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ABSTRACT

Laboratory studies of the disposition and toxicity of hydroxylated polychlorinated biphenyl 

(OH-PCB) metabolites are challenging because authentic analytical standards for most unknown 

OH-PCBs are not available. To assist with the characterization of these OH-PCBs (as methylated

derivatives), we developed machine learning-based models with multiple linear regression 

(MLR) or random forest regression (RFR) to predict the relative retention times (RRT) and MS/

MS responses of methoxylated (MeO-) PCBs on a gas chromatograph-tandem mass 

spectrometry (GC-MS/MS) system. The final MLR model estimated the retention times of MeO-

PCBs with a mean absolute error of 0.55 min (n = 121). The similarity coefficients cos  between

the predicted (by RFR model) and experimental MS/MS data of MeO-PCBs were > 0.95 for 

92% observations (n = 96). The levels of MeO-PCBs quantified with the predicted MS/MS 

response factors approximated the experimental values within a 2-fold difference for 85% of 

observations and 3-fold differences for all observations (n = 89). Subsequently, these model 

predictions were used to assist with the identification of OH-PCB 95 or OH-PCB 28 metabolites 

in mouse feces or liver by suggesting candidate ranking information for identifying the 

metabolite isomers. Thus, predicted retention and MS/MS response data can assist in identifying 

unknown OH-PCBs.

KEYWORDS: OH-PCBs; GC-MS/MS method; Model Prediction; Relative retention times; 

Relative response factor

SYNOPSIS: Machine learning-based models were used to identify and quantify toxicologically 

relevant hydroxylated PCB metabolites in biological samples.
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INTRODUCTION

PCBs are a class of environmental pollutants that can be transformed into hydroxylated PCBs 

(OH-PCBs) by reaction with hydroxyl radicals in the environment1, 2 or via oxidation by 

cytochrome P450 enzymes in organisms.3 OH-PCBs are also present in technical PCB mixtures.4

A total of 837 mono-hydroxylated PCBs (mono-OH-PCBs) and thousands of di-hydroxylated 

PCBs (di-OH-PCBs) can be formed from the 209 possible PCB congeners.3 The parent PCBs are

still present in the environment, human diet, and humans5-9 and can be found in consumer 

products, such as paints and silicon rubber.10-13 Therefore, it is not surprising that many OH-PCB 

congeners have been detected in environmental or biological media.4, 14-16 OH-PCBs are 

potentially more toxic than the corresponding parent PCBs.3 For example, OH-PCBs can interact

with nuclear transcription factors, such as the aryl hydrocarbon receptor, constitutive androstane 

receptor, and pregnane X receptor.17, 18 They are endocrine-disrupting chemicals that, for 

example, inhibit estrogen sulfotransferase and bind to transthyretin.18-22 Di-OH-PCBs are 

oxidation products of mono-OH-PCBs, with PCB catechols being central PCB metabolites in 

mammals.23-25 Di-OH-PCB metabolites can be transformed into PCB quinones, reactive PCB 

metabolites that cause oxidative stress or covalently bind to DNA and other cellular targets.26-29 

Some PCB catechols are tumor initiators in the liver.30, 31 

Despite the well-documented toxicity of OH-PCBs, their presence in environmental samples, 

wildlife, laboratory animals, and humans has not been fully characterized, partly because of the 

lack of authentic analytical standards. OH-PCBs are typically analyzed as methylated derivatives

(MeO-PCBs) with gas chromatographic (GC) methods.23, 32, 33 GC can also be used to identify and

quantify other PCB metabolites, such as PCB sulfates, as MeO-PCBs after deconjugation and 

4

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68



derivatization.34  GC coupled with tandem mass spectrometry (GC-MS/MS) is a useful method to

quantify the MeO-PCBs because of its good separation, high selectivity, and low detection limits

for this class of compounds.4, 14, 15 However, only a small number of the 837 possible OH-PCB 

congeners, either as hydroxylated or methoxylated derivatives,35 are commercially available. The

lack of authentic analytical standards represents a challenge for environmental, human 

biomonitoring, metabolism, and toxicity studies.25, 35, 36 For example, unknown OH-PCB are 

frequently detected in environmental and biological samples.36-43 Computational approaches can 

facilitate the identification and quantification of OH-PCBs in environmental and biological 

samples. However, no method is currently available for identifying and quantifying these 

metabolites in any matrix.

Computational models trained with experimental observations represent an alternative 

approach for the nontarget analysis of diverse groups of chemicals. For example, models have 

been developed to predict the retention times and response factors of PCBs,44, 45 polybrominated 

diphenyl ether,46 and human endogenous metabolites.47 In silico predictions can simulate the MS/

MS spectra of chemicals to support the identification of unknown compounds.48 Previously, 

unknown OH-PCBs were quantified in abiotic samples using the average response factor for the 

OH-PCB homolog group.43 We have previously shown that mono-OH-PCBs without authentic 

analytical standards can be identified by homolog group and quantified in PCB-contaminated 

sediment using a semi-nontargeted approach.  However, because our method could not identify 

the substitution patterns, and could not identify di-hydroxyl PCBs, it was of limited use for 

interpreting the metabolic products of PCB exposure in laboratory animals.35 
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In this study, we used 124 analytical mono/di-MeO-PCB standards to develop multiple linear 

regression (MLR) or random forest regression (RFR) models that predict the retention times and 

MS/MS response data of MeO-PCBs on a GC-MS/MS system. The predicted GC-MS/MS data 

were used to identify and quantify OH-PCB metabolites in samples from animal studies with 

toxicologically relevant PCBs.

EXPERIMENTAL SECTION

Laboratory methods. This study used machine learning-based approaches to identify and 

quantify the OH-PCBs detected in biological samples from PCB disposition and toxicity studies. 

The biological samples investigated include a feces sample from a PCB disposition study with 

mice acutely exposed to an individual PCB congener (PCB 95) and a liver sample from a PCB 

disposition study with mice sub-chronically exposed to a human-relevant PCB mixture. Briefly, 

adult mice were exposed to PCB 95 (1.0 mg/kg), a neurotoxic PCB,49-52 in stripped corn oil or 

corn oil alone. Feces from dissected distal colon and rectum were collected 24 h after PCB 95 

exposure for analysis. The liver sample was collected as part of a larger study assessing the 

effects of developmental exposure to a PCB mixture on multiple developmental outcomes.53-55 

The biological samples were extracted following a published procedure41, 56, 57 and analyzed by 

GC-MS/MS. For details regarding the animal studies, the extraction, and GC-MS/MS analysis, 

see the Supporting Information.

Experimental determination of RRTs and MS/MS profiles. Because of the high 

chromatographic resolution, OH-PCBs are typically extracted from biological or environmental 

matrices, derivatized to MeO-PCBs, and analyzed by GC-MS/MS.4, 14, 15, 58 We measured the 

RRTs and MS/MS profiles [expressed as the relative intensities of five multiple reaction 
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monitering (MRM) transitions] of two MeO-PCB standard solutions (Solution 1 containing 72 

MeO-PCBs and Solution 2 containing 52 MeO-PCBs; see Supporting Information for additional 

information) using an Agilent 7890B  gas chromatograph equipped with an SPB-Octyl capillary 

column (30 m length, 250 µm inner diameter, 0.25 µm film thickness; Supelco, Bellefonte, PA, 

USA), an Agilent 7000D Triple Quad and an Agilent 7693 sampler. These data were used as 

dependent variables for the model development. For additional details, see the Supporting 

Information.

