
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Standard Artin Group Generators and Dual Garside Algorithms

Permalink
https://escholarship.org/uc/item/1qz453jb

Author
Kalauli, Ashlee Keolalaulani

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1qz453jb
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
Santa Barbara

Standard Artin Group Generators and
Dual Garside Algorithms

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Mathematics

by

Ashlee Keolalaulani Kalauli

Committee in Charge:

Professor Jon McCammond, Chair

Professor Daryl Cooper

Professor Darren Long

December 2021

The Dissertation of
Ashlee Keolalaulani Kalauli is approved:

Professor Daryl Cooper

Professor Darren Long

Professor Jon McCammond, Committee Chairperson

December 2021

Standard Artin Group Generators and Dual Garside Algorithms

Copyright © 2021

by

Ashlee Keolalaulani Kalauli

iii

To my littles, Cauchy and Sashimi; thank you both for always giving me a reason to

smile.

iv

Acknowledgements

‘A‘ohe hana nui ke alu ‘ia (no task is too big, when done together by all).

This process, of completing this written work and my doctoral degree, has been
arduous. There were many times where I doubted myself but support and faith of the
people mentioned here never wavered. Though the list of people I mention here is but a
fraction of those who have helped me along the way, know that I would not be writing
these acknowledgements without you. Mahalo nui.

To my sister, Kayla-Ann Kalauli; thank you for the encouragement, the kick in the
behind when I needed it, and for looking after my littles when I was away. I could not
have done this without someone to talk to about the triumphs and tragedies of this
journey. Thank you, truly. To my parents, John and Toni Kalauli, and my grandparents
Anthony and Edna Gomes, thank you for rooting me in strength and holding me upright
when so many times I was ready to fall. To my grandparents Keola and Chu-chu Kalauli,
thank you for providing me a home to foster and build my love for math. To my extended
Gomes, Kalauli, and Cypriano ‘ohana, your hugs, smiles, and good wishes kept me going.
Mahalo.

To my teachers, turned mentors, turned best friends, Laura Tavares and Roberto
Pelayo; thank you for guiding me in directions I never knew were open to me. Mrs.
Tavares, thank you for seeing all of me − me as a Hawaiian, me as a student turned
educator, me as a ranch hand, and me as a friend − and for loving me for all that I am.
Bob, thank you for being with me every step of the way; at the start in Hilo, through
the highs and the many lows that came after that, and for knowing that I could do this
even when I didn’t.

I would not have endured if I did not find an ‘ohana outside of Hawai‘i. To my
EDGE family, especially my 2019 EDGErs, thank you for showing me how much I grew
and how much I can offer; you helped me to feel valuable which is something I lost. To
my Indigenous Mathematicians ‘ohana, thank you for helping me to see that there is a
space for myself and people like me in mathematics.

Many thanks to my UCSB family that helped me to make a home in Santa Barbara;
to my IM softball and basketball teams, my board game and virtual game night crew,
my DRP mentees, and especially to Michael Dougherty, Joshua Pankau, Garo Sarajian,
Marcos Reyes, and Elizabeth Crow. Many thanks for the guiding light shined by the
UCSB faculty and staff and a special thanks to Ken Millett, Christopher Ograin, Medina
Price and Rachel Zaragoza.

Finally, thank you to my committee members Daryl Cooper and Darren Long for
helping me to refine my mathematical interests and providing me continual academic
support throughout my years at UCSB. A special, heartfelt mahalo nui to my advisor
Jon McCammond who helped me make UCSB my home, who taught math in a way that
made everything seem more insightful and meaningful, and who helped me to find myself
as a mathematician.

v

Curriculum Vitæ

Ashlee Keolalaulani Kalauli

Education

Ph.D. Mathematics ∣ University of California, Santa Barbara ∣ 2021 (expected)

M.A. Mathematics ∣ University of California, Santa Barbara ∣ 2018

M.A. Teaching ∣ University of Hawai‘i at Hilo ∣ 2015

B.A. Mathematics ∣ University of Hawai‘i at Hilo ∣ 2013

Publications

“The Impact of a Summer Intensive Mathematics and Chemistry Program at a Minority-
Serving Institution in Hawai‘i” (with R. Pelayo, N. Furumo, S. Juvik), The International
Journal of Science, Mathematics and Technology Learning, Volume 21, Issue 1, 13-24
(2014)

“Factorization Properties of Leamer Monoids” (with J. Haarmann, A. Moran, C. O’Neill,
and R. Pelayo) Semigroup Forum, Volume 89, Issue 2, 409-421, (2014)

Awards

Department of Mathematics Outstanding Teaching Assistant ∣ University of California,
Santa Barbara ∣ 2020

Graduate Student Association Excellence in Teaching ∣ University of California, Santa
Barbara ∣ 2019

Academic Senate Outstanding Teaching Assistant ∣ University of California, Santa Bar-
bara ∣ 2019

Eugene Cota-Robles Fellowship ∣ University of California, Santa Barbara ∣ 2015

Ford Foundation Predoctoral Fellowship ∣ 2015

Research Interests

Geometric Group Theory ∣ Coxeter groups, Artin groups, the word problem

Mathematics Education ∣ online instruction, writing in mathematics, secondary and
higher education curriculum development

vi

Abstract

Standard Artin Group Generators and Dual Garside Algorithms

Ashlee Keolalaulani Kalauli

In 1925 Emil Artin introduced the braid groups, a widely studied class of groups

which have applications in many mathematical and non-mathematical fields. These were

later generalized to a larger class of groups, now called Artin groups, which have elegant,

finite presentations. Despite these nice presentations, the word problem for most Artin

groups has not been solved. The word problem, which seeks to algorithmically determine

when two words represent the same group element, has been studied for over a century

and a positive solution is essential to any systematic computational study of an infinite

discrete group.

In 1972 Brieskorn and Saito showed that the spherical Artin groups have a solvable

word problem using, in modern terminology, Garside structures. In 2017 Jon McCam-

mond and Robert Sulway showed that Euclidean Artin groups also have a decidable word

problem using the dual presentations of Euclidean Artin groups. These dual Euclidean

Artin groups are isomorphic to their corresponding Euclidean Artin groups, but their

group presentations include an infinite generating set. This infinite generating set gives

some dual Euclidean Artin groups a Garside structure which provides a nice solution

to the word problem. In this dissertation we study the algorithm that solves the word

problem in the dual Euclidean Artin group of type Art(Ã2) using its infinite generating

set. We then rework this algorithm to solve the word problem for Art(Ã2) using its

standard, finite generating set.

vii

Contents

List of Figures x

1 Introduction 1

I General Background 7

2 The Word Problem 9
2.1 Dehn’s Word Problem . 9

3 Coxeter Groups and Artin Groups 14
3.1 Coxeter groups . 14
3.2 Artin Groups . 26
3.3 Known Results for Coxeter and Artin Groups 31

4 Solutions to the Word Problem for Braidn 34
4.1 Artin’s Solution for Braidn . 34
4.2 Posets, Garside Groups and Garside Structures 40
4.3 Garside Structures and the Word Problem 43
4.4 A Garside Structure for Braidn . 46
4.5 Dual Garside Structure for Braidn . 57

5 Dual Euclidean Artin Groups 64
5.1 Isometries . 64
5.2 Intervals . 66
5.3 Coxeter Elements . 70
5.4 Dual Artin Groups . 74

II A Specific Example: Art(Ã2) 76

6 The Dual Generating Set 78
6.1 The Coxeter complex and the Davis complex of Art(Ã2) 78
6.2 Dual Generators . 81

7 A Dual Solution to the Word Problem 87
7.1 Descendants of Dual Generators . 87
7.2 Meets of Dual Generators . 91
7.3 Pairs of Dual Generators in Normal Form 96

viii

7.4 The Dual Algorithm . 101

8 From Dual Generators to Standard Generators 103
8.1 The Hurwitz Action on the Dual Generating Set 103
8.2 The Hurwitz Action on the Standard Generating Set 107

9 A New, Standard Solution to the Word Problem 116
9.1 A Standard, Positive Normal Form . 116
9.2 A Standard Normal Form . 120
9.3 Standard Actions on Fundamental Chambers 121
9.4 Dual Actions on Strips . 124

10 Future Work 129

A Appendix 131
A.1 An Algorithm Solving the Word Problem for Art(An) 131

Bibliography 150

ix

List of Figures

1.1 Relationship between Artin and Coxeter Groups 1
1.2 The generator σ1 of the 4-stand Braid group B4 2
1.3 The generating set for the 4-strand braid group as a Garside group 4
1.4 The generating set for the Dual Euclidean Artin Group Art∗(Ã2,w) re-
vealing its Garside structure . 5

3.1 The product of permutations σ ⋅ τ . 16
3.2 The Coxeter matrix M , Coxeter diagram Γ and Schläfli matrix C for the
group Sym4 . 19
3.3 Coxeter diagrams of all spherical Coxeter groups 21
3.4 The Coxeter diagrams of Euclidean Coxeter groups 23
3.5 A portion of the Coxeter complex of Cox(Ã2) 24
3.6 The product of two braids with 4 strands where the braid on the left
corresponds to the top braid in the concatenation of two braids 26
3.7 The images of fi for a standard generator, σi, of Bn 27
3.8 The standard generator σi of Bn . 28
3.9 A summary of the nice actions of Cox(Γ) on spaces and the groups that
arise . 31
3.10 Pure Salvetti complex of type A2 . 32

4.1 The combing of a 4-strand braid . 37
4.2 The combing of a 4-strand braid, continued 38
4.3 A combed, 4-strand braid . 39
4.4 Positive half-twists of adjacent strands σ1 = (1 2), σ2 = (2 ,3), σ3 = (3 4) . 42
4.5 The full, half-twist (14)(23) in the 4-stand braid group 43
4.6 The set of left divisors of the full, half-twist 44
4.7 The generators of the 4-strand braid group, relabeled as integers 47
4.8 Rewriting a ⋅ b as a′ ⋅ b′ where a′ = a ⋅ (rc(a) ∧ b) and b′ = (rc(a) ∧ b)−1 ⋅ b . 49
4.9 A trivial braid . 53
4.10 The partition lattice Π4 . 58
4.11 The crossing partition {13,24} and the noncrossing partition {124,3} of Π4 58
4.12 The noncrossing partition lattice NC4 . 59
4.13 The rotation braids δ{1,2,3}, δ{2,3,4}, and δ{1,2,3}δ{2,3,4} 61

5.1 The coarse structure for a maximal hyperbolic isometry 69
5.2 The axial features of Cox(G̃2) . 72
5.3 The coarse structure for the G̃2 interval . 73

6.1 A portion of the Coxeter complex and the Davis complex of Cox(Ã2) . . 79

x

6.2 The Coxeter complex of Cox(Ã2), a fundamental chamber, and the Cox-
eter axis . 80
6.3 A strip in the Coxeter complex of type Ã2 82
6.4 The lattice for the dual generating set of Art(Ã2) 84
6.5 The general coarse structure of Art(Ã2) 85

7.1 A factorization of trev . 89
7.2 Descendants of trev and ro2k . 95
7.3 Descendants of two rotations from the same infinite family 96
7.4 Descendants of two rotations from different infinite families 96

8.1 Factorizations of w . 106
8.2 Graph of the Hurwitz action on factorizations of w 107
8.3 Translating horizontal reflections via paths in the Coxeter complex 110

9.1 Simple generator descriptions and path descriptions 123
9.2 Right to left versus left to right actions of dual generators on strips . . . 125
9.3 The dual algorithm as strips and the standard algorithm as paths 127

xi

1. Introduction

In 1910 Max Dehn introduced three fundamental questions that he sought to answer

for all finitely presented groups. The first of these questions, which is known as the

word problem, asks whether or not there is an algorithm that can decide if two words w

and w′, expressed as products of group generators and their inverses, represent the same

element of the group. Over the next few decades, mathematicians were able to show

that a variety of finitely presented groups have a solvable word problem and also produce

examples of groups whose word problem is unsolvable. Over a century later, answering

this question still remains a priority for various classes of groups.

Coxeter groups and Artin groups include many familiar groups, including the sym-

metric group on n elements and the n-strand braid groups. Coxeter groups are defined

by their group presentations, and these can be encoded in and recovered from a labeled

graph known as the Coxeter diagram or a matrix known as the Coxeter matrix. Coxeter

groups are also realized geometrically as groups whose generators are reflections that

act nicely on a metric vector space. The relations encode the angles at which the fixed

hyperplanes of these reflections meet.

Braidn ∈ Spherical Artin ⊆ Artin
↡ ↡ ↡

Symn ∈ Spherical Coxeter ⊆ Coxeter

Figure 1.1: Relationship between Artin and Coxeter Groups

1

Artin groups, like Coxeter groups, are defined by their group presentations, and the

presentations for Artin groups can also be recovered with the use of the corresponding

Coxeter diagram or Coxeter matrix since the two types of presentations are very similar.

See Figure 1.1 for a schematic of the relationship between Artin and Coxeter groups.

The n-strand braid group, Braidn, is an Artin group introduced by Emil Artin in 1925

[Art25]. This well-known and well-studied group is now also known as the Artin group of

type An−1. The elements of Artin’s braid group can be seen as braided strands that cross

over and under one another, anchored that the top and bottom like the one pictured in

Figure 1.2. The group operation is concatenation.

1
µ

positivehalf twist
adj strands

negmativenagtwist

adj strands

Iii Iii

Figure 1.2: The generator σ1 of the 4-stand Braid group B4

The traditional presentation of the n-strand braid group has n−1 generators consisting

of braids with a single crossing of adjacent strands and there two types of relations. The

first is a commuting relation for products of generators that involve disjoint strands and

the second is a relation for those generators that have a single strand in common. In

particular, if we let σi represent the braid whose i-th strand crosses over the (i + 1)-st

2

strand and all other strands remain unmoved, the braid group can be defined using the

following group presentation:

Braidn = ⟨σ1, σ2, . . . , σn−1

RRRRRRRRRRRRRRRRRR

σtσs = σsσt if ∣t − s∣ > 1

σtσsσt = σsσtσs if ∣t − s∣ = 1

⟩

The braid groups are examples of spherical Artin groups, otherwise known as finite-

type Artin groups.

Spherical Artin groups are derived from the spherical Coxeter groups which act geo-

metrically on spheres. That is, spherical Coxeter groups act cocompactly and properly

discontinuously by isometries on a sphere and are generated by reflections. This facilitates

a geometric approach to abstract algebraic questions like that of the word problem.

In 1965, Frank Garside, guided by geometric observations, gave a new solution to the

conjugacy problem for the braid groups, and, as a consequence, a new solution to the

word problem [Gar65]. In 1972, E. Brieskorn and K. Saito extended Garside’s results to

all spherical Artin groups [BS72]. In 1998, Patrick Dehornoy and Luis Paris axiomatized

Garside’s work and introduced the concept of a Garside structure. Dehornoy and Paris

focused on monoids M with a fixed, finite generating set S and a special element ∆.

If M , S, and ∆ satisfy certain basic properties, the monoid M embeds in its group of

fractions G and there is a nice, uniform solution to the word problem for G [DP99].

The distinguished element in a Garside monoid is its Garside element, usually denoted

by ∆. It is defined by three properties. First, the left and right divisors of ∆ must

coincide. Second, this common set of divisors must generate the group. Lastly, this set

of divisors must form a lattice. These properties allow one to rewrite a product of divisors

3

I 4 23

1423 14 1324

ii
i

i i
n

13241 n
143 142 124

s
134 s si s i s

y
1 432 e s 123Li i

I si i
i 1342i
i
i
i
i i

i
i

1243
I 1 24

13 I
123 243i

1 234
132 i

12 34

zz12 34

I

anaemia

Figure 1.3: The generating set for the 4-strand braid group as a Garside group

of ∆ using their meets and joins. If the set of divisors of ∆ is finite, the group of fractions

is called a Garside group. If the set of divisors of ∆ is infinite (but still nice enough for

the algorithms to work), the group of fractions is called a non-standard Garside group.

The standard Garside generating set for the 4-strand braid group can be seen in Figure

1.3, indexed by the 23 nontrivial permutations (see Chapter 4 for details).

In 2017, Jon McCammond and Robert Sulway showed that Euclidean Artin groups

are isomorphic to what they call Dual Euclidean Artin groups [MS17]. Furthermore,

4

they show that some of these Dual Euclidean Artin groups have a non-standard Garside

structure. More generally, all dual Euclidean Artin groups embed in a non-standard

Garside group. Both possibilities lead to a solution to the word problem. Though the

word problem for Artin groups in general remains open, it is conjectured that all Artin

groups have a solvable word problem.

w

rout Casks2
trtr oder

rowtasksa

2kta
rent re rearcasksa od
2kt
re2k

e

Figure 1.4: The generating set for the Dual Euclidean Artin Group Art∗(Ã2,w) revealing its
Garside structure

In this dissertation, we investigate the Garside structure of the dual Euclidean Artin

group Art∗(Ã2,w). For a specific choice of Coxeter element, this group has a (non-

standard) Garside structure with an infinite generating set. See Figure 1.4. We first

5

investigate the algorithm that solves the word problem for the Dual Euclidean Artin

group Art∗(Ã2,w). We then translate the dual generating set to the standard generat-

ing set of Art(Ã2) and use this algorithm to solve the word problem for Art(Ã2) with

respect to its standard generating set. The algorithm in the standard generating set is

new and this is the main result in this dissertation.

This dissertation is organized into two parts. Part I contains a general background

discussion of the word problem, Coxeter groups, Artin groups, and dual Euclidean Artin

groups. Part II looks closely at the Euclidean Artin group Art(Ã2) and presents two

solutions to the word problem for this group using two different generating sets; one

infinite, and the other finite.

6

Part I

General Background

7

The first part of this dissertation provides the general background needed for the new

results in the second part. Chapter 2 introduces Dehn’s word problem and it reviews so-

lutions to the word problem for several groups. In Chapter 3, we provide an introduction

to Coxeter groups and Artin groups using the symmetric group and the braid groups as

guiding examples. Chapter 4 discusses Garside theory as a systematic way to provide

solutions to the word problem. We define Garside groups and Garside structures and

show how their defining properties yield nice solutions to the word problem. Chapter

5 provides an introduction to Dual Euclidean Artin groups with particular emphasis on

the Garside structure associated with these groups.

8

2. The Word Problem

The word problem, posed by Max Dehn in 1910, is a central question in algorithmic

group theory. It asks if there is a well-defined process for determining if a word, written

in terms of a fixed generating set of the group, represents the identity element. While

this question has generated a tremendous amount of research, the early progress made

in solving the word problem for braid groups came by way of a very time consuming

algorithm. In this chapter, we discuss the word problem, the way solutions to the word

problem arise, and provide examples of groups that have solvable word problems and

comment on the existence of groups whose word problem cannot be solved.

2.1 Dehn’s Word Problem

Stemming from a specific topological question pertaining to fundamental groups of

surfaces, in 1910 Max Dehn posed three fundamental questions to be answered for any

finitely presented group. The first question was known as the word problem and asked

the following: for a group G with a fixed finite presentation G = ⟨S ∣ R⟩, given two

words w and w′, is there an algorithm to decide if w is equivalent to w′? This can be

translated to the similar yet equivalent question that asks, given a word w in the free

monoid generated by the set S ∪ S−1, is there an algorithm to decide if w represents the

identity element of G? In what follows, we discuss the word problem, solutions to the

word problem for various groups, and why the defining properties of Garside groups yield

nice solutions to the word problem.

9

Definition 2.1.1. (Words in Groups) Let S be a set. We take S−1 be the set in one-

to-one correspondence with S whose elements represent the inverses of the elements in

S. We refer to the elements of S ∪ S−1 as letters and a finite sequence of elements from

S∪S−1 as a word. Words made up exclusively from letters in S are called a positive words

and words consisting of letters from S−1 only are called negative words. The length of

a word is the number of letters in the word, counting multiplicity. Equivalence classes

of words can be constructed based on the deletion or insertion of subwords of the form

ss−1 or s−1s. A word is said to be reduced if it contains no inverse pair subwords of the

form ss−1 or s−1s for s ∈ S. We use [w] to represent the set of all words equivalent to w

by inserting or deleting subwords of this form. Moreover, every word can be reduced by

systematically removing such subwords and this reduction process is confluent so that

the reduced word that results is unique. Thus, every equivalence class [w] has a unique

reduced element of minimum length. The multiplication of two equivalence classes is the

equivalence class of the concatenation of the representatives of these equivalence classes,

which also has a unique reduced element. The set of all finite length words in S ∪ S−1 is

denoted (S∪S−1)∗. If we take the empty word, [] to be the identity, the set of all reduced

words in (S ∪ S−1)∗ under the operation of multiplication described above is known as

the free group with generating set S, denoted FS. The image of the set S is called a basis

for FS.

A well-known result that can be found in any graduate level text is as follows:

Theorem 2.1.2. Every finitely generated group is the quotient group of a free group by

a normal subgroup.

10

This result will help us to define group presentations. Let R be a subset of FS. We

say that N is the normal closure of R if N is the intersection of all normal subgroups

that contain the elements of R.

Definition 2.1.3. (Group Presentations) A presentation is a set S of generators and a

set R ⊆ FS of relators. The group G it presents is the quotient group of FS by the normal

closure of R. A group defined via a presentation is called a marked group since it has a

distinguished generating set S. In this case, we write G = ⟨S ∣ R⟩. We can think of G as

a set of equivalence classes where two words w and w′ are related if we can write w as

w′ using either a finite sequence of insertions or deletions of subwords of the form sis−1
i

or s−1
i si with si ∈ S or by inserting or deleting reduced words representing the elements

in R. At times, it is more convenient to use relations instead of relators. A relation

is a statement equating two words rather than a single word implicitly set equal to the

identity.

Definition 2.1.4. (Normal Forms) Because each element in a group G can be seen as

an entire equivalence class, when discussing the word problem, these words with multiple

spellings must be handled carefully. It helps to have a prescribed way of writing a given

element g ∈ G as a product of the generators in S and their inverses. In fact, solutions to

the word problem are often some sort of uniform procedure or algorithm that puts words

into what we call normal form, a uniquely determined word that represents each group

element.

Specifically, a normal form is a function. Let π ∶ (S ∪ S−1)∗ → FS/N = G be the

evaluation map such that w ↦ [w]. Since S generates G, we know that π is onto. A

11

normal form is a function η ∶ G → (S ∪ S−1)∗ such that the composition π ○ η ∶ G → G is

the identity map. Typically, when one refers to a normal form, they mean to reference

not the function η but the image of η in (S ∪S−1)∗. It is precisely this image, that allows

us to determine whether or not a group element is really the identity. If a normal form

function exists for a group G = ⟨S ∣ R⟩, and it can be computed algorithmically, then the

word problem for G is solvable.

In the decades that followed Dehn’s posing of the Word Problem, there was much

interest in finding general solutions. Most results came by imposing some restrictions on

the groups or solutions that came for only very specific presentations. One of the first

major results, by Wilhelm Magnus, was the following [Mag32]:

Theorem 2.1.5. Every one relator group has a solvable word problem.

