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Abstract

First-principles studies of carbon nanostructures and spin-phonon and
electron-phonon coupling in solids

by

Kevin Timothy Chan

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Marvin L. Cohen, Chair

This work presents first-principles theoretical studies on two topics of condensed matter
physics. The first topic is the adsorption of metal adatoms on graphene. Graphene, a
two-dimensional material made of carbon atoms arranged in a honeycomb lattice, has many
outstanding properties that can be enhanced or tailored by adsorbing adatoms on its surface.
The second topic involves the coupling of spins or electrons to phonons in a solid. The
interaction between different degrees of freedom of a material complicates the study of its
properties but also leads to fascinating phenomena, such as superconductivity, and potential
device applications. This dissertation is organized into six chapters:

• In Chapter One, we give an overview of this work and review the first-principles theory
and methods used in our studies.

• Chapter Two focuses on structural, energetic, and electronic properties for a variety
of adatom species adsorbed on the graphene surface. We classify different species
as having mostly ionic or covalent character of bonding to graphene. For ionically
bonded adatoms, charge transfer between the adatom and graphene is signficant. We
find general trends relating the surface dipole moment, work function, and atomic
ionization potential of the adatom species.

• In Chapter Three, we study the electronic structure of adatoms on graphene when
a gate voltage is applied to control the number of electrons in the system. Lithium
on graphene, a prototype system, and cobalt on graphene, an experimentally relevant
case, are studied. We find that localized states on the adatom can be charged or
discharged by the application of gate voltage, and we study the changes in potential
and charge density of the system as electrons are added or removed.

• In Chapter Four, we extend the work in Chapter Three to consider the possibility
of transforming the electronic structure of one species of adatom on graphene into
that of another by applying a gate voltage. We find that within our model, such
transformations are possible for certain adatom species.
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• In Chapter Five, the zone-center phonons for the frustrated antiferromagnetic com-
pound ZnCr2O4 are calculated. We find that the transition from nonmagnetic to
antiferromagnetic ordering causes a splitting of certain degnerate phonon frequencies,
in agreement with experimental results.

• In Chapter Six, the pressure dependence of electron-phonon coupling and the super-
conducting transition temperature (Tc) in elemental arsenic is studied. We find that
an experimentally observed peak in Tc as a function of pressure is related to a struc-
tural transition and can be explained mainly by changes in electronic structure and
phonon frequencies with pressure.
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Chapter 1

Introduction

1.1 Overview

Condensed matter physics is a broad field encompassing the study of crystalline
and disordered solids, surfaces, and molecules, as well as liquids, gases, and fluids. These
systems are often called, generally, materials. Materials are encountered by humans in their
daily lives and are an important part of the observable natural world. It is a human endeavor
to understand how the natural world works, and how materials work in particular. Such
understanding also leads to useful applications. The study of condensed matter physics is
therefore a worthwhile pursuit.

Condensed matter systems range from the macroscopic to the nanometer and
Angström scale. What unifies all the varied condensed matter systems is that they are all
made up of constituent particles—nuclei and electrons—that interact via the electromag-
netic force. While, at some level, the fundamental particles and interactions are simple,
the variety of possible combinations of species of atoms and structures leads to a host of
complex phenomena that invite us to understand them.

This thesis is concerned with several interesting phenomena of condensed matter
physics. The first set of phenomena relates to a class of materials made of sp2 carbon atoms.
This class of materials has several outstanding properties. These materials are stable and
strong, due to the strength of the sp2 carbon bond. Graphite, the three-dimensional form
of sp2 carbon, is found naturally and is the most stable form of solid elemental carbon.
The simple structure of these materials, based on the two-dimensional honeycomb lattice,
possesses many symmetries. Since these materials are made of carbon, which has four
valence electrons, they are capable of interacting with other elements and molecules. These
materials can also form a variety of structures of different dimensionalities. Nanometer scale
(on the order of tens or hundreds of atoms in length) sp2 carbon-based materials are stable
and have interesting quantum mechanical properties that are not observable in macroscopic
materials.