Model development. The two-fold goal of the model is to predict the identity and calculate 

the concentration of mono- and di-hydroxy PCBs in laboratory samples.  We used MLR and 

RFR machine learning-based algorithms to develop models for identifying and quantifying OH-

PCBs. These models used experimental RRT and RRF data (the components of MS/MS profiles)

as dependent variables and molecular descriptors (MDs) as predictors. For the generation of 

chemoinformatics and substitution pattern-based MDs of the 124 MeO-PCBs (Table S1), see the 

Supporting Information. All data analyses were performed in R (version 3.6.3).

Preliminary data inspection. Since the MLR, but not the RFR models, assume normal data 

distribution and homogeneity of data variance,60 a preliminary data inspection was performed on 

all datasets used to predict the RRTs and RRFs of MeO-PCBs with the MLR model.  Inspection 

of diagnostic plots [i.e., normal probability plots (Q-Q plots) and residual vs. fitted value plots] 

for the RRT predictions suggested that the assumptions of data normality and variance 

homogeneity were supported by the majority of the 112 observations in the training datasets 

(Fig. S1). 
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The training datasets used for predicting RRFs revealed non-linear relationships. Therefore, 

the measured RRFs were log-transformed to obtain normally distributed data and account for 

non-linear relationships. Potential outlier observations were removed by Cook’s distance (CD) 

with the following cut-off: CD < 10-fold of averaged CD (assuming outliers have CDs 

substantially larger than the averaged CD by over an order of magnitude). As a result, 109 and 

88 observations remained in the training datasets used to develop models to predict RRTs and 

RRFs. Coeluting MeO-PCBs in the training dataset were removed for the prediction of RRFs.

MLR model development. We used a repeated 10-fold cross-validation strategy61, 62 to train and

internally validate the MLR models used to predict the RRTs or RRFs of MeO-PCBs. First, 

MLR modeling underwent a predictor selection step to minimize the number of predictors and 

enhance model stability without sacrificing model performance. This step was performed with 

the stepAIC function in the MASS package (https://cran.r-project.org/web/packages/MASS/ 

index.html). Next, predictors were optimized stepwise with the Akaike Information Criteria 

(AIC) for variable selection. Based on this optimization step, ten out of 105 MDs were selected 

to predict RRTs (Table S2), and sixteen to sixty-six out of 105 MDs were used to predict the 

RRFs of the five MS transitions. 

The observations from each dataset were randomly divided into ten groups. Nine groups were 

used as the training dataset, and the remaining dataset was used for internal testing. The model 

training and testing were performed ten times to ensure that each group was used once as the 

testing dataset. The data grouping, model training, and internal testing were repeated five times 

to avoid biases in the initial random grouping of the datasets. Finally, MLR models with 

predictor coefficients and their deviations at the least root mean square error (RMSE) were 
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generated to predict RRTs or RRFs. The MLR models were evaluated by R2 (RSQ), mean 

absolute error (MAE), and RMSE between the predicted and measured value and the prediction 

interval at the 95 % confidence level.

RFR model development. Initially, RFR models were constructed to predict RRTs or RRFs 

with all MDs as independent variables and experimental RRTs or RRFs as dependent variables 

using the R package randomForest. Approximately two-thirds of the MeO-PCBs were randomly 

selected as the internal training dataset, and the rest were used as the internal testing dataset. An 

importance value was assigned to each MD to evaluate its contribution to the prediction model. 

The model construction was repeated 100 times with randomly selected datasets to identify the 

top six ranked MDs for each iteration. The MDs that appeared > 50 times in these RFR models 

were chosen for further predictions (Table S3). 

Subsequently, the parameters in the random forest algorithms, ntree (i.e., number of trees to 

grow) and mtry (i.e., number of variables randomly sampled as candidates at each split), were 

optimized from 100 to 1000 with a step size of 100 for ntree and from one variable to the total 

number of variables for mtry. The two parameters were permutated to form a set of parameter 

combinations. The performance of each parameter combination was evaluated using the RMSE. 

The parameter combination with the smallest RMSE was used to construct the final prediction 

model. For information on the optimized ntree and mtry for predicting RRFs, see Table S3. In 

the final model prediction step, the optimized MDs (predictors) and RF parameters were used to 

predict the RRTs or RRFs of the MeO-PCBs with the RFR models. 
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Model validation. The MLR and RFR models were validated with external datasets containing

12 MeO-PCBs  for RRTs predictions and 11 MeO-PCBs for RRFs predictions (data for one 

MeO-PCBs was removed because it was below the detection limit) (see Table S1). 

Candidate ranking in identifying unknown OH-PCBs (as methylated derivatives). 

Preliminary data analysis suggested that MeO-PCB isomers (i.e., varied chlorine or methoxy 

substitution patterns) have drastically different responses for the same MRM transition in the 

GC-MS/MS analysis (Fig. S2). Therefore, in addition to the predicted RRT, we used the 

predicted MS/MS data, consisting of the relative intensities of five fragment ions, to rank MeO-

PCBs isomers derived from the same PCB congener or homolog to identify OH-PCBs in animals

samples (i.e., feces and liver). For more details regarding the candidate ranking strategy, see the 

Supporting Information. 

RESULTS AND DISCUSSION

 Prediction of RRTs of MeO-PCBs. The identification of OH-PCBs in environmental and 

biological samples is challenging because of the large number of possible OH-PCBs and the 

structural similarity of OH-PCB metabolites of a specific PCB congener (e.g., PCB 95 or PCB 

28). Therefore, it is unlikely that a single approach can achieve unambiguous identification of 

specific OH-PCB isomers; however, machine learning methods have the potential to aid in the 

identification of OH-PCB isomers. 

We developed MLR and RFR models to predict the RRTs of MeO-PCBs on a GC-MS/MS 

system equipped with an SPB-Octyl column. Both models provide good approximations of the 

RRTs of MeO-PCBs, with R2 values (derived from linear regressions between the measured and 

predicted values) greater than 0.98 (Fig. 1a) and with randomly distributed residuals (Fig. S3). 
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The MLR model with 10 predictors performed better, with a narrower prediction interval and 

lower RMSE, than the RFR models with the same number of predictors. The absolute difference 

between measured and predicted retention times was within 1 min for 87 % observations (n=121)

in the MLR model predictions. This finding is not surprising because statistically significant 

linear relationships can be readily established between the predictors and the RRTs of MeO-

PCBs in the MLR development, with p < 0.05 for all 10 predictors (Table S2). 

