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Abstract

We present MAESTROeX, a massively parallel solver for low Mach number astrophysical flows. The underlying
low Mach number equation set allows for efficient, long-time integration for highly subsonic flows compared to
compressible approaches. MAESTROeX is suitable for modeling full spherical stars as well as well as planar
simulations of dynamics within localized regions of a star, and can robustly handle several orders of magnitude of
density and pressure stratification. Previously, we have described the development of the predecessor of
MAESTROeX, called MAESTRO, in a series of papers. Here, we present a new, greatly simplified temporal
integration scheme that retains the same order of accuracy as our previous approaches. We also explore the use of
alternative spatial mapping of the one-dimensional base state onto the full Cartesian grid. The code leverages the
new AMReX software framework for block-structured adaptive mesh refinement (AMR) applications, allowing for
scalability to large fractions of leadership-class machines. Using our previous studies on the convective phase of
single-degenerate progenitor models of SNe Ia as a guide, we characterize the performance of the code and validate
the new algorithmic features. Like MAESTRO, MAESTROeX is fully open source.

Unified Astronomy Thesaurus concepts: Stellar convective zones (301); Hydrodynamics (1963); Computational
methods (1965); Nuclear astrophysics (1129); Nucleosynthesis (1131); Nuclear abundances (1128)

1. Introduction

Many astrophysical flows are highly subsonic. In this
regime, sound waves carry sufficiently little energy that they
do not significantly affect the convective dynamics of the
system. In many of these flows, modeling long-time convective
dynamics are of interest, and numerical approaches based on
explicit compressible hydrodynamics are intractable, even on
modern supercomputers. Our approach to this problem is to use
a low Mach number model where sound waves are eliminated
from the governing equations while retaining compressibility
effects due to, e.g., nuclear energy release, stratification,
compositional changes, and thermal diffusion. When the Mach
number (the ratio of the characteristic fluid velocity over the
characteristic sound speed; Ma=U/c) is small, the resulting
system can be numerically integrated with much larger time
steps than a compressible model. Specifically, the time step
increase is at least a factor of ∼1/Ma larger. Each time step is
more computationally expensive due to the presence of
additional linear solves, but for many problems of interest the
overall gains in efficiency can easily be an order of magnitude
or more.

Low Mach number models that do not contain acoustic
waves have been developed for a variety of contexts including
combustion (Day & Bell 2000), terrestrial atmospheric
modeling (Durran 1989; O’Neill & Klein 2014; Duarte et al.
2015), and elastic solids (Abbate et al. 2017). For astrophysical
applications, a number of approaches to modeling low Mach
number flows have been developed in recent years. One of the
more similar approaches to ours is Lin et al. (2006); however,
this approach is only first-order accurate and does not account
for atmospheric expansion. There are several other approaches
that retain the effects of acoustic wave propagation with
various strategies to efficiently and robustly handle the low
Mach number limit. In the reduced speed of sound technique
and related methods, the speed of sound is artificially reduced

by including a suitable scaling factor in the continuity equation,
reducing the restriction on the size of the time step (Rempel
2005; Hotta et al. 2012; Wang et al. 2015; Takeyama et al.
2017; Iijima et al. 2019). There are semi-implicit all-Mach
number solvers, where the Euler equations are split into an
acoustic part and an advective part (Kwatra et al. 2009;
Degond & Tang 2011; Cordier et al. 2012; Haack et al. 2012;
Happenhofer et al. 2013; Chalons et al. 2016; Padioleau et al.
2019). The fast acoustic waves are then solved using implicit
time integration, while the slow material waves are solved
explicitly. There are also fully implicit time integration codes
for the compressible Euler equations (Kifonidis & Müller 2012;
Viallet et al. 2015; Goffrey et al. 2017). The MUSIC code uses
fully implicit time integration for the compressible Euler
equations, which therefore allows for arbitrarily large time
steps. To resolve potential pressure scaling issues in very low
Mach number flow in explicit or implicit schemes, another
approach is to use preconditioned all-Mach number solvers
(Miczek et al. 2015; Barsukow et al. 2016) to properly capture
pressure fluctuations in the low Mach number regime (see
Guillard & Nkonga 2017 for discussion). The numerical flux is
multiplied by a preconditioning matrix that reduces the
stiffness of the system at low Mach numbers, while retaining
the correct scaling behavior in an acoustic limit of the Euler
equations that retains (Ma) pressure fluctuations.
Previously, we developed the low Mach number astrophysical

solver, MAESTRO. MAESTRO is a block-structured, Cartesian
grid finite-volume, adaptive mesh refinement (AMR) code that
has been successfully used for many years for a number of
applications, detailed below. Unlike several of the references
above, MAESTRO is not an all-Mach solver, but is suitable for
flows where the Mach number is small (∼0.1 or smaller).
Furthermore, the low Mach number model in MAESTRO is
specifically designed for, but not limited to, astrophysical
settings with significant atmospheric stratification. This includes
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full spherical stars, as well as planar simulations of dynamics
within localized regions of a star. The numerical methodology
relies on an explicit Godunov approach for advection, a stiff
ordinary differential equation solver for reactions (VODE;
Brown et al. 1989), and multigrid-based linear solvers for the
pressure-projection steps. Thus, the time step is limited by an
advective CFL constraint based on the fluid velocity, not the
sound speed. Central to the algorithm are time-varying, one-
dimensional stratified background (or base) state density and
pressure fields that are held in hydrostatic equilibrium. The base
state density couples to the full state solution through buoyancy
terms in the momentum equation, and the base state pressure
couples to the full state solution by constraining the evolution of
the thermodynamic variables to match this pressure. The time-
advancement strategy uses Strang splitting to integrate the
thermodynamic variables, a second-order projection method to
integrate the velocity subject to a divergence constraint, and a
velocity-splitting scheme that uses a radially averaged velocity to
hydrodynamically evolve the base state. The original MAES-
TRO code was developed in the pure-Fortran 90 FBoxLib
software framework, whereas MAESTROeX is developed in the
C++/F90 AMReX framework (AMReX Development Team
et al. 2019; Zhang et al. 2019).

