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Soil water content (SWC) is a key factor in optimizing the usage of water resources in agriculture since it
provides information to make an accurate estimation of crop water demand. Methods for predicting SWC
that have simple data requirements are needed to achieve an optimal irrigation schedule, especially for
various water-saving irrigation strategies that are required to resolve both food and water security issues
under conditions of water shortages. Thus, a two-year field investigation was carried out to provide a
dataset to compare the effectiveness of HYDRUS-2D, a physically-based numerical model, with various
machine-learning models, including Multiple Linear Regressions (MLR), Adaptive Neuro-Fuzzy
Inference Systems (ANFIS), and Support Vector Machines (SVM), for simulating time series of SWC data
under water stress conditions. SWC was monitored using TDRs during the maize growing seasons of 2010
and 2011. Eight combinations of six, simple, independent parameters, including pan evaporation and
average air temperature as atmospheric parameters, cumulative growth degree days (cGDD) and crop
coefficient (Kc) as crop factors, and water deficit (WD) and irrigation depth (In) as crop stress factors, were
adopted for the estimation of SWCs in the machine-learning models. Having Root Mean Square Errors
(RMSE) in the range of 0.54–2.07 mm, HYDRUS-2D ranked first for the SWC estimation, while the
ANFIS and SVM models with input datasets of cGDD, Kc, WD and In ranked next with RMSEs ranging from
1.27 to 1.9 mm andmean bias errors of�0.07 to 0.27 mm, respectively. However, the MLRmodels did not
perform well for SWC forecasting, mainly due to non-linear changes of SWCs under the irrigation process.
The results demonstrated that despite requiring only simple input data, the ANFIS and SVM models could
be favorably used for SWC predictions under water stress conditions, especially when there is a lack of
data. However, process-based numerical models are undoubtedly a better choice for predicting SWCs
with lower uncertainties when required data are available, and thus for designing water saving strategies
for agriculture and for other environmental applications requiring estimates of SWCs.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Because it uses about 70% of the world’s freshwater with-
drawals (OECD, 2010), agriculture is a primary target for policies
that move the sector towards sustainable management of water.
Over past decades, irrigated agriculture has been widely developed
around the world as it significantly increases crop productivity.
However, irrigation consumes high volumes of water and may
induce off-site pollution of receiving water bodies (Billib et al.,
2009). Thus, special attention should be paid to the water manage-
ment of irrigated lands. Water should be applied in the right
amount at the right time in order to achieve an optimal crop pro-
duction and it should not be wasted as it is a valuable resource, and
its applications should be environmentally sustainable (SAI, 2010).

An optimal irrigation schedule created by accurately estimating
the crop water demand (CWD) may help achieve these goals since
it prevents both yield and water losses (Payero et al., 2006; Klocke
et al., 2004; Stone, 2003). Among different developed methods,
estimating CWD based on the soil water balance is commonly
advised (Allen et al., 2011) since it considers real CWD, which
may produce significant water savings in irrigated agriculture.
Applying this method for irrigation scheduling requires knowledge
about temporal variations of soil water contents (SWCs) at the field
scale for crops both under optimal or water-stress conditions in a
soil-plant continuum. This is because the plant water status, which
is a dominant factor determining the crop yield (Taiz and Zeiger,
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2006), is closely related to SWC (Dorji et al., 2005; Simon et al.,
2009; Souza et al., 2009; Stoll et al., 2000; Xu, 2009). Thus, in order
to achieve the highest irrigation water use efficiency, the reduction
of irrigation should be done only to the extent that SWC is kept
under optimal conditions to avoid a significant reduction in yield.

The need for suitable methods of estimating SWCs under water
stress conditions becomes more obvious when it is understood
that the scarcity of fresh water is an increasingly global problem
(Karandish et al., 2015), resulting from a gradual increase in food
demand and a decrease in available fresh water resources, that
needs to be urgently resolved (Sepaskhah and Ahmadi, 2010).
Under these circumstances, it is necessary to adopt water saving
irrigation strategies to cope with actual water availability. Partial
root zone drying (PRD) is a new deficit irrigation strategy, which
may produce water savings without a significant decrease in yields
(Dry et al., 2000; Kang and Zhang, 2004; Kirda et al., 2004; Shao
et al., 2008; Tang et al., 2005; Karandish and Šimůnek, 2016).
Under the PRD strategy, which was introduced by Dry and
Loveys (1998), one half of the root zone is irrigated while the other
half is dried out. Irrigated and dry sides of the root zone are peri-
odically switched. Good knowledge of root zone SWCs greatly
influences the efficiency of PRD since the time of the irrigation shift
should be determined based on the soil water matric potential in
order to produce optimal results.

Despite of the importance of directly determining SWCs as a
time series, the inability of doing so in the field at a low cost rep-
resents a restriction on the application of the soil water balance
equation for irrigation scheduling, especially in the planning and
optimizing stages of irrigation projects. Thus, further attempts
are required to find suitable methods for indirectly estimating
SWCs. In this regard, different models have been developed for
simulating SWCs in soil-crop systems during the past three dec-
ades. SWCs can be estimated using either simple soil water balance
models, which require only limited input information (Wessolek,
1989; Cameira et al., 2003; Panigrahi and Panda, 2003; Nishat
et al., 2007), or more complex process-based models such as
LEACHM (Wagenet and Hutson, 1987), GLEAMS (Leonard et al.,
1987), WAVE 2.1 (Vanclooster et al., 1996; Fernández et al.,
2002), EURO-ACCESS-II (Armstrong et al., 1996; Fernández et al.,
2002), SWIM (Verburg et al., 1996), SWAP (van Dam et al., 1997),
SWAT (Neitsch et al., 2005), or HYDRUS (Šimůnek et al., 2008,
2016), which require a large number of input parameters. How-
ever, since these parameters are directly related to soil, crop, and
climate properties, these models often provide superior predic-
tions of SWCs than simpler soil water balance models.

HYDRUS-2D (Šimůnek et al., 2008, 2016) is one of the dynamic,
physically based models that is widely used to simulate soil water
dynamics (e.g., Cote et al., 2003; Skaggs et al., 2004; Ajdary et al.,
2007; Rahil, 2007; Crevoisier et al., 2008; Lazarovitch et al.,
2009; Siyal and Skaggs, 2009; Mubarak, 2009; Ramos et al.,
2012; Tafteh and Sepaskhah, 2012). One of the advantages of this
model is that its parameters are related to soil physical properties,
which may be measured either in-situ or in the lab. There are many
published studies in which HYDRUS-2D was applied to evaluate
temporal variations of soil-water-plant interactions, including
under the PRD conditions (Karandish and Šimůnek, 2016).
Karandish and Šimůnek (2016) demonstrated the high capability
of the model to simulate temporal variations of various soil water
balance components under full irrigation, deficit irrigation, and
PRD conditions. However, HYDRUS-2D requires the determination
of soil hydraulic parameters and exact initial and boundary condi-
tions, which sometimes hampers its more widespread use.

Machine-learning approaches, such as artificial neural networks
(ANN) and support vector machines (SVM), are another group of
models that have been applied during past decades for simulating
various hydrological processes including soil water dynamics
(Jiang and Cotton, 2004; Ahmad and Simonovic, 2005;
Elshorbagy and Parasuraman, 2008; Zou et al., 2010; Dai et al.,
2011; Asefa et al., 2006; Yu and Liong, 2007; Lin et al., 2009; Liu
et al., 2010; Deng et al., 2011). These approaches provide a great
prediction capacity and do not require the knowledge of soil phys-
ical properties. On the other hand, they do require meteorological
measurements and time-series of various soil variables such as soil
water contents or matric potentials as training data. Therefore,
their prediction capability is limited by information contained in
the data. Also, they do not have direct intuitive interpretation
(Lamorski et al., 2013) with respect to evaluated processes. Litera-
ture reviews also revealed that another powerful artificial intelli-
gence method, the adaptive neuro-fuzzy inference systems
(ANFIS), has not yet been used for simulating SWCs.