The MLR models developed with data from the SPB-octyl column slightly underestimate the 

RRTs of MeO-PCBs collected with a different GC column (DB-1701) by overall 2 % (Fig. S4, 

data was collected in a previous study), indicating a likely column flexibility, at least for poly(n-

octyl/methyl siloxane) phase columns. In addition to predicting the RRTs of MeO-PCBs, the 

MLR models can also provide reasonable estimates of the RRTs of PCBs collected under 

identical conditions but with a physically different instrument (Fig. S5). This finding indicates 

that slight changes in chemical structure (e.g., with or without the methoxy group) and a 

physically different instrument are unlikely to affect the model applications. However, the same 

commercially available internal standards and similar instrument conditions are recommended to

apply the models to other problems.  MLR models performed better than analogous RFR models 

for the prediction of RRTs of MeO-PCBs on a DB-1701 column and RRTs of PCBs on an SPB-

Octyl column (Fig. S5).

This study is the first report of predictive models for OH-PCBs, but both MLR and RFR models

are widely used for predicting the retention times of chemicals on GC or LC systems. For 

example, an MLR model with five PCB molecular descriptors (selected from topological 

descriptors, geometric descriptors, electronic descriptors, and calculated physical property 

descriptors) predicted the RRT of PCBs on a GC column with a relative standard deviation of 1.7
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%.45 Analogously, a five-variable MLR model with molecular electronegativity distance vectors 

of PCBs predicted the RRT of the PCBs with an RMSE of 0.0152 (or an MAE of approximately 

1.90 min in retention time).44 Retention times of chemicals were also predicted with RFR models

on LC columns to facilitate the identification of unidentified peaks in untargeted metabolomics, 

with MAEs of 0.78 min (20 % in mean relative error) and 0.57 min (13 % in mean relative error)

for hydrophilic interaction chromatography and reverse-phase LC columns, respectively.47 The 

retention times of polybrominated diphenyl ethers and their methoxylated metabolites on a GC 

column were predicted with a lower accuracy by linear regression with the melting points.46 Our 

MLR model with 10 predictors obtained comparable accuracy as above in predicting retention 

times of MeO-PCBs with an overall MAE of 0.55 min (n=121) (Fig. S3). However, the accuracy

of the RRT predictions with this and other models does not meet the RRT variation tolerance 

recommended by the European Commission for identifying chromatographic peaks (i.e., 0.5 % 

and 2.5 % for GC and LC peaks, respectively).63 Therefore, other identifiers, such as MS/MS 

profiles, are needed to identify unknown peaks.

Prediction of MS/MS profiles of MeO-PCBs. Principal component analysis and a violin plot 

of the MS/MS profiles of 99 mono- or di-MeO-PCBs suggested that their MS/MS data vary 

significantly with the position (i.e., ortho, meta, or para) of the methoxy group on the biphenyl 

moiety (Figs. 2a and S2). Notably, higher signals were observed for the loss of 50 (i.e., 

[CH3+Cl]) for MeO-PCBs with ortho methoxy groups. On the other hand, meta- or para-

methoxylated PCBs are more likely to fragment with the loss of 43 [CH3+CO]. Since the loss of 

[CO] requires the opening of the MeO-substituted benzene ring, it is likely that the meta- and 

para-methoxylated PCBs chemically have a more favorable configuration for ring opening than 
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that of ortho-methoxylated PCBs, as illustrated in Fig. S6. This substitution pattern-dependent 

response suggests that MS/MS data can be used to assign the structure (i.e., ortho vs. meta or 

para-methoxy) of an unknown peak. Likewise, MS/MS responses were previously used to 

identify MeO-PCB 28 isomers formed in rats exposed to PCB 28.64 

We predicted the MS/MS data of MeO-PCBs (expressed as the relative levels of the signals of 

the five fragmentations investigated) using RFR models coupled with MDs as predictors. The 

prediction of the RFR model, but not the MLR model, provided good approximations of the 

response for all five fragmentations, with MAE ranging from 0.3 to 0.5 log units (Figs. 2b-f). 

However, better estimations with a narrower prediction interval and lower MAE were obtained 

when predicting the RRFs associated with the loss of 43 or 50, likely because MeO-PCBs have 

higher responses generated through these two fragmentations. Importantly, the predicted MS/MS

profiles were similar to the experimental data, with the similarity coefficient65 cos θ > 0.95 for 92 

% of the 96 MeO-PCBs investigated (Fig. 2g) (cos θ = 1 indicates that the MS/MS profiles are an

exact match, cos θ = 0 indicates different profiles). 

Since MS/MS data carry fragment information that can be used to identify unknown peaks, 

several programs (e.g., MetFrag,66 CFM-ID,48 and CSI:FingerID67) have been developed to 

predict the MS/MS data from the corresponding molecular structure. These programs were 

primarily designed for soft ionization systems, such as electrospray ionization (ESI), and provide

no meaningful intensity values for the fragmentation of MeO-PCBs on a GC-MS/MS system 

with electron ionization (EI). Thus, the information provided by these software packages does 

not facilitate the identification of MeO-PCB isomers. CFM-ID has the option to simulate EI-MS 

spectra, but not EI-MS/MS spectra. Consequently, the intensity information predicted by this 
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approach in either EI-MS or ESI-MS/MS mode poorly reflects the experimental EI-MS/MS 

intensities in part because the CFM-ID program was originally not trained with reference MS 

spectra of MeO-PCBs (Fig. S7). Our machine-learning models were trained and externally 

validated with experimental MS/MS data of 124 mono/di-MeO-PCBs and, for the first time, 

allow the quantitative prediction of the MS/MS data of MeO-PCBs for which no authentic 

analytical standards are available. The predicted MS/MS data provide an additional dimension 

assisting in the identification of unknown MeO-PCB peaks. 

Quantification of MeO-PCBs with the predicted RRFs. After the structural identification of 

an unknown MeO-PCB with the predicted retention time and MS/MS data, the unknown peak 

can be quantified with predicted RRFs. Since the MS/MS responses of MeO-PCBs depend on the

position of the methoxy group on the biphenyl moiety (Fig. S2), we used signals of the 

respective transitions for the loss of 50 [CH3+Cl] to quantify ortho-methoxylated PCBs and the 

loss of 43 [CH3+CO] to quantify meta- or para-methoxylated PCBs. The levels of 89 MeO-PCBs

(di-MeO-PCBs with both ortho- and meta/para-methoxy groups were excluded) predicted with 

this approach were within a 2-fold difference for 85 % observations and within a 3-fold 

difference for all observations (Fig. 3). These results demonstrate that the predicted RRFs allow a

good approximation of the levels of OH-PCBs (as methylated derivatives) within one order of 

magnitude.

The RRFs of mono-MeO-PCBs for GC-MS analyses in the selected ion monitoring (SIM) 

mode have been predicted with a quadratic model using the number of chlorine atoms as a 

predictor.35 This model was trained with one of the standard mixtures (Solution 1) used in this 

study (Fig. 3). The RRFs predicted by the quadratic model were verified by quantifying 12 
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mono-MeO-PCBs with values ranging from 0.8 to 2 times of the actual concentrations. The 

RRFs predicted by our RFR model estimated the levels of 96 % of the Solution 1 authentic 

analytical standards (n = 54, coeluting and di-MeO-PCBs were not included) within a 2-fold 

difference (0.5 – 2 times of the actual concentrations) and, thus, have similar accuracy as the 

earlier model. This observation is not surprising because the use of MRM signals increases the 

complexity of the modeling while increasing the selectivity in identifying unknowns. A lower 

accuracy was observed when estimating the levels of the second standard solution (Solution 2), 

likely because this standard solution contained most of the di-MeO-PCBs included in this study. 