Decades later, through constructive examples of finitely presented groups, it was

learned that a question as simple as asking whether or not an element is equivalent to

the identity might not have a simple answer [Boo57], [Nov55].

Theorem 2.1.6. There exist finitely presented groups with unsolvable word problems.

In what follows, we give some examples of groups with solvable word problems and

their normal forms.

Example 2.1.7. (The Free Group) The free group FS with basis S, which was introduced

in Definition 2.1.1, has a solvable word problem. The free group FS has a presentation

⟨S ∣ ∅⟩. Given a word written in S ∪ S−1, we can repeatedly delete any subwords of the

form ss−1 or s−1s for any s ∈ S. Continuing this process until there are no subwords of this

12

form gives us a normal form for FS. The process of removing these words is confluent, so

the order in which they are removed does not change the final result. The original word

will be trivial if and only if the reduced word is the empty string.

Example 2.1.8. (Finitely Generated Abelian Groups) Let G be a finitely generated

abelian group. Using the fundamental theorem of finitely generated abelian groups, we

can write G as a finite direct product of cyclic groups. Next, we can choose a generating

set S = {s1, . . . , sn} for G that has one standard generator for each of these cyclic sum-

mands. Since the group is abelian, any word in this generating set can be grouped to

be written as sk11 ⋯sknn , with restrictions on the integers ki when the corresponding cyclic

summand is finite. By our choice of generating set, this representation is also uniquely

determined for each group element. This produces a normal form where the original word

represents the identity element if and only if ki = 0 for all i. Should a different generating

set T for the group be given, one could construct an algorithm first to change the word

in T ∪ T −1 to a word in S ∪S−1, simplify the word to its normal form over S, and finally

convert it back into a word in T ∪ T −1. Conversions of this type show that the word

problem is independent of the choice of finite generating set. More generally, the word

problem is closely related to the growth of the Dehn function, which is also independent

of the generating set chosen.

13

3. Coxeter Groups and Artin Groups

Coxeter groups and Artin groups are two closely related classes of groups of central

importance in geometric group theory. Moreover, the connection between these two

classes of groups allow results from one class to motivate results in the other. More

specifically, Coxeter groups, which are much better understood than Artin groups, are

the source of inspiration for many results on Artin groups. Coxeter groups are defined

by simple presentations that can be recovered via matrix constructions, diagramatically,

or geometrically as groups generated by reflections acting on metric vector spaces. Since

Artin groups are built from Coxeter groups, understanding this relationship can provide

direction when studying the more complicated Artin groups. This chapter will provide

many of the definitions and key examples that will be utilized in the remainder of this

dissertation. We begin with a basic example of a Coxeter group and its corresponding

Artin group.

3.1 Coxeter groups

Coxeter groups provide some of the algebraic building blocks related to this disserta-

tion, and they include the discrete groups generated by reflections acting on Euclidean

space. All Coxeter groups are well-understood objects. We begin this section with a

discussion of the symmetric group as a motivating example of a Coxeter group. We then

formally define Coxeter groups and view the symmetric group in this light.

14

Definition 3.1.1. (Permutations) For each n ∈ N, let [n] represent the set {1,2, . . . , n}.

A permutation is a bijection between a left copy of [n] to a right copy of [n]. To

describe bijections we commonly use cycles such as σ = (a1 a2 ⋯ at), which refers to

the permutation where ai on the left corresponds to ai+1 on the right for i < t, at on the

left to a1 on the right, and fixes any element other than the ai appearing in the cycle.

The multiplication of permutations corresponds to the composition of bijections; this

operation can be viewed by concatenating the correspondences left-to-right to match the

conventions of the programming package Sage. In particular, every bijection from [n] to

itself can be written as a product (or composition) of disjoint cycles in some non-unique

way, as disjoint cycles pairwise commute. The permutation σ acts on [n] from the right

and from the left. If ai on the left corresponds to ai+1 on the right, then ai ⋅ σ = ai+1 and

σ ⋅ ai+1 = ai.

Definition 3.1.2. (Permutations as Functions) We can also view permutations as func-

tions using function notation to describe them. When doing so, the domain is on the left

and the range is on the right which assures that function composition agrees with the

compositions of bijections defined above.

For a concrete example, suppose S = [4] = {1,2,3,4} and σ(1) = 3, σ(2) = 1, σ(3) =

4, σ(4) = 2. Then the cycle notation for σ is given by σ = (1243). If τ is a permutation

such that τ(1) = 3, τ(2) = 4, τ(3) = 1, and τ(4) = 2 then the cycle notation for τ is given

by τ = (13)(24). Because these permutations are bijective functions, we can compose

any two permutations to yield another. These compositions occur left to right so that

the product σ ⋅ τ = (1243)(13)(24) = (14). See Figure 3.1.

15

I 1 I

2 2 2

3 3 3

4 4 4
0 T

Figure 3.1: The product of permutations σ ⋅ τ

Definition 3.1.3. (Symmetric Group) The symmetric group of rank n is the group of

permutations of [n] under composition. It turns out that the symmetric group can be

presented as follows:

Symn = ⟨σ1, σ2, . . . , σn−1

RRRRRRRRRRRRRRRRRR

σ2
i = e and

σtσs = σsσt if ∣t − s∣ > 1

σtσsσt = σsσtσs if ∣t − s∣ = 1

⟩ ,

where σi is the permutation (i i+1) and e represents the identity element. We refer

to cycles of length two as transpositions and let e denote the identity permutation. A

transposition is said to be adjacent if it is the transposition of two consecutive integers.

The standard generating set of Symn is the set of all adjacent transpositions.

Definition 3.1.4. (Coxeter group) A Coxeter group is a marked group (i.e. a group

with a fixed generating set S) with a special type of presentation. In particular, there

are only two types of relations: s2 = e for all s ∈ S and, for all s, t ∈ S, there is at most

one relation of the form (st)m = e for some integer m =m(s, t).

16

Remark 3.1.5. (The Symmetric Group) Let S = {σ1, σ2, . . . , σn−1} be the standard

generators given in the group presentation for Symn. Notice that using the relation

σ2
i = e, the relation (σtσs)2 = e can be rewritten as σtσs = σsσt if ∣t − s∣ > 1 (since σ2

i = e),

and the relation (σtσs)3 = e can be rewritten as σtσsσt = σsσtσs if ∣t − s∣ = 1. With

the generating set S subject to these rewritten relations, we see that Symn is indeed a

Coxeter group. For concreteness, consider

Sym4 = ⟨σ1, σ2, σ3 ∣ σ2
1, σ

2
2, σ

2
3, (σ1σ2)3, (σ2σ3)3, (σ1σ3)2⟩

= ⟨σ1, σ2, σ3 ∣ σ2
1, σ

2
2, σ

2
3, σ1σ2σ1 = σ2σ1σ2, σ2σ3σ2 = σ3σ2σ3, σ1σ3 = σ3σ1⟩ .

Using the first presentation, we see that Sym4 is a Coxeter group. which we denote

Cox(Γ). The second presentation will be used to show the close relationship between

Sym4 and the 4-strand braid group Braid4.

A group presentation for a Coxeter group can be encoded in a Coxeter matrix or a

Coxeter diagram.

Definition 3.1.6. (Coxeter matrix) Given a set S, we say that M ∶ S×S → {1,2, . . . ,∞}

is Coxeter matrix if the following properties hold:

(1) M(a, b) =M(b, a) for all a, b ∈ S; that is, M is a symmetric matrix, and

(2) M(a, b) = 1 if and only if a = b.

The Coxeter group W is a group with generators in S subject to the relations derived

from the Coxeter matrix M . Given S = {s1, s2, . . . , sn}, the Coxeter group W with

17

generators S would have the following group presentation

W = ⟨s1, . . . , sn ∣ (sisj)M(si,sj) = 1⟩ .

In the case that M(si, sj) = ∞, no relation of the form (sisj)M(si,sj) is imposed. Notice

that Mii = 1 implies s2
i = 1 for all i, and therefore, all the generators of W are involutions.

The pair (W,S) where W is a Coxeter group with generating set S is called a Coxeter

system.

Definition 3.1.7. (Coxeter diagram) A Coxeter diagram is a simple graph (with no

loops or multiple edges) with labels on its edges. In particular, a Coxeter diagram has

a vertex for each si ∈ S, an unlabeled edge connecting two vertices labeled si and sj if

M(si, sj) = 3, and an edge labeled k if M(si, sj) = k > 3 (including the possibility that

k = ∞). If M(si, sj) = 2, then the vertices si and sj are not connected by an edge. We

can use the presentation encoded in Γ to define the Coxeter group W and denote it using

Cox(Γ). If Γ is connected, we say Cox(Γ) is irreducible.

Definition 3.1.8. (Parabolic subgroup) Given a Coxeter diagram Γ, let V (Γ) denote

the set of vertices of Γ. We then take ΓI to be the subgraph of Γ formed by the subset

I ⊂ V (Γ) with all of the edges in Γ that connect pairs of vertices in I. The group

corresponding to the diagram ΓI is a subgroup of Cox(Γ). In particular, given a Coxeter

system (W,S) with Coxeter diagram Γ and I ⊂ S = V (Γ), we let WI = Cox(ΓI) be the

subgroup of W generated by I so that (WI , I) is a Coxeter system. Subgroups of W

obtained in this way are called parabolic subgroups of W .

18

We revisit the symmetric group as a Coxeter group with these new defining properties.

The following image contains the Coxeter matrix M , Coxeter Diagram Γ, and the Schläfli

matrix C for Sym4.

M =
⎡⎢⎢⎢⎢⎢⎣

1 3 2
3 1 3
2 3 1

⎤⎥⎥⎥⎥⎥⎦
Γ =

σ1 σ2 σ3
C =

⎡⎢⎢⎢⎢⎢⎣

2 −1 0
−1 2 −1

0 −1 2

⎤⎥⎥⎥⎥⎥⎦

Figure 3.2: The Coxeter matrix M , Coxeter diagram Γ and Schläfli matrix C for the group Sym4

Coxeter groups also act nicely on certain geometric objects. In particular, there is a

faithful, linear representation due to Jacques Tits that allows us to take a closer look at

the geometry of a Coxeter group.

Theorem 3.1.9. Let (W,S) be a Coxeter system with corresponding Coxeter diagram Γ

and Coxeter matrix M , then there is a faithful representation ρ ∶ W → GL(n,R), such

that the image of each element of S = {s1, . . . , sn} is a linear involution fixing a hyperplane

and for si, sj ∈ S, with i ≠ j, ρ(si)ρ(sj) has order Mij.

Definition 3.1.10. (Schläfli matrix) We construct the representation described in The-

orem 3.1.9 using a symmetric matrix known as the Schläfli matrix denoted C whose

entries are given by

cij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−2 cos(π/Mij) when Mij ∈ Z+

−2 when Mij = ∞
.

Let (W,S) be an irreducible Coxeter system, and let C denote its corresponding

Schläfli matrix. Note that since M is symmetric, C is also symmetric matrix; and as a

real symmetric matrix, C has real eigenvalues. If all of the eigenvalues of C are positive,

W acts properly, discontinuously, and cocompactly by isometries (i.e. geometrically) on

19

a sphere in Euclidean space. If C has one zero eigenvalue and no negative eigenvalues,

then it turns out that W acts geometrically on Euclidean space. In what follows, we’ll

refer to these Coxeter groups as spherical and Euclidean Coxeter groups, respectively.

Definition 3.1.11. (Reflections in Euclidean Space) Let Rn denote n-dimensional Eu-

clidean space with the standard dot product, represented by ⋅. Let α ∈ Rn be a nonzero

vector and take Hα to be the hyperplane of Rn given by Hα = {v ∈ Rn ∣ v ⋅ α = 0}. Define

Rα to be the linear transformation Rα ∶ Rn → Rn where Rα(v) = v − 2
v ⋅ a
α ⋅ αα. We call Rα

the reflection through Hα. Notice that R 2
α is the identity map for all v ∈ Rn, Rα(α) = −α,

and Rα(β) = β for all β ∈Hα.

Definition 3.1.12. (Root Systems) Let Φ denote a finite set of nonzero vectors in Rn.

We refer to the elements of Φ as roots and Φ as a root system if the following properties

hold:

1. Φ ∩Rα = {α,−α} for all α ∈ Φ and

2. RαΦ = Φ for all α ∈ Φ.

We say that Φ is crystallographic if for every α,β ∈ Φ, 2
α ⋅ β
α ⋅ α ∈ Z.

Definition 3.1.13. (Spherical Coxeter Groups) Let (W,S) be an irreducible Coxeter

system with corresponding Coxeter matrix M , where W is finite and S = {s1, . . . , sn}.

For the generating set S, there is a set of vectors α1, . . . αn ∈ Rn that are pairwise non-acute

so that the hyperplanes Hαi
and Hαj

intersect with a dihedral angle of π/M(si, sj). We

can then recover the root system Φ by considering the orbit of the vectors αi. Moreover,

the reflection group generated by Rαi
is isomorphic to W .

20

Consider the complement of the union of Hα for all α ∈ Φ, which consists of con-

tractible connected components. Each component deformation retracts onto its intersec-

tion with Sn−1 ⊂ Rn. We refer to the closure of a component in Sn−1 as a chamber. The

fundamental chamber is the one where the dot product with each αi is positive. The set

of chambers gives a cell structure for the sphere, called the Coxeter complex, which is

invariant under the group action by W .

In 1934, Coxeter classified all finite irreducible (spherical) Coxeter groups in terms of

their Coxeter diagrams. See Figure 3.3.

Figure 3.3: Coxeter diagrams of all spherical Coxeter groups

21

Example 3.1.14. (The Symmetric Group) We revisit Example 3.1.5 to put these new

definitions in context. We saw that Symn is a Coxeter group via its presentation. We

can also write Symn as Cox(An−1) whose Coxeter diagram is pictured in Figure 3.3

consisting of n − 1 vertices. Let S = {σ1, . . . , σn−1} be the generating set of Symn. Each

σi corresponds to the vector αi = ei −ei+1 ∈ Rn where ei represents the ith standard basis

vector of Rn. We can represent each hyperplane Hαi
via the equation xi = xi+1. The

reflection Rαi
acts on Rn by swapping the i-th and (i + 1)-st coordinates of the vector

(x1, x2, . . . , xn). Notice, each of the αi are contained in the orthogonal complement of the

span of the vector (1,1, . . . ,1). The span of the vectors αi is a subspace isomorphic to

Rn−1. In particular, Symn acts on this subspace as a group generated by the reflections

Rαi
. The Coxeter complex is then given by the intersection of Sn−2 with this this (n−1)-

dimensional subspace, giving a tessellation on Sn−2 of n! spherical simplices of dimension

n − 2.

Definition 3.1.15. (Euclidean Coxeter Groups) Given an irreducible crystallographic

spherical Coxeter group W , we can obtain the irreducible Euclidean Coxeter group W̃

by adding an affine hyperplane to the existing hyperplanes corresponding to W . If

W = Cox(Γ), we produce the Coxeter diagram for W̃ by adding a vertex to Γ. In

Figure 3.4, we find all possible Coxeter diagrams for Euclidean Coxeter groups where

the highlighted vertex and dashed edged indicate what vertex is added to the Coxeter

diagram of each corresponding spherical Coxeter group. We note that all of the edge

labels found in Euclidean Coxeter diagrams are either 2,3,4 or 6 (or ∞ in Ã1). In fact,

every possible irreducible Coxeter group arises in this way.

22

Ã 1

Ã n

C̃ n

B̃ n

D̃ n

G̃ 2

F̃ 4

Ẽ 6

Ẽ 7

Ẽ 8

∞

4 4

4

6

4

Figure 3.4: The Coxeter diagrams of Euclidean Coxeter groups

Definition 3.1.16. (Euclidean Coxeter Simplices) Let W̃ be an irreducible Euclidean

Coxeter group. The Coxeter diagram corresponding to W̃ represents a simplex in Eu-

clidean space, which we call Euclidean Coxeter simplices, in the following way: the ver-

tices of the Coxeter diagram corresponds to its codimension one faces, and the edges

labeled 2,3,4 and 6 correspond to the faces of the simplex that intersect at dihedral

angles of π
2 ,

π
3 ,

π
4 , or π

6 respectively. This describes the Euclidean Coxeter simplices cor-

responding to each Coxeter diagram with the exception of Ã1 (which corresponds to a

1-simplex in R whose faces are the endpoints).

Definition 3.1.17. (Coxeter Complex) Let Γ̃ denote the Coxeter diagram corresponding

to the Euclidean Coxeter group W̃ . Let τ denote the Euclidean n-simplex described in

Definition 3.1.16. Then, W̃ = Cox(Γ̃) can be seen as the group generated by the n + 1

23

mmmm

Figure 3.5: A portion of the Coxeter complex of Cox(Ã2)

reflections that fix a facet of τ . Using the orbit of τ under this group action, we give

Euclidean space the structure of a metric simplicial complex called the Coxeter Complex

of W . We refer to the top dimensional simplices as chambers and we refer to τ as

the fundamental chamber. For concreteness, the Euclidean tiling for the Coxeter group

Cox(Ã2) can be seen in Figure 3.5 with the fundamental chamber highlighted in green.

Using the Cayley graph of a Coxeter group, Michael Davis constructed a cell com-

plex corresponding to a Coxeter group. To describe this complex, we start with a few

definitions.

Definition 3.1.18. (Tits Cone) Given a Coxeter group W with corresponding nonsingu-

lar Schläfli matrix M , the hyperplanes orthogonal to the standard basis vectors ei bound

24

a closed simplicial cone C. The union of the images of C under the action of W is called

the Tits cone.

Definition 3.1.19. (W -permutahedron) Given a spherical Coxeter group W , let σ be a

top-dimensional simplex in the corresponding tiling of the sphere. Let C be the simplicial

Euclidean cone generated by non-negative scalar multiples of the points in σ. There is a

unique point p in the simplicial cone C such that the distance between p and each of its

facets is 1
2 . A W -permutahedron is a Euclidean polytope given by the convex hull of the

W -orbit of p.

Definition 3.1.20. (Cayley graph) Given a Coxeter system (W,S), the unoriented, right

Cayley graph of W consists of vertices labeled by the elements of W and edges labeled

by elements of (W,S) that starts at the vertex w and ends at the vertex w ⋅ s.

Remark 3.1.21. Via the Tits construction, the right Cayley graph of W is actually the

1-skeleton of the cell complex dual to the Tits cone. In particular, the Cayley graph

contains a vertex w corresponding to the image wC of the simplicial cone C for each

w ∈W . Two vertices are connected by an edge when the corresponding simplicial cones

share a common codimension 1 face.

We now define the Davis complex which is constructed by attaching W -permutahedra

to its unoriented Cayley graph.

Definition 3.1.22. (Davis complex) Let (W,S) be a spherical Coxeter group with corre-

sponding unoriented, Cayley graph Σ. For each subset S′ ⊂ S such that the parabolic sub-

group WS′ is finite and for each element w ∈W , we attach a metric WS′-permutahedron

25

to the vertices of Γ labeled by the elements in the coset wWS′ in W . When w′WS′ and

w′′WS′′ are two cosets such that w′WS′ ⊂ w′′WS′′ then we identify the WS′-permutahedron

attached to the vertices labeled by the elements in w′WS′ as the face of the WS′′-

permutahedron attached to the vertices labeled by the elements in w′′WS′′ .

The cell structure of the Davis complex given here is slightly different from the original

complex given by Davis in [Dav83]. However, this description will help us to describe the

Salvetti complex in the following section.

3.2 Artin Groups

Artin groups, which are closely related to Coxeter groups, are introduced in this

section. The first ever mention of Artin groups in the literature appears in [Del72] and

[BS72]. The general theory of Artin groups can be found in [McC17], a survey article by

McCammond. We provide all necessary definitions to make this relationship concrete,

including the introduction of the group Art(Ã2), the central group of focus in this

dissertation.

Figure 3.6: The product of two braids with 4 strands where the braid on the left corresponds to the
top braid in the concatenation of two braids

26

The n-strand braid group can be informally described using pictures like that in

Figure 3.6, where n braided strings in Euclidean 3-space are anchored at their top and

bottom at n-distinguished points. These strings may not intersect, and the natural height

function on the strands has no local maxima or minima. We formalize this definition

below.

Definition 3.2.1. (The Braid Group) In what follows we give two definitions of Artin’s

braid groups, beginning with a topological one. Fix an integer n. Let p1, p2, . . . , pn

be n distinguished distinct points in R2. Let (f1, f2, . . . , fn) be an n-tuple of functions

fi ∶ [0,1] → R2 such that fi(0) = pi and fi(1) = pj for some j ∈ [n] and the images of fi(t)

are disjoint for all t ∈ [0,1].

Figure 3.7: The images of fi for a standard generator, σi, of Bn

Define the strands to be the n paths from [0,1] → R2 × [0,1] given by t → (fi(t), t).

The union of these n strands make up a representative of a braid and a braid is an isotopy

class of a representative of a braid.

The n-strand braid group, denoted Braidn, is the group of braids with n-strands.

The identity braid is represented by the n-paths such that fi(t) = pi for all i ∈ [n]. The

product of two braids represented by (f1(t), f2(t), . . . , fn(t)) and (g1(t), g2(t), . . . , gn(t))

27

is represented by their concatenation. This product is given by

(f ⋅ g)i(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

fi(2t) 0 ≤ t ≤ 1
2

gj(2t − 1) 1
2 ≤ t ≤ 1

where fi(1) = pj.

Figure 3.8: The standard generator σi of Bn

Notice that each braid determines a permutation on the points p1, p2, . . . , pn, which

induces a surjection Braidn → Symn.

The braid group Braidn can be defined by the following presentation:

Braidn = ⟨σ1, σ2, . . . , σn−1

RRRRRRRRRRRRRRRRRR

σtσs = σsσt if ∣t − s∣ > 1

σtσsσt = σsσtσs if ∣t − s∣ = 1

⟩

Notice that adding the relations σ2
i = 1 to the presentation of Braidn yields the stan-

dard presentation for the symmetric group Symn. The symmetric group on n letters and

the n-strand braid group are examples of Coxeter groups and Artin groups, respectively.

In what follows we discuss the defining properties of these classes of groups.

28

Remark 3.2.2. (The Braid Monoid) The monoid inside of the braid group generated by

σ1, σ2, . . . , σn−1 is called the braid monoid. The braid monoid has the same presentation

as the braid group given in Definition 3.2.1 but lacks the inverse elements in the group.

Definition 3.2.3. (Artin Group) Given a Coxeter diagram Γ, we can define the Artin

group, denoted Art(Γ), where each vertex of Γ represents a generator of the Artin group

subject to the following relation: if (ab)M(a,b) = e is a relation in Cox(Γ), then Art(Γ)

has a relation that equates the two length M(a, b) words that alternate between a and

b. For example, if in Cox(Γ), a, b ∈ S where M(a, b) = 4, the relation given by (ab)4 = e

in Cox(Γ) becomes the relation abab = baba in Art(Γ). The group Art(Γ) is said to

be spherical or Euclidean when Cox(Γ) is spherical or Euclidean.