Although machine-learning models have been previously used
to simulate time series of SWC variations, the emphasis usually
was on estimating future SWCs from their historic values (i.e., from
soil water contents measured on previous days). However, this is a
rather restrictive use of these models, since it is hard to use this
approach to determine irrigation scheduling, especially during
the planning stages. This problem becomes more severe when
the focus is on optimization problems and finding the optimal
water-saving irrigation schedule.

In addition, the earlier applications of machine-learning models
were all for non-stressed conditions under full irrigation. However,
it is becoming more difficult to irrigate crops to meet their full
demand when water is in short supply, so models must be able
to accurately predict SWCs for stressed conditions as well. Thus,
the objectives of this study were to use both the machine-
learning and physically-based models to predict time series of
SWCs in the rooting depth of maize under full irrigation as well
as under several different water saving irrigation strategies. The
physically-based HYDRUS-2D model was used to simulate tempo-
ral variations of SWCs under PRD treatments. Its predictions were
compared with predictions of the multiple linear regressions
(MLR), ANFIS, and SVM models, which only require the knowledge
of simple and easily determined atmospheric and crop parameters.
Second, when only limited data is available, the possibility of sub-
stituting HYDRUS-2D with machine learning models for indirectly
estimating SWCs is evaluated.
2. Materials and methods

2.1. Field investigations

The experimental site of the Sari Agricultural Sciences and Nat-
ural Resources University is located on the coastal plain of north-
ern Iran, (36.3�N, 53.04�E, 15 m below the sea level). Mean
annual rainfall is 616 mm, about 70% of which occurs during the
October-March period. The long-term average, minimum, and
maximum air temperatures are 17.3, �6, and 38.9 �C, respectively
(Karandish and Šimůnek, 2016). Weather data were recorded daily
in the experimental area. The soil physical characteristics are sum-
marized in Table 1.

The experiment was carried in a maize field using a randomized
complete block design with three surface drip irrigation treat-
ments as described below. To measure retention curves, soil sam-
ples were taken every 20 cm to a depth of 80 cm for each treatment
in three replicates before crop sowing and using a 2-in ID augur.
SWCs at 11 different pressure heads were measured in the labora-
tory at each sample using a pressure plate apparatus. Thereafter,
the van Genuchten-Mualem model (Mualem, 1976; van
Genuchten, 1980) was used to describe the soil hydraulic proper-
ties. The soil hydraulic parameters for two soil horizons (i.e., 0–
20 cm and 20–80 cm soil depths) were obtained by fitting this



Table 1
Soil properties at the experimental site.

Depth (cm) Soil texture Sand (%) Silt (%) Clay (%) Field capacity (%) Wilting point (%) Bulk density (g cm�3)

0–20 Sandy clay loam 49 22 27 30 15 1.40
20–40 Clay loam 40 25 35 32 14 1.38
40–60 Clay loam 30 36 34 32 14 1.35
60–80 Clay loam 37 30 33 32 14 1.37
80–100 Clay loam 36 28 34 32 14 1.37
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model to the observed retention curve data of both layers using the
RETC program (van Genuchten et al., 1991). Fitted soil hydraulic
parameters included the saturated SWC (hs), the residual SWC
(hr), and the shape parameters a and n. Since no hydraulic conduc-
tivity data was available, the pedotransfer functions embedded in
the HYDRUS-2D software were used to predict the saturated soil
Fig. 1. Locations of drip line laterals, drippers, plants (a), and TDR probes (b) in the
experimental maize field.

Table 2
Summary of agricultural and fertilization activities during the maize growing season.

Date Agricultural activities and

May 26 in 2010 and 2011 Planting and fertilization
June 12, 2010 and June 5, 2011 Fertilization

July 14, 2010 and July 4, 2011 Fertilization
July 19, 2010 and July 9, 2011 Onset PRD treatments
September 9, 2010 and September 12, 2011 Harvest
hydraulic conductivity (Ks) using measured soil physical properties
for each treatment.

The surface drip irrigation system was then installed prior to
crop sowing. Fig. 1a shows the locations of drip lines, drippers,
and plants in the experimental field. Five Time Domain Reflectom-
etry (TDR) access tubes (TRIME FM, IMKO, Germany) for continu-
ous monitoring the SWCs were installed in the maize root zone
of each treatment, as illustrated in Fig. 1b. TDR probes were used
at least two times a day to measure soil water contents (SWCs)
at depths of every 5 cm (i.e., at measuring points displayed in
Fig. 1b) during both growing seasons of 2010 and 2011 (i.e., from
sowing to harvest). Overall, SWCs were measured at each measur-
ing time in 100 points for each treatment. Moreover, information
about the movement of the wetting front during irrigation events
was collected at least 10 times in each treatment by measuring
SWCs one hour before, and immediately and 2, 6, 12, 24, 48 h after
the irrigation events in the 2010 growing season. For each treat-
ment, such SWC information was collected for at least 10 irrigation
events during each growing season.

Thereafter, maize single-cross hybrid 704 was sown on May 26
of both 2010 and 2011, 5 cm deep, with 75 � 20 cm � cm crop row
and crop spacing, between and parallel to the drip lines (Fig. 1a,
Table 2). Crops were irrigated every other day using surface drip
irrigation during the entire growing season with a total 53 and
55 irrigation events in the 2010 and 2011 growing seasons, respec-
tively. Irrigation treatments included full irrigation (FI) and two
partial root-zone drying treatments, PRD75 and PRD55. The FI treat-
ment was fully irrigated and the soil water content was kept close
to field capacity during the entire growing season. The irrigation
requirement (in mm) for the FI treatment was calculated using
Eq. (1) for each irrigation event:

½In�FI ¼
Xm
i¼1

f½hFCi � ðhBIiÞFI�Dig ð1Þ

where ½In�FI is the net irrigation depth (mm) of the nth irrigation
event for the FI treatment, hFCi is the volumetric SWC at field capac-
ity (FC, %) of the ith soil layer, ðhBIiÞFI is the average volumetric SWC
before irrigation of the ith soil layer (%) in the FI treatment, Di is the
soil layer thickness (mm), i is the soil layer, and m refers to the
number of soil layers down to a specific soil depth, for which [In]FI
is calculated. (hBIi)FI was measured using TDR probes before each
irrigation event.

All treatments (including FI and both PRD treatments) received
the same amount of irrigation water during the first 55 days after
sowing (DAS) in 2010 and during 45 DAS in 2011. During the PRD
period (i.e., during 55–107 DAS in 2010 and during 45–110 DAS in
fertilization Remarks

150 kg ha�1 triple superphosphate
65 kg ha�1 urea and
50 kg ha�1 potassium sulphate
135 kg ha�1 urea and 100 kg ha�1 potassium sulphate
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2011), the PRD treatments were scheduled to receive 55% (PRD55)
and 75% (PRD75) of the FI treatment’s irrigation amount at each
irrigation event. While in the FI treatment, both drip lines were
operated simultaneously, in the PRD treatments during the PRD
period, to ensure partial root-zone drying, just one of the drip lines
was operated while the other was not during each irrigation event.
Only half of the root zone was thus irrigated during the PRD period,
while irrigation shifted between the two sides of the plants each
week. The dripper discharge was two liters per hour.