Characterization of OH-PCBs using predicted RRTs, MS/MS data, and RRFs. The flow 

chart in Fig. 4 illustrates how we propose to use the predicted RRT and MS/MS data to aid in the

identification and quantification of OH-PCB metabolites (as methylated derivatives) in 

environmental or biological samples. Step 1: Sample extracts containing OH-PCBs are 

derivatized and analyzed by GC-MS/MS, as described in the Experimental Section, to collect 

experimental RRT and MS/MS data of the OH-PCBs. Step 2: For each OH-PCB metabolite 

peak, the RRTs of all possible MeO-PCB derivatives, as their SMILES structures, are predicted 

with our RRT prediction model. Step 3: The MS/MS data of all possible structures of an OH-

PCB metabolite peak, also as their SMILES structures, are predicted with our MS/MS prediction 

model. Step 4: The weighted rank scores of all candidate structures are calculated (see the 

Supporting Information). Step 5: Identify the OH-PCB metabolite peaks based on the weighted 

rank scores. If available, a small set of MeO-PCB standards can be used to assist with the 

identification of the OH-PCB isomers. Step 6: The OH-PCB peaks are integrated and quantified 

using the predicted MS/MS responses. An additional dataset containing the detailed user manual 
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of these steps, example data and the R codes were publicly available in Iowa Research Online at 

http://doi.org/. The following section demonstrates the application of this approach to facilitate 

the identification and quantification of OH-PCB 95 in mouse feces and OH-PCB 28 in mouse 

liver. Since the model predictions were originally trained using experimental data obtained with 

standard solutions, these predictions facilitate the availability of standard retention times and 

MS/MS response factors independent of the sample matrix. OH-PCBs in any sample matrix can 

be theoretically identified and quantified with the predicted standard retention times and MS/MS 

data as long as necessary sample preparation procedures were performed, as described in this and

other studies.4, 14, 15, 58

Analysis of OH-PCB 95 in the feces of a mouse exposed to PCB 95. PCB 95 and its metabolites 

are potentially neurotoxic.49-52 Because metabolites of higher chlorinated PCBs are excreted with 

the feces,68 we investigated OH-PCBs in a feces sample from a mouse exposed to PCB 95. We 

detected 5 peaks (Peaks 1, 2, 3, 4, and 5) with the MS transition m/z 356→313, corresponding to 

pentachlorinated mono-MeO-PCBs, and 2 peaks (Peaks 6 and 7) with the MS transition m/z 

386→343, corresponding to pentachlorinated di-MeO-PCBs, in the extract of feces from a mouse

exposed to PCB 95 (Fig. 5a). The possible mono-MeO-PCB 95 and selected di-MeO-PCB 95 

that are likely formed in PCB metabolism studies, for example, metabolites with two methoxy 

groups ortho or para to each other, are shown in Fig. S8. The MeO-PCB 95 candidates were 

ranked based on their weighted rank scores calculated from the predicted and experimental RRT 

and MS/MS data (Fig. 5b). 

Overall, the model correctly suggested the position of methoxy groups (ortho, meta, or para). 

Briefly, Peaks 1, 4, and 7 were correctly identified based on the weighted ranking scores as 3-103
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(1,2-shift product), 4′-95, and 4,5-95, respectively. The weighted ranking scores suggested that 

Peaks 3 and 5 correspond to a meta- and para-hydroxylated metabolite (3′-95 and 4′-95, 

respectively). Based on the elution order of authentic analytical standards of MeO-PCB 95 

analyzed on the same GC column (SPB-Octyl) (Fig. S9), Peaks 3 and 5 correspond to meta- and 

para-hydroxylate metabolites (5-95 and 4-95, respectively). These two correct identifications 

ranked within the top 3 candidates (Fig. 5b). Peak 2 was predicted to be 3′-95. This structural 

assignment requires confirmation with an analytical standard. 

Peak 7 was correctly identified by the weighted rank scores as 4,5-PCB 95. The model also 

identified Peak 6 as 4,5-95, another catechol metabolite; however, Peak 6 likely corresponds to a 

different catechol metabolite, 3′,4′-95, as suggested by the top 2 candidate. This identification is 

consistent with the preferential formation of PCB catechol metabolites in PCB metabolism 

studies.23-25 Finally, PCB 95 metabolites were quantified with their predicted RRFs. The 

predicted and experimental levels of the metabolites with available authentic standards (i.e., 

Peaks 1, 4, and 7) showed good agreement (Fig. 5c). Thus, the predicted RRF allows a 

reasonable approximation of the levels of PCB 95 metabolites for which no authentic analytical 

standards are available. The MS/MS responses of authentic standards of 5-95 (Peak 3) and 4-95 

(Peak 5) were measured with a different GC-MS/MS method and were not included in the 

comparisons with the predicted levels in Fig. 5c. 

The identification of PCB 95 metabolites using our model in combination with authentic 

analytical standards increases the confidence in the identification of unknown OH-PCB 95 

metabolites in the feces sample from this study, but also earlier studies investigating the 

metabolism of PCB 95.  For example, an unknown MeO-PCB 95 peak was detected in 
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metabolism studies with rat cytochrome P450 enzymes,39 rat and human liver microsomes36, 41 

and in vivo disposition studies in rodent models.37, 38, 40 In these previous studies we tentatively 

identified this unknown peak, which eluted before 5-95 on an SPB-1 column, as 3′-95. Our 

present study confirms this tentative identification of 3′-95 despite the difference in GC column 

stationary phases. Similarly, earlier metabolism studies with human liver microsomes or rats in 

vivo reported an unknown dihydroxylated PCB 95 metabolite peak (as its methylated derivative) 

that eluted before 4,5-95 on the SPB-1 column.36, 37 In the absence of an authentic standard, the 

model predictions provide an additional line of evidence supporting the identification of this 

metabolite as 3′,4′-95, another PCB 95 catechol metabolite.

Analysis of OH-PCB 28 in the liver of a mouse exposed to a neurotoxic PCB mixture. We also 

investigated metabolites of PCB 28 in the liver from a mouse exposed during gestation and 

lactation to a PCB mixture.53-55 Based on the MS transition m/z 286→243, we identified three 

trichlorinated MeO-PCB peaks (Peaks 1, 2, and 3) corresponding to mono-hydroxylated 

metabolites of PCB 28 (Fig. 6a). Based on the experimental and predicted RRT and MS/MS 

data, the weighted rank scores of all possible MeO-PCB 28 candidates (Fig. S10) were calculated

for the three MeO-PCB 28 peaks (Fig. 6b). The top candidates for Peaks 1, 2, and 3 were 3′-28, 

5-28, and 4-22 (a 1,2-shift product of PCB 28), respectively. The identification of Peaks 1 and 2 

was subsequently confirmed with authentic standards. Using a small set of MeO-PCB 28 

standards, we confirmed that Peak 3 does not correspond to 2′-28, 3-28, or 4′-25 (another 1,2-

shift product of PCB28). Likely, Peak 3 was correctly identified as 4-22 by our model; however, 

confirmation with an authentic standard is still needed if this minor metabolite becomes a 

concern. The three peaks of PCB 28 metabolites were quantified with their predicted RRFs. As 

18

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373



with the PCB 95 metabolites above, the OH-PCB levels calculated with the predicted RRFs are 

in good agreement with the experimental levels of the two metabolites for which authentic 

analytical standards are available (i.e., 3′-28 and 5-28) (Fig. 6c). 

