Model background and LHC-detected back-
ground. For resonant anomalies, we assume that the signal
will be localized in one feature mres. This allows us to
define sidebands (SB) and a signal region (SR) in mres,
where data from the former regions is assumed to follow
the SM distribution. We then train the flow only on data
from SB, using the resonant feature to condition the
mapping Tð·jmresÞ. The learned flow is then applied to
simulation in the SR to produce an approximation of XDAT:
X�
SIM ¼ TðXSIMjmresÞ for LHC-detected background in the

SR. A schematic of this method is shown in Fig. 1.
There are several advantages to using a flow-based

architecture over other architectures such as GANs or
VAEs. Normalizing flows are known to be more stable
and achieve convergence during training faster, especially
in higher dimensions. This property allows for the free-
dom to choose a larger feature space X, which may be
desirable for a model-agnostic study. For GANs specifi-
cally, attempting to learn conditional mappings between
datasets is not an easily done task. In addition, the density
estimating power of the normalizing flow allows us to
oversample from the reference distribution and reduce
statistical uncertainties (explored in more detail in
Appendix A). This is not possible with VAEs, which
require the definition of explicit pairs to train the
encoder-decoder architecture.

TABLE I. Broadly speaking, many methods for constructing
SM background templates for resonant anomaly detection can be
classified on two axes. In this study, we introduce the FETA

method.

Simulation-assisted Data-driven

Likelihood
learning

SALAD [8]
Overdensity searches [9],
ANODE [10], (LA)CATHODE

[11,12]
Feature
morphing

FETA (this work) CURTAINS [13]

1A comprehensive review of flow-basedmodels is given in [14].
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B. Flow construction

All flows were constructed using the nFlows package [16]
and were trained using PyTorch [17].
As an important procedural note: to learn a flow that

maps between two nontrivial densities, we use a two-step
procedure. We first train a base density normalizing flow to
learn the mapping between a normal distribution and the
reference density pR across all mass bands (i.e., using
reference data from both the SB and SR). We then train a
transport flow to learn the mapping between the base
density distribution and the target density pT, this time only
using data from the SB. This specific method, which allows
for the use of flows to map between nontrivial distributions,
was proposed and implemented in the CURTAINS back-
ground construction method (and is further explored
in [18]). It is thus more accurate to simply call FETA a
flow-based method, rather than a normalizing flow-
based one.

III. TESTING THE FETA METHOD
WITH A TOY MODEL

To concretely illustrate the FETA method, we train a flow
to map between two toy triangular datasets. Both datasets
contain 100,000 samples in a two-dimensional feature
space, with a feature X that is conditionally dependent
on a featureM. This conditioning feature can be interpreted
as a masslike feature, or one in which we expect an
anomaly to be resonant.

A. Toy model datasets

To construct each dataset, we first generate samples of
the conditioning (resonant) feature M, which we take to be
uniformly distributed between (0, 1). On this feature, we
define the signal region SR ∼ ð0.34; 0.66Þ. We also define
two sidebands, SB1 ∼ ð0.0; 0.34Þ on the low mass side of
the SR, and SB2 ∼ ð0.66; 1.0Þ on the high mass side.

For the corresponding nonresonant feature, we draw
samples from a triangular dataset with endpoints at (0, 1).
In order to condition this feature X on the mass, for each
sample we define the midpoints mR, mT of the triangular
distributions for reference and target to be linear functions
ofM, mR ¼ 0.4995M and mT ¼ 0.4995M þ 0.5005. Then
the toy reference dataset XR consists of left-triangular
dataset samples in the range (0, 1), and the toy target
dataset XT consists of right-triangular samples. We further
shift all the samples XT of the target dataset by 0.5 such that
the reference and the target sets have nonidentical support.
Samples from the two datasets are shown in Fig. 2.
The flow architecture and hyperparameters are given in

Table II. All settings were optimized via manual tuning and
were chosen to give the best possible performance on the
SB regions (as quantified by the ROC AUC, which is
defined in Sec. III B). Flow training is optimized with
AdamW [19], and the learning rate is annealed to zero
following a cosine schedule [20]. Before training, all
features are minmaxscaled to the range ð−3; 3Þ, which
was found to be optimal with respect to the flow training;
further, the samples are split into training (80%) and

FIG. 1. A schematic of the FETA method. We train a flow to
learn the mapping between simulation and data in sidebands
regions, which are expected to be background-only. We then
apply the learned flow to simulation in a signal region to produce
an approximation for background in that region.