Prior to implementing the PRD treatments, the information
about the movement of the wetting front was collected by measur-
ing SWCs using TDR probes to determine the maximum lateral
advance of the wetting front for different irrigation water depths.
Such information was required to ensure that only about half of
the rooting zone in the PRD75 and PRD55 treatments is irrigated
after imposing the PRD treatments. A maximum observed lateral
advance of about 35 cm confirmed this assumption.

Plants were harvested on September 9, 2010 (107 DAS) and on
September 12, 2011 (110 DAS). Detailed description of all mea-
surements during field investigation, especially those required
for calibration and validation of HYDRUS-2D, is presented in
Karandish and Šimůnek (2016).

2.2. HYDRUS (2D/3D)

2.2.1. Model description
HYDRUS-2D (Šimůnek et al., 2008) is a powerful software for

simulating the transient, two-dimensional movement of water
and nutrients in soils for a wide range of boundary conditions,
and soil heterogeneities. Water flow in soils is described using
the Richards equation as follows:

@h
@t

¼ @
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Kx

@h
@x

� �
þ @

@z
Kz
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@z

� �
� @k

@z
�WUðh; x; zÞ ð2Þ

where h is the volumetric SWC (L3 L�3), K is the unsaturated
hydraulic conductivity function (L T�1), h is the soil water pressure
head (L), x is the lateral coordinate, z is the vertical coordinate (pos-
itive downwards), t is time (T), and WU(h, r, z) denotes root water
uptake (T�1). WU is computed as follows:

WUðh; x; zÞ ¼ cðhÞRDFðx; zÞWTpot ð3Þ
where c(h) is the soil water stress function (dimensionless) of
Feddes et al. (1978), RDF is the normalized root water uptake distri-
bution [L�2], Tpot is the potential transpiration rate [L T�1], and W is
the width of the soil surface [L] associated with the transpiration
process. In the present study, the root distribution was assumed
to be described using the Vrugt et al. (2001) function and to be con-
stant in time (which is a restriction of HYDRUS-2D).

Crop evapotranspiration (ETc) under the FI treatment was
assumed to represent potential crop evapotranspiration since
crops under this treatment were well-irrigated (i.e., there was no
water stress in the rooting zone since irrigation events were sched-
uled to always refill soil water content to field capacity), well fer-
tilized, and were treated with pesticides to control weeds, aphids
and fungal diseases during both growing seasons. Moreover, the
crop achieved its full production when considering the maize yield
potential for given climate conditions in the study area. Details
about how ETc was obtained is given in Karandish and Šimůnek
(2016).

Measured leaf area index (LAI) was applied to divide ETc into
potential evaporation (Ep) and potential transpiration (Tp) as fol-
lows (Belmans et al., 1983):

Ep ¼ ETce�K�
grLAI

Tp ¼ ETc � Ep
ð4Þ
where Ep is potential evaporation [L T�1], Tp is potential transpira-
tion [L T�1], ETc is crop evapotranspiration [L T�1], and Kgr is an
extinction coefficient for global solar radiation [–]. Kgr was set to
0.39 following the suggestions by Ritchie (1972) and Feddes et al.
(1978). Estimated values of Ep and Tp were used as input parameters
in HYDRUS-2D. Temporal variations of ETc under different treat-
ments can be found in Karandish and Šimůnek (2016).

The soil hydraulic properties were modeled using the van
Genuchten-Mualem constitutive relationships (van Genuchten,
1980). The Galerkin finite element method was used for solving
Eq. (3) based on the iterative mass conservative scheme proposed
by Celia et al. (1990).

2.2.2. Geometry information and boundary conditions
The domain geometry was defined to represent a typical maize

field in which driplines are located between maize rows with a row
spacing of 75 cm (Fig. 1b). The two-dimensional transport domain
was a rectangle 75 cm wide between two neighboring emitters on
either side of one plant (Fig. 1b) and with a soil depth of 80 cm. The
soil depth was selected so that the observed maximum rooting
depth was situated above this depth. The driplines were consid-
ered to be line sources, since the emitter spacing along the dri-
plines was relatively small (i.e., 20 cm in this field investigation).
The spatial domain was discretized using unstructured triangular
finite element mesh (FEM) defined using 2215 nodes. A non-
uniform FEM was generated by HYDRUS-2D with finite element
sizes gradually increasing with distance from the emitters. A high
nodal density is required in the immediate vicinity of the emitters
to accurately model the large spatial gradients in soil water pres-
sure heads caused by infiltrating water (Kandelous et al., 2011).
Two soil horizons with different soil hydraulic properties were
defined at the 0–20 cm and 20–80 cm soil depths.

Initial conditions were defined based on the field measure-
ments. The time-variable and atmospheric boundary conditions
were specified at the soil surface to represent drip irrigation and
to apply precipitation, evaporation, and transpiration fluxes,
respectively. A free drainage boundary condition was applied along
the bottom boundary, allowing for downward drainage. All other
remaining boundaries were assigned a no-flow boundary
condition.

2.2.3. Model calibration and validation
The sensitivity analysis was carried out to determine how the

soil hydraulic parameters affect the HYDRUS-2D simulated SWCs.
The sensitivity coefficients for individual parameters were calcu-
lated according to Šimůnek and van Genuchten (1996). Thereafter,
the most sensitive parameters were optimized in the calibration
process. Detailed information about the calibration and validation
process can be found in Karandish and Šimůnek (2016).

2.2.4. Multiple Linear Regressions (MLR)
Regression analysis is commonly used to describe quantitative

relationships between a response variable and one or more
explanatory variables (Tabari et al., 2012). The linear equation in
MLR is as follows:

Y ¼ a0 þ a1X1 þ a2X2 þ � � � þ anXn ð5Þ
where Y is the dependent variable, a0 � an are the MLR parameters,
and X1 � Xn are the independent variables (Ozbayoglu and
Ozbayoglu, 2006).

For all evaluated MLR models, SWC was defined as a dependent
variable. First, a Pearson-correlation matrix was established
between SWC as a dependent variable and different independent
variables. Thereafter, variables which had the highest correlation
coefficient with SWC were selected independent variables in the
MLR models. The set of independent variables included pan evap-
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oration (E), average air temperature (T), crop coefficient (Kc), cumu-
lative growth degree day (cGDD), net irrigation depth (In) and
water deficit (WD). These parameters were selected since they
are easy to obtain and affect SWCs. While T and E are considered
to be atmospheric factors, Kc and cGDD are considered to be crop
factors. WD and In represent stress conditions in the soil and affect
SWCs through root water uptake. WD is calculated as
WD ¼ ðhFC � hpwpÞ � a, where, hFC is the volumetric soil water con-
tent at field capacity, hpwp is the volumetric soil water content at
the permanent wilting point and a is a coefficient, which is set to
1, 0.75, and 0.55 for the FI, PRD75, and PRD55 treatments, respec-
tively. Eight combinations of input variables were evaluated in this
study: (i) E, Kc, and In; (ii) E, Kc, WD, and In; (iii) cGDD, E, Kc, and In;
(iv) Kc, T, and In; (v) Kc, WD, T, and In; (vi) cGDD, Kc, T, and In; (vii)
cGDD, Kc, and In, and (viii) cGDD, Kc, WD, and In.