Graphite is composed of layered sheets of carbon atoms in a two-dimensional
honeycomb lattice. A single layer of graphite is called graphene. If one imagines taking a
piece of graphene and forming it into a ball, one obtains a zero-dimensional object. The C60

molecule, or “buckyball”, was discovered in 1985 [1]. The one-dimensional carbon nanotube,
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which can be thought of as a rolled up graphene ribbon, was dicovered a few years later [2].
The ability to efficiently isolate and study two-dimensional graphene in detail was

discovered only recently [3]. Graphene posesses many unique properties and has been the
subject of intense study in the last several years [4, 5]. In addition to its excellent strength
and conducting properties which are also characteristic of carbon nanotubes, ideal graphene
is a truly two-dimensional, one atom thick material; it is a semimetal with a pointlike Fermi
surface; it posseses a linear electronic band dispersion and a linearly varying density of
states near the Fermi level; and electrons at the Fermi level obey a Dirac-like equation
analogous to relativistic particles. Chapters 2–4 of this thesis focus on graphene.

Chapter 5 of this thesis deals with a specific problem relating to the general phe-
nomenon of magnetism. While magnetic materials have been known for a long time, they
are still rich topic of current research. The interactions between microscopic magnetic mo-
ments in materials are not fully understood, as they involve the difficult problem of electron
correlation [6]. These interactions lead to ferromagnetic, antiferromagnetic, and other types
of long range magnetic order.

Materials synthesis and characterization advances have increased the number of
magnetic materials available. Multiferroics, materials that couple magnetic to electric or
mechanical degrees of freedom, are an especially exciting current topic of research and may
have useful applications [7, 8]. Computer hard drives relying on the phenomenon of giant
magnetoresistance [9] are a well-known application of magnetic materials.

Electron-phonon coupling is central to several properties of materials, most notably
the temperature dependence of electrical resistivity and superconductivity. Superconduc-
tivity is one of the most fascinating topics in condensed matter physics. It was discovered
in 1911 by Kamerlingh Onnes [10], but the microscopic theory of superconductivity was un-
known until the work of Bardeen, Cooper, and Schrieffer (BCS) in 1957 [11]. In conventional
superconductors, electron-phonon coupling is responsible for electron pairing. Since BCS,
the active study of electron-phonon superconductors has continued; a few important recent
results include the discoveries of surprisingly high superconducting transition temperatures
in MgB2 [12] and elemental lithium under pressure [13–15].

Since all materials are composed of nuclei and electrons, whose individual proper-
ties are known, and that interact via the well-known electromagnetic force, an ideal hope
is to be able to determine theoretically all the properties of any condensed matter system
from knowledge of its constituent atoms. While a complete understanding of all condensed
matter from an atomistic perspective is not possible (at least, not yet), at the present it is
possible to calculate many properties of many systems from first-principles, using only the
identity of the atoms and their structure, with little or no empirical input.

The first-principles theoretical approach has proven very fruitful in understanding
condensed matter systems. With current computer technology, such calculations can be
made with high quantitative precision, allowing for valuable comparisons with experimental
results. In addition, the accuracy of the first-principles approach makes it useful for making
real predictions about materials, both existing and hypothetical, that subsequently can be
verified experimentally.

This dissertation describes the application of first-principles theoretical methods
to two classes of problems in condensed matter physics. The first class of problems involves
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developing our understanding of the adsorption of metal adatoms on graphene. There are
a wide variety of metals that can be adsorbed on graphene to form different structures and
modify the properties of graphene in interesting and useful ways. In Chapter 2, we study
the total energy and electronic properties of adatoms adsorbed on graphene for a variety of
metal species. We find that many adatoms have a binding energy of around 1 eV. We can
classify different adatom species as having mainly ionic or covalent bonding character. For
adatoms that bind ionically, we calculate the charge transfer between the adatom and the
graphene. We study the relation between ionization energy of the isolated atom and the
changes in work function and surface dipole moment when the adatom is adsorbed on the
graphene sheet.

In Chapter 3, we study the adatom-graphene system when the number of electrons
in the system is varied. Experimentally, the control of electron density in the graphene
system can be achieved by applying a gate voltage, and the system can be simultaneously
studied by scanning tunneling microscopy [16]. Calculations are performed for a lithium
adatom on graphene, which serves as a prototype system, and for cobalt on graphene, a
system that has been studied experimentally [17]. We find that applying a gate voltage to
the adatom-graphene system can cause charging and discharging of localized adatom states,
and we study the changes in potential and electron density due to this charging effect.

In Chapter 4, we explore the possibility of using gate voltage control to transform
the electronic properties of one species of adatom on graphene into those of its neighbor
in the Periodic Table. Transforming between potassium and calcium, cobalt and nickel,
and nickel and copper are considered. Within our model, we find that this transformation,
termed “alchemy”, is possible in several cases.