FIG. 2. Toy datasets XR and XT. The feature X is a function of
the conditioning feature M.

TABLE II. (RQ¼ rational quadratic; MADE¼masked autoen-
coder for distribution estimation [21].) Flow architecture and
training hyperparameters used for the toy (triangular) dataset.
Both the base density and transport flow parameters were
optimized through manual tuning.

Parameter Base density flow Transport flow

Flow type Autoregressive [22] Coupling
Spline Piecewise RQ Piecewise RQ
Number MADE blocks 8 8
Number layers 2 2
Number hidden features 16 16

Epochs 20 20
Batch size 128 256
Learning rate 3 × 10−4 3 × 10−4

Weight decay 1 × 10−4 1 × 10−5
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validation (20%) sets. The model from the epoch with the
lowest validation loss is used for evaluation.

B. Toy model results

Plots of the reference XR, transformed reference X�
R as

found by the FETA method, and target XT distributions are
shown in Fig. 3. We compare the distributions separately in
SB1, SR, and SB2 (recall that the flow is trained only on
data from SB1 and SB2 and is applied to the blinded SR
data). Qualitatively, there is excellent agreement between
the distributions for X�

R and XT in SB1 and SB2 and good
agreement in the SR. We conclude that the flow has learned
to map between the reference and the target data.
In Fig. 3, we also plot the reweighted reference XW

R as
found through the SALAD method. For this method, we train
a binary classifier to discriminate between XR and XT . Such
a classifier will learn the likelihood ratio between the
reference and the target distributions. This likelihood ratio
can then be interpolated into the SR and used to reweight
XR. Note that for this toy model, feature reweighting is
expected to fail due to the fact that there are regions of non-
overlapping support between the reference and target.
We can quantify the performance of the learned morph-

ing function by training a 5-fold binary classifier neural
network to discriminate betweenX�

R and XT . Each classifier
is a fully connected (dense) network, with linear layers of
sizes (5, 64, 32, 1) and a dropout of 0.1 between each layer.
Each classifier is trained for up to 100 epochs with a batch
size of 128, learning rate of 10−3, and patience of 5 epochs.
We evaluate all test data on the classifier from the fold with
the best (lowest) validation loss.
As our scoring metric, we use the area under the receiver

operating characteristic (ROC) curve. These Area Under
the Curve (AUC) scores for this classifier are shown in
Table III. An ideal morphing function would result in the
transformed reference and target datasets being indistin-
guishable from each other, which would correspond to a
AUC close to 0.50. Indeed, the AUCs hit this performance

benchmark, and they are also far lower than those for a
classifier trained to discriminate between untransformed
XR and XT .

IV. APPLYING FETA TO LHC-LIKE DATA

We now move to a realistic example: training a flow to
learn the morphing function between Standard Model
simulation and detected data. For an ideal application of
FETA, the reference dataset would consist of simulated
Standard Model-like data (XR ¼ XSIM), and the target
dataset would consist of LHC-detected Standard Model
data XT ¼ XDAT). However, we do not have access to LHC
data. Therefore in this study we use two distinct sets of
simulated data for the reference and target datasets.

A. LHCO datasets

Wefocus on theLHC2020OlympicsR&Ddataset [2,23].
The full dataset consists of 1,000,000 background dijet
events (Standard Model Quantum Chromodynamic (QCD)
dijets) and 100,000 signal dijet events. The signal comes
from the process Z0 → Xð→qq̄ÞYð→qq̄Þ, with three new
resonances Z0 (3.5 TeV), X (500 GeV), and Y (100 GeV).
Events are required to have at least one large-radius jet
(R ¼ 1) trigger with a pT threshold of 1.2 TeV. The events
are generated with Herwig++ [24], PYTHIA 8.219 [25,26], and

FIG. 3. Probability distributions for XR, X�
R, and XT for the toy model. The X�

R samples represent the trained flow acting upon XR. The
good agreement between X�

R and XT indicates that the flow has successfully learned to map between the two datasets. We also provide
the distribution for reweighted reference XW

R to illustrate its failure to provide an accurate model for XT, as the reference and target
datasets have different regions of support.

TABLE III. ROC AUCs for a binary classifier trained to
discriminate the transformed reference X�

R from the target dataset
XT . For comparison, we also provide the AUCs for a binary
classifier trained to discriminate the untransformed reference XR
from the target. Uncertainties are the 1σ bounds from retraining
the binary classifier 20 times, each with a different random seed.