2.3. Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

Jang (1993) introduced the Adaptive Neuro-Fuzzy Inference
Systems method (ANFIS), which combines neural networks and
the capabilities of the fuzzy theory (Tang et al., 2010). A popular
teaching method in neuro-fuzzy systems is the fuzzy inference sys-
tem, which uses the hybrid learning algorithms to identify the
fuzzy system parameters and to teach the model (Rehman and
Mohandes, 2008). The ANFIS model has a five-layer structure
(Fig. 2), which is the result of adding the fuzzy logical models to
the artificial neural networks:

Layer 1 or Input Layer: In this layer, the membership degree of
the nodes entering different fuzzy periods is determined by using
the membership functions (MFs). There are numerous kinds of
MFs, such as trapezoids, sigmoid, Gaussian, and bell-shaped func-
tions. Two fuzzy sets are considered for each input. The shape of
the MFs and the values of their overlapping are optional and deter-
mined by Eq. (5):

lAðxÞ ¼
1

1þ x�ci
ai

��� ���2bi ð6Þ

where x is input, and a, b, and c are comparative parameters and the
non-linear coefficients, which determine the shape of the MFs. The
set of the fuzzy variables is called the S1 set or the left-handed set
(LHS). The output values of the first layer show the membership val-
ues of ach input for specific MFs.

Layer 2: This layer is the result of multiplying the input values
by the nodes, and then finally the firing strength (i.e., weight).
For example, for the first node, we have:

wi ¼ lA1ðx1ÞlB1ðx2Þ ð7Þ
Fig. 2. Schematic of the
Layer 3: Its nodes normalize the firing strength:

�W1 ¼ w1Pn
i¼1wi

; i ¼ 1;2; . . . ;n ð8Þ

where n is the number of nodes in each layer.
Layer 4: This is the terms layer, in which terms are achieved.

These terms are the results of operation on the input signals into
this layer:

Z1 ¼ �w1f 1 ¼ �w1ðp1x1 þ q1x2 þ r1Þ ð9Þ
where p1, q1, and r1 are the consequent parameters.

Layer 5: This is the last layer of the net, which includes only one
node, and is calculated by adding all input values into its total
output:

Xn
i¼1

�wif i ð10Þ

In the structure of the ANFIS model, there are sets of compara-
tive parameters S1 (the set of fuzzy variables), and consequent
parameters S2. Simulation is correctly performed when both
parameters are estimated in a way that minimizes the values of
the error function of the model in the training, examination, and
validation procedures. There are usually two steps to calculate
these parameters. The first step is a forward pass, which considers
the static S1 and S2 parameters, by using the least square error
algorithm. The second step is called a backward pass, which con-
siders that the static S1 and S2 are obtained using the Gradient Des-
cent algorithm. These sets of functions, called Epoch, appear at
every stage of training (Tabari et al., 2012). By calculating the
parameters of the model, the output values of the model are
obtained for each arranged couple, which is sent to the model
through the training data of the model. The estimated values are
compared to the real values in order to calculate the training error
function of the ANFIS model. In every step of the Epoch training
course, the values of the model parameters change; thus, the val-
ues of the training error and the test error of the model vary. The
maximum values are selected in a way that the model does not
require extra training (Dastirani et al., 2010).

One of the features of every ANFIS model is the type of function
considered for the model inputs. In this study, different MFs were
employed and different numbers of MFs were tried in each appli-
cation. The combination of MFs and their numbers giving the min-
imum errors were selected. Different ANFIS architectures were
evaluated using a MATLAB code that included fuzzy logic. Efficient
models were first determined for each combination of input vari-
ables. Then, the various ANFIS models were tested and obtained
results were evaluated using different criteria indices. For both
ANFIS architecture.
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ANFIS and SVM models (described below), the same combinations
of independent input variables were used as were described above
for the MLRmodels (i.e., eight input combinations involving E, T, Kc,
WD, cGDD, and In).
2.4. Support Vector Machines (SVM)

Introduced by Vapnik (1995), Support Vector Machines (SVM)
are a classifier derived from statistical learning theory. The SVM
can be used both for classification and regression problems. They
can be represented as a two-layer network where the weights
are non-linear in the first layer and linear in the second layer
(Bray and Han, 2004). The Support Vector Regression (SVR) is used
in literature to describe regression with SVM. The regression esti-
mation with SVR is to estimate a function according to a given data
set, {(xi,yi)}n, where xi denotes the input vector, yi denotes the out-
put value, and n is the total number of data points (Tabari et al.,
2012). The input vectors (xi) refer to independent variables,
whereas the target values (yi) refer to SWC. The linear regression
function uses the following function:

f ðxÞ ¼ x/ðxÞ þ b ð11Þ

where /(x) is a nonlinear function by which x is mapped into a fea-
ture space, b and x are a weight vector and a coefficient, respec-
tively, that should be estimated from the data. A linear regression
is performed in a high dimensional feature space via non-linear
mapping. The coefficients b and x are estimated by minimizing
the sum of the empirical risks (the first term of Eq. (12)) and a com-
plexity term (the second term of Eq. (12)).

R ¼ c
Xn
i¼1

Leðf ðxiÞ; yiÞ
1
2
kxk2 ð12Þ
Leðf ðxiÞ; yiÞ ¼
0 forjf ðxiÞ � yij < e

jf ðxÞ � yj � e otherwise

�
ð13Þ

where R is the sum of the empirical risks, c is a positive constant (an
additional capacity control parameter) that determines the trade-
off between the model complexity and the values up to which
errors larger than e are tolerated, x2 is the regularization term,
which denotes the Euclidean norm, y is the output value, and Le is
called the e-insensitive loss function that measures the empirical
risk and has the advantage of not requiring all input data for
describing the regression vector x.

Eq. (12) shows that the loss function is equal to 0 if the
difference between the predicted f ðxÞ and the measured value yi
is less than e. The choice of e is easier than the choice of c and it
is often given as a desired percentage of the output values yi. So,
a non-linear regression function is given by a function that
minimizes Eq. (11), subject to Eq. (12), as in the following
expression:

f ðx;a;a�Þ ¼
Xn
i¼1

ðai � a�Þkðxi; xÞ þ b ð14Þ

Coefficient aia� ¼ 0 or aia� P 0 for i ¼ 1; . . . ;N and the kernel func-
tion kðxi; xÞ describe the inner products in the D-dimensional fea-
ture space:

kðx; yÞ ¼
XD
i¼1

/jðxÞ/iðyÞ ð15Þ

It should be mentioned that the features /j need not be com-
puted; rather what is needed is the kernel function, which is very
simple and has a known analytical form. In this study, linear, poly-
nomial, radial basis function, and sigmoid kernels were used. The
best kernel was determined by a trial and error process. The coef-
ficients aia� are obtained by maximizing the following form:

Rðaia�Þ ¼ �eumN
i¼1ðai þ a�Þ þ

X
yiða� � aiÞ

� 1
2

XN
j¼1

ða� þ aiÞ � ða� þ aiÞkðxi; xjÞ

subject to
XN
i¼1

ða� � aiÞ ¼ 0 and 0 6 aia� 6 C

ð16Þ

Only a number of coefficients aia� will be different from zero,
and the data points associated to them are called support vectors
(Mohandes et al., 2004; Kisi and Cimen, 2009; Zhou et al., 2009).

2.5. Correspondence criteria indices

The root mean square error (RMSE), the mean bias error (MBE),
the model efficiency (EF) and the coefficient of determination (R)
were calculated to provide the quantitative comparison of the cor-
respondence between the predicted and observed data as follows
(Parchami-Araghi et al., 2013):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðOi � PiÞ2
n

s
ð17Þ

MBE ¼
Pn

i¼1ðOi � PiÞ
n

ð18Þ

EF ¼ 1�
Pn

i¼1ðOi � PiÞ2Pn
i¼1ðOi � OiÞ2

ð19Þ

where Pi and Oi are the predicted and observed data, respectively, O
and �P are the averages of observed and simulated data, respectively,
and n is the number of observations.
3. Results and discussion

The HYDRUS-2D, MLR, ANFIS, and SVM models were evaluated
to simulate temporal variations of SWC data during two years and
for the FI, PRD75, and PRD55 treatments. It should be noted that the
SWC results are presented for all methods, except for HYDRUS-2D,
in terms of average values for the entire simulation domain in the
FI treatment, which is an 80 cm deep rectangle between two neigh-
boring emitters on either side of one plant (as explained in Sec-
tion 2); and in terms of average values for each sides of the plant
in the PRD treatments. Although the results for HYDRUS-2D are
presented for every 20 cm soil depth in Table 4 and for different
positions of the wetting front in Fig. 3, the average RMSE and
MBE values were calculated for the entire soil domain of 0–
80 cm by averaging these statistics from individual soil layers.