Example 3.2.4. (The 4-strand Braid Group) In the way that the symmetric group Symn

was our example of choice for a Coxeter group, the n-strand Braid group is the favored

example of an Artin group. Let Γ be the Coxeter diagram given below.

Γ = A3 =

We saw that this gives rise to the group presentation

Sym4 = Cox(A3) = ⟨σ1, σ2, σ3 ∣ σ2
1, σ

2
2, σ

2
3, (σ1σ2)3, (σ2σ3)3, (σ1σ3)2⟩ .

By Definition 3.2.3,

Braid4 = Art(A3) = ⟨σ1, σ2, σ3 ∣ σ1σ3 = σ3σ1, σ1σ2σ1 = σ2σ1σ2, σ2σ3σ2 = σ3σ2σ3⟩

29

Example 3.2.5. (Art(Ã2)) The later chapters will focus on a particular Euclidean

Artin group of type Ã2. Referring to Figure 3.4, we see that the Coxeter diagram of type

Ã2 is represented by an equilateral triangle with three vertices and three unlabeled edges.

If we label the vertices a, b, c, the Coxeter diagram gives the following presentation for

the Coxeter group of type Ã2

Cox(Ã2) = ⟨a, b, c ∣ a2, b2, c2, (ab)3, (bc)3, (ac)3⟩ .

Hence, by Definition 3.2.3, the group presentation for the Euclidean Artin group of

type Ã2 is given by

Art(Ã2) = ⟨a, b, c ∣ aba = bab, bcb = cbc, aca = cac⟩ .

Though the group presentation of the 4-strand braid group and the Euclidean Artin

group of type Ã2 don’t seem to differ by much, we’ll soon see that these slight differences

make for very different known results about each type of Artin group.

In what follows, we describe the Salvetti complex which is a space similar to the Davis

complex but for Artin groups. We start by defining oriented permutahedra.

Definition 3.2.6. (Oriented W -permutahedra) Let v be a vertex of a polytope P that

is a W -permutahedron. There is a unique vertex v′ such that the vector from v to v′

passes through the center of P . We then orient each edge in the 1-skeleton of P so the

dot product with the vector v⃗v′ is positive and use this to define a height function.

30

Cox(Γ) ↷ Davis(Γ)

Cox(Γ) ↷ Salv(Γ)

Art(Γ) = π1(PSalv(Γ))

Figure 3.9: A summary of the nice actions of Cox(Γ) on spaces and the groups that arise

Definition 3.2.7. (Oriented Davis complex, Salvetti complex) Given a Coxeter diagram

Γ, let Davis(Γ) be the Davis complex of Cox(Γ). Given the vertex set of the Davis

complex, the oriented Davis complex replaces each W -permutahedron in the Davis com-

plex with multiple copies, one for each possible orientation. The resulting space is known

as the pure Salvetti complex. The Coxeter group Cox(Γ) acts freely on the pure Salvetti

complex. The quotient of the pure Salvetti complex by this action is a 1-vertex complex

that has one oriented WS′-permutahedron for each subset S′ ⊂ S for which WS′ = ⟨S′⟩

is finite. We refer to this quotient as the Salvetti complex and denote it Salv(Γ). The

fundamental group of the Salvetti complex is precisely Art(Γ). A summary of the spaces

and groups discussed in this chapter is given in Figure 3.9.

Example 3.2.8. (Pure Salvetti complex of type A2) The Davis complex for the Coxeter

group of type A2 is a hexagon consisting of 6 vertices and 6 unoriented edges. The pure

Salvetti complex has 6 vertices, 12 oriented edges, and 6 hexagons and can be found in

Figure 3.10. The quotient will have a single vertex, 2 edges, and a single hexagon.

3.3 Known Results for Coxeter and Artin Groups

Though Coxeter groups and Artin groups are closely related, many more group-

theoretic and algorithmic properties are known about the former. In fact, this dissertation

31

r

r

r

r

s
r

a

s a

i r

s
s s

Figure 3.10: Pure Salvetti complex of type A2

provides some progress in understanding algorithms related the Artin group Art(Ã2).

We begin with some results for Coxeter groups.

Coxeter groups are fairly well-understood. As was mentioned previously, all finite

Coxeter groups were classified in 1935 by H. S. M. Coxeter. Coxeter groups are also

linear. That is, they admit a faithful representation into GL(V) [Tit13]. Brink and

Howlett also showed that Coxeter groups are automatic which implies the word problem

for all Coxeter groups is solvable [BH93].

Unlike Coxeter groups, Artin groups are not as well understood. Many conjectures

remain open. The following list can be found in [GP12].

Conjecture 3.3.1. The following conjectures are currently still open.

32

1. Artin groups are torsion free.

2. Nonspherical Artin groups have a trivial center.

3. Artin groups have a solvable word problem.

4. Artin groups satisfy the K(π,1) conjecture.

Most of the known results related to these conjectures address very specific types of

Artin groups and recently, many strides have been made to prove these conjectures for

Euclidean Artin groups. In 2017, Jon McCammond and Rob Sulway were able to show

that irreducible Euclidean Artin groups are torsion free and centerless [MS17]. In 2019,

Paolini and Salvetti proved the K(π,1) conjecture [PS21] for Euclidean Artin groups

using the algebraic structures identified by McCammond and Sulway. These results also

support that these types of Artin groups are torsion free. However, these conjectures still

remain open for Artin groups in general.

All spherical Artin groups are known to have a solvable word problem. McCammond

and Sulway also show that Euclidean Artin groups have decidable word problems using

their Dual Artin group presentations. Throughout this document, we build on that work

and provide a solution to the word problem for the Artin group Art(Ã2) using the

standard generating set for the group.

33

4. Solutions to the Word Problem for Braidn

In this chapter, we present a series of solutions to the word problem for Braidn. We

proceed by presenting solutions chronologically starting with Artin’s solution presented

in 1947 [Art47]. Though Frank Garside sought a solution to the conjugacy problem for

the braid groups, his work spurred interest in Garside theory which is used to create

efficient solutions to the word problem for groups. This chapter also introduces Garside

structures as a major tool for solving the word problem in Artin groups. We present a

solution that follows Garside’s work that was axiomatized, algebraically, by Luis Paris

and Patrick Dehornoy. This solution is given by what we call a fraction normal form

since it relies on a Garside structure on the braid monoid with a generating set that

contains the standard generators of the braid group. We also discuss the left-greedy

normal form that we use in Part II. We conclude with another solution to the word

problem for the braid groups that we’ll refer to as a dual solution. This solution makes

use of a dual presentation for the braid groups found by Birman, Ko, and Lee [Bir98].

The corresponding dual Garside structure was described by David Bessis [Bes03] and by

Tom Brady and Colum Watt [BW02].

4.1 Artin’s Solution for Braidn

After introducing the braid groups with what we know as the standard presenta-

tion in [Art47], Artin also provides a solution to the word problem for these groups.

Algebraically, Artin made use of a map from the n-strand braid group Braidn to the

34

symmetric group on n letters Symn that sends the generator σi to the transposition

(i i + 1). Since braids not in the kernel cannot represent the identity, the word problem

can focus on pure braids. In particular, the kernel of this map is called the pure n-strand

braid group, denoted PBraidn, and describes all braids whose strands begin and end in

the same position. Using group theoretic properties of the kernel of this map, Artin was

able to put braids into a normal form that he called a combed braid. Only pure braids

are considered in Artin’s solution.

Definition 4.1.1. (Combed braid) We illustrate what it means for a braid to be combed

using the 4-strand braid group. Let τ ∈ PBraid4. Then, τ can then be represented as

word of the form w1w2w3 such that w1 is a word in the standard generating set that

always involves the first strand (i.e., the strand starting in the first position at the very

beginning of the braid), w2 is a word that always involves strand 2 (but never strand 1),

and w3 is a word that only involves only strands 3 and 4 (while strands 1 and 2 remain

unmoved). In general, the subword wi will represent a braid such that strand i moves

about all strands j > i while all strands k < i remain uninvolved with the remainder of

the braid. For a visual example, see Figure 4.3.

According to the above definition, turning an arbitrary pure braid into a combed braid

results in each strand, from left to right, moving one at a time, while the other strands

remain unmoved. Algebraically, this is accomplished by considering a pure n-strand braid

β and letting f(β) represent the pure n − 1-strand braid obtained by forgetting the first

string. We still take f(β) to be in Pn via inclusion. Then, β and f(β) represents the

same braid except with the last strand of f(β) changed so that it has no interaction with

35

the other strands. If we let K be the kernel of f , this gives a split, short exact sequence

1→K → Pn → Pn−1 → 1.

The kernel is free and corresponds to the fundamental group of the n−1 times punctured

disk. This process can then be iterated on Pn−1 and so forth to obtain a combed braid.

In what follows, we provide an example of a braid that we put in normal form, keeping

track of the braid as a word written with respect to the standard generating set of the

4-strand braid group. The standard presentation of the 4-strand braid group is given

again below.

Braid4 = ⟨σ1, σ2, σ3 ∣ σ1σ3 = σ3σ1, σ1σ2σ1 = σ2σ1σ2, σ2σ3σ2 = σ3σ2σ3⟩

Consider the braid given in Figure 4.1 (a). This braid, written as a product of the

above generators and their inverses is given by

σ2σ1σ2σ2σ3σ1σ
−1
2 σ−1

3 σ2σ3σ3σ3.

In this example, we use a 4-strand pure braid, that is, a braid whose strands begin and end

in the same position. For ease of description, we’ve colored each strand as well. We see

the red strand moves throughout the braid but there are two crossings circled in Figure

4.1 (b), that do not involve the first strand indicating that we must manipulate the braid

so that those crossings occur below any other crossings involving the red strand. Notice

that the braid can be manipulated in a way that these crossings merely slide past the

36

it

p.iq
ig

(a) (b) (c)

(a) (b)

Figure 4.1: The combing of a 4-strand braid

crossings involving the red strand. This visual manipulation is performed algebraically

by making use of the relations σ1σ3 = σ3σ1 and σ1σ2σ1 = σ2σ1σ2. This results in the braid

pictured in Figure 4.1 (c), which can be represented algebraically by

σ1σ2σ2σ1σ2σ3σ
−1
2 σ−1

3 σ2σ3σ3σ3.

Notice that the first strand moves throughout the braid before all other strands. We

can now proceed to focus on just the remaining 3 strands or the portion of the braid boxed

in Figure 4.1 (c). Again, we wish to manipulate this braid so that the orange strand, that

is, the left-most strand in 4.2 (a), moves throughout the braid before the other strands

do. There is but one crossing that doesn’t allow the orange strand to do so and it is

37

it

p.iq
ig

(a) (b) (c)

(a) (b)
Figure 4.2: The combing of a 4-strand braid, continued

highlighted in Figure 4.2 (a). Unlike the previous means of manipulation, this crossing

cannot be slid under the crossings of the orange strand below it. Moving this crossing

down requires the use of the braid relations given in the presentation of the group above.

In particular, the relation σ2σ3σ2 = σ3σ2σ3 allows us to rewrite the subword σ−1
2 σ−1

3 σ2 as

σ3σ−1
2 σ−1

3 . We see in Figure 4.1 (b), this portion of the braid rewritten algebraically as

σ2σ3σ3σ−1
2 σ3σ3.

This allows us to rewrite the original braid from Figure 4.1 (a) as the braid

σ1σ2σ2σ1σ2σ3σ3σ
−1
2 σ3σ3

38

is pictured in Figure 4.3.

Figure 4.3: A combed, 4-strand braid

The process described above was Artin’s algorithm that solves the word problem for

the braid groups with respect to the standard generating set. However, Artin provides this

solution in [Art47] accompanied by the following warning, “although it has been proved

that every braid can be deformed into a similar normal form the writer is convinced that

any attempt to carry this out on a living person would only lead to violent protests and

discrimination against mathematics. He would therefore discourage such an experiment.”

39

Artin’s warning is related to the fact that his algorithm is exponential in the length of

the word expressed in terms of the standard generators and their inverses. In the next

section, we analyze solutions to the word problem for the braid groups that relied on

algorithms that are much more efficient.

4.2 Posets, Garside Groups and Garside Structures

This section provides the necessary definitions for Garside groups and Garside struc-

tures, starting with basic terminology related to posets. We then define the Garside

monoid and, by passing to its group of fractions, define the Garside group. An in-depth

analysis of Garside’s work and its many applications can be found in [Deh15].

Definition 4.2.1. (Posets) Let P be a partially ordered set. We say that P is bounded

if it contains both a minimum and a maximum element. By restricting the partial order

of P onto a subset Q ⊂ P we get a subposet structure on Q. If Q is a subposet where

any two of its elements are comparable with respect to the partial order, we say that Q

is a chain. If Q is a finite chain, then its length is given by ∣Q∣ − 1. If Q is a finite chain

and Q is bounded, we refer to the maximum and minimum elements as endpoints. If

Q is a finite chain that is not a subposet of a strictly larger finite chain with the same

endpoints, we say that Q is saturated. The poset P is graded if for all x ≤ y, a saturated

chain always exists from x to y and the length of all such saturated chains are the same.

We refer to intervals of the form [x,x] as trivial intervals and intervals [x, y] such that

x < y is a saturated chain of length 1 are what we call covering relations of P .

40

Definition 4.2.2. (Lattices) Let Q be a subset of a poset P with partial order ≤. We

say that p ∈ P is a lower bound of Q if p ≤ q for all q ∈ Q. If the set of all lower bounds

for Q has a maximum element, we call that element the greatest lower bound or meet

of Q, denoted ⋀Q. We define analogously the least upper bound or join of Q, denoted

⋁Q. If Q contains just two elements u, v we use u ∧ v and u ∨ v to denote the meet and

join, respectively. We say that P is a lattice if every pair of elements have a meet and

join.

Definition 4.2.3. (Garside Groups and Garside Structures) Let M be a monoid. An

element of M is irreducible if it is not the product of two non-units. We say that M

is atomic if every element that is not a unit can be written as a product of irreducible

elements. M is left cancellative if for any a ∈ M , ab = ac implies b = c for all b, c ∈ M .

Similarly, M is right cancellative if for any a ∈ M , ba = ca implies b = c for all b, c ∈ M .

We say M is cancellative if M is both left and right cancellative. The element a is a left

divisor of b if there exists some c ∈ M such that ac = b. Given that M is atomic, the

left divisibility relation, which we will denote ≤L, is a partial order. Right divisors are

defined analogously and the partial order of right division is denoted ≤R. A monoid M

is a Garside monoid if it has the following defining properties:

● M is atomic, cancellative, and finitely generated;

● There exists an element called the Garside element, denoted ∆, such that {a ∈M ∶

a ≤L ∆} = {a ∈M ∶ a ≤R ∆}; and

● (M,≤L) and (M,≤R) are lattices.

41

Due to a well known result of Ore [Ore31], any Garside monoid embeds into the

corresponding Garside group by passing to the group of fractions.

Example 4.2.4. (The 4-Strand Braid Group) In what follows, we use permutations

to describe certain braids in the 4-strand positive braid monoid. In particular, if we

ignore how the strands of a braid twist and cross, a braid on 4-strands will describe a

permutation of 4 elements. For example, the generator σi can be represented by the

1
µ

positivehalf twist
adj strands

negmativenagtwist

adj strands

Iii Iii
Figure 4.4: Positive half-twists of adjacent strands σ1 = (1 2), σ2 = (2 ,3), σ3 = (3 4)

transposition (i, i+ 1). For these generators, if strand i crosses over strand i+ 1, we refer

to those braids as a positive half-twist of adjacent strands. The three examples of positive

half twists of adjacent strands in the 4-strand braid group are can be found in Figure 4.4.

We call any braid created by taking products of positive half-twists of adjacent strands

a positive braid. An example of a positive braid is seen in Figure 4.5. This braid is

also known as the full, half-twist and can be represented by the permutation (14)(23).

The set of all left divisors of the full, half-twist happens to be equal to the set of right

divisors of the full, half-twist. Moreover, labelling these divisors with the permutation

that describes them reveals the finite set of 24 elements represented by the vertices of

the permutahedron pictured in Figure 4.6. The 1-skeleton of the permutahedron can be

made into a poset with a height function that is discussed in Section 4.4. An edge in

the permutahedron connects two vertices vg and vh if there is a positive half-twist of

42

34 123 134

iz l 2 34 1342

piz 23

142 14 i 4 23

i

TheGarsideElement

I 4 23
Figure 4.5: The full, half-twist (14)(23) in the 4-stand braid group

adjacent strands (i, i+ 1) such that g ⋅ (i, i+ 1) = h. Since the three positive half-twists of

adjacent strands that generate the braid monoid are amongst the 23 nontrivial elements

represented by the vertices in the permutahedron, these 23 elements will also generate

the braid monoid. Hence, with the Garside element given by the the full half-twist, the

braid monoid is a Garside monoid, giving implies the braid group the structure of a

Garside group.

4.3 Garside Structures and the Word Problem

Using the defining properties of a Garside group, it is possible to give a rather efficient

solution to the word problem. In particular, because the group G is the group of fractions

of the Garside monoid M , the word problem for G can be reduced to the word problem

in M . We start this section by discussing exactly how a solution to the word problem

can be produced relying on the defining properties of a Garside monoid.

Definition 4.3.1. (Hasse Diagram) Suppose G is a Garside group with Garside element

∆. Let S be a generating set for G such that S = {s ∈ G ∣ s ≤L ∆}. That is, all elements

43

I 4 23

1423 14 1324

ii
i

i i
n

13241 n
143 142 124

s
134 s si s i s

y
1 432 e s 123Li i

I si i
i 1342i
i
i
i
i i

i
i

1243
I 1 24

13 I
123 243i

1 234
132 i

12 34

zz12 34

I

anaemia

Figure 4.6: The set of left divisors of the full, half-twist

of S are left divisors of the Garside element ∆. Because G is a Garside group, we know

that the elements of S generate G and that S is a poset with respect to left division. We

use this partial order to define the Hasse diagram which has a vertex for every element

in the poset and an edge from a vertex si to a vertex sj if and only if [si, sj] is a covering

relation (see Definition 4.2.1). Moreover, the diagram is drawn so that the lower end of

an edge corresponds to the smaller element in the covering relation.

44

The permutahedron in Figure 4.6 could also serve as a Hasse diagram for the identity

element and the 23 element generating set for the 4-strand braid group with some slight

modifications. Let e denote the identity element and ∆ denote the full half-twist. Then

we could label each edge from s to t with the positive half twist of adjacent strands,

(i, i + 1) such that t = s ⋅ (i, i + 1). In Figure 4.6, instead of labeling each edge, we color

each edge according to the permutation that you would right multiply by to get from one

permutation to the next with a blue edge, red edge, and green edge representing right

multiplication by (12), (23), and (34), respectively. In this context, each interval could

also be represented by a word. Trivial intervals will be labeled by the empty word whereas

the interval [e, (24)] could be represented using the words {(23)(34)(23), (34)(23)(34)}

which can be seen in Figure 4.6 as increasing paths from the vertex labeled e to the

vertex labeled (24).

Definition 4.3.2. (Reversible Words) All Garside groups have reversing processes which

contribute to solutions to the word problem. A word w in (S∪S−1)∗ is said to be reversible

to the word w′ if we can get from the word w to the word w′ by replacing a positive,

negative subword such as xy−1 with a negative, positive subword such as (x′)−1y′ with

x, y, x′, y′ ∈ S. This reversing process can continue as long as w contains a subword of the

form xy−1. When a subword of this form no longer exists, the reversing process rewrites

w as a word of the form u−1v where both u and v are positive words, with u, v ∈ S∗. In

other words, all words w can be rewritten as the product of a negative subword and a

positive subword. In Garside groups, the reversing process always terminates [Deh15].

45

We give a presentation and use this fact to describe a solution to the word problem for

the 4-strand braid group.

4.4 A Garside Structure for Braidn

In this section, we give a solution to the word problem using the standard Garside

structure built from the standard generating set of the braid group. This solution is due

to Frank Garside who produced a solution to the conjugacy problem for braid groups in

1968. Although the solution discussed here can be used for the n-strand braid group, we

use the 4-strand braid group to discuss the particulars of the Garside structure and how

algorithm relies on that structure.

The standard Garside generators of the 4-strand braid group are indexed by 23 of

the vertices of the permutahedron in Figure 1.3, representing nontrivial positive simple

braids. The bottom vertex indexes the identity, which we exclude from our generating set.

The algorithm is programmed in Python using the computer algorithm Sage. To work

with braids in Sage, we think of the vertices of the permutahedron as being numbered

from v0 to v23 with v0 representing the identity and v23 representing ∆, the full, half-twist.

In the code, we will use the subscript of these vertices to represent the positive simple

braid that was previously represented by the permutations that labeled the vertices of

the permutahedron. See Figure 4.7 for comparison. Since positive integers represent

the positive braids that serve as our generators, a negative integer, −k, will represent

the inverse of the positive braid k. For example, the braid pictured in Figure 4.9 can

be represented by the product of permutations (142)(1342)(1432)(132)(123) or by the

string of integers [18,12,14,8,7].
46

23

I
l

22 1 2021

i

i
s

17
18 n 16 15

i is
t s s s

I 14
1 10
i
i
i
i
1 1 12

i i
t I
i n
I
I 91 113 I
1 I

7
8 I 5

I 4

6

3
2

O

Figure 4.7: The generators of the 4-strand braid group, relabeled as integers

The algorithm is made up of four major functions. We first describe how to put

an arbitrary pair of generators in normal form. We mentioned in Section 4.2 that the

1-skeleton of the permutahedron can be made into a poset. To do so, the braid τ can be

written as a product of positive half-twists of adjacent strands. The height of τ is equal to

the number of positive half-twists of adjacent strands in the product. Equivalently, τ can

be represented by the vertex vk in the permutahedron whose height is given by the length

of any shortest path from v0 to vk. If each edge in the 1-skeleton of the permutahedron

47

is oriented by the heights of its endpoints, then this becomes a Hasse diagram that turns

into a lattice.

Given G = ⟨S ∣ R⟩, let a, b ∈ S. We define the right complement of a to be the unique

braid rc(a) such that a ⋅ rc(a) = ∆. Similarly, the left complement of a is the braid

denoted lc(a) such that lc(a) ⋅a = ∆. The product a ⋅ b is put into normal form using the

following rewriting process:

a ⋅ b = a′ ⋅ b′

where a′ = a ⋅ (rc(a)∧ b) and b′ = (rc(a)∧ b)−1 ⋅ b. This rewriting process is also illustrated

in Figure 4.8. Notice that

height(a) ≤ height(a ⋅ (rc(a) ∧ b)) and height(b) ≥ height(b′)

and the inequality is strict whenever a ≠ a′. This means that the number assigned to a′ is

larger than the number assigned to a and similarly, the number assigned to b′ is less than

the number assigned to b. In particular, the pair (a′, b′) is lower in reverse dictionary

order. After storing all of the necessary terms involved in this rewriting process, the

function A.16 performs the above rewriting process.