The second class of problems involves the coupling of spins or electrons to phonons
in solids. In Chapter 5, we study the compound ZnCr2O4, which is a frustrated antiferro-
magnet. Our first-principles calculations of phonon frequencies in this material show that
phonon modes that are degenerate in frequency when no magnetic order is present are split
when antiferromagnetic order is introduced. We explore different models for correlation in
this system, and show that effects of correlation, in the form of a Hubbard U , are needed
to get good agreement of phonon splittings with experimental results.

In Chapter 6, we study electron-phonon and superconductivity in elemental ar-
senic under pressure. Experimentally, arsenic is known to undergo a transition from the
rhombohedral A7 structure to the simple cubic structure at around 25-32 GPa as pressure
is increased. Near this transition, arsenic is also superconducting, with a maximum transi-
tion temperature of 2.4 K [18]. We calculate the electron-phonon coupling constant λ and
superconducting transition temperature at various pressures near this structural transition
and find good agreement with experiment. These calculations give physical insight into
the reasons for the change in superconducting transition temperature with pressure in this
system.

The rest of this introductory chapter (Sec. 1.2) describes the basic theory and first-
principles methods used in this thesis. The main studies of this thesis follow in Chapters
2–6.
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1.2 Basic theory and methods

In this section, we review the basic framework for studying condensed matter sys-
tems from first-principles theory. In Sec. 1.2.1, we first define the fundamental physics of
the system by specifying the hamiltonian for electrons and ions interacting via the electro-
magnetic force. The problem is to solve the Schrödinger equation for the given hamiltonian.
With the Born-Oppenheimer approximation, the problem is split into electronic and ionic
parts. Solution of the electronic structure problem (Sec. 1.2.2) for fixed ionic positions
gives properties such as the total energy, electronic band structure and density of states,
and forces on the ions. Two tools for solving the electronic structure problem are reviewed:
density functional theory and the plane-wave pseudopotential method. Electronic structure
calculations are the basis for all the studies presented in this dissertation. We then present
in Sec. 1.2.3 the basic theory for solving for the normal modes of the ions, or phonon modes.
Two approaches to phonon calculations are presented: the frozen phonon approach, used
in Chapter 5, and density functional perturbation theory, used in Chapter 6. Methods for
treating magnetic systems, such as the magnetic adatoms on graphene studied in Chapters
2–4, and the magnetic material ZnCr2O4 studied in Chapter 5, are also discussed (Sec.
1.2.4). The last part of this section (Sec. 1.2.5) describes the methods for using electronic
structure and phonon calculations to study the electron-phonon interaction and supercon-
ductivity; these methods are applied in Chapter 6.

1.2.1 Defining the problem

From an atomistic perspective, a solid or molecule is a collection of negatively
charged electrons and positively charged ions. The system is governed by the Schrödinger
equation of quantum mechanics:

ĤFullΨFull = EFullΨFull, (1.1)

where ĤFull is the full hamiltonian of the system, EFull is the energy of the system, and
ΨFull is the wavefunction for all the particles.

For a system with Ne electrons and Ni ions, we denote the positions of the particles
by {r} = {r1, . . . rNe

} for the electrons and {R} = {R1, . . .RNi
} for the ions. (In this

section, a bold variable denotes a vector in three-dimensional space.) The wavefunction
ΨFull = ΨFull({r}, {R}) is a function of the positions of all the particles. Throughout this
section, we use lowercase and uppercase letters for electron and ion indices, respectively.

The Hamiltonian is given by

ĤFull = −
∑

I

~
2

2MI
∇

2
I −

∑

i

~
2

2m
∇

2
i +

1

2

∑

i 6=j

e2

|ri − rj|
+

1

2

∑

I 6=J

ZIZJe
2

|RI −RJ |
−

∑

I,i

ZIe
2

|ri −RJ |

= T̂ion + T̂el + V̂el-el + V̂ion-ion + V̂el-ion. (1.2)

The sums are over all the particles in the system, MI denotes the mass of ion I, m is the
electron mass, e is the electron charge, and ZI is the charge of ion I, in units of e. The
first two terms are the kinetic energies of the ions and electrons, respectively, while the
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last three terms are the coulomb energies for the electron-electron, ion-ion, and electron-ion
interaction. Relativistic effects, which are small for the systems we study, are ignored.