Band AUC for X�
R vs XT AUC for XR vs XT

SB1 0.5144� 0.0095 0.9830� 0.0009
SR 0.5117� 0.0040 0.9806� 0.0000
SB2 0.5086� 0.0082 0.9813� 0.0009
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Delphes3.4.1 [27]. Each event contains up to 700 particles with
three degrees of freedom (DoF) pT , η, ϕ.
For this study, we choose a feature space of six dijet

observables mJ1 , ΔmJJ, τ21J1 , τ
21
J2
, ΔRJJ, and mJJ. Following

the example of the CURTAINS analysis, we include the
ΔRJJ dijet observable as a feature that is highly correlated
with mJJ.
As with many anomaly detection searches, we assume

that the anomaly is resonant in one feature,mJJ. This would
correspond to a new resonant particle that would produce
the two jets. The assumption of resonance allows us to
define a signal region (SR) in mJJ-space, as well as two
sidebands (SB1 and SB2) on the low- and high-mass ends
of the SR. The region edges are defined in Table IV. While
we have chosen to focus on one SR/SB setup, one could in
practice perform a sliding bump hunt and scan the SR
across a wide range of resonant masses.
The LHC Olympics dataset does not contain any LHC-

detected data that would be the obvious choice for XSIM.
Therefore we take the LHC Olympics Herwig++ data as our
simulation dataset XSIM and the PYTHIA data as our target
dataset XDAT. Histograms of the six dijet observables for
XSIM and XDAT are shown in Fig. 4.

B. Training method

The method for training a flow on the LHC data is the
same as for the toy dataset. However, the flow architectures
used for LHC-like data are significantly more expressive.
Architectures and hyperparameters are outlined in Table V.
Notably, the base density flow parameters were derived
from the main architecture from CATHODE (which relies on
faithful density estimation of detected collider data in SB),

and they were confirmed to give the best performance
through manual tuning. Data is minmaxscaled to the range
ð−3; 3Þ before flow training, and a training-validation split
of 80%–20% is used. All settings were manually optimized
to give the best-performing flow possible, as quantified by
the ROC AUCs in SB1 and SB2.

C. LHCO results

In Figs. 5(a) and 5(b), we plot the distributions for XSIM,
X�
SIM, and XDAT for the LHC-like data in SB1 and SB2. For

each band, we also plot the ratio of untransformed and
transformed simulation distributions to the target distribu-
tion. For all features, the transformed simulation X�

SIM is
visually much closer to the target XDAT than the untrans-
formed simulation.
In Fig. 5(c), we provide the same distributions for XSIM,

X�
SIM, and XDAT in SR. For these plots, we once again see

good qualitative agreement between X�
SIM and XDAT,

despite the fact that the flow was not explicitly trained
to morph between SR datasets.
In Table VI, we quantify the performance of the flow

through the ROC AUC of a binary classifier (with the same
architecture as in Sec. III B) trained to discriminate X�

SIM

TABLE IV. Band edge definitions in mJJ-space for the LHC
Olympics datasets and corresponding event counts.

Band GeV Bounds Herwig++ events PYTHIA events

SB1 (2900, 3300) 210767 212115
SR (3300, 3700) 121978 121339
SB2 (3700, 4100) 68609 66646
SB1 ∪ SB2 279376 278761

FIG. 4. Feature distributions for the six dijet observables used in the LHC Olympics analysis. SIM represents Herwig++ simulation, and
DAT represents PYTHIA simulation. The last feature,mJJ , is the feature in which we expect the anomaly to be resonant and conditions the
flow mapping.

TABLE V. Flow architecture and training hyperparameters used
for SM background construction for the LHC Olympics dataset.
The base density flow parameters were derived from the main
architecture from CATHODE, but were confirmed to give the best
performance through manual tuning. The transport flow param-
eters were optimized through manual tuning.

Parameter Base Density flow Transport flow

Flow type Autoregressive Coupling
Spline Piecewise RQ Piecewise RQ
Number MADE blocks 15 8
Number layers 1 2
Number hidden features 128 32

Epochs 100 50
Batch size 128 256
Learning rate 1 × 10−4 5 × 10−4

Weight decay 1 × 10−4 1 × 10−5
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from XDAT in each band. In all bands, the AUC is consistent
with below 0.51, so our benchmark for indistinguishability
of transformed simulation from the target is achieved.

V. USING FETA FOR ANOMALY DETECTION

For a well-trained flow, X�
SIM should faithfully model the

SM background as would be detected at the LHC.