Example 4.4.1. (Algorithm 1: Product of two generators in normal form) For example,

consider the product of braids represented by the integers [11] ⋅ [15]. We have

rc([11]) = [11] and [11] ∧ [15] = [5].

48

Hence,

[11] ⋅ [15] = ([11] ⋅ [5]) ⋅ [7] = [22] ⋅ [7].

Figure 4.8: Rewriting a ⋅ b as a′ ⋅ b′ where a′ = a ⋅ (rc(a) ∧ b) and b′ = (rc(a) ∧ b)−1 ⋅ b

Using the previous rewriting process, we now look to put an arbitrary positive word

in normal form. Given an arbitrary product of generators, we’d like to iteratively apply

the previous rewriting process. We must keep in mind that upon rewriting a pair of

generators within a word, you must ensure that the previously rewritten pair is still in

normal form. We rely on the function A.17 which performs the above rewriting process

at a desired location in a word. Then, we can accurately rewrite pairs of generators in a

positive word, from left to right, and with every updated pair we can backtrack to ensure

the word remains in normal form before proceeding. The function that puts positive

words in normal form is found in A.18.

49

Example 4.4.2. (Algorithm 2: A positive word in normal form) Using this function on

the word represented by the string of integers [14,8,7], we yield the following output

which details the step-by-step rewriting process, indicating that [22,7,0] is an equivalent

word in normal form.

input: RedPosWord([14,8,7])

output: ([22,0,7], -1)

([22,7,0], 0)

([22,7,0], 1)

([22,7,0], 2)

[22,7,0]

Putting an arbitrary negative word in normal form can be done using the previously

defined functions. Since the inverse of a negative word is a positive word written in

reverse, the function putting a positive word in normal form can be applied to the inverse.

Once the inverse is in normal form, we simply take the inverse again to produce a negative

word in normal form. This is done using the function A.23.

Example 4.4.3. (Algorithm 3: A negative word in normal form) For example, consider

the negative word given by [−15,−11]. This function yields the following output which

first takes the inverse of the word, yielding a positive word, puts that word in normal

form (see Example 4.4.1), and concludes by taking the inverse of this new word in normal

form.

input: RedNegWord([-15,-11])

50

output: ([22,7], -1)

[22,7,0]

The above sample output should not come as a surprise since the inverse of the word

[−15,−11] is given by [11,15] which was put into normal form in Example 4.4.1.

We conclude with a function that performs the word reversing process (see Definition

4.3.2) so that the algorithm works in the braid group and not just the braid monoid. We

start by rewriting the product of a generator and the inverse of a generator represented

by i ⋅ −j as an equivalent product −i′ ⋅ j′ for every pair of generators i and j. We store

this information in a matrix to be called upon by the function A.20. This function

uses a similar “spot” function to the one mentioned previously to keep track of where the

negative letters appear in the rewriting process. The rewrites conclude when an arbitrary

word is rewritten as the product xy where x is a negative subword and y is a positive

subword.

Example 4.4.4. (Algorithm 4: Word reversing algorithm) In the sample output given

below, we start by inputting an arbitrary word [5,−16,12,−5,10,−18,−4,8,7]. At each

step, this algorithm finds the aforementioned positive, negative pair and rewrites it as a

new negative, positive pair. This rewriting process continues until it produces an equiva-

lent word represented by a string of nonpositive integers followed by a string of nonnega-

tive integers. In this case, we get an equivalent word given by [−15,−11,0,0,14,0,0,8,7].

input: negposword([5,-16,12,-5,10,-18,-4,8,7])

output: [-15, 8, 12, -5, 10, -18, -4, 8, 7]

[-15, 8, -8, 11, 10, -18, -4, 8, 7]

51

[-15, 0, 0, 11, 10, -18, -4, 8, 7]

[-15, 0, 0, 11, -13, 4, -4, 8, 7]

[-15, 0, 0, -11, 14, 4, -4, 8, 7]

[-15, 0, -11, 0, 14, 4, -4, 8, 7]

[-15, -11, 0, 0, 14, 4, -4, 8, 7]

[-15, -11, 0, 0, 14, 0, 0, 8, 7]

Algorithms 1 − 4 make up the algorithm that puts arbitrary words into normal form.

We use algorithms 2 and 3 on the negative and positive subwords that appear as outputs

of algorithm 4. Then, the only pair that needs to be checked is the middle negative,

positive pair of generators. If that pair needs no update, we have a word in normal form.

Should the pair need an update, the negative and positive words may need to be put

into normal form yet again but this process will terminate and can be done with the

function A.26. We mention that although this example uses the 4-strand braid group,

the algorithm is programmed to provide a solution to the word problem for the n-strand

braid group. The algorithm and all of its culminating functions can be found in Appendix

A.1.

Example 4.4.5. (An arbitrary word in normal form) In this example, we provide several

examples of braids put in normal form. Take first, the braid given by Figure 4.9. This

braid is an example of a trivial braid that is drawn as a product of 5 nontrivial braids.

This braid can also be represented by the word

[5,−16,12,−5,10,−18,−4,8,7].

52

j 3
111
I'Ll11 23 12 34 Ily

i
1 1

9 112 5 123 03 134

Figure 4.9: A trivial braid

According to the algorithms described above, we confirm that this braid is indeed the

trivial braid with the following:

input: RNormForm([5,-16,12,-5,10,-18,-4,8,7])

output: [-15, 8, 12, -5, 10, -18, -4, 8, 7]

[-15, 8, -8, 11, 10, -18, -4, 8, 7]

[-15, 0, 0, 11, 10, -18, -4, 8, 7]

[-15, 0, 0, 11, -13, 4, -4, 8, 7]

[-15, 0, 0, -11, 14, 4, -4, 8, 7]

[-15, 0, -11, 0, 14, 4, -4, 8, 7]

[-15, -11, 0, 0, 14, 4, -4, 8, 7]

[-15, -11, 0, 0, 14, 0, 0, 8, 7]

negative subword

[-15,-11]

53

([22, 7], -1)

positive subword

[14,8,7]

([22, 0, 7], -1)

([22, 7, 0], 0)

([22, 7, 0], 1)

([22, 7, 0], 2)

newNPword

[-7, -22, 22, 7, 0]

Update (neg,pos) Pair

[-7, 0, 0, 7, 0]

remove 0s

[-7, 7]

Update (neg,pos) Pair

[0, 0]

remove 0s

[]

We now consider the braid that is similar to the braid given above with the exception

of a single sign change described by the following string of integers:

[5,−16,12,5,10,−18,−4,8,7]

54

We see that this braid, in normal form is not the trivial braid but it can be represented

as a word of length 4.

input: RNormForm([5,-16,12,5,10,-18,-4,8,7])

output: [-15, 8, 12, 5, 10, -18, -4, 8, 7]

[-15, 8, 12, 5, -13, 4, -4, 8, 7]

[-15, 8, 12, -15, 14, 4, -4, 8, 7]

[-15, 8, -12, 7, 14, 4, -4, 8, 7]

[-15, -1, 0, 7, 14, 4, -4, 8, 7]

[-15, -1, 0, 7, 14, 0, 0, 8, 7]

negative subword

[-15,-1]

([9, 7], -1)

positive subword

[7,14,8,7]

([7, 14, 8, 7], 1)

([7, 22, 0, 7], 0)

([19, 14, 0, 7], -1)

([19, 14, 0, 7], 2)

([19, 14, 7, 0], 1)

([19, 21, 0, 0], 0)

([19, 21, 0, 0], 1)

([19, 21, 0, 0], 2)

55

([19, 21, 0, 0], 3)

newNPword

[-7, -9, 19, 21, 0, 0]

Update (neg,pos) Pair

[-7, -4, 14, 21, 0, 0]

remove 0s

[-7, -4, 14, 21]

reduce new list

negative subword

([4, 7], 1)

positive subword

([22, 10], -1)

newNPword

[-7, -4, 22, 10]

Remark 4.4.6. (Standard normal form) The algorithm described in Section 4.4 relies

on a normal form for the monoid and then extends that to the group of fractions. Al-

ternatively, and more conventionally, given an arbitrary word in the group of the form

s1s−1
2 s3s−1

4 ⋯s−1
n , one could simply replace each s−1

i with ∆−1 ⋅ lc(si) and then move the

∆−1 to the front using conjugation (i.e. replace t∆−1 with ∆−1t′ where t′ = ∆t∆−1).

Once it is in the form ∆ku1u2⋯un with k ∈ Z and u1u2⋯un some positive word, we

simply put the positive word in left greedy normal form and absorb any ∆’s produced

into the ∆k at the front followed by proper, nontrivial factors of ∆, u1, . . . , un . This is

56

the left-greedy normal form for any word in the Garside group and this is the normal

form that we will use in Part II.

4.5 Dual Garside Structure for Braidn

After Garside’s solution in 1968, Brieskorn and Saito investigated all spherical Artin

groups through a combinatorial lens in 1972. They provided solutions to both the word

problem and the conjugation problem and determined the center of these spherical Artin

groups as well [BS72]. In 1998, Dehornoy and Paris showed that braid groups and more

generally, all spherical Artin groups are Garside groups and that all Garside groups are

biautomatic which therefore, have simple algorithms that solve the word problem [DP99].

In the same year, Birman, Ko, and Lee introduced a new presentation for Braidn and

with it, a new solution to the word problem. In this section we introduce the Birman-Ko-

Lee presentation and their solution to the word problem and conclude with a discussion

of how this new presentation sparked an interest in dual presentations for Artin groups

in general. We start by introducing noncrossing partitions.

Definition 4.5.1. (Partitions) Given a finite set S, a partition of S is a collection of

pairwise disjoint subsets, called blocks, whose union is all of S. Let [n] = {1,2, . . . , n}.

The partitions of [n] form a poset with respect to refinement; that is, given partition π

and τ , we have π ≤ τ if each block of π is contained in a block of τ . With respect to this

partial order, this poset, denoted Πn forms a lattice called the partition lattice of rank

n. Figure 4.10 contains the partition lattice Π4.

57

{1234}

{1,234} {124,3} {12,34} {13,24} {23,14} {2,134} {123,4}

{1,24,3} {1,2,34} {12,3,4} {1,23,4} {14,2,3} {13,2,4}

{1,2,3,4}

Figure 4.10: The partition lattice Π4

Before defining a noncrossing partition, we introduce a lens by which we may view

these objects. We can identify [n] with a convex regular n-gon Dn whose vertices are

labeled counterclockwise by pj for j ∈ [n]. Then a subset A ⊆ [n] determines a set of

vertices PA = {pj ∣ j ∈ A}. The convex polygon associated to A is the convex hull of PA

denoted Conv(PA).

2 I 2 I

3 4 3 4

Figure 4.11: The crossing partition {13,24} and the noncrossing partition {124,3} of Π4

58

Definition 4.5.2. (Noncrossing Partitions) Using the polygon associated to a subset A

of [n], we see that each partition of [n] can be identified with a collection of the convex

hulls of its blocks. A partition is noncrossing if the convex hulls are pairwise disjoint. See

Figure 4.11 for an example of a crossing partition and noncrossing partition of Π4. We

denote the set of all noncrossing partitions as NCn and we see that NCn is a subposet

of Πn. The noncrossing partition lattice NC4 can be found in Figure 4.12.

ri
r

ri
r

w
n

w
n

ri
r

ri
r

w
n

w
n

ri
r

ri
r

n
n

n
n

ri
r

ri
r

w
b

ri
p

ri
p

n
n

w
n

w
n

ri
r

ri
r

w
n

w
n

ri
r

ri
r

n
n

n
n

Figure 4.12: The noncrossing partition lattice NC4

Both NCn and Πn are bounded and graded posets. And because both are lattices,

unique meets and joins exist for both partitions. In particular, for π, τ ∈ NC4, the meet

59

π ∧ τ is the coarsest common refinement of π and τ whereas the join π ∨ τ is the finest

noncrossing partition that has both π and τ as a refinement.

A noncrossing partition can be interpreted as a permutation and thus, as a braid.

To see this, recall that we let Dn represent the regular n-gon with vertices pj. Given

A ⊆ [n] such that ∣A∣ = k > 2, we define the standard subdisk for A to be the convex

hull of the vertices in PA, denoted DA. Notice that DA is a k-gon homeomorphic to the

2-dimensional disk. With this convention, Dn is equivalent to D[n]. When ∣A∣ = k = 2,

we define DA to be a slight thickening of the edge so that it is also homeomorphic to

the disk. Suppose A = {i, j} and let eij denote the straight line segment connecting pi

and pj. Taking two copies of the path along eij, and bend them so that they become

injective paths from pi to pj with disjoint interiors that bound a bigon in Dn. Should an

edge, eij lie in the boundary of Dn, we keep one of the copies unmoved in the boundary

of the bigon. If A = {i}, then ∣A∣ = k = 1, and DA is just the point pi and we note that in

this case, DA is not homeomorphic to the disk. We note here that the bending of edges

described above are chosen so that for all subsets A,B ⊆ [n], the standard subdisks DA

and DB intersect if and only if the convex hulls of PA and PB intersect.

We can now discuss how moving the points in these subdisks allow us to recover

braids in Braidn.

Definition 4.5.3. (Rotation braid) Given A ⊂ [n], we get the rotation braid δA by

taking the vertices in PA and rotating them, counterclockwise, around the boundary of

the subdisk DA so that each vertex travels along a single edge until it reaches the next

vertex. If ∣A∣ = 1, δA represents the identity braid. If ∣A∣ = 2, then DA is the bigon

60

described above. In this case, the braid δA is also called a positive half-twist. Should

A = [n], the rotation braid δA is represented by δn instead. We note that if ∣A∣ = k, then

Perm(A) is the k-cycle permutation obtained by ordering the elements of A in increasing

order.

Figure 4.13: The rotation braids δ{1,2,3}, δ{2,3,4}, and δ{1,2,3}δ{2,3,4}

Notice that because the positive half-twists include the positive half twists of adjacent

strands, the standard generators for the braid group, we see that the set of all rotation

braids {δA ∣ A ⊆ [n]} form a new, larger generating set for Braidn. We use the rotation

braids to give a different presentation for Braidn.

Definition 4.5.4. (Dual simple braids) Let π = {A1,A2, . . . ,Ak} be a noncrossing par-

tition in NCn. We define the dual simple braid δπ to be the product of rotation braids

δA1δA2⋯δAk
. If π has a unique, non-singleton block A, we use δA to represent δπ. In the

61

case that the singleton block A = [n], we let δn represent δ[n]. We refer to the set of dual

simple braids as DSn.

With this, we get an injection NCn → Braidn and with the map Braidn → Symn

we also get an injection NCn → Symn sending π ↦ σπ. So the noncrossing partition π is

associated to the dual simple braid δπ and a noncrossing permutation σπ. Moreover, the

map NCn → Braidn allows us to embed the noncrossing partition lattice into a Cayley

graph for the braid group. Therefore, many properties of the poset structure for NCn

can be used to analyze the group structure of Braidn. We start with a definition that

allows use to order dual simple braids.

Definition 4.5.5. (Properly ordered) Let A and B be subsets of [n]. We say the

ordered pair (A,B) is properly ordered if the corresponding convex hulls Conv(PA) and

Conv(PB) are disjoint or they intersect in the single vertex pi with the property that

the sequence pi+1, pi+2, . . . encounters all elements of PA ∖ {pi} before any element of PB.

Similarly, if π and τ are noncrossing partitions of [n], then (π, τ) is properly ordered if

for each pair of blocks A ∈ π and B ∈ τ , we have (A,B) is properly ordered.

McCammond in [McC] uses the following proposition to prove a number of properties

regarding factorizations of dual simple braids.

Proposition 4.5.6. If σ, τ ∈ NCn, then (σ, τ) are properly ordered if and only if δσδτ =

δσ∨τ .

We are interested in the set of all nontrivial dual simple braids as our generating set

for Braidn. We then include every relation of the form α1α2 = α where α1, α2 and α are

62

nontrivial dual simple braids. But this condition is easily rephrased using the notion of

proper ordering allowing us to present the braid group as follows [Bir98], [Bes03].

Theorem 4.5.7. (Dual Presentation) Let DS∗
n denote the set of nontrivial dual simple

braids. Then, DS∗
n generates the n-strand braid group with the following presentation:

Braidn = ⟨DS∗
n ∣ δπδτ = δπ∨τ if (π, τ) properly ordered ⟩

We call this the dual presentation for the braid group.

Generalizing the constructions made by Birman, Ko, and Lee, David Bessis gives a

dual presentation for all spherical Artin groups and shows that these groups are Garside

groups with respect to these presentations [Bes03]. In the final chapter of Part I of this

dissertation, we take a look at dual Euclidean Artin groups whose structure was recently

made clear by McCammond, Sulway, and Brady.

Remark 4.5.8. The image of NCn gives Braidn a new Garside structure with a new

Garside element given by (12⋯n), a new set of simple elements, and a new, bigger,

positive dual braid monoid. In particular, the standard Garside algorithms can be run

using these new structures to give a different solution to the word problem for Braidn.

63

5. Dual Euclidean Artin Groups

Spherical Artin groups have been pretty well understood ever since their introduction

in 1972 [Del72]. A natural next course of study would be the Euclidean Artin groups

but unlike their spherical counterparts, questions regarding these groups remained unan-

swered for decades. Recently, Jon McCammond along with Noel Brady and Robert

Sulway, published a trilogy of articles that shed light on the structure of Euclidean Artin

groups [BM15, McC15, MS17]. In particular, they show that every Euclidean Artin

groups is isomorphic to a dual Euclidean Artin group which is the same group but with

a different presentation. Moreover, they show that each dual Euclidean Artin group is

either a nonstandard Garside group or the subgroup of a nonstandard Garside group.

Importantly, this shows that Euclidean Artin groups have a solvable word problem. In

this chapter, we introduce the dual Euclidean Artin groups and describe their structure.

5.1 Isometries

To establish some notation, we start with a discussion of Euclidean isometries and

distinguish between points and vectors as in [BM15].

Definition 5.1.1. (Points and Vectors) In what follows, let V denote a n-dimensional

Euclidean vector space with the standard inner product. We take E to be the affine

vector space which is a set with a simply transitive v ∈ V action such that x+v represents

64

the image of the point x ∈ E under the action by the vector v ∈ V . We refer to the

elements of E as points and the elements of V as vectors.

We now identify nice subspaces of V and E that will allow us to discuss invariants of

Euclidean isometries.

Definition 5.1.2. (Linear and Affine Subspaces) If a subset of V is closed under linear

combination, we say it is linear. We say subset of either V or E is affine if for any pair

of elements in the subset, the line passing through these elements is also contained in the

subset. It follows that V contains linear subspaces that pass through the origin and affine

subspaces that may or may not pass through the origin. The vector space E contains

only affine subspaces as the origin is not identified in that space, which means that linear

combinations are not defined.

Definition 5.1.3. (Invariants) Let w be an isometry of E. Define the move-set of w to

be the subset Mov(w) ⊂ V of all motions of the points in E. That is

Mov(w) = {λ ∈ V ∣ x + λ = w(x) for some x ∈ E}.

Mov(w) is an affine subspace of V and is therefore a translation of a linear subspace. If

we let U denote the linear subspace of V that differs from Mov(w) by a translation, with

µ the unique vector in Mov(w) closest to the origin, then we call U +µ = {λ+µ ∣ λ ∈ U}

the standard form of Mov(w). The points in E that undergo the motion µ form an

affine subspace of E which we refer to as the min-set of w, denoted Min(w) ⊂ E. The

65

proof showing Mov(w) and Min(w) are affine subspaces of V and E respectively can

be found in [BM15].

Definition 5.1.4. (Reflections and Translations) Given a Euclidean isometry w, should

Mov(w) contain the origin, then µ is the zero vector and Min(w) is equivalent to

the set of points fixed by w. In this case, we say that w is an elliptic isometry and

Min(w) = Fix(w), the points fixed by w. Alternatively, if w fixes no points, then µ

is nontrivial and Mov(w) forms a nonlinear affine subspace. In this case, we say w

is a hyperbolic isometry. Elementary examples of elliptic and hyperbolic isometries are

reflections and translations, respectively. Let H represent a hyperplane in E. There is

a unique, nontrivial isometry reH fixing H called a reflection where Fix(reH) = H and

Mov(reH) is a line through the origin in V . Next, let λ ∈ V be a nontrivial vector.

We define a translation isometry, denoted trλ, to be the isometry where trλ(x) = x + λ.

Notice, Min(trλ) = E and Mov(trλ) = {λ}.

5.2 Intervals

In what follows, we build up the conventions needed to construct intervals that are

also posets.

Definition 5.2.1. (Intervals in Metric Spaces) Given the metric space (X,d), let x, y, z ∈

X. We say that z is between x and y whenever the triangle inequality becomes an equality.

Specifically, z is between x and y when d(x, z) + d(z, y) = d(x, y). The interval [x, y] is

the set of all points between x and y. We can put a partial order on the interval [x, y]

by defining z ≤ w whenever d(x, z) + d(z,w) + d(w, y) = d(x, y).

66

We use this definition to analogously define intervals in a group using its Cayley graph

as a metric space.

Definition 5.2.2. (Intervals in Groups) Let G be a marked group with a fixed generating

set S that is symmetric and injects into G. The right Cayley graph of G with respect to

S is a labeled, directed graph denoted Cay(G,S) with vertices indexed by G and edges

indexed by G × S. In particular, the edge e(g,s) starts at the vertex vg and ends at the

vertex vh if h = g ⋅ s. The natural left action of G on its right Cayley graph is faithful,

vertex transitive, and preserves graph labels and orientation. The distance d(g, h) is the

combinatorial length of the shortest path in the Cayley graph from vg to vh. This allows

us to define a metric on G, which depends on its generating set S. That is, for g, h ∈ G

the interval [g, h] is the poset of the group elements between g and h. We can view

[g, h] as the portion of the Cayley graph between g and h that consists of the union of all

minimal length directed paths from the vertex vg to vh that encodes the poset structure

described previously.

Because Cayley graphs are homogeneous, we know d(g, h) = d(1, g−1h). Moreover, the

interval [g, h] is isomorphic to [1, g−1h] as edge-labeled, directed graphs. McCammond

and Brady thoroughly investigate intervals of the form [1,w] where w is a Euclidean

isometry and the Cayley graph of the group of isometries of E is generated by all re-

flections to characterize the poset structure of all Euclidean intervals. They start by

describing a nice relationship between the invariants of a Euclidean isometry w and the

invariants of a reflection re. The reflection length of w, or how far w is from the identity

in its Cayley graph, satisfies the following, a result known as Scherk’s theorem [Sch50].

67

Theorem 5.2.3. Let w be a Euclidean isometry with a k-dimensional move-set. If w is

elliptic, its reflection length is k. If w is hyperbolic, its reflection length is k + 2.