This complicated many-particle system cannot be solved exactly except for a small
number of particles. Therefore, several approximations must be made to get a solution. The
first approximation we make is to separate the electronic and ionic motion. This is generally
referred to as the Born-Oppenheimer or adiabatic approximation [19].

The basic idea is that, since the ionic mass M is much larger than the electronic
massm in most systems, the motion of the electrons is much faster than that of the ions, and
we can consider the motions of these two sets of particles separately. The Born-Oppenheimer
approximation is justified formally by expanding the Hamiltonian in powers of (m/M)1/4.

When considering the motion of the electrons, the ions can be considered as static,
i.e., the kinetic energy of the ions is zero. The positions of the ions can be considered as
parameters; for fixed {R}, the hamiltonian for the electrons is

Ĥel({R}) = T̂el + V̂el-el + V̂el-ion({R}) + V̂ion-ion({R}). (1.3)

This hamiltonian can be solved for electronic wavefunctions {Ψn({r}, {R})} and eigenvalues
{En({R})}. The solution of this electron hamiltonian is the electronic structure problem.
Some fundamental methods in first-principles electronic structure theory are discussed in
Sec. 1.2.2.

When considering the motions of the ions, the electrons are assumed to respond
instantaneously. The motion of the ions is adiabatic, such that the the electrons retain their
same quantum numbers as the ions move. The hamiltonian for the ions, with electrons in
state n, is

Ĥion = T̂ion +En({R}); (1.4)

En({R}) acts as an effective potential energy for the ions. This hamiltonian can be solved
for the ionic wavefunctions and eigenvalues {χνn({R}), Eνn}; ν indexes the ionic eigenstates.
The full wavefunction for both ions and electrons is

ΨFull,νn({r}, {R}) = χνn({R})Ψn({r}, {R}). (1.5)

Quantizing the motion of the ions leads to a description in terms of phonons. Methods for
computing phonon modes in condensed matter systems are discussed in Sec. 1.2.3.

For phenomena where the Born-Oppenheimer approximation fails, such as in su-
perconductivity, electronic and ionic motions are coupled. As discussed in Sec. 1.2.5, the
solutions of the hamiltonians in Eqs. 1.3 and 1.4 serve as the starting point for computing
the electron-phonon interaction.

1.2.2 Electronic structure

The solution of the hamiltonian of Eq. 1.3 is the electronic structure problem;
from this solution, one can determine quantities such as the total energy, the electronic
band structure and density of states, and the forces on ions. Throughout this section, we
assume fixed {R}, so we drop this notation, and we use atomic units, so that ~ = m = e = 1.

We discuss two important theoretical tools used in the electronic structure prob-
lem: density functional theory and the plane-wave pseudopotential method. We also show
how forces on the ions can be calculated from density functional theory.
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Density functional theory

The main idea and utility of density functional theory (DFT) [20,21] is the follow-
ing. Instead of trying to find the full many-body wavefunction of the electrons, a function
of all the electron coordinates, we try to find the ground-state density, which is a much sim-
pler function of only one coordinate (the position in space), and from which many relevant
physical properties can be determined. In the Kohn-Sham scheme, the true fully inter-
acting ground-state density can be determined by solving a tractable independent-particle
problem.

Our discussion roughly follows Ref. [22]. Let us consider a general interacting
electron system moving in an external potential Vext(r), whose hamiltonian is

Ĥ = T̂ + V̂int + V̂ext, (1.6)

where we have dropped the subscript on Hel and T̂el, and

V̂ext =
∑

i

∫
Vext(r)δ(r − ri)dr. (1.7)

For a given state |Ψ〉, the energy is

E = 〈Ψ|Ĥ|Ψ〉 = 〈Ĥ〉

= 〈T̂ 〉+ 〈V̂int〉+ 〈V̂ext〉, (1.8)

and the density is
n(r) = 〈Ψ|n̂(r)|Ψ〉, (1.9)

where the density operator is

n̂(r) =

Ne∑

i=1

δ(r − ri). (1.10)

The first theorem of DFT states that an external potential Vext(r) is uniquely defined by
the ground state density n0(r), up to a constant. Since Vext(r) defines the hamiltonian,
n0(r) in principle defines all the properties of the system.