Our predictions also enable a tentative identification of unknown metabolites observed in an 

earlier study. Briefly, two major, meta-hydroxylated PCB 28 metabolites and two minor para-

hydroxylated PCB 28 metabolites (analyzed as methylated derivatives) were eliminated with the 

feces of rats exposed intraperitoneally to PCB 28.64 One meta-hydroxylated PCB 28 metabolite 

was identified as 5-28 with a synthetic standard on a GC-MS equipped with a BP-5 column. The 

other unidentified, meta-hydroxylated metabolite eluted at an earlier retention time. Based on the

elution order, we hypothesize that this metabolite corresponds to 3′-28 (Peak 1) observed in this 

study (Fig. 6a), irrespective of the different GC columns used. The two para-hydroxylated PCB 

28 metabolites were 1,2 shift products and remain unidentified because of the lack of analytical 

standards. Similar to this study, one of the unknown para-hydroxylated PCB 28 metabolites 

likely is 4-22. 

The PCB metabolism studies described above highlight the complexity of the metabolism of 

PCBs and the challenges associated with the identification of the PCB metabolites, which depend

on the availability of authentic analytical standards. The proposed strategy using machine 

learning-based model predictions can significantly advance identifying and quantifying unknown

OH-PCBs, especially in combination with a small set of authentic analytical standards. Notably, 

the predicted top candidate can suggest if the methoxy group is in the ortho, meta, or para 

position. Even if the top candidate is not the true compound, knowing the position of the 

methoxy substituent enables a targeted synthesis of authentic analytical standards. Additional 
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studies are needed to demonstrate that our machine learning approach can facilitate the 

identification of OH-PCB metabolites in environmental and biological samples.
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PCB 95 and MeO-PCB 28. This material is available free of charge via the Internet at 

http://pubs.acs.org.  

21

416

417

http://pubs.acs.org/


REFERENCES

1. Mandalakis, M.; Berresheim, H.; Stephanou, E. G. Direct evidence for destruction of 

polychlorobiphenyls by OH radicals in the subtropical troposphere. Environ. Sci. Technol. 

2003, 37, 542-547.

2. Anderson, P. N.; Hites, R. A. OH radical reactions: The major removal pathway for 

polychlorinated biphenyls from the atmosphere. Environ. Sci. Technol. 1996, 30, 1756-

1763.

3. Grimm, F. A.; Hu, D. F.; Kania-Korwel, I.; Lehmler, H. J.; Ludewig, G.; Hornbuckle, K. 

C.; Duffel, M. W.; Bergman, A.; Robertson, L. W. Metabolism and metabolites of 

polychlorinated biphenyls. Crit. Rev. Toxicol. 2015, 45, 245-272.

4. Marek, R. F.; Martinez, A.; Hornbuckle, K. C. Discovery of hydroxylated polychlorinated 

biphenyls (OH-PCBs) in sediment from a lake Michigan waterway and original commercial

Aroclors. Environ. Sci. Technol. 2013, 47, 8204-8210.

5. Sari, M. F.; Esen, F.; Del Aguila, D. A. C.; Karakus, P. B. K. Passive sampler derived 

polychlorinated biphenyls (PCBs) in indoor and outdoor air in Bursa, Turkey: Levels and an

assessment of human exposure via inhalation. Atmos. Pollut. Res. 2020, 11, 71-80.

6. Saktrakulkla, P.; Lan, T.; Hua, J.; Marek, R. F.; Thorne, P. S.; Hornbuckle, K. C. 

Polychlorinated biphenyls in food. Environ. Sci. Technol. 2020, 54, 11443-11452.

7. Jafarabadi, A. R.; Bakhtiari, A. R.; Mitra, S.; Maisano, M.; Cappello, T.; Jadot, C. First 

polychlorinated biphenyls (PCBs) monitoring in seawater, surface sediments and marine 

fish communities of the Persian Gulf: Distribution, levels, congener profile and health risk 

assessment. Environ. Pollut. 2019, 253, 78-88.

22

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439



8. Sethi, S.; Keil, K. P.; Chen, H.; Hayakawa, K.; Li, X. S.; Lin, Y. P.; Lehmler, H. J.; 

Puschner, B.; Lein, P. J. Detection of 3,3 '-dichlorobiphenyl in human maternal plasma and 

its effects on axonal and dendritic growth in primary rat neurons. Toxicol. Sci. 2017, 158, 

401-411.

9. Schettgen, T.; Esser, A.; Kraus, T.; Ziegler, P. Plasma levels of unintentionally produced 

non-Aroclor polychlorinated biphenyl (PCB) congeners in workers from the silicone rubber 

industry. Chemosphere 2022, 291, 132722.

10. Herkert, N. J.; Jahnke, J. C.; Hornbuckle, K. C. Emissions of tetrachlorobiphenyls (PCBs 

47, 51, and 68) from polymer resin on kitchen cabinets as a non-aroclor source to residential

air. Environ. Sci. Technol. 2018, 52, 5154-5160.

11. Anezaki, K.; Nakano, T. Concentration levels and congener profiles of polychlorinated 

biphenyls, pentachlorobenzene, and hexachlorobenzene in commercial pigments. Environ. 

Sci. Pollut. Res. 2014, 21, 998-1009.

12. Hu, D. F.; Hornbuckle, K. C. Inadvertent polychlorinated biphenyls in commercial paint 

pigments. Environ. Sci. Technol. 2010, 44, 2822-2827.

13. Hombrecher, K.; Quass, U.; Leisner, J.; Wichert, M. Significant release of unintentionally 

produced non-Aroclor polychlorinated biphenyl (PCB) congeners PCB 47, PCB 51 and 

PCB 68 from a silicone rubber production site in North Rhine-Westphalia, Germany. 

Chemosphere 2021, 285, 131449.

14. Marek, R. F.; Thome, P. S.; Herkert, N. J.; Awad, A. M.; Hornbuckle, K. C. Airborne PCBs

and OH-PCBs inside and outside urban and rural US schools. Environ. Sci. Technol. 2017, 

51, 7853-7860.

23

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461



15. Marek, R. F.; Thorne, P. S.; Wang, K.; DeWall, J.; Hornbuckle, K. C. PCBs and OH-PCBs 

in serum from children and mothers in urban and rural U.S. communities. Environ. Sci. 

Technol. 2013, 47, 9555-9556.

16. Kawano, M.; Hasegawa, J.; Enomoto, T.; Ohishi, H.; Nishio, Y.; Matsuda, M.; Wakimoto, 

T. Hydroxylated polychlorinated biphenyls (OH-PCBs): recent advances in wildlife 

contamination study. Environ. Sci. 2005, 12, 315-324.