However, if the LHC-detected data did contain some
anomalous events, this would cause X�

SIM to differ from
XDAT. In this case, an avenue for resonant anomaly
detection emerges. We can train a binary classifier to
discriminate X�

SIM in the SR from data in the SR, and a
significant deviation found between the distributions might
provide evidence of anomalous events in the detected data.
This method for anomaly detection relies on the fact that a

FIG. 5. Probability distributions and ratios for XSIM, X�
SIM, and XDAT for the LHC Olympics model. The X�

SIM samples represent the
data that results from the trained flow acting upon XSIM. The good agreement between X�

SIM and XDAT indicates that the flow has
successfully learned to map between the two datasets.
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binary classifier trained to discriminate between two mixed
samples (such as a background-only SM template and a
detected mixture of SM background and resonant signal) is
in fact the optimal classifier for distinguishing pure signal
from pure background [28–30].

A. Signal injection procedure

To explore the capability of FETA for anomaly detection,
we repeat the flow training method as outlined in Sec. IV B.
We inject a known number of signal events into the XDAT
(PYTHIA) dataset. Since our chosen SR extends across the
mJJ range [3300, 3700] GeV, this allows for possible
detection of the Z0 resonance centered at 3500 GeV. We
test a range of signal injections, scanning over nS ∈
½300; 500; 750; 1000; 1200; 1500; 2000; 2500; 3000� (cor-
responding to S=B≈ ½0.30%;0.49%;0.74%;0.99%;1.18%;
1.48%;1.97%;2.47%;2.96%�). As a word of caution:
despite the relatively wide SR window chosen, about
20% of the injected events go into the SB regions.
For each signal injection, we rerun the full FETA pipeline

and train a flow to learn the mapping between simulation
and data with the injected signal. (This retraining is
necessary due to the signal contamination in the sidebands.)
We then train a binary classifier (with the same architecture
as in Sec. III B) to discriminate transformed simulation
from data.
We compare the results of the FETA method with those

from the CATHODE, CURTAINS, and SALAD methods. For
each alternative method, we use the architecture cited in the
respective paper.2 To place all methods on an equal footing,
we use the same set of training and validation dijet events
for all methods. Such event breakdowns are given in
Table VII. Note that all methods use the validation loss
to select the best-performing model to be used for further
analysis. The FETA, CATHODE, and CURTAINS methods all
make use of oversampling of the SM background template
to achieve better performance, which is a mechanism
that allows for the reduction of statistical uncertainties.

We investigate the effects of oversampling on the FETA

method performance in Appendix A.
All methods are evaluated by training a binary classifier

to discriminate the SM background template samples from
a set of 100 k dijet data events from the SR. All classifiers
are tested on the same set of 20 k signal and 20 k
background SR dijet events, which were not used at any
point during the training or validation procedures.

B. Anomaly detection performance summary

In Fig. 6, we show a selection of summary plots from this
final binary classifier corresponding to 2500 injected signal
events (S=B ¼ 1.97%, S=

ffiffiffiffi

B
p

≈ 7.9). Each curve represents
the mean performance of 20 different random classifiers
trained to discriminate the given SM background template
from the “detected” events in the SR. Error bands represent
the spread across the (16, 84) percentiles across these 20
runs. Note that the error bands are comparable for FETA,
CATHODE, CURTAINS, and SALAD.
In Fig. 6(a), we provide the significance improvement

characteristic curves, given by SIC ¼ true positive rate
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

false positive rate
p . The

SIC can be interpreted in the limit of large S and B as the
gain in signal significance (i.e., the multiplicative factor)
over the initial significance that can be achieved by making
a well-motivated cut on the dataset. Therefore for an
optimally performing classifier, we expect to see the
SIC ≫ 1. In Fig. 6(b), we provide the classifier rejection
curves, given by the reciprocal of the false positive rate. An
optimally performing classifier should see this rejection
also be ≫ 1. Finally, in Fig. 6(c), we plot the SIC curves
against the rejection curves.
In addition to the curves for the four methods considered,

we also provide the curves corresponding to a fully
supervised classifier, i.e., a classifier trained on perfectly
labeled signal and background events. This curve demon-
strates the maximum possible performance to discriminate
SM physics from anomalous physics. Importantly, the
fully supervised classifier should not be interpreted as
the limiting case of an idealized anomaly detection study,
which would come from a classifier trained to discriminate
detected data from perfectly simulated background.
We find that the FETA method is competitive with the