The second theorem of DFT states that there exists a universal functional F [n] of
the density n such that minimizing the total energy functional

E[n] = F [n] + Eext[n] (1.11)

over densities n(r) integrating to Ne electrons gives the ground state density n0 and the
ground state energy E[n0] for the Vext(r). Here,

Eext[n] =

∫
Vext(r)n(r)dr, (1.12)

and
F [n] = 〈T̂ 〉+ 〈V̂int〉. (1.13)

The energies 〈T̂ 〉 and 〈V̂int〉 are implicitly functionals of n via the Levy-Lieb formulation [22].
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Eq. 1.3 describes an interacting electron system, with V̂int = V̂el-el, and

Vext(r) =
∑

I

ZI

|r −RI |
, (1.14)

so the DFT theorems apply. The term 〈V̂ion-ion〉 = Eion-ion is a constant number which we
are free to include in our hamiltonian.

The Kohn-Sham ansatz states that the ground state density n0 for the fully in-
teracting electron system can be obtained by taking the ground state density from the
solution of an independent-particle problem. The independent-particle wavefunction is
ΨKS({r}) = ψ1(r1) . . . ψNe

(rNe
), and the density is

n(r) =
∑

i

|ψi(r)|
2. (1.15)

In this scheme, the total energy functional is written as

EKS[n] = Ts[n] + Eext[n] + EH [n] + EXC [n] + Eion-ion, (1.16)

where

EH [n] =
1

2

∫
n(r)n(r′)

|r − r′|
drdr′ (1.17)

is the Hartree energy, and

Ts[n] = −
1

2

∑

i

∫
ψ∗
i (r)∇

2ψi(r)dr (1.18)

is the independent-particle kinetic energy, while EXC [n] is the as-yet unspecified exchange-
correlation functional.

The ground state density of the independent-particle problem minimizes the Kohn-
Sham total energy functional EKS[n] and therefore is stationary with respect to variations in
the wavefunctions. Taking the variation of Eq. 1.16 and applying normalization constraints
to the wavefunctions leads to the Kohn-Sham equations:

[
−
1

2
∇

2 + Vext(r) + VH(r) + VXC(r)

]
ψi(r) = ǫiψi(r), (1.19)

where

VXC(r) =
δEXC [n]

δn
(1.20)

and

VH(r) =

∫
n(r′)

|r − r′|
dr′; (1.21)

or, defining the Kohn-Sham hamiltonian, the single particle kinetic energy operator, and
the Kohn-Sham potential by

ĤKS = −
1

2
∇

2 + Vext(r) + VH(r) + VXC(r)

= T̂s + VKS(r), (1.22)
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the Kohn-Sham equation is
ĤKSψi = ǫiψi. (1.23)

Given an accurate EXC [n], the Kohn-Sham equations can be solved self-consistently for
ψi(r), VH , VXC , and n(r), leading to the ground state density n0 and energy E[n0] of our
original interacting electron problem.

The simplest and most common approximation to EXC [n] is the local density
approximation (LDA):

EXC [n(r)] =

∫
n(r)ǫXC(n(r))dr, (1.24)

where ǫXC(n) is the exchange-correlation enegy per electron of the interacting homogeneous
electron gas of density n. Accurate calculations of ǫXC(n) were performed by Ceperley and
Alder [23]; a commonly used parametrization of these results for use in first-principles
calculations is given in Ref. [24].

While the LDA can be expected to work well for systems close to the homogeneous
electron gas, it also works surprisingly well for many non-homogeneous systems. The LDA
is used in Chapters 5 and 6.

Generalized-gradient approximations (GGAs) can improve upon some deficiencies
of the LDA, especially for surfaces and molecules [25]. In the GGA, EXC [n] is approximated
as a semilocal functional of n:

EXC [n(r)] =

∫
f(n(r),∇n(r))dr. (1.25)

The GGA of Perdew, Burke, and Ernzerhof [26] is used for several calculations in Chapters
2–4 and 5.

While the Kohn-Sham energy eigenvalues have no rigorous meaning, they are
often taken as an approximation for the electronic band structure or excitation spectrum of
a system. As one-electron states, the Kohn-Sham orbitals can be used as a starting point
for many-body perturbation approaches for calculating more accurate excitation energies,
including, for example, the electron-phonon interaction, as discussed in Sec. 1.2.5.

Plane-waves and pseudopotentials

In the previous section, Kohn-Sham DFT was used to transform the electronic
many-body problem, Eq. 1.3, into an independent-particle problem: the solution of the
Kohn-Sham equations, Eq. 1.19.