The key numerical developments of the original MAESTRO
algorithm are presented in a series of papers which we refer to
as Papers I–V:

1. In Paper I (Almgren et al. 2006a), we derive the low
Mach number equation set for stratified environments
from the fully compressible equations.

2. In Paper II (Almgren et al. 2006b), we incorporate the
effects of atmospheric expansion through the use of a
time-dependent background state.

3. In Paper III (Almgren et al. 2008), we incorporate reactions
and the associated coupling to the hydrodynamics.

4. In Paper IV (Zingale et al. 2009), we describe our treatment
of spherical stars in a three-dimensional Cartesian geometry.

5. In Paper V (Nonaka et al. 2010), we describe the use of
block-structured AMR to focus spatial resolution in
regions of interest.

Since then, there have been many scientific investigations
using MAESTRO, which have included additional algorithmic
enhancements. Topics include:

1. The convective phase preceding Chandrasekhar mass
models for SNe Ia (Nonaka et al. 2011; Zingale et al.
2011; Malone et al. 2014a).

2. Convection in massive stars (Gilet et al. 2013; Gilkis &
Soker 2016).

3. Sub-Chandrasekhar white dwarfs (Zingale et al. 2013;
Jacobs et al. 2016).

4. Type I X-ray bursts (Malone et al. 2011, 2014b; Zingale
et al. 2015).

In this paper, we present new algorithmic methodology that
improves upon Paper V in a number of ways. First, the overall
temporal algorithm has been greatly simplified without
compromising second-order accuracy. The key design deci-
sions were to eliminate the splitting of the velocity into average
and perturbational components, and also to replace the
hydrodynamic evolution of the base state with a predictor-
corrector approach. Not only does this greatly simplify the

dynamics of the base state, but this treatment is more amenable
to higher-order multiphysics coupling strategies based on
method-of-lines integration. In particular, schemes based on
deferred corrections (Dutt et al. 2000) have been used to
generate high-order temporal integrators for problems of
reactive flow and low Mach number combustion (Pazner
et al. 2016; Nonaka et al. 2018). Second, we explore the effects
of alternative spatial mapping routines for coupling the base
state and the Cartesian grid state for spherical problems. Finally,
we examine the performance of our new MAESTROeX
implementation in the new C++/F90 AMReX public software
library (AMReX Development Team et al. 2019; Zhang et al.
2019). MAESTROeX uses MPI+OpenMP parallelism and
scales well to over 10,000 MPI processes, with each MPI
process supporting tens of threads. The resulting code is
publicly available on GitHub (https://github.com/AMReX-
Astro/MAESTROeX), uses the Starkiller-Astro microphysics
libraries (The StarKiller Microphysics Development Team et al.
2019, https://github.com/starkiller-astro), as well as AMReX
(https://github.com/AMReX-Codes/amrex).
The rest of this paper is organized as follows. In Section 2

we review our model for stratified low Mach number
astrophysical flow. In Section 3 we present our numerical
algorithm in detail, highlighting the new temporal integration
scheme as well as spatial base state mapping options. In
Section 4 we validate our new approach and examine the
performance of our algorithm on full spherical star problems
used in previous scientific investigations. We conclude in
Section 5.

2. Governing Equations

Low Mach number models for reacting flow were originally
derived using asymptotic analysis (Rehm & Baum 1978; Majda
& Sethian 1985) and used in terrestrial combustion applications
(Knio et al. 1999; Day & Bell 2000). These models have been
extended to nuclear flames in astrophysical environments using
adaptive algorithms in space and time (Bell et al. 2004). In
Papers I–III, we extended this work and the atmospheric model
by Durran (1989) by deriving a model and algorithm suitable
for stratified astrophysical flow. We take the standard equations
of reacting, compressible flow, and recast the equation of state
(EOS) as a divergence constraint on the velocity field. The
resulting model is a series of evolution equations for mass,
momentum, and energy, subject to an additional constraint on
velocity. The evolution equations are

r
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Here ρ, U , and h are the mass density, velocity, and specific
enthalpy, respectively, and Xk are the mass fractions of species
k with associated production rate wk˙ and energy release per
time per unit mass Hnuc. The species are constrained such that
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The total pressure is decomposed into a one-dimensional
hydrostatic base state pressure, =p p r t,0 0 ( ), and a dynamic
pressure, p p= x t,( ), such that p= +p p0 and p =p0∣ ∣
 Ma2( ) (we use x to represent the Cartesian coordinate
directions of the full state and r to represent the radial
coordinate direction for the base state). One way to
mathematically think of the difference between p0 and π is
that π controls the velocity evolution in a way that forces the
thermodynamic variables r h X, , k( ) to evolve in a manner that
is consistent with the EOS and p0.

By comparing the momentum Equation (2) to the momen-
tum equation used in Equation (2) in Paper V, we note that we
are using a formulation that enforces conservation of total
energy in the low Mach number system in the absence of
external heating or viscous terms (Klein & Pauluis 2012; Vasil
et al. 2013). We have previously validated this approach in
modeling sub-Chandrasekhar white dwarfs using MAESTRO
(Jacobs et al. 2016). We also define a one-dimensional base
state density, r r= r t,0 0 ( ), that represents the lateral average
(see Section 3.1) of ρ and is in hydrostatic equilibrium with
p0, i.e.,

r = - ep g , 5r0 0 ( )

where =g g r t,( ) is the magnitude of the gravitational
acceleration and er is the unit vector in the outward radial
direction. Here β0 is a density-like variable that carries
background stratification, defined as
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where G1 is the lateral average of rG = d p dlog log s1 ( ) ( )∣
(evaluated with entropy, s, constant). We explored the effect of
replacing G1 with G1 as well as a correction term in Paper III.
Thermal diffusion is not discussed in this paper, but we have
previously described the modifications to the original algorithm
required for implicit thermal diffusion in Malone et al. (2011);
inclusion of these effects in the new algorithm presented here is
straightforward.