3.1. HYDRUS-2D

Soil hydraulic properties (i.e., Ks, hs, and hr) for the two horizons
of the soil profile (i.e., 0–20 cm and 20–80 cm soil depths) were
optimized for all treatments using the inverse option of HYDRUS-
2D that minimizes deviations between the observed and simulated
SWCs. Based on the results of the optimization, summarized in
Table 3, hr was the most sensitive parameter, followed by Ks, for
predicting observed soil water contents in the 0–20 cm soil depth.
In contrast, for the 20–80 cm soil depth, Ks was the most sensitive
parameter. Soil water contents showed less sensitivity to hs during
the calibration process than to Ks and hr.



Fig. 3. A comparison of observed and simulated (HYDRUS-2D) soil water contents at 0 (a), 18.75 cm (b), 37.5 cm (c), 56.25 cm (d), and 75 cm (e) distance from the first
dripper in the FI treatment (BI and AI denote before and after irrigation, respectively).

Table 3
Measured and optimized soil hydraulic parameters (Ks is the saturated hydraulic conductivity, and hr and hs are the residual and saturated water contents, respectively).

Treatment Soil depth (cm) Ks (cm day�1) hs (cm3 cm�3) hr (cm3 cm�3)

Optimized Observed* Optimized Observed Optimized Observed

FI 0–20 1.3 1.1 0.47 0.45 0.10 0.07
20–80 1.0 0.80 0.47 0.48 0.07 0.09

PRD75 0–20 1.22 1.05 0.47 0.47 0.10 0.08
20–80 0.95 0.83 0.47 0.48 0.08 0.08

PRD55 0–20 1.15 1.1 0.47 0.46 0.09 0.06
20–80 0.90 1.0 0.47 0.47 0.07 0.08

* Observed refers to parameters fitted by RETC to retention curves determined in the laboratory. Only Ks, hs, and hr were optimized by HYDRUS-2D, while parameters a, l,
and n were kept equal to values obtained by RETC.
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As an example, a comparison between observed and simulated
SWCs during the calibration process for the FI treatment is illus-
trated in Fig. 3. Good agreement was obtained between observed
and simulated SWCs at the sampling points between two neigh-
boring emitters when the optimized soil hydraulic parameters
were used during the calibration period. A lower R2 (0.96–0.97)
was obtained for SWCs observed in the vicinity of drippers where
SWC variations were higher. Small differences between observed
and simulated SWCs can be a consequence of the fact that
HYDRUS-2D provides point values of SWCs, while measurements
inherently average SWCs over a certain soil volume, in which
water contents may vary, especially in the vicinity of emitters
(Mguidiche et al., 2015). Similar calibration results were also
observed for the PRD75 and PRD55 treatments, which confirm the
high potential of HYDRUS-2D to simulate SWCs.

Daily SWCs for 2011 growing seasons were used to validate
HYDRUS-2D (i.e., results are also presented for daily SWCs during
the 2010 growing season in Fig. 4 for the visual comparison of



Fig. 4. A comparison of temporal variations of measured and simulated (HYDRUS-2D) average SWCs in the root zone (i.e., 0–80 cm) during the 2010 (calibration) and 2011
(validation) growing seasons for the FI (a and d), PRD75 (b and e), and PRD55 (c and f) treatments.
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Table 4
A comparison of observed and simulated (with HYDRUS-2D) EWDi (an equivalent water depth over four horizons) using criteria indices.

Parameter Depth
(cm)

2010 2011

FI PRD75 PRD55 FI PRD75 PRD55

RMSE*

(mm)
MBE
(mm)

RMSE
(mm)

MBE
(mm)

RMSE
(mm)

MBE
(mm)

RMSE
(mm)

MBE
(mm)

RMSE
(mm)

MBE
(mm)

RMSE
(mm)

MBE
(mm)

EWDi

(mm)
0–20 0.8 1.1 0.73 0.93 0.83 0.83 1.18 0.89 0.82 1.4 0.35 0.45
20–40 0.85 1.2 0.73 0.91 0.79 0.85 0.38 1.2 0.78 0.95 0.72 0.82
40–60 0.78 0.85 0.64 0.87 0.81 0.69 0.48 0.8 0.80 1.2 0.60 0.70
60–80 0.28 0.48 3.69 10 5.84 5.5 0.41 0.75 0.87 0.97 0.51 0.65

* RMSE: Root mean square error, MBE: Mean bias error.

Table 5
Statistical performance evaluation criteria for the MLR models using measured and observed SWCs.

Model Input variables RMSE (mm)* MBE (mm) EF Equation**

MLR1 E, Kc, In 25.26 �1.37 0.34 0.163 + 0.001E + 0.048Kc + 0.003In***

MLR2 E, Kc, WD, In 12.20 0.34 0.85 0.19 + 0.000022E + 0.041Kc � 0.03WD + 0.0018In
MLR3 cGDD, E, Kc, In 12.00 3.98 0.86 0.622–0.0028cGDD + 0.000022E � 0.051Kc + 0.000041In
MLR4 Kc, T, In 17.13 �3.16 0.71 0.205 + 0.0511Kc + 0.0015T + 0.0028In
MLR5 Kc, WD, T, In 12.24 0.18 0.85 0.18 + 0.056Kc + 0.0000018T � 0.019WD + 0.00185In
MLR6 cGDD, Kc, T, In 13.44 7.14 0.82 0.65–0.0031cGDD � 0.0702Kc + 0.0000021T + 0.00000014In
MLR7 cGDD, Kc, n 14.78 9.48 0.79 0.721–0.0025cGDD � 0.042Kc + 0.0018In
MLR8 cGDD, Kc, WD, In 10.46 6.86 0.90 0.531–0.0028cGDD � 0.0499Kc � 0.065WD + 0.0015In

* RMSEs and MBEs are calculated for equivalent root zone water depth (EWDrz).
** Equations are for SWCs.

*** DAS: days after sowing (d), Kc: crop coefficient (dimensionless), WD: water deficit (dimensionless), In: irrigation depth (mm), E: evapotranspiration (mm), GDD: growth
degree day (oCd).
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the observed and HYDRUS-2D simulated SWCs). Temporal varia-
tions of measured and simulated SWCs averaged over the rooting
depth (i.e., 0–80 cm) for both growing seasons, as well as the
related scatter plots, are displayed in Fig. 4 for all treatments.
HYDRUS-2D performed very well in simulating average root zone
SWCs and their seasonal trends. Similar results were found in
Pang et al. (2000) and Mguidiche et al. (2015), who concluded that
HYDRUS-2D is capable of simulating the general trend of SWCs for
both homogenous and heterogeneous soils.