When a Euclidean isometry w is multiplied by a reflection re, the reflection length

is completely classified using Mov(w) = U + µ and the reflection re (see [BM15]). The

basic invariants of the product re ⋅w results in the following theorem.

Theorem 5.2.4 (Brady, McCammond). Let w be an elliptic isometry with Mov(w) =

U ⊂ V . Then, [1,w] is a lattice.

Using reflection length, Brady and McCammond completely characterize when the

interval [1,w] is a lattice. Furthermore, they define a coarse structure of the elements in

the interval.

Definition 5.2.5. (Coarse Structure) Let w be a hyperbolic Euclidean isometry of max-

imal reflection length. Geometrically, this hyperbolic isometry of maximal reflection

length yields an axis that we can orient vertically. Then any motion that moves points

perpendicular to this axis we will call horizontal and any motion with any vertical mo-

tion we will call vertical. For any u ∈ [1,w], there exists a unique v ∈ [1,w] such that

uv = w. Using this fact, we can partition the elements of the of the interval [1,w] to

reveal its structure using a diagram like that in Figure 5.1. Each row in the diagram

indicates the type of isometry of u and v respectively and each column is distinguished

by the dimensions of their basic invariants. Elements that appear in the top row have

hyperbolic-elliptic factorizations, elements in the middle row have elliptic-elliptic factor-

izations, and elements in the bottom row have elliptic-hyperbolic factorizations (see row

labels in Figure 5.1). When either u or v is hyperbolic, the other must be elliptic and

68

every point is moved strictly horizontally under the elliptic motion. In other words, the

fixed set of the elliptic isometry is invariant under vertical translation. When both u and

v are elliptic, some points are moved vertically under each isometry. Across the bottom

row, the dimension of Fix(u) decreases and the dimension of Mov(v) increases as we

move left to right. In the middle row, the dimension of Fix(u) decreases and the dimen-

sion of Fix(v) increases as we move left to right. Finally, in the top row, the dimension

of Mov(u) increases and the dimension of Fix(v) increases as we move left to right.

Figure 5.1: The coarse structure for a maximal hyperbolic isometry

We can identify several special elements within the diagram. In particular, the box

in the lower left is the identity element representing the factorization 1 ⋅w = w. Similarly,

the box in the upper right-hand corner is the element w representing the factorization

w ⋅1 = w. Reflection length can also be recovered from the diagram as an element’s length

corresponds to the number of steps its box is from the lower left-hand corner.

Beyond these particular elements, we can also identify several families of elements

within the diagram as well. The elements located in the upper left-hand corner are

hyperbolic isometries in the interval [1,w] with reflection length 2. We can recover these

elements by multiplying two reflections that fix parallel hyperplanes. Such a product

69

produces a pure translation tλ where the translation vector λ is an element of Mov(w).

Note that only some of the translations trλ are contained in the interval [1,w]. The other

two isometries of interest have reflection length 1. We start with the elements in the box

to the right of the identity. Since these elements have reflection length 1, we know they

are reflections. Moreover, being in the bottom row implies that these elements only move

points horizontally. We call these elements horizontal reflections and represent the set

of elements using RH . The box just above the identity contains reflections whose fixed

hyperplane is not invariant under vertical translation and therefore, move points some

vertically. We call these elements vertical reflections and represent the set of elements

with RV . Though the diagram in Figure 5.1 is visually appealing, ideally, the diagram

could be tipped slightly so that the the box containing 1 appears at the bottom of the

diagram, the box containing w is at the top, the boxes containing Rv and Rh appear at

a height of 1 and the box containing T will be at height 2.

5.3 Coxeter Elements

In this section, we use the structure of intervals in the Euclidean isometry group to

gain an understanding of intervals within Euclidean Coxeter groups. These intervals will

allow us to view Euclidean Artin groups as a nonstandard Garside group, or a subgroup

of one.

In what follows, we let W = Cox(X̃n) be an irreducible Coxeter group that acts

geometrically on an n-dimensional Euclidean space E with generating set S.

70

Definition 5.3.1. (Coxeter Elements) A Coxeter element w ∈W is a product of elements

in S. There are many Coxeter elements of a group W depending on the order of the

product. However, in the case where X̃n ≠ Ãn, all Coxeter elements belong to the same

conjugacy class and act on their corresponding tiling of the Euclidean plane, their Coxeter

complex, in the same way [McC15]. In the case of the Euclidean Coxeter groups of type

Ãn an ordering on the Coxeter diagram, which is a cycle, helps to identify the Coxeter

element of interest. For a given Coxeter element with a fixed factorization, you can

orient the edges of the Coxeter diagram based on which vertex of the edge appears first

in the factorization. Using this oriented Coxeter diagram, the conjugacy class of the

Coxeter element for the group of type Ãn is determined by how many edges point in the

clockwise direction and how many edges are pointed counterclockwise. The only Coxeter

element that has a lattice interval is the one whose oriented diagram has all edges but

one pointing in the same direction. Note that Cox(Ã2) has only one Coxeter element

up to conjugacy.

Definition 5.3.2. (The Coxeter Axis) Let w be a Coxeter element for the irreducible

Coxeter group W = Cox(X̃n). We know w is a hyperbolic isometry with reflection length

n + 1 measured in W . The min-set of w, Min(w) is a line in E called the Coxeter axis.

The top dimensional simplices whose interior nontrivially intersects the Coxeter axis are

called axial simplices and the vertices of these simplices are called axial vertices. In

Figure 5.2, we see that the Coxeter element of Cox(G̃2) is a glide reflection whose glide

axis is given by the dashed line. The axial vertices are the thickened, colored dots and

the axial simplices are heavily shaded.

71

Figure 5.2: The axial features of Cox(G̃2)

Definition 5.3.3. (Strips) We define a strip in the Coxeter complex of a Euclidean

Artin group W as the convex hull of the axial vertices. We refer to the union of all axial

simplices as the core of the strip. In Figure 5.2, the core of the strip is the heavily shaded

region whereas the strip is given by the union of the lightly shaded and the heavily shaded

regions.

In the interval [1,w], every edge is labeled by a reflection in W = Cox(X̃n) and the

product of elements in S that produces the Coxeter element w also produces a minimal

length path from v1 to vw in [1,w]. Therefore, the elements in this Coxeter interval [1,w]

will have a coarse structure like that defined in Definition 5.2.5. We should note that

only a proper subset of the reflections in W actually label edges in the interval [1,w].

72

The reflections that do appear as edge labels in the interval can be characterized by the

following theorem.

Theorem 5.3.4 (McCammond). Let w be a Coxeter element of an irreducible Euclidean

Coxeter group W = Cox(X̃n). A reflection labels an edge in the interval [1,w] if and

only if its fixed hyperplane contains an axial vertex.

From this characterization, we recover the coarse structure of the group by separat-

ing the vertical and horizontal reflections. In doing so, we actually see that there are

infinitely many vertical reflections and a finite number of horizontal reflections. The

course structure of the interval in Cox(G̃2) is given in Figure 5.3. In the top and bottom

rows of Figure 5.3, the numbers in the boxes correspond to the number of elements that

uphold the coarse structure of the group. In the middle row, the boxes containing 6

corresponds to the number of infinite families within the coarse structure of the group.

The next chapter provides a detailed analysis of the coarse structure of the interval in

Ã2 which is detailed in Figure 6.4.

Figure 5.3: The coarse structure for the G̃2 interval

73

5.4 Dual Artin Groups

The notion of dual Artin groups first appear for the braid groups thanks to Birman,

Ko, and Lee [Bir98]. Dual spherical Artin groups were studied by David Besis [Bes03]

and by Tom Brady and Colum Watt [BW02]. In what follows, we present dual Euclidean

Artin groups.

Definition 5.4.1. (Interval groups) Let G be a group with a fixed, symmetric generating

set and let [1, g] be an interval in G. The interval group Gg is generated by the labels

of edges in the interval [1, g] subject to the set of all relations that are visible in the

interval. The function from the generators of Gg to G extends to a group homomorphism

from Gg to G as well since the relations used to define Gg is a subset of the relations of

G. If the labels on the edges of the interval [1, g] include a generating set for G then this

map is onto.

Definition 5.4.2. (Dual Artin Groups) Let W = Cox(Γ) be a Coxeter group with a

Coxeter element w. The interval group Ww defined by the interval [1,w] is called the

dual Artin group and is denoted Art∗(Γ,w). Because these group presentations will

depend on a choice of Coxeter element, we include w in the notation representing the

dual Artin group.

Theorem 5.4.3 (McCammond-Sulway[MS17]). If W = Cox(X̃n) is an irreducible Eu-

clidean Coxeter group generated by its reflections, and w is a Coxeter element, then the

dual Artin group Ww = Art∗(X̃n,w) is isomorphic to Art(X̃n).

We mentioned previously that Digne provided a presentation for the dual Artin groups

of type Ãn and C̃n that was Garside so McCammond and Sulway’s theorem generalizes

74

this result. In particular, Digne uses an embedding of Art(Ãn) ↪ Art(Bn+1) to show

that Euclidean Artin groups of type Ãn have an infinite-type Garside structure. When

taking a closer looks at the Coxeter intervals, McCammond and John Crisp discovered

that groups of type Ãn, C̃n and G̃2 are actually the only groups whose Coxeter intervals

are lattice and therefore the only dual Artin groups whose Garside structures were al-

ready, fairly well understood. Turning our attention to the groups of type Ãn specifically,

we find that there is only one choice of Coxeter element that yields an interval that is a

lattice. In the following chapter, we take a closer look at Art(Ã2) and this interval with

this specific choice of Coxeter element.

75

Part II

A Specific Example: Art(Ã2)

76

In Part II of this text, we focus on the word problem for the Artin group of type Ã2.

We provide two solutions to the word problem for Art(Ã2). Starting with Chapter 6,

we take a closer look the generating set of the dual Artin group of type Art∗(Ã2,w).

In Chapter 7, we discuss the Garside structure of the dual Euclidean Artin group

Art∗(Ã2,w) and use that structure to provide an algorithm that solves the word prob-

lem for the monoid of type Art(Ã2) with respect to the dual generating set. Guided

by the dual solution, we then look to solve the word problem for Art(Ã2) with respect

to the standard generating set. In Chapter 8, we use the Hurwitz action translate the

dual generating set to the standard generating set of Art(Ã2). After translating these

dual generators, we use strips in the Coxeter complex of Ã2 and the dual algorithm to

produce a solution to the word problem with respect to the standard generating set.

77

6. The Dual Generating Set

For the remainder of this document, we focus on the Euclidean Artin group of type

Ã2. Recall that in general, the Artin groups of type Ãn have distinct dual presentations.

With a careful choice of Coxeter element, it is a Garside presentation and has a Garside

structure. For n = 2, there is only one conjugacy class of Coxeter element and therefore

only one dual presentation. It was first identified by Francois Digne. In what follows, we

provide an analysis of the dual generating set and solve the word problem for the dual

monoid of type Ã2.

6.1 The Coxeter complex and the Davis complex of Art(Ã2)

The standard presentation of Art(Ã2) is given by

⟨a, b, c ∣ aba = bab, bcb = cbc, aca = cac⟩.

We saw in Chapter 3 that the Coxeter complex of type Art(Ã2) is given by a tiling of

the Euclidean plane by equilateral triangles. The Davis complex for Cox(Ã2) is the dual,

hexagonal tiling of the Euclidean plane. Figure 6.1 shows both the triangular Coxeter

complex and the hexagonal Davis complex.

The elements of Cox(Ã2) are reflections about hyperplanes (lines) that can be seen

in the Coxeter complex. Though the generating elements of Art(Ã2) are not reflections,

the dual generating set is nicely visualized using the hyperplanes in the Coxeter complex

78

in the same way that the standard and dual generators of the braid group can be indexed

by permutations. In what follows, when we refer to reflections, we do so with respect

to Euclidean isometries that give rise to the dual generating set. These reflections are

discussed as elements of Art(Ã2) but the local picture is visualized as reflections about

hyperplanes in the Coxeter complex of Cox(Ã2).

Figure 6.1: A portion of the Coxeter complex and the Davis complex of Cox(Ã2)

Example 6.1.1. (The Coxeter Axis of Art(Ã2)) A portion of the Coxeter complex for

Cox(Ã2) is provided in Figure 6.2. A fundamental chamber of the Coxeter complex,

which we will denote τ , is shaded in green. The reflections fixing the sides of τ are given

by the standard generators a, b, and c and the image of τ after multiplication by the

Coxeter element w = abc, is the glide reflection up, along the Coxeter axis shaded in

pink. The fundamental chamber τ and our choice of Coxeter element w determines what

79

we call a Coxeter axis, which is represented by the vertical, dashed line in Figure 6.2.

The Coxeter axis intersects infinitely many, top-dimensional simplices. The simplices

through which the Coxeter axis passes are called axial simplices and the vertices of these

simplices are called axial vertices. In the case of an arbitrary Euclidean Artin group W ,

there is a discrete set of equally spaced points xi for i ∈ Z along the Coxeter axis that

are not contained in the interior of some top-dimensional simplex. In Figure 6.2, these

points are where the dotted gray Coxeter axis crosses the edge of the Coxeter complex.

We will focus instead on the linear ordering of the axial vertices which is described in

further detail in Section 6.2.

by

is
ya

dream

T
C T be T

Figure 6.2: The Coxeter complex of Cox(Ã2), a fundamental chamber, and the Coxeter axis

80

Definition 6.1.2. (Strips of Art(Ã2)) Recall that we defined both a strip and the core

of a strip in Definition 5.3.3. In the case of Art(Ã2), the strip and the core of the strip

coincide. In the case of a Euclidean Artin group W that is not of type A, the core of

the strip is a subcomplex of the strip like we saw in Figure 5.2. In general, we can orient

the strip so that traveling up the strip corresponds to traveling from the fundamental

chamber to the image of τ under w.

6.2 Dual Generators

We saw in Chapter 5 that the coarse structure for Art(Ã2) is generated by two types

of reflections. We also saw that the dual presentation is constructed is by looking at

the action of a Coxeter element w on the Coxeter complex. By using the factorizations

and labeling all of the reflections, we get the presentation for the dual Artin group

Art∗(Ã2,w).

We can describe all of the reflections in the dual Euclidean Artin group of type Ã2

that appear as left divisors of w = abc using the strip. The equilateral triangles along the

Coxeter axis are linearly ordered by where they hit the Coxeter axis. As such, there is

a linear ordering on the vertices with respect to the Coxeter axis as well. We start by

labeling the axial vertices by integer values see Figure 6.3. There is a canonical linear

ordering of the vertices of the fundamental chamber by height, and we take the 0−th

vertex to be the middle axial vertex of the fundamental chamber. Traveling up the strip,

each consecutive axial vertex will be labeled with a positive integer value with all even

vertices on one side of the strip, and all odd vertices on the other. We can label the

81

Figure 6.3: A strip in the Coxeter complex of type Ã2

axial vertices below the 0-th vertex analogously. In particular, a reflection is below (a

left divisor of) w if and only if it crosses through an axial vertex. With this, we begin

our analysis of the reflections in Art(Ã2).

Example 6.2.1. (Horizontal and Vertical Reflections) We can describe all of the left

divisors of w using the strip. In what follows, we use actions on the strip to distinguish

between our horizontal and vertical reflections.

82

Let `ev be the vertical line containing all even axial vertices, that is, the line on the

left-hand side of the strip. We take `od be the vertical line containing all odd axial

vertices, or equivalently, the line on the right-hand side of the strip. These lines are

highlighted in blue and green respectively in Figure 6.3. The image of the strip after

multiplying by a horizontal reflection intersects the strip in a line that contains all even

vertices or all odd vertices. The horizontal reflections of Art(Ã2) will be denoted reev

and reod. The horizontal reflection reev fixes the left side of the strip, `ev. The horizontal

reflection reod fixes the right side of the strip, `od.

Each of the vertical reflections occur in a hyperplane that intersects the i-th and

(i+ 1)-st vertices along the strip. These vertical reflections come in two infinite families.

we distinguish between the two using the notation re2j
2j−1 and re2k+1

2k where j, k ∈ Z. Using

the labeled vertices along the strip we see that the reflections re2j
2j−1 occur in negatively

sloped lines and the reflections re2k+1
2k occur in the positively sloped lines. For example, the

vertical reflection re3
2 fixes the line through the vertices labeled 2 and 3 and is highlighted

in orange in Figure 6.3.

After establishing our horizontal and vertical reflections, we describe the height 2

generators seen in the coarse structure of Art(Ã2).

Example 6.2.2. (Translations and Rotations) The coarse structure of Art∗(Ã2,w) con-

tains two translations, which we will denote trev and trod. The image of the strip under

the action of trev and trod will cross over the `ev and `od, respectively. For concreteness,

the product of reflections re3
2 ⋅ re1

0 is one factorization of trev. Using this factorization,

we see that trev translates vertex 1 to vertex 4 and will move the entire strip in similar

83

w

rout Casks2
trtr oder

rowtasksa

2kta
rent re rearcasksa od
2kt
re2k

e

Figure 6.4: The lattice for the dual generating set of Art(Ã2)

fashion. Similarly, re2
1 ⋅re0

−1 is one possible factorization of trod and this translation moves

vertex 0 to vertex 3.

The action of rok on the strip results in a rotation of the strip centered at the axial

vertex k. Hence, our rotations come in two infinite families, depending on what side of

the strip serves as a center of rotation. We denote these rotations with ro2n and ro2n+1

for some n ∈ Z. The rotations are obtained as products of two height 1 reflections and

can have all types of height 1 reflections as left divisors. In particular, the rotations ro2k

are
2π

3
counterclockwise rotations centered at the even vertex k. Rotations ro2k+ are

84

clockwise rotations centered at the odd vertex k. We elaborate more on this in Chapter

7.

Now that we’ve established all of the dual generators for Art∗(Ã2,w), we can see

how they all relate to one another in Figure 6.4. Notice the infinite families of vertical

reflections and rotations that appear on the lower left and upper right of Figure 6.4 and

in the “middle row” of the coarse structure in Figure 6.5. In addition, we see just two

horizontal reflections and two translations that appear in the lower right and upper left.

This dual generating set forms a lattice, revealing the Garside structure of the group that

will help in creating the dual solution to the word problem.

W

Str Sro

Q Sh

e

Figure 6.5: The general coarse structure of Art(Ã2)

Example 6.2.3. (Coarse Structure of Art∗(Ã2,w)) Given the descriptions of the dual

generators, we can now provide a more specific coarse structure for Art(Ã2) seen in

Figure 6.5. The infinite set of all vertical reflections rei+1
i will be denoted Sv and the

finite set containing the two horizontal reflections reev and reod will be denoted Sh. We

85

let S1 = Sv ∪ Sh represent all height 1 dual generators. For the height 2 dual generators,

we let Str be the set containing the two translations trev and trod and Sro will denote the

infinite family of rotations roi. We let S2 = Str ∪ Sro denote all height 2 dual generators.

The general coarse structure using this notation can be found in Figure 6.5.

86

7. A Dual Solution to the Word Problem

The dual Euclidean Artin group Art∗(Ã2,w) with the Coxeter element w = abc has

a Garside structure and we rely on that structure to produce a solution to the word

problem. We refer to this solution as a dual solution.

7.1 Descendants of Dual Generators

Recall that a key part of the algorithm for Garside groups relies on unique meets

and joins for every pair of generators. In spite of having infinitely many dual generators,

finding the meets and joins of every pair of generators does not become much more

difficult. We start by discussing the left divisors of each element within the coarse

structure of Art∗(Ã2,w).

We start by identifying all of the immediate descendants (left divisors) of the dual

generators, beginning with the height 1 elements which include all of our reflections.

Every reflection has only the identity as a descendant. On the other hand, the Coxeter

element w has every dual generator as a descendant.

Definition 7.1.1. (Parity) Given k ∈ Z, let k̄ denote the parity of k. Notationally, if k

is even, let k̄ = ev and if k is odd, let k̄ = od.

Lemma 7.1.2. (Descendants of Translations) The nontrivial descendants of trev include

trev and all vertical reflections of the form re2i+1
2i for all i ∈ Z. The nontrivial descendants

of trod include trod and vertical reflections of the form re2k
2k−1 for all k ∈ Z.

87

Proof. Geometrically, to produce a translation in a particular direction as a product of

two reflections, we must use reflections that move points in that direction. In this case,

each translation is achieved as the product of two, consecutive vertical reflections of the

same family. Using Definition 7.1.1, each translation can written in the following way:

trk̄ = rei+3
i+2 ⋅ rei+1

i , for all i ∈ Z such that ī = k̄. (7.1)

That is,

trev = re2i+1
2i ⋅ re2i−1

2i−2 and trod = re2i+2
2i+1 ⋅ re2i

2i−1

for any integer i. This gives all possible factorizations of trev and trod. Furthermore,

Equation 7.1 includes all of the nontrivial factorizations of length 2 of trev and trod given

the geometric constraints.

Hence, the nontrivial descendants of trev include reflections of the form re2i+1
2i for all

i ∈ Z. Similarly, the nontrivial descendants of trod are all reflections of the form re2i
2i−1,

i ∈ Z. We let Rtr denote the set of all factorization relations given by Equation 7.1.

Figure 7.1 shows just one such factorization of trev given by re1
0 ⋅ re−1

−2.

Remark 7.1.3. The factorizations given in this section are according to the left action

of the dual generators on the strip. For example, if we let τ represent the fundamental

chamber in a strip, then one possible factorization of trev is given by re1
0 ⋅ re−1

−2. We then

see that trev ↷ τ = (re1
0 ⋅ re−1

−2) ↷ τ according to Figure 7.1.

Lemma 7.1.4. (Descendants of Rotations) The nontrivial descendants of the rotation

rok are rek̄, re
k+1
k and rekk−1.

88

Figure 7.1: A factorization of trev

Proof. Recall that the rotations rok with k̄ = ev are
2π

3
counterclockwise rotations cen-

tered at the even vertex k. Rotations rok such that k̄ = od are
2π

3
clockwise rotations

centered at the odd vertex k. Geometrically, when writing rok as a product of two reflec-

tions, both reflections need to fix the unique point fixed by rok, the vertex k. Moreover,

each rotation is comprised of two reflections that differ by a
π

3
angle in the appropriate

order. This leads us to the following three, nontrivial factorizations for the rotation rok:

rok = rekk−1 ⋅ rek̄ = rek+1
k ⋅ rekk−1 = rek̄ ⋅ rek+1

k . (7.2)

Using Equation 7.2, we can see that each infinite family of rotations are factored as

follows.

ro2n = re2n
2n−1 ⋅ reev = re2n+1

2n ⋅ re2n
2n−1 = reev ⋅ re2n+1

2n

89

ro2n+1 = re2n+1
2n ⋅ reod = re2n+2

2n+1 ⋅ re2n+1
2n = reod ⋅ re2n+2

2n+1.

Because of the geometric constraints, we know that these are the only possible factoriza-

tions which in turn, provide the aforementioned descendants of the rotations rok.