Mathematically, Equations (2) and (3) must still be closed by
the EOS. This is done by taking the Lagrangian derivative of
the EOS for pressure as a function of the thermodynamic
variables, substituting in the equations of motion for mass and
energy, and requiring that the pressure is a prescribed function
of altitude and time based on the hydrostatic equilibrium
condition. See Papers I and II for details of this derivation. The
resulting equation is a divergence constraint on the velocity
field,

b b = -
G
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The expansion term, S, incorporates local compressibility
effects due to compositional changes and heat release from

reactions,
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r¶ ¶p T X, k

∣ , and s rº rp c pT p( ), with º ¶ ¶ rp p TT X, k
∣ and

º ¶ ¶c h Tp p X, k
∣ is the specific heat at constant pressure.

To summarize, we model evolution equations for momen-
tum, mass, and energy, Equations (2) and (3), subject to a
divergence constraint on the velocity, Equation (7), and the
hydrostatic equilibrium condition, Equation (5).

3. Numerical Algorithm

3.1. Spatial Discretization

The spatial discretization and AMR methodology remains
unchanged from Paper V. We now summarize some of the key
points here before describing the new temporal integrator in the
next section. We recommend the reader review Section 3 of
Paper V for further details.
We shall refer to local atmospheric flows in two and three

dimensions as problems in “planar” geometry, and full-star
flows in three dimensions as problems in “spherical” geometry.
The solution in both cases consists of the Cartesian grid
solution and the one-dimensional base state solution. Figure 1
illustrates the relationship between the base state and the
Cartesian grid state for both planar and spherical geometries in
the presence of spatially adaptive grids. One of the key
numerical modules is the “lateral average,” which computes the
average over a layer of constant radius of a Cartesian grid
variable and stores the result in a one-dimensional base state
array. In planar geometries, this is a straightforward arithmetic
average of values in cells at a particular height since the base
state cell centers are in alignment with the Cartesian grid cell
centers. However for spherical problems, the procedure is
much more complicated. In Section 4 of Paper V, we describe
how there is a finite, easily computable set of radii that any
three-dimensional Cartesian cell center can map to. Specifi-
cally, for every three-dimensional Cartesian cell, there exists an
integer m such that the distance from the cell center to the
center of the star is given by

= D +r x m0.75 2 . 9m̂ ( )
Figure 2 is a two-dimensional illustration (two dimensions is

chosen in the figure for ease of exposition; this mapping is only
used for three-dimensional spherical stars) of the relationship
between the Cartesian grid state and the one-dimensional base
state array. We compute the lateral average by first summing
the values in all the cells associated with each radius, dividing
by the number of contributing cells to obtain the arithmetic
average, and then using quadratic interpolation to map this data
onto a one-dimensional base state. Previously, for spherical
problems MAESTRO only allowed for a base state with
constant Δr (typically equal to Δx/5).
The companion “fill” module maps a base state array onto

the full Cartesian grid state. For planar problems, direct
injection can be used due to the perfect alignment of the base
state and Cartesian grid state. For spherical problems, quadratic
interpolation of the base state is used to assign values to each
Cartesian cell center.
In this paper we explore a new option to retain an irregularly

spaced base state to eliminate mapping errors from the “fill”

3
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module. For the lateral average, as before we first sum the
values in all the cells associated with each radius and divide by
the number of contributing cells to obtain the arithmetic
average. However we do not interpolate this onto a uniformly
spaced base state and retain the use of this irregularly spaced
base state. The advantage with this approach is that the fill
module does not require any interpolation. A potential benefit
to eliminating the mapping error is to consider a spherical star
in hydrostatic equilibrium at rest. In the absence of reactions,
the star should remain at rest. The buoyancy forcing term in the
momentum equation contains r r0– . With the original scheme,
interpolation errors in computing ρ0 by averaging would cause
artificial acceleration in the velocity field due to the interpola-
tion error from the Cartesian grid to and from the radial base
state. By retaining the radial base state as an irregularly spaced
array, the truncation error in the mapping scheme is completely

eliminated. The only source of error is due to machine
precision effects resulting from averaging a large number of
values, which is not significant over the course of any
simulation. We note that Δr decreases as the base state moves
further from the center of the star, which results in far more
total cells in the irregularly spaced array than the previous
uniformly spaced array.

3.2. Temporal Integration Scheme

We now describe the new temporal integration scheme,
noting that it can be used for the original base state mapping
(with uniform base state grid spacing) as well as the new
irregularly spaced base state mapping. Previously we adopted
an approach where we split the velocity into a base state
component, w r t,0 ( ), and a local velocity

~
U x t,( ), so that

= +~
U U x et w r t, , , 10r0( ) ( ) ( )

where er is the normal vector in the outward radial direction.
We used w0 to provide an estimate of the base state density
evolution over a time step. This resulted in some unnecessary
complications to the temporal integration scheme including
base state advection modules for density, enthalpy, and
velocity, as well as more cumbersome split velocity dynamics
evolution equations. Our new temporal integration scheme uses
full velocities for scalar and velocity advection, and only uses
the above splitting to satisfy the velocity divergence constraint
due to boundary considerations at the edge of the star. This
results in a much simpler numerical scheme than the one from
Paper V since we use the velocity directly rather than more
complex terms involving the perturbational velocity. Addition-
ally, the new scheme uses a simpler predictor-corrector
approach to the base state density and pressure that no longer
requires evolution equations and numerical discretizations to
update the base state, greatly simplifying the algorithm while
retaining the same overall second-order accuracy in time.
At the beginning of each time step we have the cell-centered

Cartesian grid state, r rU X h, ,k
n( ) , and nodal Cartesian grid

state, p -n 1 2, and base state r p, n
0 0( ) . At any time, the

associated density, composition, and enthalpy can be trivially

Figure 1. (Left) For multilevel problems in planar geometry, we force a direct alignment between the base state cell centers and the Cartesian grid cell centers by
allowing the radial base state spacing to change with space and time. (Right) For multilevel problems in spherical geometry, since there is no direct alignment between
the base state cell centers and the Cartesian grid cell centers, we choose to fix the radial base state spacing across levels. Reprinted from Paper V (Nonaka et al. 2010).