The performance of the HYDRUS-2D model in simulating SWCs
in terms of RMSE and MBE is summarized in Table 4. RMSE values
characterizing differences between observed and simulated SWCs
varied between 0.28–1.18 mm for the FI treatment, 0.64–
3.69 mm for the PRD75 treatment, and 0.35–5.84 mm for the
PRD55 treatment (the RMSE and MBE values were calculated for
equivalent water depths over four different horizons (EWDi)). In
general, higher RMSEs for the FI treatments were obtained for
the 0–40 cm surface soil depths, which experience higher varia-
tions of SWCs during the growing seasons, than for deeper depths.
On the other hand, the highest RMSEs for the PRD treatments were
obtained for the 60–80 cm soil depth. A small underestimation of
all components of the EWDi could be observed for all treatments,
with MBEs between 0.45–10 mm. Other studies also reported
small errors in the simulated components of the seasonal soil
water balance using HYDRUS-2D, with RMSEs less than 10 mm
(Skaggs et al., 2004; Kandelous and Šimůnek, 2010; Mguidiche
et al., 2015).
3.2. The MLR models

Results for the MLRmodels in terms of predictions of equivalent
water depth over root zone (EWDrz) are summarized in Table 5.
With respect to RMSE, the MLR8 model with inputs of cGDD, Kc,
In, and WD had the best performance (RMSE = 10.46 mm,
MBE = 6.86, and EF = 0.0.9), followed by the MLR3 (RMSE = 12 mm,
MBE = 3.98, and EF = 0.86) and MLR2 (RMSE = 12.2 mm,
MBE = 0.34, and EF = 0.85) models. It seems that Kc, which repre-
sents the crop growth stage and consequently the crop’s water
requirements, plays a major role in estimating EWDrz since it
always has a higher multiplication coefficient than other input
variables. In fact, the higher the root water uptake, the lower the
EWDrz.

The input combination of E, Kc, and In (i.e., the MLR1 model)
yielded the lowest accuracy in estimating EWDrz. With respect to
MBE, MLR7 is the worst model since neither atmospheric factors
(i.e., T and E) nor WD are included in its input combination. Gener-
ally, underestimation of SWCs is observed for the MLR models,
except for MLR1 and MLR4. Overall, differences between observed
and simulated SWCs (averaged over the root zone), as illustrated
by scatter plots in Fig. 5, indicate a low accuracy of the MLR models
in simulating SWCs for different treatments. This low accuracy can
be ascribed to the non-linearity of the variably-saturated water
flow process and thus the inadequacy of linear relationships
between SWCs and selected input parameters.
3.3. The ANFIS and SVM models

Table 6 provides the final architectures of various ANFIS models
and the performance statistics for the training phase. Two mem-
bership functions (MFs) were found to be sufficient for simulating
EWDrz with the ANFIS models except for ANFIS1, for which five MFs
led to the best results. The increase in the number of MFs not only
does not provide any significant improvements in the results, but
also increases the number of parameters that need to be optimized.
Because of that, the number of MFs should be kept as low as pos-
sible (Ozger and Yıldırım, 2008). Except for ANFIS4, the general-
ized, bell-shaped built-in (Gb) and Gaussian combination (Gus2)
membership functions were the best MFs for all ANFIS models.
For ANFIS4, the Gaussian curve built-in (Gus1) function led to
the lowest error when simulating EWDrz.

With respect to RMSE, the ANFIS8 model, with inputs of cGDD,
Kc, WD, and In, had the best performance in simulating EWDrz



Fig. 5. Scatter plots between observed and simulated SWCs (averaged over the root zone) for the MLR models.

Table 6
The final architecture and performance statistics of the ANFIS models for the testing phase. The same combination of input variables were used in the ANFIS and MLR models (see
Table 5).

Model Input variables Best MF* NMF RMSE (mm)** MBE (mm) EF

ANFIS1 E, Kc, In Gb 5 22.45 2.61 0.45
ANFIS2 E, Kc, WD, In Gb 2 4.73 0.03 0.98
ANFIS3 cGDD, E, Kc, In Gus2 2 3.21 0.66 0.99
ANFIS4 Kc, T, In Gus1 2 8.17 0.40 0.93
ANFIS5 Kc, WD, T, In Gb 2 4.87 �0.23 0.98
ANFIS6 cGDD, Kc, T, In Gb 2 2.92 0.01 0.99
ANFIS7 cGDD, Kc, In Gus2 2 2.71 0.02 0.99
ANFIS8 cGDD, Kc, WD, In Gus2 2 1.67 �0.11 1.00

* MF: Membership function, NMF: Number of membership function, Gb: Generalized bell-shaped built-in MF, Gus1: Gaussian curve built-in MF, Gus2: Gaussian com-
bination MF.
** RMSEs and MBEs are calculated for equivalent root zone water depth (EWDrz).
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(RMSE = 1.67 mm, MBE = �0.11 mm, and EF = 1), and ANFIS7
ranked second (RMSE = 2.71 mm, MBE = 0.02 mm, and EF = 0.99).
ANFIS6, with inputs of cGDD, Kc, GDD, and In, ranked third. In con-
trast, ANFIS1, with input parameters Kc, E, and In, had the highest
error when simulating EWDrz (RMSE = 22.45, MBE = 2.61, and
EF = 0.45). Based on the results summarized in Table 6, it seems
that crop parameters and factors representing soil stresses play a
more important role in temporal variations of EWDrz, compared
to atmospheric parameters such as T and E. As discussed in the lit-
erature, crop factors are the most dominant factors, controlling
root water uptake under stress conditions, which consequently
controls SWCs (Allen et al., 1998).

As shown in Table 6, all ANFIS models underestimated EWDrz,
except for ANFIS5 and ANFIS8, which slightly overestimated EWDrz.
However, a visual inspection of scatter plots in Fig. 6, comparing
observed and ANFIS-estimated SWCs (averaged over the root
zone), clearly indicates the high potential of the ANFIS modeling.
Notice the high values of R2 in Fig. 6 for several ANFIS models.
The SVM models were similarly implemented using a MATLAB
code. First, different SVM architectures were tried. Once the appro-
priate model structures were determined for each combination of
input variables, the resulting SVM models were tested against
the experimental dataset, and the results were compared using
the performance statistics (Table 7). In the SVM modeling, an
appropriate choice of kernels allows the data to become separable
in the feature space despite being non-separable in the original
space. This allows one to obtain non-linear algorithms from algo-
rithms previously restricted to handling linearly separable data
sets (Bray and Han, 2004). Here, the radial basis function was the
best kernel for all SVM models.

With respect to RMSE, the SVM8 model, with RMSE = 1.9 mm,
MBE = 0.7 mm, and EF = 1, had the best performance in simulating
EWDrz, followed by SVM3 (RMSE = 2.44 mm, MBE = 0.28 mm, and
EF = 0.99) and SVM7 (RMSE = 2.66 mm, MBE = 0.15 mm, and
EF = 0.99). These three models had nearly the same performance
statistics and thus the selection of one of these models over the



Fig. 6. Scatter plots between observed and simulated SWCs (averaged over the root zone) for the ANFIS models.

Table 7
The final architecture and performance statistics of the SVM models for the testing phase. The same combination of input variables were used in the SVM and MLR models (see
Table 5).