17. Pencikova, K.; Svrzkova, L.; Strapacova, S.; Neca, J.; Bartonkova, I.; Dvorak, Z.; 

Hyzdalova, M.; Pivnicka, J.; Palkova, L.; Lehmler, H. J.; Li, X. S.; Vondracek, J.; Machala, 

M. In vitro profiling of toxic effects of prominent environmental lower-chlorinated PCB 

congeners linked with endocrine disruption and tumor promotion. Environ. Pollut. 2018, 

237, 473-486.

18. Machala, M.; Blaha, L.; Lehmler, H. J.; Pliskova, M.; Majkova, Z.; Kapplova, P.; 

Sovadinova, I.; Vondracek, J.; Malmberg, T.; Robertson, L. W. Toxicity of hydroxylated 

and quinoid PCB metabolites: Inhibition of gap junctional intercellular communication and 

activation of aryl hydrocarbon and estrogen receptors in hepatic and mammary cells. Chem. 

Res. Toxicol. 2004, 17, 340-347.

19. Grimm, F. A.; Lehmler, H. J.; He, X. R.; Robertson, L. W.; Duffel, M. W. Sulfated 

metabolites of polychlorinated biphenyls are high-affinity ligands for the thyroid hormone 

transport protein transthyretin. Environ. Health Perspect. 2013, 121, 657-662.

20. Ptak, A.; Ludewig, G.; Lehmler, H. J.; Wojtowicz, A. K.; Robertson, L. W.; Gregoraszczuk,

E. L. Comparison of the actions of 4-chlorobiphenyl and its hydroxylated metabolites on 

24

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482



estradiol secretion by ovarian follicles in primary cells in culture. Reprod. Toxicol. 2005, 

20, 57-64.

21. Pliskova, M.; Vondracek, J.; Canton, R. F.; Nera, J.; Kocan, A.; Petrik, J.; Trnovec, T.; 

Sanderson, T.; van den Berg, M.; Machala, M. Impact of polychlorinated biphenyls 

contamination on estrogenic activity in human male serum. Environ. Health Perspect. 2005,

113, 1277-1284.

22. Kester, M. H. A.; Bulduk, S.; Tibboel, D.; Meinl, W.; Glatt, H.; Falany, C. N.; Coughtrie, 

M. W. H.; Bergman, A.; Safe, S. H.; Kuiper, G. G. J. M.; Schuur, A. G.; Brouwer, A.; 

Visser, T. J. Potent inhibition of estrogen sulfotransferase by hydroxylated PCB 

metabolites: A novel pathway explaining the estrogenic activity of PCBs. Endocrinology 

2000, 141, 1897-1900.

23. Zhang, C.-Y.; Flor, S.; Ruiz, P.; Dhakal, R.; Hu, X.; Teesch, L. M.; Ludewig, G.; Lehmler, 

H.-J. 3,3’-Dichlorobiphenyl is metabolized to a complex mixture of oxidative metabolites, 

including novel methoxylated metabolites, by HepG2 cells. Environ. Sci. Technol. 2020, 54,

12345-12357.

24. Dhakal, K.; Uwimana, E.; Adamcakova-Dodd, A.; Thorne, P. S.; Lehmler, H. J.; Robertson,

L. W. Disposition of phenolic and sulfated metabolites after inhalation exposure to 4-

chlorobiphenyl (PCB3) in female rats. Chem. Res. Toxicol. 2014, 27, 1411-1420.

25. McLean, M. R.; Bauer, U.; Amaro, A. R.; Robertson, L. W. Identification of catechol and 

hydroquinone metabolites of 4-monochlorobiphenyl. Chem. Res. Toxicol. 1996, 9, 158-164.

25

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502



26. Spencer, W. A.; Lehmler, H. J.; Robertson, L. W.; Gupta, R. C. Oxidative DNA adducts 

after Cu2+-mediated activation of dihydroxy PCBs: Role of reactive oxygen species. Free 

Radic. Biol. Med. 2009, 46, 1346-1352.

27. Srinivasan, A.; Lehmler, H. J.; Robertson, L. W.; Ludewig, G. Production of DNA strand 

breaks in vitro and reactive oxygen species in vitro and in HL-60 cells by PCB metabolites. 

Toxicol. Sci. 2001, 60, 92-102.

28. Lin, P. H.; Sangaiah, R.; Ranasinghe, A.; Upton, P. B.; La, D. K.; Gold, A.; Swenberg, J. A.

Formation of quinonoid-derived protein adducts in the liver and brain of Sprague-Dawley 

rats treated with 2,2 ',5,5 '-tetrachlorobiphenyl. Chem. Res. Toxicol. 2000, 13, 710-718.

29. Amaro, A. R.; Oakley, G. G.; Bauer, U.; Spielmann, H. P.; Robertson, L. W. Metabolic 

activation of PCBs to quinones: Reactivity toward nitrogen and sulfur nucleophiles and 

influence of superoxide dismutase. Chem. Res. Toxicol. 1996, 9, 623-629.

30. Espandiari, P.; Glauert, H. P.; Lehmler, H. J.; Lee, E. Y.; Srinivasan, C.; Robertson, L. W. 

Initiating activity of 4-chlorobiphenyl metabolites in the resistant hepatocyte model. 

Toxicol. Sci. 2004, 79, 41-46.

31. Espandiari, P.; Glauert, H. P.; Lehmler, H. J.; Lee, E. Y.; Srinivasan, C.; Robertson, L. W. 

Polychlorinated biphenyls as initiators in liver carcinogenesis: resistant hepatocyte model. 

Toxicol. Appl. Pharm. 2003, 186, 55-62.

32. Zhang, C.-Y.; Flor, S.; Ludewig, G.; Lehmler, H.-J. Atropselective partitioning of 

polychlorinated biphenyls in a HepG2 cell culture system: experimental and modeling 

results. Environ. Sci. Technol. 2020, 54, 13817-13827.

26

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523



33. Uwimana, E.; Ruiz, P.; Li, X. S.; Lehmler, H. J. Human CYP2A6, CYP2B6, AND CYP2E1

atropselectively metabolize polychlorinated biphenyls to hydroxylated metabolites. 

Environ. Sci. Technol. 2019, 53, 2114-2123.

34. Zhang, D.; Saktrakulkla, P.; Tuttle, K.; Marek, R. F.; Lehmler, H. J.; Wang, K.; 

Hornbuckle, K. C.; Duffel, M. W. Detection and quantification of polychlorinated biphenyl 

sulfates in human serum. Environmental  Science & Technology 2021, 55, 2473-2481.

35. Saktrakulkla, P.; Dhakal, R. C.; Lehmler, H. J.; Hornbuckle, K. C. A semi-target analytical 

method for quantification of OH-PCBs in environmental samples. Environ. Sci. Pollut. Res. 

2020, 27, 8859-8871.

36. Uwimana, E.; Li, X. S.; Lehmler, H. J. 2,2 ',3,5 ',6-Pentachlorobiphenyl (PCB 95) is 

atropselectively metabolized to para-hydroxylated metabolites by human liver microsomes. 

Chem. Res. Toxicol. 2016, 29, 2108-2110.