Figure 2. Direct mapping between the base state cell centers (red squares) and
the Cartesian grid cell centers (blue crosses) is enforced by computing the
average of the grid cell centers that share the same radial distance from the
center of the star.

4

The Astrophysical Journal, 887:212 (13pp), 2019 December 20 Fan et al.



computed using, e.g.,

år r r r r r= = =X X X h h, , . 11n

k
k

n
k
n

k
n n n n n( ) ( ) ( ) ( )

Temperature is computed using the EOS,3 e.g., =T
rT p X, , k0( ), where p0 has been mapped to the Cartesian grid

using the fill module, and ( bG ,1 0) are similarly computed from
r p X, , ;k0( ) see Appendix A of Paper I and Appendix C of
Paper III for details on how β0 is computed.

The overall flow of the algorithm begins with a second-order
Strang splitting approach to integrate the advection-reaction
system for the thermodynamic variables r rX h,k( ), followed by
a second-order projection methodology to integrate the
velocities subject to a divergence constraint. Within the
thermodynamic variable update we use a predictor-corrector
approach to achieve second-order accuracy in time. To
summarize:

1. In Step 1 we react the thermodynamic variables over the
first Δt/2 interval.

2. In Steps 2–4 we advect the thermodynamic variables over
Δt. Specifically, we compute an estimate for the
expansion term, S, compute face-centered, time-centered
velocities that satisfy the divergence constraint, and then
advect the thermodynamic variables.

3. In Step 5 we react the thermodynamic variables over the
second Δt/2 interval.4

4. In Steps 6–8 we redo the advection in Steps 2–4 but are
able to use the trapezoidal rule to time-center certain
quantities such as S, ρ0, etc.

5. In Step 9 we redo the reactions from Step 5 beginning
with the improved results from Steps 6–8.

6. In Steps 10–11 we advect the velocity, and then project
these velocities so they satisfy the divergence constraint
while updating π.

There are a few key numerical modules we use in each
time step.

1. Average f f[ ] [ ] computes the lateral average of a
quantity over a layer at constant radius r, as described
above in Section 3.1.

2. Enforce HSE r  p0 0[ ] [ ] computes the base state pres-
sure, p0, from a base state density, ρ0 by integrating the
hydrostatic equilibrium condition in one dimension. This
follows equation (A10) in Paper V, noting that for the
irregularly spaced base state case, Δr is not constant,
where Δrj+1/2=rj+1−rj for cell face with index j+1/2.
The base state pressure remains equal to a constant value
at the location of a prescribed cutoff density outward for
the entire simulation.

3. ReactState r r r r rwX h p X h, , , , ,k k
in in

0
out out[( ) ( ) ] [( ) ( ) ( ˙ )

rHnuc( )] uses the multistep variable-coefficient Adams–
Moulton and Backward Differentiation Formula methods
in the VODE (Brown et al. 1989) package to integrate the
species and enthalpy due to reactions over Δt/2 by

solving

å

w r

x w
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X T
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The inputs are the species, enthalpy, and base state
pressure, and the outputs are the species, enthalpy,
reaction rates, and nuclear energy generation rate. See
Paper III for details.

Each time step is constrained by the standard advective CFL
condition,

sD = Dt x Umin , 13
i

i
CFL ( ) ( )/

where for our simulations we typically use s ~ 0.7CFL and the
minimum is taken over all spatial directions over all cells. For
simulations that are initialized with zero velocity, we use the
buoyancy force in the momentum equation to give a proper
timescale to start the simulation; see Section 3.4 in Paper III for
details.
In stratified low Mach number models, due to the extreme

variation in density, the velocity can become very large in low
density regions at the edge of the star. These large velocities
can severely affect the time step, so throughout Papers II–V, we
have employed two techniques to help control these dynamics
without significantly affecting the dynamics in the convective
region. First, we use a cutoff density technique, where we hold
the density constant outside a specified radius (typically near
where the density is ∼4 orders of magnitude smaller than the
largest densities in the simulation). Second, we employ a
sponge technique where we artificially damp the velocities near
and beyond the cutoff region. For more details, refer to Paper V
and the previous references cited within.
Beginning with r rU X h, ,k

n( ) , p -n 1 2, and r p, n
0 0( ) , the

temporal integration scheme contains the following steps:

Step 1: react the thermodynamic variables over the first Δt/2
interval.

Call React State [(ρXk)
n, (ρh)n, p n

0 ]→[ rX ,k
1( )( )

rh 1( )( ) , rw rH,k
1

nuc
1( ˙ ) ( )( ) ( ) ].

Step 2: compute the time-centered expansion term, + Sn 1 2, .
We compute an estimate for the time-centered expansion

term in the velocity divergence constraint. Following Bell
et al. (2004), we extrapolate to the half-time using S at the
previous and current time steps,

= +
D -

D
+

-

-
S S

t S S

t2
. 14n n

n n n

n
1 2,

1

1

⎛
⎝⎜

⎞
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Note that in the first time step we average S0 and S1 from the
initialization step.
Step 3: construct a face-centered, time-centered advective
velocity, UADV, .