In this thesis, we will use the plane-wave pseudopotential (PWPP) method [27–29]
to solve the Kohn-Sham equations. A plane-wave basis is used to represent the wavefunc-
tions ψi and density n, while the external potential Vext(r) is replaced by a sum of atomic
pseudopotentials, simplifying the calculation.

Plane waves are a natural basis set for electrons in a periodic lattice. Even for
systems that are not periodic in three dimensions, the PWPP method can be successfully
applied by using the supercell approximation [30]. The fact that many metals are well-
described by the nearly-free-electron approximation suggests that accurate calculations in
some solids can be achieved with a reasonably sized plane-wave basis set. The pseudopo-
tential makes possible accurate calculations non-nearly-free-electron systems as well [28].
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Furthermore, fast-fourier-transform numerical methods allow for efficient transformation
between real and reciprocal space, making the self-consistent solution of the potential,
density, and wavefunctions computationally feasible. Details of the PWPP method and
implementation can be found in reviews [27,29].

We now review some of the theory of pseudopotentials, following loosely the discus-
sion in Ref. [22]. The idea of the pseudopotential is to treat some electrons in our system as
core electrons which are tightly bound to individual nuclei, while other electrons are treated
as valence electrons which are more dispersed and may participate in bonding or are in some
cases itinerant. Since we are working in an independent-electron approximation, we are free
to partition the electron states into core and valence in this way. If we think of a molecule
or solid as a collection of atoms, then the core electron wavefunctions hardly differ between
an isolated atom and an atom surrounded by other atoms. By assuming the the core is
“frozen,” we can remove these electrons from our problem and simplify the calculations.
However, when treating the valence electrons, the effect of the core electrons must still be
considered. The pseudopotential for a given ion is the effective potential that the valence
electrons feel due to the combination of the nucleus and the core electrons.

We can expect the pseudopotential of an ion to be softer (have smaller Fourier
components at large wavevectors) and more repulsive than the full potential of the nucleus,
V (r) = −ZI/r. In the interstitial regions of many solids, the wavefunctions are smooth
and nearly-free-electron-like. Also, since the valence wavefunctions must be orthogonal to
the core electrons, the effective potential of the core electrons will work to push the valence
wavefunctions away from the nucleus.

A precursor of the modern pseudopotential method is the orthogonalized plane-
wave (OPW) method of Herring [31]. Phillips and Kleinman [32] and Antončik [33] took the
OPW transformation and formulated it in terms of a psuedopotential. We briefly sketch
their formulation here, using Dirac bra-ket notation. For simplicity, let us consider an
isolated atom system within the Kohn-Sham independent-particle scheme. Let |ψ〉 be a
valence eigenstate of HKS with eigenvalue ǫ, so that by Eq. 1.19,

HKS|ψ〉 = ǫ|ψ〉. (1.26)

Define a pseudoeigenstate by

|ψ〉 = |ψps〉+
∑

i

ai|φi〉

ai = −〈φi|ψps〉, (1.27)

where |φi〉 are core electron states with eigenvalues ǫi. Here |ψ〉 is explicitly orthogonal
to the core states. Inserting Eq. 1.27 into Eq. 1.26, we find that |ψps〉 satisfies its own
Schrödinger-like equation with eigenvalue ǫ,

(H + V̂r)|ψps〉 = ǫ|ψps〉, (1.28)

where
V̂r = (ǫ− ǫi)

∑

i

|φi〉〈φi| (1.29)
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is a repulsive potential, since ǫ > ǫi. The repulsive potential is also nonlocal. The total
pseudopotential is

V̂ps = V̂KS + V̂r. (1.30)

Thus, if we replace the original potential by the pseudopotential (Eq. 1.30) and
solve Eq. 1.28, we get the eigenvalues of the original Hamiltonian as well as the pseudoeigen-
functions, which can be used to reconstruct the original eigenfunctions if the core states
{|φi〉} are known. Ideally the solution of the problem with the pseudopotential is easier
than the original problem.

In general, the pseudopotential is not restricted to the form of Eqs. 1.29 and 1.30,
and the flexibility can be used to generate pseudopotentials with desired characteristics. For
example, one can try to generate pseudopotentials that are accurate, in the sense that the
scattering properties or valence eigenvalues are given correctly. Two other desired character-
istics of pseudopotentials are smoothness and transferability. A smoother pseudopotential
requires fewer plane-waves to perform an accurate calculation. If a pseudopotential is trans-
ferable, it can be used in a variety of different systems with accurate results. This eliminates
the need to generate a separate pseudopotential for each system studied.