37. Stamou, M.; Uwimana, E.; Flannery, B. M.; Kania-Korwel, I.; Lehmler, H. J.; Lein, P. J. 

Subacute nicotine co-exposure has no effect on 2,2 ',3,5 ',6-pentachlorobiphenyl disposition 

but alters hepatic cytochrome P450 expression in the male rat. Toxicology 2015, 338, 59-68.

38. Kania-Korwel, I.; Barnhart, C. D.; Lein, P. J.; Lehmler, H. J. Effect of pregnancy on the 

disposition of 2,2 ',3,5 ',6-pentachlorobiphenyl (PCB 95) atropisomers and their 

hydroxylated metabolites in female mice. Chem. Res. Toxicol. 2015, 28, 1774-1783.

39. Lu, Z.; Kania-Korwel, I.; Lehmler, H. J.; Wong, C. S. Stereoselective formation of mono- 

and dihydroxylated polychlorinated biphenyls by rat cytochrome P450 2B1. Environ. Sci. 

Technol. 2013, 47, 12184-12192.

27

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544



40. Kania-Korwel, I.; Barnhart, C. D.; Stamou, M.; Truong, K. M.; El-Komy, M. H.; Lein, P. J.;

Veng-Pedersen, P.; Lehmler, H.-J. 2,2',3,5',6-Pentachlorobiphenyl (PCB 95) and its 

hydroxylated metabolites are enantiomerically enriched in female mice. Environ. Sci. 

Technol. 2012, 46, 11393-11401.

41. Kania-Korwel, I.; Duffel, M. W.; Lehmler, H. J. Gas chromatographic analysis with chiral 

cyclodextrin phases reveals the enantioselective formation of hydroxylated polychlorinated 

biphenyls by rat liver microsomes. Environ. Sci. Technol. 2011, 45, 9590-9596.

42. Saktrakulkla, P.; Li, X.; Martinez, A.; Lehmler, H.-J.; Hornbuckle, K. C. Hydroxylated 

Polychlorinated Biphenyls Are Emerging Legacy Pollutants in Contaminated Sediments. 

Environ. Sci. Technol. 2022, 56, 2269-2278.

43. Ueno, D.; Darling, C.; Alaee, M.; Campbell, L.; Pacepavicius, G.; Teixeira, C.; Muir, D. 

Detection of Hydroxylated Polychlorinated Biphenyls (OH-PCBs) in the Abiotic 

Environment:  Surface Water and Precipitation from Ontario, Canada. Environ. Sci. 

Technol. 2007, 41, 1841-1848.

44. Liu, S. S.; Liu, Y.; Yin, D. Q.; Wang, X. D.; Wang, L. S. Prediction of chromatographic 

relative retention time of polychlorinated biphenyls from the molecular electronegativity 

distance vector. J. Sep. Sci. 2006, 29, 296-301.

45. Hasan, M. N.; Jurs, P. C. Computer-assisted prediction of gas-chromatographic retention 

times of polychlorinated-biphenyls. Anal. Chem. 1988, 60, 978-982.

46. Simpson, S.; Gross, M. S.; Olson, J. R.; Zurek, E.; Aga, D. S. Identification of 

polybrominated diphenyl ether metabolites based on calculated boiling points from 

28

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565



COSMO-RS, experimental retention times, and mass spectral fragmentation patterns. Anal. 

Chem. 2015, 87, 2299-2305.

47. Bonini, P.; Kind, T.; Tsugawa, H.; Barupal, D. K.; Fiehn, O. Retip: Retention time 

prediction for compound annotation in untargeted metabolomics. Anal. Chem. 2020, 92, 

7515-7522.

48. Allen, F.; Pon, A.; Wilson, M.; Greiner, R.; Wishart, D. CFM-ID: a web server for 

annotation, spectrum prediction and metabolite identification from tandem mass spectra. 

Nucleic Acids Res. 2014, 42, W94-W99.

49. Niknam, Y.; Feng, W.; Cherednichenko, G.; Dong, Y.; Joshi, S. N.; Vyas, S. M.; Lehmler, 

H.-J.; Pessah, I. N. Structure-Activity Relationship of Selected Meta- and Para-

Hydroxylated Non–Dioxin Like Polychlorinated Biphenyls: From Single RyR1 Channels to

Muscle Dysfunction. Toxicol. Sci. 2013, 136, 500-513.

50. Wayman Gary, A.; Yang, D.; Bose Diptiman, D.; Lesiak, A.; Ledoux, V.; Bruun, D.; Pessah

Isaac, N.; Lein Pamela, J. PCB-95 Promotes Dendritic Growth via Ryanodine Receptor–

Dependent Mechanisms. Environ. Health Perspect. 2012, 120, 997-1002.

51. Wayman Gary, A.; Bose Diptiman, D.; Yang, D.; Lesiak, A.; Bruun, D.; Impey, S.; Ledoux,

V.; Pessah Isaac, N.; Lein Pamela, J. PCB-95 Modulates the Calcium-Dependent Signaling 

Pathway Responsible for Activity-Dependent Dendritic Growth. Environ. Health Perspect. 

2012, 120, 1003-1009.

52. Pessah, I. N.; Hansen, L. G.; Albertson, T. E.; Garner, C. E.; Ta, T. A.; Do, Z.; Kim, K. H.; 

Wong, P. W. Structure−Activity Relationship for Noncoplanar Polychlorinated Biphenyl 

29

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586



Congeners toward the Ryanodine Receptor-Ca2+ Channel Complex Type 1 (RyR1). Chem. 

Res. Toxicol. 2006, 19, 92-101.

53. Sethi, S.; Keil Stietz, K. P.; Valenzuela, A. E.; Klocke, C. R.; Silverman, J. L.; Puschner, 

B.; Pessah, I. N.; Lein, P. J. Developmental Exposure to a Human-Relevant Polychlorinated

Biphenyl Mixture Causes Behavioral Phenotypes That Vary by Sex and Genotype in 

Juvenile Mice Expressing Human Mutations That Modulate Neuronal Calcium. Frontiers in

Neuroscience 2021, 15, 766826.

54. Matelski, L.; Keil Stietz, K. P.; Sethi, S.; Taylor, S. L.; Van de Water, J.; Lein, P. J. The 

influence of sex, genotype, and dose on serum and hippocampal cytokine levels in juvenile 

mice developmentally exposed to a human-relevant mixture of polychlorinated biphenyls. 

Curr. Res. Toxicol. 2020, 1, 85-103.

55. Rude, K. M.; Pusceddu, M. M.; Keogh, C. E.; Sladek, J. A.; Rabasa, G.; Miller, E. N.; 

Sethi, S.; Keil, K. P.; Pessah, I. N.; Lein, P. J.; Gareau, M. G. Developmental exposure to 

polychlorinated biphenyls (PCBs) in the maternal diet causes host-microbe defects in 

weanling offspring mice. Environ. Pollut. 2019, 253, 708-721.

56. Egusquiza, R. J.; Ambrosio, M. E.; Wang, S. G.; Kay, K. M.; Zhang, C.; Lehmler, H.-J.; 

Blumberg, B. Evaluating the Role of the Steroid and Xenobiotic Receptor (SXR/PXR) in 

PCB-153 Metabolism and Protection against Associated Adverse Effects during Perinatal 

and Chronic Exposure in Mice. Environ. Health Perspect. 2020, 128, 047011.