The construction of face-centered time-centered states
used to discretize the advection terms for velocity, species, and
enthalpy, are performed using a standard multidimensional
corner transport upwind approach (Colella 1990; Saltzman
1994) with the piecewise-parabolic method one-dimensional
tracing (Colella & Woodward 1984). The full details of this
Godunov advection approach for all steps in this algorithm
are described in Appendix A of Zingale et al. (2015). Here we

3 As described in Paper V, for planar problems we compute temperature using
h instead of p0, since we have successfully developed volume discrepancy
schemes to effectively couple the enthalpy to the rest of the solution; see
Malone et al. (2011). We are still exploring this option for spherical stars.
4 After this step we could skip to the velocity advance in Steps 10–11,
however, the overall scheme would be only first-order in time, so Steps 6–9 can
be thought of as a trapezoidal corrector step.
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use Equation (2) to compute face-centered, time-centered
velocities, UADV, ,† . The †superscript refers to the fact that the
predicted velocity field does not satisfy the divergence
constraint,

b b = -
G
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.
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n n n
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We project UADV, ,† onto the space of velocities that satisfy the
constraint to obtain UADV, . Each projection step in the algorithm
involves the solution of a variable-coefficient Poisson solve
using multigrid. Note that we still employ velocity-splitting as
described by Equation (10) for this step in order to enforce the
appropriate behavior of the system near the edge of the star as
determined by the cutoff density. The details of this “MAC”
projection are provided in Appendix.
Step 4: advect the thermodynamic variables over a time
interval of Dt.

A. Update rXk( ) using a discretized version of

r
r

¶
¶

= - U
X

t
X , 16k

k
( ) · ( ) ( )

where the reaction terms have been omitted since they
were already accounted for in React State. The update
consists of two steps:
i. Compute the face-centered, time-centered species,

r + Xk
n 1 2,pred,( ) , for the conservative update of

rXk
1( )( ) using a Godunov approach (Zingale et al.

2015). As described in Paper V, for robust numerical
slope limiting we predict r r r¢ = -n n n

0 and Xk
n to

faces and here we spatially interpolate rn
0 to faces to

assemble the fluxes.
ii. Evolve (ρXk)

(1)→(ρXk)
(2),å using

r r
r
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B. Update ρ0 by calling Average r r + n2 ,
0

1,[ ] [ ]( ) .
C. Update p0 by calling Enforce HSE r + + pn n

0
1,

0
1,[ ] [ ].

D. Update the enthalpy using a discretized version of
equation

r
r r

¶
¶

= - + +U
h

t
h

Dp

Dt
H , 180

nuc
( ) · ( ) ( )

again omitting the reaction terms since we already
accounted for them in React State. This equation takes
the form:
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For spherical geometry, we solve the analytically

equivalent form,
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The update consists of two steps:
i. Compute the face-centered, time-centered enthalpy,

r + h ,n 1 2,pred,( ) for the conservative update of
rh 1( )( ) using a Godunov approach (Zingale et al.
2015). As described in Paper V, for robust
numerical slope limiting we predict r ¢ =h n( )
r r-h hn n

0( ) ( ) to faces, where rh n
0( ) is obtained

by calling Average r rh hn n
0[( ) ] [( ) ], and here we

spatially interpolate rh n
0( ) to faces to assemble the

fluxes.
ii. Evolve (ρh)(1)→(ρh)(2),å using

r r r= - D 
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where here

and = ++ +p p p 2n n n
0

1 2
0 0

1,*( ) .
Step 5: react the thermodynamic variables over the second
Δt/2 interval.

Call React State [(ρ Xk)
(2),å, (ρh)(2),å, + p n

0
1, ]→

[(ρXk)
n+1,å, (ρh)n+1,å, rw r+ + H, .k

n n1,
nuc

1,( ˙ ) ( ) ]
Step 6: compute the time-centered expansion term, + Sn 1 2, .

First, compute + Sn 1, with
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Step 7: construct a face-centered, time-centered advective
velocity, UADV.

The procedure to construct UADV,† is identical to the
Godunov procedure for computing UADV, ,† in Step 3, but
uses the updated value +Sn 1 2 rather than + Sn 1 2, . The
†superscript refers to the fact that the predicted velocity field
does not satisfy the divergence constraint,
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we project UADV,† onto the space of velocities that satisfy the
constraint to obtain UADV using a MAC projection (see
Appendix).
Step 8: advect the thermodynamic variables over a time
interval of Dt.

A. Update rXk( ). This step is identical to Step 4A except
we use the updated valuesUADV and r + n

0
1, rather than

UADV, and rn
0. In particular:

i. Compute the face-centered, time-centered spe-
cies, r +Xk

n 1 2,pred( ) , for the conservative update
of rXk

1( )( ) using a Godunov approach (Zingale
et al. 2015). Again, we predict r r r¢ = -n n n

0 and
Xk
n to faces but here we spatially interpolate

r r+ + 2n n
0 0

1,*( ) to faces to assemble the fluxes.
ii. Evolve (ρXk)
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B. Update ρ0 by calling Average r r +n2
0

1[ ] [ ]( ) .
C. Update p0 by calling Enforce HSE r + +pn n

0
1

0
1[ ] [ ].

D. Update the enthalpy. This step is identical to Step 4D
except we use the updated valuesUADV, r +n

0
1, r +h n

0
1( ) ,

and +p n
0

1 rather than rU , nADV,
0, rh n

0( ) , and p0
n. In

particular:
i. Compute the face-centered, time-centered enthalpy,

r +h ,n 1 2,pred( ) for the conservative update of
rh 1( )( ) using a Godunov approach (Zingale et al.
2015). Again, we predict r r r¢ = -h h hn n n

0( ) ( ) ( )
to faces but here we spatially interpolate
r r+ +h h 2n n

0 0
1,*[( ) ) ( ) ] to faces to assemble the

fluxes.
ii. Evolve (ρh)(1)→(ρh)(2).
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Step 9: react the thermodynamic variables over the second
Δt/2 interval.