From Lemma 7.1.4, we know the rotation rok will have as descendants the horizontal

reflection rek̄ along with any vertical reflection that contains the subscript or superscript

k (rek+1
k and rekk−1). We let Rro denote the set of all factorization relations given by

Equation 7.2.

With the above factorizations, we are now able to provide the dual presentation

for Art∗(Ã2,w). Recall the sets used to describe the coarse structure of the group

Art∗(Ã2,w) in Example 6.2.3 where S1 = Sv ∪Sh represents all height 1 dual generators

and S2 = Str ∪ Sro denotes all height 2 dual generators. We then have the following

group presentation for Art∗(Ã2,w) with infinitely many generators and infinitely many

relations.

Proposition 7.1.5. (Dual Presentation for Art∗(Ã2,w)) The dual presentation for the

dual Euclidean Artin group of type Ã2 is given by

Art∗(Ã2,w) = ⟨Sv, Sh, Str, Sro ∣ Rtr,Rro⟩

Proof. By [Bes03] and [MS17] the relations for group presentation come from the factor-

izations of the height 2 dual generators. In this case, that includes the two translations

and the two infinite families of rotations. By Lemma 7.1.2 and Lemma 7.1.4, the sets

Rtr and Rro include all of the desired factorizations.

90

7.2 Meets of Dual Generators

Because there are only six types of nontrivial elements that are left divisors of w, the

descendants given above will help determine the meets and joins of every pair of dual

generators. The computations of the meets of pairs of dual generators will generally fall

into four cases: (1) at least one generator is the identity or w, (2) both generators are in

S1, (3) one generator is in S1 and the other is in S2, and (4) both generators are in S2.

We consider each of these cases separately.

Lemma 7.2.1. (Meets of Elements with the Identity or w) Given an arbitrary dual

generator, x ∧w = x and x ∧ e = e.

Proof. Because the Coxeter element w has every element as a descendant, we know that

x ∧ w = x. On the other hand, the identity element e has only itself as a descendant.

Therefore, x ∧ e = e.

Lemma 7.2.2. (Meets of Elements in S1) Given distinct height 1 dual generators h1 and

h′1, h1 ∧ h′1 = e.

Proof. The elements h1, h′1 ∈ S1 have only themselves and the identity element as descen-

dants. Because these elements are distinct, what results is a trivial meet h1 ∧ h′1 = e.

Results of lemmas 7.2.1 and 7.2.2 are summarized in what follows.

91

for x ∈ S, e ∧ x = e, x ∈ S

for x ∈ S, x ∧w = x

for reī, rej̄ ∈ Sh, reī ∧ rej̄ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

reī, ī = j̄

e, ī ≠ j̄

for rei+1
i , rej+1

j ∈ Sv, rei+1
i ∧ rej+1

j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

rei+1
i , i = j

e, i ≠ j

for reī ∈ Sh, rej+1
j ∈ Sv, reī ∧ rej+1

j = e

.

Lemma 7.2.3. (Meets of generators in S1 and S2) The meet of a generator in S1 and a

generator in S2 is given by the following:

for reī ∈ Sh, trk̄ ∈ Str, reī ∧ trk̄ = e

for rei+1
i ∈ Sv, trk̄ ∈ Str, rei+1

i ∧ trk̄ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

rei+1
i , ī = k̄

e, ī ≠ k̄

for reī ∈ Sh, ro` ∈ Sro, reī ∧ ro` =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

reī, ī = ¯̀

e, ī ≠ j̄

for rei+1
i ∈ Sv, ro` ∈ Sro, rei+1

i ∧ ro` =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

rei+1
i , ` = i or ` = i + 1

e, otherwise

.

Proof. Given an element in S2, its descendants include itself, some reflections, and the

identity. Therefore, the meet of a generator in S2 and a generator in S1 is either going to

be trivial or the generator in S1 if and only if the chosen generator in S1 is a descendant

of the chosen generator in S2.

92

Lemma 7.2.4. (Meets of Two Generators in S2) The meet of two generators in S2 is

given by the following:

for trī, trj̄ ∈ Str, trī ∧ trj̄ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

trī, ī = j̄

e, ī ≠ j̄

for roi, roj ∈ Sro roi ∧ roj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

reev, i = j = ev

reod, i = j = od

reji , j = i + 1

reij, i = j + 1

roi, i = j

e, otherwise

for trī ∈ Str, roj ∈ Sro, trī ∧ roj =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

rej+1
j , i = j

rejj−1, i ≠ j

.

Proof. The meet of two dual generators in S2 is the most complicated case, and the

meets given in the statement can be seen using the geometry of the dual generators with

respect to the the strip in the Coxeter complex of type Ã2. We know that nontrivial

meets occur when the elements of S2 share a common descendant. We know that a

vertical reflection is a descendant of trev if and only if the slope of the line of reflection is

positive. Analogously, a vertical reflection is a descendant of trod if and only if the slope

of the line of reflection is negative. Lastly, a reflection is a descendant of a rotation if

and only if it fixes the point that is the center of rotation.

93

With this, we are able to conclude that trev and trod have only the identity as a

common descendant since the reflections that appear as descendants for the translations

will have different slopes respectively. Therefore, the meet of trev and trod is trivial.

In general, two distinct rotations will share a common descendant if and only if the

centers of the two rotations lie on a line in the 1-skeleton of the Coxeter complex. This

implies that two rotations from the same infinite family will have centers of rotation

that lie on the line of reflection for reev or reod and thus, for ī = j̄, roi ∧ roj = reī. If

the two rotations are not from the same infinite family, the centers of rotation must be

close enough to have a nontrivial meet. That is, if ī ≠ j̄, it must be that ∣i − j∣ = 1 for a

nontrivial meet of reji or reij to exist.

Given a translation trī and a rotation roj, there will always exist a nontrivial meet.

The translation has a family of vertical reflections, with a particular slope, as descen-

dants and the rotation indicates a particular point that must be fixed by one of those

descendants. Hence, the meet of a translation trī and a rotation roj is given by rej+1
j if

ī = j̄ and rejj−1 if ī ≠ j̄.

In what follows, we elaborate on the geometry discussed in the previous proof. In

Figure 7.2, the lines highlighted in orange represent the reflections that are descendants

of trev. Each red vertex in Figure 7.2 represents the center of the rotation ro2k. For each

of these rotations, there are three highlighted red lines representing the descendants of

ro2k which include two vertical reflections and one horizontal reflection. From this, we

see that a meet between trev and ro2k is nontrivial and equal to the vertical reflection

re2k
2k−1 and the red and orange lines will coincide on the line connecting axial vertices

94

thrown

mmmm

Figure 7.2: Descendants of trev and ro2k

2k − 1 and 2k. The meets of trod and the rotations centered on the odd axial vertices

behave similarly.

In Figure 7.3, each red vertex represents the center of the rotation ro2k for some k ∈ Z.

For each red vertex, we see three lines highlighted in red representing the descendants

of that rotation. The only common highlighted line shared by two distinct rotations is

the line of reflection representing reev. So we see that for k ≠ n ∈ Z, ro2k ∧ ro2n = reev.

Analogously, ro2k−1 ∧ ro2`−1 = reod. In Figure 7.4 we compare the descendants of two

rotations from distinct infinite families, ro2k and ro2`−1. Again for each rotation, we have

3 descendants highlighted at each vertex in red and blue respectively. From the image,

we see a nontrivial meet will occur at a vertical reflection about a line where the red and

blue lines coincide. This occurs only when the centers of these rotations share a line.

That is, when ∣2k − (2` − 1)∣ = 1.

95

thrown

mmmm

Figure 7.3: Descendants of two rotations from the
same infinite family

thrown

mmmm

Figure 7.4: Descendants of two rotations from
different infinite families

7.3 Pairs of Dual Generators in Normal Form

Taking advantage of the Garside structure of Art∗(Ã2,w), once the meets of the dual

generators are identified, we can proceed to put products of two generators into normal

form. We use the same rewriting process seen in Chapter 4 where the product a ⋅ b is

rewritten as a′ ⋅ b′ where a′ = [a ⋅ (rc(a) ∧ b)] and b′ = (rc(a) ∧ b)−1 ⋅ b. Though we have

infinitely many dual generators, computing the right and left complements is easily done

given the coarse structure of Art∗(Ã2,w). In particular, the right and left complements

for specific dual generators are given in Table 7.1.

The left and right complements of arbitrary vertical reflections and rotations will

change with their subscripts. Because it is a straight forward computation, we provide

the following lemma without proof.

96

Table 7.1: Right (x ⋅ rc(x) = w) and left (lc(x) ⋅ x = w) complements

x e reev reod ⋯ re4
3 re5

4 ⋯ trev trod ⋯ ro4 ro5 ⋯ w

lc(x) w trod trev ⋯ ro5 ro6 ⋯ reev reod ⋯ re6
5 re7

6 ⋯ e

rc(x) w trev trod ⋯ ro2 ro3 ⋯ reod reev ⋯ re3
2 re4

3 ⋯ e

Lemma 7.3.1. The left complements of vertical reflections and rotations are given by

lc(rei+1
i) = roi+2 and lc(rok) = rek+2

k+1. The right complements of vertical reflections and

rotations are given by rc(rei+1
i) = roi−1 and rc(rok) = rek−1

k−2.

Using the complements and the meets from Section 7.2, we provide the pairs of dual

generators whose product is rewritten when put in normal form. Because we have an

infinite generating set, a table containing all pairs in normal form could be organized in

the following way. Recall that S1 is the set containing all height 1 generators including

two horizontal reflections and two infinite families of vertical reflections. S2 is the set

containing all height 2 generators including two translations and two infinite families of

rotations.

Table 7.2: Organizing Dual Generators in Normal Form

S1 × S2 S1 × S1

S2 × S2 S2 × S1

Each of the four components of Table 7.2 can be broken up into four smaller parts: a

2 × 2 table, a 2 ×∞ table, an ∞× 2 table and an ∞×∞ table. We provide each of these

in what follows. For all of the tables that follow, a blank entry indicates a product of

dual generators that are already in normal form.

97

We start with Table 7.3 which puts generators from S2 × S1 in normal form. The

product of a height 2 element and a height 1 element will either update to w or it

is already in normal form. In particular, the height 1 element is must be the right

complement of the height 2 for an update to occur. We arrange this table so that the

column labels contain the complements of the elements listed in the row labels. Hence,

all updates occur on the diagonal and the final table is as follows.

Table 7.3: S2 × S1 Generators in Normal Form

x / y reev reod ⋯ re3
2 re2

1 re1
0 re0

−1 ⋯

trev w

trod w

⋮ ⋱

ro1 w

ro2 w

ro3 w

ro4 w

⋮ ⋱

Next we provide Table 7.4 which puts the product x ∣ y into normal form where

x, y ∈ S1. Because both generators are of height 1, the only updates that will occur are

those whose product represents a generator of height 2. We notice that the 2 × 2 part of

the table is already in normal form. In the 2 ×∞ and ∞× 2 parts of the table, we see

a zig-zag pattern of rotations rok. In the ∞×∞ part of Table 7.4, we have a diagonal

of rotations rok and a superdiagonal alternating translations trev and trod. The updates

in this table are as expected since certain products of height 1 dual generators are the

precise factorizations of the height 2 dual generators.

98

Table 7.4: S1 × S1 Generators in Normal Form

x / y reev reod ⋯ re2
1 re1

0 re0
−1 re−1

−2 ⋯

reev ⋯ ro0 ro−2 ⋯

reod ⋯ ro1 ro−1 ⋯

⋮ ⋮ ⋮ ⋱ ⋱

re3
2 ro3 ro2 trev

re2
1 ro2 ro1 trod

re1
0 ro1 ro0 trev

re0
−1 ro0 ro−1 ⋱

⋮ ⋮ ⋮ ⋱

In what follows we have Table 7.5 which puts the product x ∣ y into normal form

where x, y ∈ S2. Given the product of two height 2 generators, if there is an update,

it will be a new product where the first factor is w. Otherwise, the product will be in

normal form. In particular, we see that the 2 × 2 part of the table is already in normal

form. In the 2 ×∞ and ∞× 2 parts of the table, we see a zig-zag pattern of a product

of the form w ∣ rei+1
i . In the ∞×∞ part of Table 7.4, we have an alternating diagonal of

the product w ∣ reev and w ∣ reod and a superdiagonal of products of the form w ∣ rei+1
i .

The only table that remains is Table 7.6 which puts the product x ∣ y into normal

form where x ∈ S1 and y ∈ S2. This is the most complicated of tables because of the

variety of ways the products can update but the generalizations are still rather nice.

Because trod and trev are the right complements of reod and reev respectively, the 2 × 2

part of this table contains w along the diagonal. In the 2×∞ part of the table, we see a

zig-zag pattern of the form rok ∣ re¯̀ where k̄ ≠ ¯̀. In the ∞× 2 part of the table, we see

a similar pattern of the form tr¯̀ ∣ rei+1
i where ¯̀= ī. In the ∞×∞ part of Table 7.6, we

99

Table 7.5: S2 × S2 Generators in Normal Form

x / y trod trev ⋯ ro2 ro1 ro0 ro−1 ⋯

trod ⋯ w ∣ re3
2 w ∣ re1

0 ⋯

trev ⋯ w ∣ re2
1 w ∣ re0

−1 ⋯

⋮ ⋮ ⋮ ⋱ ⋱

ro3 w ∣ re0
−1 w ∣ reev w ∣ re1

0

ro2 w ∣ re−1
−2 w ∣ reod w ∣ re0

−1

ro1 w ∣ re−2
−3 w ∣ reev w ∣ re−1

−2

ro0 w ∣ re−3
−4 w ∣ reod ⋱

⋮ ⋮ ⋮ ⋱

have a diagonal of w, a subdiagonal of rok ∣ re¯̀ such that k̄ = ¯̀, and a super diagonal of

tr¯̀ ∣ rei+1
i such that ¯̀≠ ī.

Table 7.6: S1 × S2 Generators in Normal Form

x/rc(x) trod trev ⋯ ro6 ro5 ro4 ro3 ⋯

reod w ⋯ ro5 ∣ reev ro3 ∣ reev ⋯

reev w ⋯ ro4 ∣ reod ro2 ∣ reod ⋯

⋮ ⋮ ⋮ ⋱ ⋱

re8
7 trod ∣ re4

3 ⋱ w trod ∣ re5
4

re7
6 trev ∣ re3

2 ro6 ∣ reev w trev ∣ re4
3

re6
5 trod ∣ re2

1 ro5 ∣ reod w trod ∣ re3
2

re5
4 trev ∣ re1

0 ro4 ∣ reev w ⋱

⋮ ⋮ ⋮ ⋱ ⋱

With Tables 7.6, 7.4, 7.5, and 7.3, we can put an arbitrary positive word in the dual

generating set into normal form.

100

7.4 The Dual Algorithm

To put an arbitrary word, with respect to the dual generating set into normal form,

we use the following three steps. Consider the arbitrary word given by, u1 ∣ u2 ∣ ⋯ ∣ un.

Step one requires us to first identify which of the ui represent inverses of dual generators.

Suppose, for example, that every other letter represents an inverse of a dual generator.

Then, the word could be rewritten as

u1 ∣ u−1
2 ∣ u3 ∣ u−1

4 ∣ ⋯ ∣ un.

Using Remark 4.4.6, we rewrite each of the inverses, u−1 as w−1 ∣ lc(u). After step one,

the word is then given by

u1 ∣ w−1 ∣ lc(u2) ∣ u3 ∣ w−1 ∣ lc(u4) ∣ ⋯ ∣ un.

The next step of the algorithm is to use conjugation by w to pull the w−1’s to the front

of the word. In particular, a subword of the form u ∣ w−1 is rewritten as w−1 ∣ v where

v = wuw−1 and v is positive. After step two, the word is now of the form

wk ∣ v1 ∣ v1 ∣ ⋯ ∣ vn

where each vi is a proper, nontrivial factor of w and k is a nonpositive integer. For

simplicity, we have removed the bars between the w−1’s at the beginning. In step three,

we put the positive word given by v1 ∣ v2 ∣ ⋯vn into normal form using Tables 7.3 through

101

7.6. This will pull positive powers of w to the left. The result is a word of the form

wk+` ∣ v′1 ∣ v′2 ∣ ⋯ ∣ v′n

where ` is a nonnegative integer. We determine that the word is trivial if and only if

k + ` = 0 and each v′i is the identity.

102

8. From Dual Generators to Standard Generators

The purpose of this Chapter is to convert the normal form for Art∗(Ã2,w) into a

normal form for Art(Ã2). The normal form provided for Art∗(Ã2,w) in Chapter 7

makes use of the dual presentation which has an infinite generating set. To proceed

with finding an algorithm for the standard generating set of Art(Ã2), using the dual

algorithm, we translate the dual generators to read as words in the classical generating

set.

8.1 The Hurwitz Action on the Dual Generating Set

The standard generating set appears in the dual generating set as a = re1
0, b = reod,

and c = re0
−1. We also know that the Coxeter element w can be factored as abc in the

standard generating set. As in Chapter 7, we use vertical bars to distinguish various

factorizations. For example, w is given by a ∣ b ∣ c and therefore re1
0 ∣ reod ∣ re0

−1 with

respect to the dual generating set. We now seek to find a canonical form for the rest

of the dual generators in terms of the standard generators. We can apply the Hurwitz

action to the initial factorization of w in terms of the dual generators to begin translating

the rest of the dual generating set.

Definition 8.1.1. (Hurwitz Action) Let G be a group and S a subset of G that is closed

under conjugation. Let Sn denote all words of length n made up of elements of S. There

is a natural action of Braidn on Sn where the braid generator σi replaces the two-letter

103

subword xy in the i-th and (i + 1)-st positions of the word with the subword zx where

z = xyx−1 ∈ S and leaves all other positions unchanged. In other words, applying σi to

the factorization

⋯ ∣ x ∣ y ∣ ⋯

where x is the i-th factor and y is the (i + 1)-st factor results in the new factorization

where the i-th and (i + 1)-st factors are now given by

⋯ ∣ xyx−1 ∣ x ∣ ⋯.

It is straight forward to check that the standard relations for the braid group are satisfied.

We call this the Hurwitz action of the k-strand braid group. Notice that every word in

the same orbit under this action evaluates to the same element of the group G. This

gives us a well-defined Hurwitz action of the k-strand braid group on the minimal positive

factorizations on an element w where k = d(1,w).

Remark 8.1.2. (The Hurwitz Action is Transitive) The Hurwitz action on factorizations

of a particular element g in a group G lead to relations that can be seen in the interval

[1, g]. When the Hurwitz action is transitive on factorizations, these relations are suffi-

cient to define the interval group Gg (see Definition 5.4.1). In 2014, Baumeister, Dyer,

Stump and Wegener proved transitivity of the Hurwitz action for all Coxeter groups in

complete generality [BDSW14]. McCammond and Sulway use this to show that dual

Euclidean Artin groups are in fact isomorphic to Euclidean Artin groups in [MS17].

104

By applying the Hurwitz action of the 3-strand braid group to the factorization w =

re1
0 ∣ reod ∣ re0

−1, we can determine all possible factorizations of w with respect to the dual

generating set.

Proposition 8.1.3. (Dual Factorization of w) Every factorization of w over the dual

generating set is given by one of the following for some n ∈ Z:

w = re2n+1
2n ∣ re2n−1

2n−2 ∣ reod

= re2n+2
2n+1 ∣ re2n

2n−1 ∣ reev

= re2n
2n−1 ∣ re2n−1

2n−2 ∣ re2n−2
2n−3

= re2n
2n−1 ∣ reev ∣ re2n−1

2n−2

= re2n+1
2n ∣ re2n

2n−1 ∣ re2n−1
2n−2

= re2n+1
2n ∣ reod ∣ re2n

2n−1

= reev ∣ re2n+1
2n ∣ re2n−1

2n−2

= reod ∣ re2n+2
2n+1 ∣ re2n

2n−1

Proof. Straightforward computations reveal that the above products are indeed factor-

izations of w. We recall from Remark 8.1.2 that the Hurwitz action is transitive. Fur-

thermore, the list of factorizations given above is closed under the Hurwitz action. That

is, applying the Hurwitz action to any one of the factorizations given above will result in

one of the other given factorizations.

Each of the factorizations of w can be found in Figure 8.1. Starting at a particular

factorization, we can arrive at another factorization by applying either σ1 or σ2 which

is denoted by a single arrow or double arrow respectively. Crossing over the red dashed

105

lines will change the particular factorization by either adding 1 to or subtracting 1 from

the subscript n.

an2
T

reentre rein rein re read

reintreate

readrest reinregitreinitreen

re re ve a

Figure 8.1: Factorizations of w

The Hurwitz action on w = re1
0 ∣ reod ∣ re0

−1 over the dual generating set gives infinitely

many factorizations of w that can be represented by the vertices of the image on the left

of Figure 8.2. Because this image is periodic with respect to the four, colored triangles, so

too are the general factorizations of w in the dual generating set. The particular Hurwitz

action and some of the factorizations are given in the image on the right of Figure 8.2.

106

q

re t re I re

real re l re
re Ireal re
re I re tree
re I re t re
read re I re

re lreal re
re re reod

re t re l re

Figure 8.2: Graph of the Hurwitz action on factorizations of w

8.2 The Hurwitz Action on the Standard Generating Set

We now wish to apply the Hurwitz action on w = a ∣ b ∣ c. In this case, an application

of the Hurwitz action will result in new factors that are words in the standard generating

set.

Example 8.2.1. For a concrete example, we apply σ1 ∈ Braid3 to the factorization

w = a ∣ b ∣ c. This results in the new factorization w = aba−1 ∣ a ∣ c. The elements a and c

can be directly translated to the dual generators re1
0 and re0

−1 respectively. This implies

107

that the element aba−1 represents a dual generator whose right complement is equal to

the product re1
0 ⋅ re0

−1 = ro0. Using Table 7.1, we conclude that aba−1 = re−1
−2.

Remark 8.2.2. (Notation for Inverses) In Section 8.2, we write each dual generator in

terms of the standard generating set. To distinguish between inverses of the standard

generators and the superscripts and subscripts used in the dual generators, we let A

denote the inverse of the the standard generator a. Similarly, B and C will denote the

inverses of the standard generators b and c. Hence, the dual generator re−1
−2 from Example

8.2.1 can be written as abA in the standard generating set.

By repetitively applying the Hurwitz action to the factorization w = a ∣ b ∣ c, we

can now translate each dual generator into words with respect to the standard generat-

ing set. The function given in Listing 8.1 performs the Hurwitz action on a particular

factorization. We also refer to this action as a twist.