performance of a fully supervised classifier at signal
efficiencies of around 0.3 and lower. This performance
is encouraging as in practice, we would expect FETA to be
used primarily in this range (for higher signal-efficiencies,
the amount of background is sufficiently large that nonfully
supervised methods are unlikely to effectively find the
signal). Indeed, the performance curves of FETA for all three
metrics, (SIC, rejection, and SIC vs rejection) very closely
align with those of CATHODE, which was demonstrated to
be state-of-the-art, and CURTAINS.
In Fig. 7, for each signal injection, we plot the maximum

of the SIC, where the maximum is taken across all signal

TABLE VI. ROC AUCs for a binary classifier trained to
discriminate the transformed simulation X�

SIM from the target
dataset XDAT. For comparison, we also provide the AUCs for a
binary classifier trained to discriminate the untransformed simu-
lation XSIM from the target.

Band AUC for X�
SIM vs XDAT AUC for XSIM vs XDAT

SB1 0.5128� 0.0032 0.5970� 0.0022
SR 0.5034� 0.0010 0.5706� 0.0006
SB2 0.5153� 0.0054 0.5938� 0.0031

2Further optimization certainly may yield even better result for
the other methods considered, but this optimization task is
nontrivial, especially to retain model-agnosticity.
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efficiencies. Since the SIC relates to an increase in signal
significance from a well-motivated cut, the max(SIC) is
then the best possible cut for a given signal. Across the
board, FETA, CATHODE, CURTAINS, and SALAD achieve

similar performances, all of them becoming just about
consistent with a fully supervised classifier at ∼1.97%
signal injection. The S=B corresponding to a minimum
detectable signal (set to be ∼3 for “observation” of BSM

TABLE VII. Number of dijet events used in training and validation, as well as number of events taken as the SR background template
for each SM background template construction method. For the CURTAINS method, SR template samples are generated from transporting
both the training and the validation SB samples into the SR. Note that oversampling (the reduction of statistical uncertainties by drawing
more SM samples) is not possible with the SALAD method, which does not use a generative model for the reference dataset. The
oversampling factor is the number of SM background template samples generated over the number of dijet events used to construct the
SM background template samples.

Method Train Validation (Model selection) Template samples (Evaluation) Oversampling factor

FETA
224 k SB simulation 56 k SB simulation 720 k SR ×6

186 k SB data 47 k SB data

CATHODE 186 k SB data 47 k SB data 400 k SR ×3

CURTAINS 186 k SB data 47 k SB data 1120 k SR ×4

SALAD
224 k SB simulation 56 k SB simulation 120 k SR Not applicable

186 k SB data 47 k SB data

FIG. 6. Various performance metrics for a binary classifier trained to discriminate a constructed SM background template from
detected SR data. We retrain the binary classifier 20 times, each with a different random seed. Curves illustrate the median of these
classifier runs, and bands represent the spread across the (16, 84) percentiles. “Full. Sup.” corresponds to a fully supervised classifier
trained on pure signal and pure background.
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physics) lies between 0.49% and 0.74%, as calculated by
maxðSICÞ × ðS= ffiffiffiffi

B
p Þ.

VI. CONCLUSIONS AND OUTLOOK

In this study, we have proposed a new method, FETA, for
SM background construction that can be used for resonant
anomaly detection. The method is simulation-assisted and
relies on feature morphing (rather than reweighting)
between a reference set of simulated SM data and detected
data.

FETA can be seen as a hybrid of CURTAINS and SALAD:
like CURTAINS, FETA uses a flow-based architecture that
allows for feature morphing from a reference dataset to
construct a SM template. This morphing property performs
well in low-density regions of feature space where
reweighting methods fail. Like SALAD, FETA uses simulated
data as the reference dataset. This provides an advantage
over data-driven methods as the reference dataset can act as
a prior that is free of signal contamination.
For such simulation-assisted methods of background

construction, optimality of transport is desirable as the
simulated data provides a physics-informed prior that is
expected to be close to the detected data. Therefore an
efficient reweighting or morphing function should ideally
do as little as possible and reduce to the identity when the
simulation is exactly correct. One might ask if the
Transport flow used in FETA executes the optimal transport
between the reference and target datasets, especially as an
out-of-the-box normalizing flow contains no loss terms that
penalize non-optimal transport. In fact, for the scope of this
problem (i.e. morphing between sets of Herwig++ and
PYTHIA simulated LHC data), we found that modifications
to the flow training method that enforce optimal transport
did not significantly change the performance of FETA [31].
However, these modifications might become important if

FETA were applied to morph between a less similar
reference and target.
Future avenues for exploration include monitoring the

effects of the SB and SR widths on the performance of FETA
adding rigorous uncertainty estimates for the performances
of all four background construction methods considered in
this study, and testing the four methods on a resonant
anomaly other than the LHC Olympics one.