Call React State [(ρXk)
(2), (ρh)(2), +p n

0
1]→[(ρXk)

n+1,
(ρh)n+1, rw r+ +H,k
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Step 10: define the new-time expansion term, Sn+1.

A. Define
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Step 11: update the velocity.
First, we compute the face-centered, time-centered

velocities, +Un 1 2,pred using a Godunov approach (Zingale
et al. 2015). Then, we update the velocity field Un to +Un 1,†

by discretizing Equation (2) as
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Again, the †superscript refers to the fact that the updated
velocity does not satisfy the divergence constraint,
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We use an approximate projection to project +Un 1,† onto the space
of velocities that satisfy the constraint to obtain +Un 1 using a
“nodal” projection. This projection necessarily differs from the
MAC projection used in Step 3 and Step 7 because the velocities
in those steps are defined on faces and +Un 1 is defined at cell
centers, requiring different divergence and gradient operators.
Furthermore, as part of the nodal projection, we also define a nodal
new-time perturbational pressure, p +n 1 2. Refer to Appendix for
more details.

This completes one step of the algorithm.
To initialize the simulation we use the same procedure described

in Paper III. At the beginning of each simulation, we define
r rU X h, ,k( ). We set initial values for rU X, k, and rh and

perform a sequence of projections (to ensure the velocity field
satisfies the divergence constraint) followed by a small number of
steps of the temporal advancement scheme to iteratively find initial
values for p -n 1 2 and S0 and S1 for use in the first time step.
Our approach to AMR is algorithmically the same as the

treatment described in Section 5 of Paper V; we refer the reader
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there for details. MAESTROeX supports refinement ratios of 2
between levels. We note that for spherical problems, AMR is
only available for the case of a uniformly spaced base state.

4. Performance and Validation

4.1. Performance and Scaling

We perform weak scaling tests for simulations of convection
preceding ignition in a spherical, full-star Chandrasekhar mass
white dwarf. The simulation setup remains the same as reported in
Section 3 of Nonaka et al. (2011) and originally used in Zingale
et al. (2011), and thus we emphasize that these scaling tests are
performed using meaningful, scientific calculations. Here, we
perform simulations using 256 , 512 , 768 , 1024 , 12803 3 3 3 3, and
15363 grid cells on a spatially uniform grid (no AMR). We divide
each simulation into 643 grids, so these simulations contain
between 64 grids (2563) and 13,824 grids (15363). These
simulations were performed using the NERSC cori system on
the Intel Xeon Phi (KNL) partition. Each node contains 68 cores,
each capable of supporting up to four hardware threads (i.e., a
maximum of 272 hardware threads per node). For these tests, we
assign four MPI tasks to each node, and 16 OpenMP threads per
MPI process. Each MPI task is assigned to a single grid, so our
tests use between 64 and 13,824 MPI processes (i.e., between
1024 and 221,184 total OpenMP threads). For 643 grids we
discovered that using more than 16 OpenMP threads did not
decrease the wallclock time due to a lack of work available per
grid; in principle, one could use larger grids, fewer MPI processes,
and more threads per MPI process to obtain a flatter weak scaling
curve; however, the overall wallclock time would increase except
for extremely large numbers of MPI processes (beyond the range
we tested here). Thus, the more accurate measure of weak scaling
is to consider the number of MPI processes, since the scaling plot
would look virtually identical for larger thread counts. Note that
the largest simulation used roughly 36% of the entire computa-
tional system.

In the left panel of Figure 3 we compare the wallclock time
per time step as a function of total core count (in this case, the
total number of OpenMP threads) for the original FBoxLib-
based MAESTRO implementation to the AMReX MAES-
TROeX implementation. These tests were performed using the
original temporal integration strategy in Nonaka et al. (2010),

noting that the new temporal integration with and without the
irregular base state gives essentially the same results. We also
include a plot of MAESTROeX without base state evolution.
Comparing the original and new implementations, we see
similar scaling results except for the largest simulation, where
MAESTROeX performs better. We see that the increase in
wallclock time from the smallest to largest simulations is
roughly 42%. We also note that without base state evolution,
the code runs 14% faster for small problems, and scales much
better with wallclock time from the smallest to largest
simulation increasing by only 13%. This is quite remarkable
since there are three linear solves per time step (two cell-
centered Poisson solves used in the MAC projection, and a
nodal Poisson solve used to compute the updated cell-centered
velocities). Contrary to our prior assumptions, the linear solves
are not the primary scaling bottleneck in this code. In the right
panel of Figure 3, we isolate the wallclock time required for
these linear solves and see that (i) the linear solves only use
20%–23% of the total computational time, and (ii) the increase
in the solver wallclock time from the smallest to largest
simulations is only 28%. Further profiling reveals that the
primary scaling bottleneck is the average operator. The
averaging operator requires collecting the sum of Cartesian
data onto one-dimensional arrays holding every possible
mapping radius. This amounts to at least 24,384 double
precision values (for the 2563 simulation) up to 883,584 values
(for the 15363 simulation). The averaging operator requires a
global sum reduction over all processors, and the communica-
tion of this data is the primary scaling bottleneck. For the
simulation with base state evolution, this averaging operator is
only called once per time step (as opposed to 14 times per time
step when base state evolution is included). The difference in
total wallclock times with and without base state evolution is
almost entirely due to the averaging. Note that as expected,
advection, reactions, and calls to the EOS scale almost
perfectly, since there is only a single parallel communication
call to fill ghost cells.