Listing 8.1: The Hurwitz Action function

def twist(tuple ,n):

if n == 1:

newtuple1 = (tuple [0]* tuple [1]* tuple [0]^-1, tuple [0],tuple [2])

return(newtuple1)

elif n == 2:

newtuple2 = (tuple [0],tuple [1]* tuple [2]* tuple [1]^-1, tuple [1])

return(newtuple2)

elif n == -1:

108

newtuplem1 = (tuple [1],tuple [1]^ -1* tuple [0]* tuple [1],tuple

[2])

return(newtuplem1)

elif n == -2:

newtuplem2 = (tuple [0],tuple [2],tuple [2]^ -1* tuple [1]* tuple

[2])

return(newtuplem2)

To apply a sequence of twists to a particular factorization of w, we can use the function

in Listing 8.2 where the sequence of twists should be given as a list of integers where the

integer i represents the action of σi on the factorization.

Listing 8.2: Sequence of twists function

def twistsequence(tuple , listofns):

newtuple = tuple

print newtuple

for i in range(0,len(listofns)):

newtuple = twist(newtuple , listofns[i])

print(newtuple , i+1)

return(newtuple)

Though the functions given will help to quickly write dual generators in terms of

standard generators, Figure 8.2 can help us to quickly transcribe the dual generators as

well. Let x represent an arbitrary dual generator. We can locate a particular factorization

x ∣ y ∣ z in Figure 8.2 that includes x as a factor. There is a path in the Hurwitz graph

109

beginning at the factorization w = re1
0 ∣ reod ∣ re0

−1 and ending at the factorization x ∣ y ∣ z.

The edges of that path represents a sequence of twists to apply to the factorization w =

a ∣ b ∣ c and what results are three new factors that are words in the standard generating

set that represent the dual generators x, y, and z respectively. Though different paths

produce different words, the words represent equivalent elements. Once we have a word

representing a particular element, we choose representatives that fit into nice patterns.

Figure 8.3: Translating horizontal reflections via paths in the Coxeter complex

In what follows, we transcribe every dual generator into words with respect to the

standard generating set. We mention that there are a number of equivalent ways to

transcribe these elements and the particular transcription that you see below was chosen

for several reasons. We note that the chosen word does not always minimize the length of

110

the word. However, the transcriptions of the dual generators do have a special relationship

upon conjugation by w.

We start by transcribing the horizontal reflections. We know that reod = b so what

remains is a translation of reev. The word of shortest length representing reev is given

by reev = acA = Cac. These transcriptions can also be done about the strip in the

Coxeter complex of type Ã2, see Figure 8.3. The colors in the paths represent each of

the standard generators and a highlighted path represents the inverse of that particular

generator. By traveling up the strip, crossing the even axis and then traveling back down

to the image of reev ↷ τ , we yield infinitely many transcriptions for both of our horizontal

reflections. For example, according to Figure 8.3, the shortest path leads to the word

acA representing reev whereas the longer path indicates the word abcbCBA could also

represent reev.

Remark 8.2.3. (Horizontal reflections and conjugation by W) Suppose reod = b and

reev = acA. Upon conjugation by W , we can use the standard relation cbC = Bcb of

Art(Ã2) to see that

bW = wbW = (abc)b(CBA) = ab(Bcb)BA = a(bB)c(bB)A = acA = reev.

Hence, conjugation of a representative of a horizontal reflection by W results in a word

representing the other horizontal reflection. Furthermore, conjugating reev = Cac by W 2

results in the following

wabc(Cac)CBAW = wa(baB)AW = waAbaAW = ab(cbC)BA = abBcbBA = acA = Cac.

111

This indicates the the horizontal reflections each commute with W 2.

To transcribe the vertical reflections, we apply a series of twists with the function in

Listing 8.2 to the factorization w = a ∣ b ∣ c and using Table 7.1, we get the following:

Table 8.1: Transcribing vertical reflections

⋮ ⋮

re9
8 (abc)3c(CBA)3

re7
6 (abc)2a(CBA)2

re5
4 (abc)abA(CBA)

re3
2 (abc)c(CBA)

re1
0 a

re−1
−2 (CBA)abA(abc)

re−3
−4 (CBA)c(abc)

re−5
−6 (CBA)2a(abc)2

re−7
−8 (CBA)3abA(abc)3

⋮ ⋮

⋮ ⋮

re8
7 (abc)2abA(CBA)2

re6
5 (abc)2c(CBA)2

re4
3 (abc)a(CBA)

re2
1 abA

re0
−1 c

re−2
−3 (CBA)a(abc)

re−4
−5 (CBA)2abA(abc)2

re−6
−7 (CBA)2c(abc)2

re−8
−9 (CBA)3a(abc)3

⋮ ⋮

We mentioned previously that the chosen representatives for each dual generator did

not minimize the length of the word. For example, the dual generator re3
2 is given by

(abc)c(CBA) which can be simplified to abcBA. However, the general patterns with

respect to conjugation by abc would be harder to observe should we choose the reduced

word to represent the dual generators. We remark more on this following Proposition

8.2.5. Notice that conjugation by w increases or decreases the subscripts of vertical

reflections by 3. Hence, every vertical reflection will be a conjugate of the standard

representatives that we chose for re0
−1, re1

0 and re2
1.

112

Remark 8.2.4. (Conjugating vertical reflections by w) Within each infinite family, every

third vertical reflection is achieved by conjugation by w2. For concreteness, notice the

following closed forms for every third element that includes the element re1
0:

⋯ → re−5
−6 → re1

0 → re7
6 → ⋯

⋯ → (CBA)2a(abc)2 → a → (abc)2a(CBA)2 → ⋯

We also observe that we can move between the two infinite families, by conjugating

by w. For example, conjugating re1
0 = a by w yields the generator re−2

−3 = (CBA)a(abc).

These relationships are observed within both infinite families of the vertical reflections

and rotations which we will see below.

Table 8.2: Transcribing rotations

⋮ ⋮

ro6 (abc)2ac(CBA)2

ro4 (abc)ab(CBA)

ro2 (abc)bc(CBA)

ro0 ac

ro−2 (CBA)ab(abc)

ro−4 (CBA)bc(abc)

ro−6 (CBA)2ac(abc)2

⋮ ⋮

⋮ ⋮

ro7 (abc)2ab(CBA)2

ro5 (abc)2bc(CBA)2

ro3 (abc)ac(CBA)

ro1 ab

ro−1 bc

ro−3 (CBA)ac(abc)

ro−5 (CBA)2ab(abc)2

⋮ ⋮

Since all of the height 2 elements of Art(Ã2) can be recovered by taking products

of the height 1 elements, we use the tables above to generate the closed forms for the

translations as well. Recall that the product of any two consecutive vertical reflections

from an infinite family results in a translation. Using Table 8.1 we see that trev and trod

113

are given by

trev = re3
2 ⋅ re1

0 = (abc)c(CBA) ⋅ a = abcB = wB,

trod = re2
1 ⋅ re0

−1 = abA ⋅ c = Babc = Bw.

We note that these are not the only words in the standard generators that represent

the translations. In particular, any other factorization would yield words that are w2

conjugates of the ones given above. Similar to the remark made earlier regarding the

horizontal reflections, we note here that conjugating trev by w results in trod since

trwev =W (wB)w = Bw = trod.

After transcribing each dual generator, we conclude with a proposition that describes

all possible representatives of dual generators in the standard generating set. Because

all dual generators can be written with respect to the words in Proposition 8.2.5 in the

standard generating set, so too can their inverses.

Proposition 8.2.5. (Dual generators as words in the standard generating set) Let w =

abc and W = CBA. All of the dual generators can be represented by one of the follow-

ing words in the standard generating set. Variations of representatives for horizontal

reflections and translations may occur as W 2 and w2 conjugates respectively.

114

reev = acA

reod = b

re−3k
−3k−1 = cw

k

re−3k+1
−3k = aw

k

re−3k+2
−3k+1 = (abA)wk

trev = wB

trod = Bw

ro−3k−1 = (bc)wk

ro−3k = (ac)wk

ro−3k+1 = (ab)wk

Again we note that these representatives could be simplified. For example, consider

the generators of the form re−3k+1
−3k = awk

. For positive values of k, we see that

aw
k = (CBA)ka(abc)k = (CBA)k−1CBabc(abc)k−1.

We see a very minimal amount of cancellation of just a single pair of letters and only

when k is positive. For this reason, we reinforce the choice of using unreduced words to

represent the dual generators.

115

9. A New, Standard Solution to the Word Problem

In Chapter 7, we saw that we can discuss the dual algorithm algebraically in terms of

the infinite generating set. In Chapter 8, we saw that each of these dual generators can

be written as one of a finite set of representatives conjugated by w to some power. With

this, we describe all of the update rules in Table 7.2 in terms of the standard generators

in Section 9.1. We conclude this chapter using strips in the Coxeter complex to see the

updates described in standard version of the dual algorithm.

9.1 A Standard, Positive Normal Form

Chapter 8 allows us to translate the dual algorithm in the dual generators to an

algorithm using the standard generators. As soon as we translate the update rules, we

can put every positive word with respect to the standard generating set into normal form.

In what follows, we do just that.

We start by providing four tables similar to those given in Chapter 7 which gives the

same update rules as the dual algorithm but now in terms of the standard generating

set. For clarity, we let w = abc and W = w−1 = CBA. We note that a direct transcription

may need to be simplified using the standard relations but the results do indeed match

those found in Table 7.2.

We see similar patterns emerge as we put words in the standard generating set rep-

resenting dual generators in normal form. We see the patterns emerge in the tables in

terms of conjugation by powers of w.

116

The table putting transcribed generators from S2 × S1 in normal form is identical

to that of Table 7.3 with the exception that the row and column labels contain the

transcribed dual generators, so we omit that transcription here. We begin with Table 9.1

which puts transcribed generators from S1 × S1 in normal form. We see that the 2 ×∞

and the ∞× 2 parts of the table contain conjugates of ab, ac and bc. In the ∞×∞ part

of the table, the diagonal consists of conjugates of ab, bc, and ac and the superdiagonal

alternates between wB and Bw.

Table 9.1: S1 × S1 Generators in Normal Form

x / y acA b ⋯ abA a c WabAw ⋯

acA ⋯ ac Wabw ⋯

b ⋯ ab bc ⋯

⋮ ⋮ ⋮ ⋱ ⋱

wcW wacW wbcW wB

abA wbcW ab Bw

a ab ac wB

c ac bc ⋱

⋮ ⋮ ⋮ ⋱

Table 9.2 contains transcribed products of dual generators of S2 into normal form.

The 2 ×∞ and the ∞× 2 parts of this table contains a product of w and conjugates of

a, c and abA by powers of w. In the ∞ ×∞ part of the table, the diagonal consists of

alternating products of w ∣ b and w ∣ acA. The super diagonal consists of products of w’s

and conjugates of a, c, and abA.

Last, we provide a table of transcribed generators from S1 × S2 in normal form. In

Table 9.3 we still see a diagonal of w since we’ve arranged for the right complements of

117

Table 9.2: S2 × S2 Generators in Normal Form

x / y Bw wB ⋯ wbcW ab ac bc ⋯

Bw ⋯ w ∣ wcW w ∣ a ⋯

wB ⋯ w ∣ abA w ∣ c ⋯

⋮ ⋮ ⋮ ⋱ ⋱

wacW w ∣ c w ∣ acA w ∣ a

wbcW w ∣WabAw w ∣ b w ∣ c

ab w ∣Waw w ∣ acA w ∣WabAw

ac w ∣Wcw w ∣ b ⋱

⋮ ⋮ ⋮ ⋱

the rows to appear as columns. In the 2×∞ portion of the table, we see products of the

conjugates of ab, ac and bc with either acA or b. In the ∞×2 portion of the table, we see

products of Bw or wB with conjugates of a, abA and c. In the ∞×∞ part of the table,

the superdiagonal consists of products of either Bw or wB with conjugates of a, c and

abA by powers of w. The subdiagonal consists of products of conjugates of ac, ab, and ac

with either acA or b.

118

T
a
b
le

9
.3
:
S
1
×
S
2

G
en

er
a
to

rs
in

N
o
rm

a
l

F
o
rm

x
/r
c(
x
)

B
w

w
B

⋯
w

2
a
cW

2
w

2
bc
W

2
w
a
bW

w
a
cW

⋯

b
w

⋯
w

2
bc
W

2
∣a
cA

w
a
cW

∣a
cA

⋯

a
cA

w
⋯

w
a
bW

∣b
w
bc
W

∣b
⋯

⋮
⋮

⋮
⋱

⋱

w
2
a
bA
W

2
B
w

∣w
a
W

⋱
w

B
w

∣w
a
bA
W

w
2
a
W

2
w
B

∣w
cW

w
2
a
cW

2
∣a
cA

w
w
B

∣w
a
W

w
2
cW

2
B
w

∣a
bA

w
2
bc
W

2
∣b

w
B
w

∣w
cW

w
a
bA
W

w
B

∣a
w
a
bW

∣a
cA

w
⋱

⋮
⋮

⋮
⋱

⋱

119

We recognize that Tables 9.1 through 9.3 contain entries that could be simplified by

removing the bars that distinguish the factorizations. However, doing so would make it

harder to recognize what dual normal form it came from. Distinct normal forms have

distinct reductions so there is no harm in leaving words in unreduced normal form.

9.2 A Standard Normal Form

We proceed with a discussion of how to put an arbitrary word in the standard gener-

ating set into normal form. As in Chapter 7, we put words into normal form using three

steps but given a word in the standard generating set, we require an additional, initial

step.

Suppose we are given an arbitrary word u written in the standard generating set of

Art(Ã2). Our goal is to determine whether or not this word represents the identity.

To do so, we proceed as follows. The first step is to breaking the word u into subwords

u1 ∣ u2 ∣ ⋯ ∣ un where each ui represents a dual generator or the inverse of a dual generator.

Concretely, we break the word into letters since each letter in an arbitrary word in the

standard generating set represents the dual generators re1
0, reod, re0

−1 or their inverses.

Once we have subwords that represent dual generators we can follow the steps outlined

in Section 7.4. Step two would be to replace each of the letters that represent inverses of

dual generators using the fact that u−1 = w−1 ∣ lc(u) being sure to use Proposition 8.2.5

to describe the left complements. In step three, we use conjugation by w to rewrite the

word in the form

wk ∣ v1 ∣ v1 ∣ ⋯ ∣ vn

120

where k is a nonpositive integer and each vi is a subword in the standard generating set

representing a dual generator. In step four, we proceed to put the subword given by

v1 ∣ v1 ∣ ⋯ ∣ vn into normal form using Section 9.1. Upon concatenating this subword with

the nonpositive powers of w, cancellation will again occur about the powers of w and

what results is a word in the standard generating set that is in normal form.

9.3 Standard Actions on Fundamental Chambers

The dual Garside structure for the Artin group of type Ã2 was constructed from the

action of the Coxeter group Cox(Ã2) on its Coxeter complex. This gives us the Garside

structure for Art∗(Ã2,w) that we used to describe the dual algorithm in Chapter 7.

Geometrically, we can see how the algorithm works using actions of dual generators on

strips or standard generator paths in the Coxeter complex.

The normal forms described in Chapter 7 and Section 9.2 can be represented by

paths in the universal cover of the Salvetti complex S̃alv. We can recognize whether

something is in normal form in S̃alv by looking at the image of the paths in the pure

Salvetti complex PSalv. We can also do this schematically by observing how strips move

around in the Coxeter complex Cox.

With the standard generators, paths can be realized using the Davis complex, which

is dual to the Coxeter complex, given by the hexagonal tiling of the Euclidean plane.

The reader should keep in mind that because these paths are really in the pure Salvetti

complex, each of the edges in the hexagonal tiling (see Figure 6.1) is actually a pair

of oriented edges, and each hexagon is really 6 oriented hexagons. We take care to

121

differentiate between an edge representing a standard generator or its inverse as we

proceed.

S̃alv

××Ö quotient by the pure Artin group

PSalv

××Ö quotient that removes orientations

Cox
dual←Ð→ Davis

Example 9.3.1. We start by considering an arbitrary product of dual generators abc

and its action on the fundamental chamber τ . The action (abc).τ can be rewritten as

(abcBA).(abA).(a.τ). The action of (abc).τ is what we call a simple generator description

of the action. Rewriting this action as (abcBA).(abA).(a.τ), that is, the action of a

followed by a conjugate of b, followed by a conjugate of c is what we call a path description.

In particular, the action of abA on a.τ is really what the b reflection looks like after being

acted on by a and this corresponds to flipping across the blue edge in Figure 9.1. Similarly,

abcBA is what c looks like after being acted on by ab which corresponds to flipping across

the green edge in Figure 9.1.

We see that the action of abc on τ from right to left results in reflecting about the sides

of the fundamental chamber given by the images c.τ , (bc).τ , and (abc).τ . After rewriting

the action using conjugation, acting from left to right allows us to view the action on

each updated fundamental chamber given by the images a.τ , (abA).(a.τ), and ending

with (abcBA).(abA).(a.τ) which is equivalent to (abc).τ . This gives us a local notion of a

fundamental chamber. In general, multiplying right to left can be viewed as compositions

122

of the functions that are reflections in the sides of the fundamental chamber. On the

other hand, acting from left to right with implicit conjugations allows us to reinterpret

the action as a path through each new fundamental chamber.

In fact, every word in the standard generating set can be rewritten so that the action

of the word on the fundamental chamber reveals a path in the Coxeter complex using

the above rewriting process via conjugation.

NEW

abc T

abA a T

a T

t

C T Cbc T

Figure 9.1: Simple generator descriptions and path descriptions

Remark 9.3.2. The reason we distinguish between the generator description and the

path description is as follows. In ordinary Coxeter groups, a path has a reduction if there

is a pair of simples that can be removed from the word. Algebraically, this may look

123

strange but geometrically, the reduction corresponds to a path that crosses a hyperplane

twice. Moreover, with the generator description, a more complicated action could move

the fundamental chamber in abrupt ways throughout the Coxeter complex where the

sequence of images of the chambers from the action may not be anywhere near each

other. However, with the path description, the action is a local one where each subsequent

image in the action will result in a new fundamental chamber that shares a facet with

the previous fundamental chamber. With this, we can use this local picture to determine

when words are in normal form.

9.4 Dual Actions on Strips

There is a similar way of looking at dual generators acting on strips. We start with

the simple example with the action of the product re5
4re

1
0 on the strip. The pink strip

in Figure 9.2 contains the fundamental chamber τ and is the strip we’ll be acting on.

Starting with the right to left action, the pink strip gets moved to the orange strip and

the fundamental chamber τ gets moved to its image re1
0.τ . We then act on the orange

strip by the reflection re5
4, which is a reflection about the line containing the vertices 4

and 5 in the pink strip. This takes the orange strip to the blue strip in Figure 9.2 with

the image of τ under this action indicated by the label re5
4.(re1

0.τ).

On the other hand, acting from left to right using conjugation presents the equivalent

action of (re5
4re

1
0(re5

4)−1).(re5
4.τ). In this case, this pink strip will move to the yellow

strip with τ moving to the image re5
4.τ . Moving the yellow strip to the blue strip can be

done by performing the reflection re1
0 within the yellow strip (i.e. the reflection about the

124

Figure 9.2: Right to left versus left to right actions of dual generators on strips

line containing the vertices re5
4.v0 and re5

4.v1 in the yellow strip where v0 and v1 represent

the vertices 0 and 1 within the pink strip, respectively). Again, the rewritten left to right

action allows us to perform each subsequent action locally, using only the yellow strip

to proceed rather than using the reflections with respect to the pink strip.

With these geometric conventions, we can see the dual algorithm in dual generators

and the dual algorithm in the standard algorithms using actions on based strips and

their fundamental chambers using the right to left action. According to the dual algo-

rithm, putting the product re3
2 ∣ ro0 into normal form yields the new product trev ∣ re0

−1.

Geometrically, the product being updated so that it is in normal form can be viewed

125

as updating a sequence of three strips in the Coxeter complex; the first strip being the

initial pink strip we start with, the second strip being the image of the pink strip under

re3
2 which is then updated to the image of the pink strip under trev, and the third strip

given by the blue strip achieved by an action of a conjugate of either ro0 or re0
−1. We can

see this explicitly in Figure 9.3. The right to left action of the product re3
2 ∣ ro0 takes the

pink strip, to the orange strip (by re3
2), to the blue strip (by a conjugate of ro0). The

action given by the updated product trev ∣ re0
−1 takes the pink strip to the yellow strip

(by trev), followed by taking the yellow strip to the blue strip (by a conjugate of re0
−1).

We see that the reflection given by the orange strip is updated to a translation given by

the yellow strip which corresponds to what we’d expect algebraically.

With respect to the standard algorithm, wcW ∣ ac gets updated to wB ∣ c. We can

view this update using paths within these strips. Consider first, wcW ∣ ac. In Figure 9.3,

the first path, given by wcW (which is equivalent to abcBA) would take the black vertex

to the brown vertex. Then (the local version of) ac would take the brown vertex to the

black vertex. Updating the product to wB ∣ c first takes the black vertex to the purple

vertex via the path given by wB. The purple vertex then moves to the black vertex via

the path indicated by c. We see the initial path cross over a hyperplane twice whereas

the updated path, given by the standard normal form of the original product, does not.

We note that there is an oriented blue edge and green edge along the path that crosses

the same hyperplane (that of the line containing the pink vertices 1 and 2) at different

points in the path but this is not one of interest in the path simplification.

126

Figure 9.3: The dual algorithm as strips and the standard algorithm as paths

Remark 9.4.1. (A geometric algorithm) Algebraically, our algorithms determine how

to put all positive products into normal form. By updating triples of strips, the same

can be done geometrically so that all of the algebraic updates can be visualized. In

particular, because each strip is invariant under conjugation by w, there are finitely

many ways that our strips can move (i.e. a reflection about the sides of the strip, a

reflection about a diagonal crossing through the strip, a rotation about a vertex on the

strip, or a translation). In the same way that each of the quadrants in Tables 7.3 through

127

7.6 had general updates, so will the triple of strips that describe the products in each of

the quadrants. In cases where two elements of height one combine to form an element of

height two, the middle strip may vanish. In the case of the example given by Figure 9.3,

we see the orange strip updated to the yellow strip. In this sense, one could transcribe

the tables of updates given in Section 7.3 so that they read as updates of triples of strips

instead of updates of a product of two generators.

128

10. Future Work

This final chapter discusses some of the natural directions for future research regarding

the word problem for Euclidean Artin groups. In particular, the work discussed in this

chapter will make use of the known Garside structures for these groups.

We start by noting that in Chapter 9, the standard solution relies on recognizing

whether or not a subword in the standard generating set represents a dual generator.

We recall that some our dual generators have multiple representations and the ones

that we chose depend on conjugation by wk. Because recognizing a word in the standard

generating set also depends on being able to recognize conjugation by wk Turing machines

are not able to the algorithm described in the previous chapter. One would need a

machine that has a counter. In the future, it would be interesting to determine exactly

the type of language being used to perform these algorithms and exactly what type of

machine is able to do this.