57. Wu, X. A.; Pramanik, A.; Duffel, M. W.; Hrycay, E. G.; Bandiera, S. M.; Lehmler, H. J.; 

Kania-Korwel, I. 2,2 ',3,3 ',6,6 '-Hexachlorobiphenyl (PCB 136) is enantioselectively 

30

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607



oxidized to hydroxylated metabolites by rat Liver microsomes. Chem. Res. Toxicol. 2011, 

24, 2249-2257.

58. Awad, A. M.; Martinez, A.; Marek, R. F.; Hornbuckle, K. C. Occurrence and distribution of

two hydroxylated polychlorinated biphenyl congeners in Chicago air. Environ. Sci. Technol.

Lett. 2016, 3, 47-51.

59. Rajarshi Guha; Charlop-Powers, Z.; Schymanski, E. rcdk: Interface to the 'CDK' Libraries. 

https://cran.r-project.org/web/packages/rcdk/index.html (Accessed on July 30, 2022), 

60. Manly, B. F. J.; Alberto, J. A. N., Multivariate Statistical Methods: A Primer. 4th ed.; 

Chapman and Hall/CRC: New York, 2016; p 14.

61. Konovalov, D. A.; Llewellyn, L. E.; Heyden, Y. V.; Coomans, D. Robust cross-validation 

of linear regression QSAR models. J. Chem. Inf. Model. 2008, 48, 2081-2094.

62. Shao, J. Linear-model selection by cross-validation. J Am Stat Assoc 1993, 88, 486-494.

63. Commission, E. Commission Decision EC 2002/657 of 12 August 2002 implementing 

Council Directive 96/23/EC concerning the performance of analytical methods and the 

interpretation of results. Off. J. Eur. Communities: Legis 2002, L221, 8-36.

64. Moir, D.; Viau, A.; Chu, I.; Wehler, E. K.; Morck, A.; Bergman, A. Tissue distribution, 

metabolism, and excretion of 2,4,4'-trichlorobiphenyl (CB-28) in the rat. Toxicol. Ind. 

Health. 1996, 12, 105-121.

65. Davis, J. C., Statistics and data analysis in geology. 3rd ed.; John Wiley & Sons: New 

York, 2002; p 540.

66. Wolf, S.; Schmidt, S.; Müller-Hannemann, M.; Neumann, S. In silico fragmentation for 

computer assisted identification of metabolite mass spectra. BMC Bioinform. 2010, 11, 148.

31

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

https://cran.r-project.org/web/packages/rcdk/index.html


67. Dührkop, K.; Shen, H.; Meusel, M.; Rousu, J.; Böcker, S. Searching molecular structure 

databases with tandem mass spectra using CSI:FingerID. Proc. Natl. Acad. Sci. U.S.A. 

2015, 112, 12580-12585.

68. Birnbaum, L. S. The Role of Structure in the Disposition of Halogenated Aromatic 

Xenobiotics. Environ. Health Perspect. 1985, 61, 11-20.

32

630

631

632

633

634

635



Fig.1. (a) A multiple linear regression (MLR) model provided a better estimation of the RRTs of 

MeO-PCBs compared to the random forest regression (RFR) model. The model training datasets 

were constructed with the measured RRTs and molecular descriptors of 87 mono-MeO-PCBs 

and 22 di-MeO-PCBs. The testing dataset contains the measured RRTs and molecular 

descriptors of nine mono-MeO-PCBs (mono- to nona-chlorinated) and three di-MeO-PCBs (di-, 

tetra-, or octa-chlorinated). The dash lines in panel (a) indicate the borders of the prediction 

interval with a 95 % confidence level. 
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Fig. 2. The responses of five fragmentations (i.e., the loss of 15 [CH3], 30 [CH2O], 43 

[CH3+CO], 50 [CH3+Cl] and 66 [CH3O+Cl]) of the MeO-PCBs varied with the position (ortho, 

meta, or para) of the methoxy group, as revealed by (a) a principal component analysis (PCA). 

(b-f) Random forest regression model with molecular descriptors as predictors provided 

reasonable estimations of the responses of five fragmentations studied. The model training and 

testing datasets were constructed with the MS/MS data (expressed as the relative response 

factors) from 88 and 11 observations, respectively. The dash lines indicate the borders of the 

prediction interval with a 95 % confidence level. (g) The similarity coefficient cos θ showed 

agreement between predicted and measured MS/MS profiles of MeO-PCBs. 
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Fig. 3. A comparison of the levels of MeO-PCBs quantified by predicted relative response 

factors (RRFs) with experimental values. The RRFs of MeO-PCBs were predicted with the 

random forest regression model coupled with the molecular structures. The ortho-methoxylated 

PCBs were quantified with RRFs predicted for the loss of 50 [CH3+Cl], and the meta- and para-

methoxylated PCBs were quantified with RRFs predicted for the loss of 43 [CH3+CO]. Two 

MeO-PCBs standard mixtures (Solution 1 and Solution 2) with concentrations of 47 and 60 

ng/mL, respectively, were used. 
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Fig. 4. Proposed workflow for the characterization and quantification of OH-PCBs (analyzed as 

methylated derivatives) using predicted retention times (RRT) and MS/MS responses. 
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Fig. 5. (a) GC-MS/MS chromatograms indicate the presence of five peaks (Peaks 1, 2, 3, 4, and 

5) of mono-hydroxylated metabolites and two peaks of di-hydroxylated metabolites (Peaks 6 and

7) in a feces sample from a mouse orally exposed to PCB 95. The OH-PCBs were analyzed as 

methylated derivatives. (b) Possible candidates for each peak were proposed and ranked based on

their weighted scores calculated with measured and predicted retention times and MS/MS data. 

The candidate structures of OH-PCB in this and the following figures are abbreviated with the 

position of the OH group plus their PCB number, for example 4-95. The candidates in green 

borders was unambiguously identified with an authentic standard. (c) The agreement between 

measured and predicted levels of the OH-PCB 95 metabolites (i.e., 3-103, 4′-95 and 4,5-PCB 95)

supports the quantification of OH-PCBs with a predicted relative response factor. The 

abbreviations and the corresponding structures of the MeO-PCB 95 metabolites are provided in 

Fig. S6. 
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Fig. 6. (a) GC-MS/MS chromatograms support the formation of three peaks (Peak 1, 2, and 3) of

mono-hydroxylated metabolites of PCB 28 in a liver sample collected from a mouse exposed 

throughout gestation and lactation to a PCB mixture (6 mg/kg/day) containing PCB 28 as a 

major component. (b) Possible candidate for each metabolite peak were propose and ranked with

their weighted scores calculated with measured and predicted retention times and MS/MS data. 

The candidates in green borders were unambiguously identified with an authentic standard. (c) 

The agreement between measured and predicted levels of the OH-PCB 28 metabolites supports 

the quantification of OH-PCBs with a predicted relative response factor. The abbreviations and 

the corresponding structures of the MeO-PCB 28 metabolites are provided in Fig. S8.
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