4.2. White Dwarf Convection

To explore the accuracy of the new temporal algorithm, we
now analyze in detail three-dimensional, full-star calculations

Figure 3. (Left) Weak scaling results for a spherical, full-star white dwarf calculation using the original MAESTRO code, MAESTROeX, and MAESTROeX with
base state evolution disabled. Shown is the average wallclock time per time step. (Right) Weak scaling results showing the average wallclock time per time step spent
in the cell-centered and nodal linear solvers within a full time step of the aforementioned simulations.
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of convection preceding ignition in a white dwarf. Again, we
refer the reader to Nonaka et al. (2011) and Zingale et al.
(2011) for setup details. We implement both uniformly and
irregularly spaced base state with the new temporal algorithm,
while only uniform base state spacing is used in the original
algorithm. As in Section 3 of Nonaka et al. (2011), we choose
the peak temperature and peak Mach number as the two
diagnostics to compare the simulations. Figure 4 shows the
evolution of both peak temperature and peak Mach number
until time of ignition on a single-level grid with resolution of
2563. The simulation using the new temporal scheme with
uniformly spaced base state gives the same qualitative results
as the original scheme, and predicts a similar time of ignition
(t= 7810 s compared to t= 7850 s for original algorithm). The
simulation using the new temporal scheme with irregularly
spaced base state displays a slightly different peak temperature
behavior during the initial transition period <t 150 s, which
results in the difference between the curves post transition. We
strongly suspect that this is a result of using a different initial
model file (the resolution near the center of the star is much
coarser with the irregular spacing than the uniform spacing).
Fortunately, the simulation with irregular base state spacing
still follows the same trend as with uniform spacing, and the
star is shown to ignite at an earlier time t=6840 s.

Figure 5 shows the peak temperature evolution over the first
1000 s on two grids of differing resolutions, 2563 and 5123.
Limited allocations prevented us from running this simulation
further. As previously suspected, the simulation using irregu-
larly spaced base state agrees much closer with the results from
using uniform spacing as the resolution increases. This is most
likely due to the increased resolution of the initial model, which
more closely matches the uniformly spaced counterpart. This is
especially important when computing the base state pressure
from base state density, which is particularly sensitive to coarse
resolution near the center of the star.

In terms of efficiency, all three simulations on the 2563

single-level grid were run on Cori haswell with 64 processors
and 8 threads per core and their run times were compared. As a
result of simplifying the algorithm by eliminating the evolution
equations for the base state density and pressure, the simulation
using the new temporal algorithm took only 6.75 s per time step
with uniformly spaced base state, which is 13% faster than the
7.77 s per time step when using the original scheme. However,

we do observe a 25% increase in run time of 9.72 s when using
irregularly spaced base state with the new algorithm. This can
be explained by the irregularly spaced base state array being
much larger in size than its uniformly spaced counterpart, and
thus require additional communication and computation time.
One possible strategy to significantly reduce the run time is to
consider truncating the base state beyond the cutoff density
radius.

4.3. AMR Performance

We now test the performance of MAESTROeX for adaptive,
three-dimensional simulations to track localized regions of
interest over time. Figure 6 illustrates the initial grid structures
with two levels of refinement for both planar and spherical
geometries where the grid is refined according to the
temperature and density profiles, respectively. For each of the
problems we tested, the single-level simulation was run using
the original temporal scheme and the adaptive simulations
using the original and new temporal algorithms. We want to
show that the adaptive simulation can give similar results to the

Figure 4. (Left) Peak temperature, Tpeak, and (right) peak Mach number in a white dwarf until time of ignition at resolution of 2563 for three different MAESTROeX
algorithms.

Figure 5. Peak temperature, Tpeak, in a white dwarf at grid resolutions of 2563

(dotted line) and 5123 (solid line) until t=1000 for uniform (dx) and irregular
(dr) base state spacing. Note that the irregularly spaced solution agrees better
with the uniformly spaced solution as the resolution increases.
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single-level simulation and in a more computationally efficient
manner.

In the planar case, we use the same problem setup for a hot
bubble rising in a white dwarf environment as described in
Section 6 of Paper V. Here we use a domain size of
3.6×107 cm by 3.6×107 cm by 2.88×108 cm, and allow
the grid structure to change with time. The single-level
simulation at a resolution of 1282×1024 was run on Cori
haswell with 48 processors and took approximately 33.5 s per
time step (averaged over 10 time steps) using either the original
or new temporal algorithm. The adaptive simulation has a
resolution of 322×256 at the coarsest level, resulting in the
same effective resolution at the finest level as the single-level
simulation. We tag cells that satisfy > ´T T 3 107– ¯ K as well
as all cells at that height. The adaptive run took only 3.7 s per
time step, and this 89% decrease in run time is mostly due to
the fact that initially only 6.25% of the cells (1,048,576 out of
1282×1024 cells) are refined at the finest level. Figure 7

shows a series of planar slices of the temperature profile at time
intervals of 1.25 s, and verifies that the adaptive simulation is
able to capture the same dynamics as the single-level
simulation at much lower computational cost.
We continue to use the full-star white dwarf problem

described in Section 4.2 to test adaptive simulations on
spherical geometry. The adaptive grid is refined twice by
tagging the density at ρ>105 g cm−3 on the first level and
ρ>108 g cm−3 on the second level. These tagging values have
been shown to work well previously in Paper V, but we have
found that the code may encounter numerical difficulties when
the tagging values are too close to each other in subsequent
levels of refinement. The simulation on a single-level grid of
5123 resolution took 12.7 s per time step (again averaged over
10 time steps). The adaptive grid has a resolution of 1283 at the
coarsest level and an effective resolution of 5123 at the finest
level. On this grid, 27.8% of the cells (4,666,880 out of 2563

cells) are refined at the first level and 5.3% (7,176,192 out of

Figure 6. Initial grid structures with two levels of refinement. The red, green, and black lines represent grids of increasing refinement. (Left) Profile of T T– ¯ for a hot
bubble in a white dwarf environment. (Right) Region of star where ρ�105 g cm−3 in a full white dwarf star simulation.