A natural next step would be to apply the approach described throughout Part II

to produce a standard solution to the word problem for all Euclidean Artin groups of

type Ãn. Because the dual Euclidean Artin group of type Ãn, with a careful choice of

Coxeter element, is a Garside group, finding a dual solution to the word problem should

be straightforward. To do this, the algorithms in the dual Euclidean Artin group must be

made more explicit. Beyond this, we would need to determine a nice way to transcribe

all dual generators into words in the standard generating set so that a standard solution

can be written. Though the techniques described in Part II should generalize, we expect

129

slight differences to occur, especially geometrically, depending on the rank of the Artin

group.

In Chapter 5, we mentioned that dual Euclidean Artin groups of type Ãn, C̃n and

G̃2 are the only ones that had Garside structures that were fairly well-understood. Be-

cause Art∗(C̃n,w) and Art∗(G̃2,w) are nonstandard Garside groups, we should be

able to produce a dual solution for for these groups in ways similar to the one found for

Art∗(Ã2,w). Then similarly, we hope to use that dual solution to produce a standard

solution to the word problem for Art(C̃n) and Art(G̃2) as well.

130

A. Appendix

A.1 An Algorithm Solving the Word Problem for Art(An)

This section contains the various dictionaries and functions used to create the al-

gorithm that solves the word problem for Art(An). Each function contributes to the

overall algorithm. In what follows, each function will be preceded by a short description

of the function. With each function defined, the overall algorithm will run by initiating

the code in Listing A.1 which computes and stores all of the necessary components of

the algorithm that is found throughout this section of the appendix.

Listing A.1: Initialization Code

def init(n):

global D, genperms , RD , RCD , LCD , DescD , AscD , MM , JM , pn2npM

D = PermutationDictionary(n)

genperms = genPerms(D)

RD = ReversePermutationDictionary(D)

RCD = RComplementDictionary(n,D)

LCD = LComplementDictionary(n,D)

DescD = ImmediateDescendantsDictionary(D,RD,genperms)

AscD = ImmediateAscendantsDictionary(D,RD ,genperms)

MM = MeetsMatrix(DescD)

JM = JoinsMatrix(MM)

131

pn2npM = posneg2negposM(n)

To start, one should declare the number of strands of the braid group of interest with

the input init(n).

We begin with some of the smaller functions that allow us to do describe and sort

our elements. At times, we need to sort lists or tuples according to a specific entry. In

particular, the following function in Listing A.2 is used to sort a tuple of tuples by the

first entry.

Listing A.2: Sort Tuples by Entry

def getKey(item):

return item [0]

Recall that braids can be represented by permutations and products of braids can be

found by composing permutations. Since the computer algebra system interacts nicely

with lists, we represent the permutations using a list of integers. The function in Listing

A.3 composes two lists as though they were permutations.

Listing A.3: Multiplying Permutations as Lists

def ListMult(n,tupleA ,tupleB):

return(tuple(tupleB[tupleA[i]-1] for i in range(n)))

The need to compute the inverse of a permutation also arises. The function in Listing

A.4 computes the inverse of a list of integers as though it were a permutation.

Listing A.4: Inverses of Permutations as Lists

132

def ListInverse(n,PermAsList):

tuplepairs = tuple ((i+1, PermAsList[i]) for i in range(n))

swaptuplepairs = tuple((j,i) for (i,j) in tuplepairs)

sortswaptuplepairs = sorted(swaptuplepairs , key=getKey)

return(tuple(j for (i,j) in sortswaptuplepairs))

Performing operations with these lists may be difficult to keep track of. Hence, we

represent each braid or permutation with an integer values. The integer values are as-

signed to the 23 generators according to height. To keep track of the integer assignments,

we create a dictionary. The dictionary has integer keys whose corresponding values are

permutations as lists sorted by length or height. The function in Listing A.5 defines said

dictionary.

Listing A.5: Permutation Dictionary

def PermutationDictionary(n):

ll = [[Permutation(i).length (),list(i)] for i in Permutations

(range(1,n+1))]

ll.sort()

D = dict((i, tuple(ll[i][1])) for i in range(0,len(ll)))

return(D)

Because of the one-to-one correspondence between the 23 braid elements that we will

be using as generators and the 23 nontrivial elements of the symmetric group on 4 letters,

we take the generators to be these 23 nontrivial permutations. The function below in

133

Listing A.6 takes these permutations and writes them as lists. These lists will represent

our generators.

Listing A.6: Permutations as Lists

def genPerms(D):

genperms = []

for i in range(1, n):

genperms.append(D[i])

return(genperms)

At times, it is helpful to be able to call on the value of a dictionary rather than first

identifying the key to get the assigned value. Thus, we create a reverse dictionary using

Listing A.7 to be used when doing value to key conversions. Recall that our keys for this

dictionary will be lists or tuples rather than integers.

Listing A.7: The Reverse Dictionary

def ReversePermutationDictionary(D):

RD = dict((v, k) for k, v in D.iteritems ())

return(RD)

The function in Listing A.8 is yet another dictionary that has as a key, the same

integer values that represent our braid generators and a value that represents the right

complement (see Section 4.4) of the braid generator.

Listing A.8: Right Complement Dictionary

134

def RComplementDictionary(n,D):

max = D[len(D) -1]

RCompD = dict((i, ListMult(n,ListInverse(n,D[i]),max)) for i

in range(0,len(D)))

return(RCompD)

Analogously, we compute the left complement dictionary using the function in Listing

A.9:

Listing A.9: Left Complement Dictionary

def LComplementDictionary(n,D):

max = D[len(D) -1]

LCompD = dict((i, ListMult(n,max ,ListInverse(n,D[i]))) for i

in range(0,len(D)))

return(LCompD)

Because the braid group is a Garside group, we want to use the fact that our generating

set forms a lattice to our advantage. Hence, we need to be able to compute all of the left

divisors of a given generator. The following function is used to create a dictionary that

consists of just the immediate descendants of a generator. That is, given a generator x

an immediate descendant of x is an element k such that k ⋅ h = x where h is a positive

half-twist of adjacent strands. These descendants correspond to left divisors whose height

is one less than the given braid. The function in Listing A.10 returns a list of all such

immediate descendants for a given generator.

Listing A.10: Immediate Descendants

135

def ImDe(D,RD ,genperms ,index):

list =[]

for j in range(n-1):

if RD[ListMult(n,D[index],genperms[j])] < index:

list.append(RD[ListMult(n,D[index],genperms[j])])

return(list)

The immediate descendants of a braid x is used to find the meet of any two generators.

We will also need to compute the join of any two generators and thus, there is a need

for computing immediate ascendants as well. That is, elements y such that y = x ⋅ h for

some positive half-twist of adjacent strands h. The function in Listing A.11 generates a

list of all such immediate ascendants for each generator.

Listing A.11: Immediate Ascendants

def ImAs(D,RD ,genperms ,index):

list =[]

for j in range(n-1):

if RD[ListMult(n,D[index],genperms[j])] > index:

list.append(RD[ListMult(n,D[index],genperms[j])])

return(list)

A feature of our lattice of generators is that every pair of generators have unique meets

and joins. We use dictionaries to keep track of immediate descendants and immediate

ascendants of each generator. The function in Listing A.12 is a dictionary whose keys

are the same integers assigned each braid in the original dictionary and the values of the

136

dictionary are lists consisting of integer values that correspond to each braid’s immediate

descendants.

Listing A.12: Dictionary of Immediate Descendants

def ImmediateDescendantsDictionary(D,RD ,genperms):

DescD = dict((i,ImDe(D,RD,genperms ,i)) for i in range(0,len(D

)))

return(DescD)

The function in Listing A.13 is used to create the immediate ascendants dictionary

whose keys are integers and values are lists of integers representing the immediate ascen-

dants of the corresponding integer.

Listing A.13: Dictionary of Immediate Ascendants

def ImmediateAscendantsDictionary(D,RD ,genperms):

AscD = dict((i,ImAs(D,RD ,genperms ,i)) for i in range(0,len(D)

))

return(AscD)

Using the above dictionary, we can now define what we call a Meets Matrix, created

with the code in Listing A.14, which is an n! × n! matrix whose ij-th entry is the meet

of the i-th and j-th generator.

Listing A.14: The Meets Matrix

def MeetsMatrix(DescD):

List = [[] for i in range(0,len(DescD))]

137

for i in range(0,len(DescD)):

temp = DescD[i]

for j in range(0,len(DescD[i])):

temp = temp + List[DescD[i][j]]

List[i] = list(set(temp))

MeetsList = [[0 for i in range(0,len(DescD))] for j in range

(0,len(DescD))]

for i in range(1,len(DescD)):

for j in range(1,len(DescD)):

Intersection = set(List[i]+[i]+[0]).intersection(set(

List[j]+[j]+[0]))

MeetsList[i][j] = max(Intersection)

return(MeetsList)

Similarly, we use the ascendants dictionary to create a Joins Matrix as well. The

function Listing A.15 gives the matrix whose ij-th entry is the join of the i-th and j-th

generator.

Listing A.15: The Joins Matrix

def JoinsMatrix(MM):

List = [[] for i in range(0,len(AscD))]

for i in reversed(range(0,len(AscD))):

temp = AscD[i]

for j in reversed(range(0,len(AscD[i]))):

temp = temp + List[AscD[i][j]]

138

List[i] = list(set(temp))

JoinsList = [[23 for i in range(0,len(AscD))] for j in range

(0,len(AscD))]

for i in range(0,len(AscD) -1):

for j in range(0,len(AscD) -1):

Intersection = set(List[i]+[i]).intersection(set(List

[j]+[j]))

JoinsList[i][j] = min(Intersection)

return(JoinsList)

This is the first function that begins to put words in normal form. We start with

the following function which puts the product of a pair of generators into normal form.

The pair of generators a and b are given as a two-tuple as an input to the function. The

product a ⋅ b is put into normal form as the new product [a ⋅ (ac ∧ b)] ⋅ b′ where ac is

the right complement of a, and b′ is the element necessary new product is equal to the

original product. The function returns a two-tuple that is now in normal form.

Listing A.16: Pairs of Generators in Normal Form

def Reduction(a,b):

c = MM[RD[RCD[a]]][b]

bprime = ListMult(n,ListInverse(n,D[c]),D[b])

return(RD[ListMult(n,D[a],D[c])],RD[bprime])

To begin putting a product of length greater than two into normal form, we need to

be able to apply the previous function multiple times, throughout a list. The following

139

function performs the previous function’s rewrite of a pair of integers at a desired location

in a list.

Listing A.17: Rewriting Pairs of Generators at a Specific Spot in a Word

def ReduceSpot(listofintegers , spot):

if Reduction(listofintegers[spot],listofintegers[spot +1]) ==

(listofintegers[spot],listofintegers[spot +1]):

return(listofintegers , spot +1)

if Reduction(listofintegers[spot],listofintegers[spot +1]) !=

(listofintegers[spot],listofintegers[spot +1]):

target = list(Reduction(listofintegers[spot],

listofintegers[spot +1]))

pos = [spot ,spot +1]

for x,y in zip(pos ,target):

listofintegers[x] = y

return(listofintegers , spot -1)

Using the last two functions, the following finally allows us to put any positive word

into normal form. The positive word is input as a list of positive integers and the function

returns a new list of nonnegative integers consiting of heights that appear in decreasing

order.

Listing A.18: Rewriting a Positive Word

def RedPosWord(poslist):

spot = 0

140

while (spot < len(poslist) -1):

update = ReduceSpot(poslist ,spot)

print(update)

poslist = update [0]

spot = abs(update [1])

return(poslist)

To begin putting an arbitrary word, written in terms of the generators and their

inverses, into normal form we need to be able to rewrite that word as the product of

a negative subword and a positive subword. The function in Listing A.19 gives us an

n!−1×n!−1 matrix whose ij-th entry rewrites the product i ⋅−j as an equivalent product

−i′ ⋅ j′ where the first term is now negative and the second term is now positive.

Listing A.19: The Word Reversing Matrix

def posneg2negposM(n):

List = [[x for i in range(0, factorial(n))] for j in range(0,

factorial(n))]

for i in range(0, factorial(n)):

for j in range(0, factorial(n)):

List[i][j] = (-RD[ListMult(n,ListInverse(n,D[MM[RD[

LCD[i]]][RD[LCD[j]]]]),LCD[i])], RD[ListMult(n,

ListInverse(n,D[MM[RD[LCD[i]]][RD[LCD[j]]]]) ,LCD[j

])])

return(List)

141

This function in Listing A.20 merely calls on the entries of the above matrix to rewrite

the product i ⋅ −j as −i′ ⋅ j′.

Listing A.20: Pulling Entries of the Word Reversing Matrix

def pn2npT(posint ,negint):

return(pn2npM[posint][abs(negint)])

To actually rewrite a word as the product of a negative subword and a positive

subword, we need to be able to scan a word and determine where the negative integers

that represent inverses of our generators are. The function in Listing A.21 detects exactly

where the inverse elements in a word are.

Listing A.21: Finding the Last Negative Entry

def findlastneg(tuple):

k = len(tuple)-1

while tuple[k] >= 0 and k != -1:

k = k-1

return(k)

The following function uses the previously defined functions to actually rewrite an

arbitrary word as the product of a negative subword and a positive subword.

Listing A.22: The Word Reversing Process

def negposword(tuple):

ncount = 0

for i in range(len(tuple)):

142

if tuple[i] < 0:

ncount = ncount +1

lastnegspot = findlastneg(tuple)

while lastnegspot > ncount -1:

j=0

while not((tuple[j] >= 0) and (tuple[j+1] < 0)):

j = j+1

swap = j

target = [pn2npM[tuple[swap]][abs(tuple[swap +1])][0],

pn2npM[tuple[swap]][abs(tuple[swap +1])][1]]

pos = [swap ,swap +1]

for x,y in zip(pos ,target):

tuple[x] = y

print tuple

lastnegspot = findlastneg(tuple)

return(tuple)

Putting a purely negative word into normal form is relies largely on the function that

puts a positive word in normal form. In particular, the following function will take the

inverse of a negative word by reversing the order of the word, and then take the inverse

of each letter which results in a positive word. We then put that positive word in normal

143

form using our previously defined function, and then takes the inverse of each letter, and

reverse the order of the word once again.

Listing A.23: Negative Words in Normal Form

def RedNegWord(neglist):

revneglist = list(reversed(neglist))

makepos = [abs(i) for i in revneglist]

redpos = RedPosWord(makepos)

backneg = [-i for i in redpos]

return(list(reversed(backneg)))

The function in Listing A.24 uses all of the previously defined functions to rewrite

a word that is one step away from being in normal form. In particular, the following

function will take an arbitrary word and rewrite that word as the product of a negative

subword and a positive subword. It will then put both the negative subword and positive

subword into normal form individually and then reform the product.

Listing A.24: Puting Negative and Positive Subwords in Normal Form

def RNPW(ListString):

npword = negposword(ListString)

word2reduce = [i for i in npword if i != 0]

nword = [i for i in word2reduce if i < 0]

pword = [i for i in word2reduce if i>0]

print "negative subword"

rnword = RedNegWord(nword)

144

print"positive subword"

rpword = RedPosWord(pword)

print"newNPword"

redstring = rnword + rpword

print(redstring)

return(redstring)

In the above rewriting process, it is possible the that middle pair of letters consisting

of a negative letter followed by positive letter, is not yet in normal form. The function

Listing A.25 puts that pair in normal form.

Listing A.25: Putting the Negtive-Positive Pair in Normal Form

def UpdateNegPosPair(stringofints):

spot = findlastneg(stringofints)

c = MM[abs(stringofints[spot])][stringofints[spot +1]]

newn = -RD[ListMult(n,ListInverse(n,D[c]),D[abs(stringofints[

spot])])]

newp = RD[ListMult(n,ListInverse(n,D[c]),D[stringofints[spot

+1]])]

newstring = [x for x in stringofints]

newstring[spot] = newn

newstring[spot +1] = newp

return(newstring)

If the above function is actually used and the product of the negative letter and

positive letter in the word is rewritten, it is possible that the negative and positive

145

subwords need to be rewritten as well. We account for that possibility With the following

final function, which takes an arbitrary word and returns an equivalent word in normal

form.

Listing A.26: Arbitrary Words in Normal Form

def RNormForm(stringofints):

NPW = RNPW(stringofints)

while NPW != UpdateNegPosPair(NPW):

print "Update (neg ,pos) Pair"

print(UpdateNegPosPair(NPW))

print "remove 0s"

nNPW = [x for x in UpdateNegPosPair(NPW) if x != 0]

print(nNPW)

print "reduce new list"

NPW = RNPW(nNPW)

print(NPW)

return(NPW)

For example, take the word in the 4-strand braid group represented by the product

of integers in the string [5,−16,12,−5,10,−18,−4,8,7]. The above function yields the

following:

input: RNormForm([5,-16,12,-5,10,-18,-4,8,7])

output: [-15, 8, 12, -5, 10, -18, -4, 8, 7]

146

[-15, 8, -8, 11, 10, -18, -4, 8, 7]

[-15, 0, 0, 11, 10, -18, -4, 8, 7]

[-15, 0, 0, 11, -13, 4, -4, 8, 7]

[-15, 0, 0, -11, 14, 4, -4, 8, 7]

[-15, 0, -11, 0, 14, 4, -4, 8, 7]

[-15, -11, 0, 0, 14, 4, -4, 8, 7]

[-15, -11, 0, 0, 14, 0, 0, 8, 7]

negative subword

([22, 7], -1)

positive subword

([22, 0, 7], -1)

([22, 7, 0], 0)

([22, 7, 0], 1)

([22, 7, 0], 2)

newNPword

[-7, -22, 22, 7, 0]

Update (neg,pos) Pair

[-7, 0, 0, 7, 0]

remove 0s

[-7, 7]

reduce new list

[0, 0]

147

The following set of functions were used to write each dual generator in terms of the

standard generating set by applying the Hurwitz action of the 3-strand braid group to

the factorization w = abc. We start by defining the free group on three generators a, b, c

using G.<a,b,c> = FreeGroup(). We know that our Garside element in the dual Artin

group is given by the product ∆ = abc = re−10 ⋅ reod ⋅ re1
0. We apply the Hurwitz action,

given by the function A.27 to this particular factorization of ∆ and what results is a new

factorization with updated entries that represent other dual generators.

Listing A.27: The Hurwitz Action

def twist(tuple ,n):

if n == 1:

newtuple1 = (tuple [0]* tuple [1]* tuple [0]^-1, tuple [0],tuple [2])

return(newtuple1)

elif n == 2:

newtuple2 = (tuple [0],tuple [1]* tuple [2]* tuple [1]^-1, tuple [1])

return(newtuple2)

elif n == -1:

newtuplem1 = (tuple [1],tuple [1]^ -1* tuple [0]* tuple [1],tuple

[2])

return(newtuplem1)

elif n == -2:

newtuplem2 = (tuple [0],tuple [2],tuple [2]^ -1* tuple [1]* tuple

[2])

return(newtuplem2)

148

To apply a sequence of twists to a particular factorization of ∆, the following function

can be used. The sequence of twists should be given as a list of integers where the integer

i represents the action of σi on the factorization.

def twistsequence(tuple, listofns):

newtuple = tuple

print newtuple

for i in range(0,len(listofns)):

newtuple = twist(newtuple, listofns[i])

print(newtuple, i+1)

return(newtuple)

149

Bibliography

[Art25] Emil Artin, Theorie der Zöpfe, Abhandlungen aus dem Mathematischen Sem-

inar der Universität Hamburg 4 (1925), 47–72.

[Art47] E. Artin, Theory of braids, Annals of Mathematics 48 (1947), 101–126.

[BDSW14] Barbara Baumeiseter, Matthew Dyer, Christian Sump, and Patrick Wegener,

A note on the transitive hurwitz action on decompositions of parabolic coxeter

elements, Proceedings of the AMS, Series B 1(13) (2014).

[Bes03] David Bessis, The dual braid monoid, Ann. Sci. Ecole Norm. 36 (2003), no. 5,

647–683.

[BH93] Brigitte Brink and Robert Howlett, A finiteness property an an automatic

structure for Coxeter groups, Math. Ann. 296 (1993), 179–190.

[Bir98] Joan Birman, A new approach to the word and conjugacy problems in the

braid groups, Adv. Math. 139 (1998), 322–353.

[BM15] Noel Brady and Jon McCammond, Factoring euclidean isometries, Intl. J of

Alg and Comp 25 (2015), no. 1, 325–347.

[Boo57] W.W. Boone, On certain simple undecidable word problems in group theory,

v, Indag. Math 19 (1957), 22–27.

150

[BS72] Egbert Brieskorn and Kyoji Saito, Artin-gruppen und Coxeter-gruppen, In-

vent Math 17 (1972), 245–271.

[BW02] Thomas Brady and Colum Watt, k(π,1)’s for Artin groups of finite type,

Proc. of the Conf on Geometric and Combinatorial Group Theory 94 (2002),

225–250.

[Dav83] Michael W. Davis, Groups generated by reflections and aspherical manifolds

not covered by euclidean space, Annals of Mathematics 117 (1983), 293–324.

[Deh15] Patrick Dehornoy, Foundations of Garside theory, EMS Tracts in Mathemat-

ics, London, 2015.

[Del72] Pierre Deligne, Les immeubles des groupes de tresses généralisés, Invent Math

17 (1972), 273–302.

[DP99] Patrick Dehornoy and Luis Paris, Gaussion groups and Garside groups, Proc.

of the London Math Soc 79(3) (1999), 569–604.

[Gar65] Frank Garside, The theory of knots and associated problems, Ph.D. thesis,

Oxford University, London, 1965.

[GP12] Eddy Godelle and Luis Paris, Basic questions on Artin-Tits groups, Con-

figuration Spaces (A. Bjorner, F. Cohen, C. De Concini, C. Procesi, and

M. Salvetti, eds.), CRM Series, Pisa, 2012.

[Mag32] W. Magnus, Das identitätsproblem für gruppen mit einer definierenden rela-

tion, Mathematische Annalen 106 (1932), 295–307.

151

[McC] Jon McCammond, Noncross hypertrees, Preprint.

[McC15] , Dual Euclidean Artin groups and the failure of the lattice property,

J. of Algebra 437 (2015), 308–343.

[McC17] , The mysterious geometry of Artin groups, Winter Braids lecture

Notes 4 (2017), no. 1, 1–30.

[MS17] Jon McCammond and Robert Sulway, Artin groups of Euclidean type, Invent.

math. 210 (2017), 231–282.

[Nov55] P.S. Novikov, On the algorithmic unsolvability of the word problem in group

theory, Trudy Mat. Inst. Steklov 44 (1955), 143pp.

[Ore31] Oystein Ore, Linear equations in non-commutative fields, Annals of Mathe-

matics 32 (1931), 463–477.

[PS21] Giovanni Paolini and Mario Salvetti, Proof of the k(π,1) conjecture for affine

Artin groups, Invent. math 224 (2021), 487–572.

[Sch50] Peter Scherk, On the decomposition of orthogonalities into symmetries, Proc.

Amer. Math. Soc 1 (1950), 481–491.

[Tit13] Jacques Tits, Collected works, Volumes I-IV, EMS Heritage of European

Mathematics, Brussels, 2013.

152