Model Input variables Best Kernel RMSE (mm)* MBE (mm) EF

SVM1 E, Kc, In Radial Basis Function 21.33 2.39 0.51
SVM2 E, Kc, WD, In Radial Basis Function 3.96 0.43 0.98
SVM3 cGDD, E, Kc, In Radial Basis Function 2.44 0.28 0.99
SVM4 Kc, T, In Linear Function 8.45 0.45 0.93
SVM5 Kc, WD, T, In Radial Basis Function 4.75 0.37 0.98
SVM6 cGDD, Kc, T, In Radial Basis Function 3.05 0.21 0.99
SVM7 cGDD, Kc, In Radial Basis Function 2.66 0.15 0.99
SVM8 cGDD, Kc, WD, In Radial Basis Function 1.90 0.27 1.00

* RMSEs and MBEs are calculated for equivalent root zone water depth (EWDrz).
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other should be dependent upon available data. Since pan evapora-
tion (E) is not always available for all weather stations, the SVM8
and SVM7 models may be easier to use when limited data are
available. SVM6, with RMSE = 3.05 mm, MBE = 0.21 mm, and
EF = 0.99, also had an acceptable accuracy for estimating EWDrz.
Similar to the MLR and ANFIS models, the combination of E, Kc,
and In for SVM1 led to the lowest accuracy in simulating EWDrz

(RMSE = 21.33 mm, MBE = 2.39 mm, and EF = 0.51). However, the
scatter plots between observed and simulated SWCs (again, aver-
aged over the root zone) and their high R2 demonstrate the high
potential of the SVM modeling (Fig. 7).

3.4. Comparison of different models

A comparison of observed SWCs and SWCs estimated using the
MLR8, ANFIS8, and SVM8models for the FI, PRD75, and PRD55 treat-
ments in 2010 is illustrated in Fig. 8 in the form of time series and
scatter plots. It should be noted that these particular models had
the best performance in their groups. Regardless of the type of
model, a better performance was found for the stressed conditions
(i.e., PRD75 and PRD55 treatments) than for the unstressed
conditions with full irrigation. This result is contrary to HYDRUS-
2D, which had better results for the FI treatment. Negative bias is
also obvious for almost all days during the simulation process. Fur-
thermore, a visual inspection of Fig. 8 shows that the ANFIS and
SVM models had a better performance than the MLR models for
all treatments, which is also reflected by the R2 index. These mod-
els very well reproduced not only the temporal variations, but also
the actual daily values of SWCs. Especially, the response of the
MLR8 model to irrigation events is less dynamic than observed.
This is especially visible for the FI treatment and the wetted sides
of the PRD treatments. This documents that the MLR8 model could
not well describe non-linear changes in SWCs during irrigation
events. This also confirms the RMSE, MBE, and EF statistics given
in Tables 5–7.

The performance of different modeling approaches to predict
EWDrz is ranked in Table 8 based on the RMSE statistics. Being
physically based, the HYDRUS-2D model ranked first with respect



Fig. 7. Scatter plots between observed and simulated SWCs (averaged over the root zone) for the SVM models.
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to RMSE. Previous studies have also demonstrated the high poten-
tial of HYDRUS-2D for simulating SWCs (e.g., Cote et al., 2003;
Ajdary et al., 2007; Rahil, 2007; Crevoisier et al., 2008; Siyal and
Skaggs, 2009; Mubarak, 2009; Tafteh and Sepaskhah, 2012). A high
accuracy of HYDRUS-2D is to be expected since it is a physically
based model that solves numerically by means of the finite ele-
ment method the Richards equation, which describes the highly
non-linear, variably-saturated water flow in soils. This approach
requires knowledge of the soil water retention curve and the
hydraulic conductivity function, which are rarely known.

Table 8 shows that the ANFIS8 model ranked second
(RMSE = 1.67 mm, MBE = �0.11 mm, and EF = 1.00) with respect
to the RMSE index, followed by the SVM8 (RMSE = 1.9 mm,
MBE = 0.27 mm, and EF = 1.00), SVM3 (RMSE = 2.44 mm,
MBE = 0.28 mm, and EF = 0.99) and SVM7 (RMSE = 2.66 mm,
MBE = 0.15 mm, and EF = 0.99) models. These models are then fol-
lowed by ANFIS7 and ANFIS6, and further by SVM6, ANFIS3, SVM2,
ANFIS2, SVM5, ANFIS5, ANFIS4 and SVM4. Overall, 14 best per-
forming models for the estimation of EWDrz under stressed condi-
tions were the ANFIS and SVM models, which performed far better
than the MLR models. Exceptions were the SVM1 and ANFIS1 mod-
els, which by ignoring the WD parameter had lower efficiency in
estimating EWDrz, especially under stressed conditions. Such
results demonstrated that the performance of the ANFIS and SVM
models is highly dependent on the selected input datasets. Table 8
shows that the MLR models occupy the last places in terms of their
performance in simulating EWDrz. Using the MLR4 model with
input parameters of Kc, GDD, and In led to the worst results.

The ANFIS models combine the transparent linguistic
representation of a fuzzy system with the learning ability of
ANN. Therefore, they can be trained to perform an input/output
mapping similar to ANN while providing an additional benefit of
being able to consider a set of rules on which the model is based.
This provides a further insight into the process being modeled
(Sayed et al., 2003).

The main advantage of using the SVM models is their flexibility
and ability to model non-linear relationships. Furthermore, the
SVM training process always seeks a global optimized solution
and avoids over-fitting, which eventually leads to a better general
performance than the ANN models. The SVM models are able to
select the key vectors in the training process, which includes sup-
port vectors and automatically removes the non-support vectors
from the model. This helps the model cope well with noisy condi-
tions. The main disadvantage of the SVM technique is that it has no
physical basis. In addition, the SVM approach can only be used
when the training dataset is available (Bray and Han, 2004; Zhou
et al., 2009; Kisi and Cimen, 2009).

3.5. A further assessment of different models

The performance of different models was reevaluated using the
observed SWCs data from 2011. The results of the statistical com-
parisons between the HYDRUS-2D, MLR, ANFIS, and SVM models
are summarized in Table 9, where models are ranked with respect
to the RMSE index. Similar to 2010, the best performance criteria
for simulating EWDrz were obtained by HYDRUS-2D with
RMSE = 0.66 mm, MBE = 0.81 mm, and EF = 0.99. Thereafter, the
SVM and ANFIS models generally provided more accurate EWDrz

estimations compared to the MLR models. However, the SVM1
and ANFIS1 models performed slightly worse than the MLR mod-
els. Overall, Table 9 indicates that the 15 best models for simulat-
ing EWDrz in 2011, apart from HYDRUS-2D, were the ANFIS and
SVM models, similar to 2010. A visual inspection of observed and
simulated SWC time series in Fig. 9 also demonstrated better per-
formance of the ANFIS and SVM models compared to the MLR
models. This validation demonstrates that these models could be



Fig. 8. Average observed and estimated SWCs over the rooting depth (0–80 cm) using the MLR3, SVM3, and ANFIS8 models for different treatments in 2010.
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Table 8
Summary of the ranking of selected models (based on the testing phase in 2010).

Rank* Model Considered parameters** RMSE (mm)*** MBE (mm) EF

1 HYDRUS-2D physically-based model 1.02 1.45 0.99
2 ANFIS8 cGDD, Kc, WD, In 1.67 �0.11 1.00
3 SVM8 cGDD, Kc, WD, In 1.90 0.27 1.00
4 SVM3 cGDD, E, Kc, In 2.44 0.28 0.99
5 SVM7 cGDD, Kc, In 2.66 0.15 0.99
6 ANFIS7 cGDD, Kc, In 2.71 0.02 0.99
7 ANFIS6 cGDD, Kc, T, In 2.92 0.01 0.99
8 SVM6 cGDD, Kc, T, In 3.05 0.21 0.99
9 ANFIS3 cGDD, E, Kc, In 3.21 0.66 0.99
10 SVM2 E, Kc, WD, In 3.96 0.43 0.98
11 ANFIS2 E, Kc, WD, In 4.73 0.03 0.98
12 SVM5 Kc, WD, T, In 4.75 0.37 0.98
13 ANFIS5 Kc, WD, T, In 4.87 �0.23 0.98
14 ANFIS4 Kc, T, In 8.17 0.40 0.93
15 SVM4 Kc, T, In 8.45 0.45 0.93
16 MLR8 cGDD, Kc, WD, In 10.46 6.86 0.90
17 MLR3 cGDD, E, Kc, In 12.00 3.98 0.86
18 MLR2 E, Kc, WD, In 12.20 0.34 0.85
19 MLR5 Kc, WD, T, In 12.24 0.18 0.85
20 MLR6 cGDD, Kc, T, In 13.44 7.14 0.82
21 MLR7 cGDD, Kc, In 14.78 9.48 0.79
22 MLR4 Kc, T, In 17.13 �3.16 0.71
23 SVM1 E, Kc, In 21.33 2.39 0.51
24 ANFIS1 E, Kc, In 22.45 2.61 0.45
25 MLR1 E, Kc, In 25.26 �1.37 0.34