Figure 7. Time-lapse cross-section of a hot bubble in a white dwarf environment at t=0, 1.25, and 2.5 s for (left) single-level simulation, and (right) adaptive
simulation at the same effective resolution. The red, green, and black boxes indicate grids of increasing resolution.
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5123 cells) at the second. The adaptive simulation took 5.61 s,
resulting in more than a factor of two in speedup. Both
simulations are computed to t=2000 s and we choose to use
the peak temperature as the diagnostic to compare the results.
Figure 8 shows the evolution of the peak temperature for all
three runs and shows that the adaptive simulation gives the
same qualitative result as the single-level simulation. We do not
expect the curves to match up exactly because the governing
equations are highly nonlinear, and slight differences in the
solution caused by solver tolerance and discretization error can
change the details of the results. Each simulation was run on
Cori haswell with 512 processors and 4 threads per core.

5. Conclusions and Future Work

We have developed a new temporal integrator and spatial
mapping options into our low Mach number solver, MAES-
TROeX. The new AMReX-enabled code scales well on large
fractions of supercomputers with multicore architectures.
Future software enhancements will include GPU implementa-
tion. In particular, the AMReX-based companion code, the
compressible CASTRO code (Almgren et al. 2010), has
recently ported hydrodynamics and reactions to GPUs (A. S.
Almgren et al. 2019, in preparation). We plan to leverage
the newly implemented mechanisms for offloading compute
kernels to GPUs inside of the AMReX software library itself.
Our future scientific investigations include convection in
massive rotating stars (Heger et al. 2000), the convective Urca
process in white dwarfs (Willcox et al. 2016), solar physics
(Wood & Brummell 2018), and magnetohydrodynamics
(Wood et al. 2011; Wood & Hollerbach 2015). Our future
algorithmic enhancements include more accurate and higher-
order multiphysics coupling strategies based on spectral
deferred corrections (Dutt et al. 2000; Bourlioux et al. 2003).
This framework has been successfully used in terrestrial
combustion (Pazner et al. 2016; Nonaka et al. 2018)
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Appendix
Projection Details

To enforce the divergence constraint in Steps 3, 7, and 11,
we use a projection method analogous to the methods
originally developed for incompressible flow (Bell et al.
1989; Almgren et al. 1998). The basic idea is to decompose
the velocity field into a part that satisfies the divergence-
satisfying component and a curl-free (gradient of a scalar field)
component by solving a variable-coefficient Poisson equation
for the scalar field. The details for the MAC projection in Step
3 and Step 7 are given in Appendix B of Paper III. The details
of the nodal projection in Step 11 are given in Section 3.2 of
Paper III. We note that in the nodal projection, the gradient of
the scalar field is used to update the perturbational pressure, π.
Based on our past experience in the MAESTRO project, we

have found it useful to split the velocity dynamics into a
perturbational and base state velocity,

= +~
U U x et w r t, , , 34r0( ) ( ) ( )

solve for each term separately, and immediately combine them
to find a full velocity that satisfies the constraint. We take that
approach here, primarily because it allows us to enforce a
boundary condition on w0 at the edge of the star (i.e., the cutoff
density location where we hold density constant). Namely, to
enforce that r2w0 remain constant is difficult to do when
solving for the full velocity. This is demonstrated in Figure 9
(right) where the velocity magnitude is observed to incorrectly
increase outside the cutoff density radius when we solve for the
full velocity in the nodal projection. The resulting peak
temperature also dips significantly as seen in Figure 9 (left),
presumably because the dynamics of the overall expansion of
the star are not being captured correctly.
In practice, we solve the constraint over the lateral average,

b b = -~
U S S 350 0· ( ) ( ) ( )

and separately solve for w0 using

b b = -
G

¶
¶

ew S
p

p

t

1
. 36r0 0 0

1 0

0
⎛
⎝⎜

⎞
⎠⎟· ( ) ( )

To solve for
~
U we use a projection method, which involves the

solution of a variable-coefficient Poisson solver to extract the
curl-free component of the unprojected velocity, leaving a
velocity field that satisfies the divergence constraint. Note that
MAESTRO contains alternate low Mach number formulations
that conserve total energy in stratified systems, with minimal
changes to the code (see Appendix A of Jacobs et al. 2016 for
details). To find w0 we integrate in one dimension using the
procedure in Appendix B of Paper V, keeping in mind that
the base state spacing (Δr) should be computed using the

Figure 8. Peak temperature, Tpeak, in a white dwarf from t=0 to 2000 s for
grids with effective resolution of 5123. We can see that the adaptive grids with
two levels of refinement give very similar solution trends compared to the
single-level grid.
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appropriate cell-edge and cell-center locations when using
irregularly spaced base state. Note that in this approach, we
estimated the time-derivative of the pressure in part by
examining how laterally averaged ρ′=ρ−ρ0 changed over
time (quantified by h r= ¢r U er· ). After evolving the species
(Steps 4A/8A), we compute this term as reported in Paper V.
For example, after Step 8A, we define a radial cell-centered
hr

+n 1 2,

1. For planar geometry, h r= ¢r U er( · ),

åh r=r
+ +U eAverage X . 37n

k
r k

n1 2 ADV 1 2,pred[( · )( ) ] ( )

2. For spherical geometry, first construct h =r
+ncart, 1 2

r¢ +U er
n 1 2[ ( · )] on Cartesian cell centers using:

h
r r r r

=
+

-
+

r
+

+

U e
2 2

.

38

n
n n

r
cart, 1 2

1 2
0 0

1
ADV

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥ · ( · )

( )

( ) ( )

Then,

h h=r r
+ +Average . 39n n1 2 cart, 1 2( ) ( )
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