Code availability statement
The code can be found at [32].
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APPENDIX A: OVERSAMPLING

In this section, we investigate the effects of oversampling
on the performance of the FETA background template.
Oversampling was found to greatly improve the perfor-
mance of the CATHODE and CURTAINS background tem-
plates, and similar improvements were found for FETA.
Oversampling refers to the reduction of statistical

uncertainties by using a larger number of events. This
method is only possible when the background template
construction makes use of a density estimator for the
reference dataset that can be sampled from multiple times.
With FETA, the base density flow (defined in Sec. II B)
plays this role: without oversampling, FETA transports from
XSIM to XDAT; with oversampling, FETA draws samples XBD
from the base density and transforms these to XDAT.
In Figs. 8(a) and 8(b), we plot the SIC and rejection

(respectively) curves corresponding to oversampling fac-
tors from one (120 k SR events) through six (720 k SR
events) for a signal injection of 1000 (S=B ¼ 0.99%). We
find that the classifier performance generally increases to a
peak at the oversampling factor of ×5, after which
performance saturates. However, for signal injections of

FIG. 7. Max significance improvement characteristic (SIC) as a
function of the fraction of injected signal events.
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≥2000 (S=B ¼ 1.97%), all oversampling factors perform
similarly.

APPENDIX B: SIGNAL VS BACKGROUND
CORRELATION

In this section, we compare in more detail the events
produced by the various SM background template con-
struction methods (FETA, CATHODE, CURTAINS, and SALAD).
We expect all of the methods to produce background

samples that are significantly different from anomalous
events. This is what allows us to detect resonant anomalies
when training a classifier to discriminate between SR
background samples and SR detected data. However, it
is not obvious (or expected) that the background samples
will be similar between methods. In fact, we might expect
classifier scores to be uncorrelated for background events.
To probe how different the phase spaces are between

construction methods: we train a binary classifier (with the
architecture as described in Sec. III B) to discriminate
between SR background samples from SR detected data
with 0 injected signal events. We evaluate the trained
classifier on the test set of 20 k signal and 20 k background
dijet events to get a score between 0 and 1 for each event.
(Note that these scores are different than the AUC scores
considered in the main analysis.) We finally plot these

scores (standardized to zero mean and unit variance) for
different methods as a function of each other, for FETA vs
CATHODE in Fig. 9(a), for FETA vs CURTAINS in Fig. 9(b),
and for FETA vs SALAD in Fig. 9(c).
For both such cases, we find that the scores assigned to

background events derived from classifiers trained
on SM background samples from FETA are broadly uncor-
related with those from classifiers trained on SM back-
ground samples from the other three methods. There is
perhaps a mild degree of correlation between scores for
signal events, but the correlation would not be expected to
be strong as the classifiers saw no signal events during
training.
We then repeat the analysis, this time training the

classifiers to discriminate between SR background samples
from SR detected data with 2500 injected signal events. We
plot the same standardized scores for FETA vs CATHODE in
Fig. 10(a), for FETA vs CURTAINS in Fig. 10(b), and for FETA
vs SALAD in Fig. 10(c).
In these cases, there is a large degree of correlation

between the classifier scores assigned to signal events
between FETA and all of the other construction methods.
This result indicates that all of the SM background
construction methods are (roughly) equally sensitive to
this particular LHCO anomaly.

FIG. 8. Performance metrics for a binary classifier trained to discriminate a constructed SM background template from detected SR
data (with 1000 injected signal events) at various factors of oversampling. We retrain the binary classifier 20 times, each with a different
random seed. Curves illustrate the median of these classifier runs, and bands represent the spread across the (16, 84) percentiles.
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FIG. 9. Classifier scores for a binary classifier trained to discriminate a given constructed SM background template from detected SR
data with no injected signal events and evaluated on pure signal and pure background. The scores have been normalized to have zero
mean and unit variance.
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FIG. 10. Classifier scores for a binary classifier trained to discriminate a given constructed SM background template from detected SR
data with 2500 injected signal events and evaluated on pure signal and pure background. The scores have been normalized to have zero
mean and unit variance.
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