* Different models are ranked with respect to RMSE.
** DAS: days after planting (d), Kc: crop coefficient (dimensionless), WD: water deficit (dimensionless), In: irrigation depth (mm), E: evapotranspiration (mm), GDD: growth

degree day (�C).
*** RMSEs and MBEs are calculated for equivalent root zone water depth (EWDrz). The RMSE values for HYDRUS-2D were obtained by averaging the values for all individual
soil layers which are given in Table 4

Table 9
RMSEs, MBEs and EFs for the selected models during the validation phase, i.e., the 2011 growing season.

Rank* Model Considered parameters** RMSE (mm)** MBE (mm) EF

1 HYDRUS2D Physically-based model 0.66 0.81 0.99
2 SVM8 cGDD, Kc, WD, In 1.27 0.07 1.00
3 ANFIS8 cGDD, Kc, WD, In 1.82 �0.07 1.00
4 SVM3 cGDD, E, Kc, In 2.27 �0.19 1.00
5 ANFIS6 cGDD, Kc, T, In 2.36 0.00 1.00
6 SVM7 cGDD, Kc, In 2.37 �0.28 1.00
7 ANFIS7 cGDD, Kc, In 2.46 �0.17 1.00
8 ANFIS3 cGDD, E, Kc, In 2.48 �0.15 1.00
9 SVM6 cGDD, Kc, T, In 2.59 �0.40 0.99
10 SVM2 E, Kc, WD, In 4.40 �0.03 0.99
11 SVM5 Kc, WD, T, In 4.52 0.38 0.98
12 ANFIS2 E, Kc, WD, In 5.02 �0.11 0.98
13 ANFIS5 Kc, WD, T, In 5.84 0.40 0.97
14 ANFIS4 Kc, T, In 8.75 0.45 0.93
15 SVM4 Kc, T, In 9.88 3.07 0.91
16 MLR2 E, Kc, WD, In 13.41 �0.61 0.86
17 MLR5 Kc, WD, T, In 13.59 1.65 0.85
18 MLR3 cGDD, E, Kc, In 16.09 9.72 0.81
19 MLR8 cGDD, Kc, WD, In 16.73 14.01 0.83
20 MLR6 cGDD, Kc, T, In 17.01 10.65 0.79
21 MLR4 Kc, T, In 19.32 �3.58 0.70
22 MLR7 cGDD, Kc, In 21.76 17.27 0.64
23 SVM1 E, Kc, In 26.32 5.71 0.36
24 ANFIS1 E, Kc, In 26.32 5.71 0.36
25 MLR1 E, Kc, In 26.32 5.71 0.36

The RMSE values for HYDRUS-2D were obtained by averaging the values for all individual soil layers which are given inTable 4
* Different models are ranked with respect to RMSE.

** RMSEs and MBEs are calculated for equivalent root zone water depth (EWDrz).
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useful substitutes for HYDRUS-2D for optimizing the management
of water resources under stressed conditions and with limited data
availability in agriculture.

3.6. Uncertainty analysis

Predictions of SWCs immediately before irrigation events are
more important for the purpose of irrigation scheduling than of
those at other times. Therefore, errors in SWCs and their
associated uncertainties before and after irrigation events were
estimated with different models separately (Fig. 10). Absolute
errors in estimated SWCs immediately before irrigation events
using the MLR, ANFIS, SVM, and HYDRUS-2D models ranged
between 1.3–17.5%, 0.4–10, 0.2–10.5%, and 1.1–2.8%,
respectively. For times after irrigation events, the MLR, ANFIS,
SVM, and HYDRUS-2D models estimated SWCs with errors



Fig. 9. SWC values observed and estimated using the MLR3, SVM8, and ANFIS6 models for different treatments in 2011.
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Fig. 10. Errors in estimating SWCs with different models for times immediately before (left) and after (right) irrigation events (Min, Max, and SD denote the minimum,
maximum, and standard deviation, respectively).
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between 1.7–17.7%, 0.7–8.2%, 0.3–8.7%, and 1.1–3.1%,
respectively.

Fig. 10 shows that the results simulated by HYDRUS-2D have a
lower uncertainty domain of estimated SWCs than those obtained
by the other models and are thus more reliable. Even though the
ANFIS and SVM models have absolute errors that are similar to
those obtained by HYDRUS-2D, they predict SWCs both before
and after irrigation events with higher uncertainties than
HYDRUS-2D. Nevertheless, the ANFIS and SVM models performed
much better than the MLR models in estimating SWCs and associ-
ated uncertainties. It can be concluded that although HYDRUS-2D
predictions of temporal variations of SWCs in the root zone are
superior to those made by the ANFIS and SVM models, these mod-
els can be reliably used for predicting SWCs when there is a lack of
data required by HYDRUS-2D.
4. Conclusions

Since agriculture is known to be the biggest consumer of fresh
water, sustainable management of water resources for irrigation
use has become an important goal at the basin scale worldwide.
In this regard, modeling tools for a quick estimation of SWCs and
for determining the real crop water demand, especially under
new water-saving irrigation strategies, will help farmers improve
thewater and crop productivity. In this regard, introducing efficient
methods for estimating SWCs when only limited information is
available would be useful for irrigation scheduling, even in the
planning stage when the possible effects of new water-saving irri-
gation strategies are evaluated. Therefore, in this research, the pos-
sibility of indirect estimation of SWCs underwater stress conditions
was investigated by means of both numerical and machine-
learning models, including the HYDRUS-2D, MLR, ANFIS, and SVM
models, and using a dataset from a two-year field investigation.

Being a physically-based model, HYDRUS-2D ranked first in
simulating time series of SWCs at the field scale for selected irriga-
tion strategies. However, both ANFIS and SVM models could be
successfully used for predicting SWCs when there is a lack of input
data required by HYDRUS-2D. When suitable input datasets
selected based on the correlation analysis were available, these
models estimated SWCs with an accuracy that approached the
physically based model (Tables 8 and 9). In addition, these models
performed especially well compared to HYDRUS-2D for water
stressed conditions, although less well for conditions with full
irrigation.

Using simple atmospheric data (E, T), crop parameters (cGDD,
Kc), and stress descriptor parameters (In, WD), the ANFIS, and
SVM models showed a high potential for modeling SWCs with
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acceptable errors. Therefore, when suitable input datasets are
available, the ANFIS and SVM models can be used for irrigation
scheduling and for management of agricultural water resources.
However, these models have to first be trained using a training
dataset that should include as many data and as many conditions
as possible so that they can take into account unusual events and
obtain good accuracy in their predictions. The models introduced
in this research could be used in a wide range of applications since
they were developed using only simple input parameters, which
could be easily determined even in projects with limited resources.
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Kandelous, M.M., Šimůnek, J., 2010. Numerical simulations of water movement in a
subsurface drip irrigation system under field and laboratory conditions using
HYDRUS-2D. Agric. Water Manage. 97, 1070–1076.
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