We now discuss several classes of pseudopotentials. The pseudopotential of Eq.
1.30 is a total, screened pseudopotential, in the sense that the Hartree and exchange-
correlation contributions of the valence electrons are included in the potential. If one
subtracts the Hartree and exchange-correlation contributions of the valence electrons, one
gets an unscreened, ionic pseudopotential. The screened pseudopotential can give accurate
results because it includes the screening of the valence electrons for the particular system
under consideration; however, it is less transferable than the ionic pseudopotential, with
which the valence electrons screen according to each specific environment the psuedopoten-
tial is used in.

There are two approaches to generating pseudopotentials that give the correct
properties. Empirical pseudopotentials try to fit properties to experimental data for an
atom, molecule, or solid. Ab initio pseudopotentials do not use experimental input, but
rather try to fit properties to all-electron calculations for single atoms with known atomic
number.

In the empirical pseudopotential method, the total, screened pseudopotential is
fit to experimental data, such as absorption spectra of semiconductors, and then used to
reproduce the band structure throughout the Brillouin zone. This method has been shown
to be very accurate [34,35].

We will consider the case of an ionic pseudopotential that is transferable to different
environments, such that a potential that is valid for an isolated atom will also be valid in a
molecule or solid. Assuming spherical symmetry for an atomic pseudopotential, the general,
semilocal form is

V̂SL =
∑

lm

|Ylm〉Vl(r)〈Ylm|, (1.31)

where the Ylm are spherical harmonics for angular momentum l and angular momentum
z-component m.

In the present work, we use ab initio norm-conserving pseudopotentials (NCPP)
and later variants, ultrasoft pseudopotentials and projector augmented-wave potentials.
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The construction of NCPP involves the fitting of the pseudopotential to an all-electron
calculation at a given reference electronic configuration by obeying the conditions laid out
by Hamann, Schlüter, and Chiang (HSC) [36]:

1. the all-electron and pseudo valence eigenvalues agree;

2. beyond a chosen core radius rc, the all-electron and pseudo wavefunctions are equal;

3. norm conservation: for each valence eigenstate, the integrals of the all-electron and
pseudo charge density agree for r > rc;

4. the logarithmic derivatives, and their first energy derivatives, of the all-electron and
pseudo valence wavefunctions agree for r > rc.

A pseudopotential obeying these conditions gives the correct scattering properties and the
correct valence eigenvalues for the reference configuration, by construction.

The general procedure for constructing NCPPs involves the calculation of all-
electron wavefunctions and eigenvalues at the reference configuration for each angular mo-
mentum channel l, the construction of pseudowavefunctions that satisfy the HSC condi-
tions, the inversion of the radial Schrödinger equation to get the potentials from the pseu-
dowavefunctions, and unscreening by removing the valence contributions to the Hartree and
exchange-correlation potentials to get the final Vl(r).

The freedom in choosing the form of the pseudowavefunctions for r < rc, and the
choice of the cutoff radius rc, allow one to obtain pseudopotentials that balance needs for
accuracy, softness, and transferability. HSC proposed their own form for the pseudowave-
functions. In the present work, the forms of Bachelet, Hamann, and Schlüter [37] (Chapter
6) and Troullier and Martins [38] (Chapter 3–5) are used. The method of Kleinman and
Bylander [39] is used to transform the semilocal pseudopotential (Eq. 1.31) into a separable,
nonlocal pseudopotential that is computationally efficient.

For certain atoms, such as alkali atoms, there is significant overlap of the core and
valence charge densities. Because of the nonlinearity of the exchange-correlation potential
with respect to density, the standard construction of NCPP can lead to errors. In the
nonlinear core correction method [40], part of the core charge density is retained in the
pseudopotential to more accurately calculate exchange-correlation effects.

In some cases, norm-conserving pseudopotentials are still hard and require a large
plane-wave cutoff. Examples include p-states in C or O or d-states in first row transition
metals, where there are no core states of the same angular momentum to orthogonalize
to. In such cases, it is beneficial to use ultrasoft pseudopotentials [41]. With ultrasoft
pseudopotentials, the norm-conservation condition is relaxed in order to obtain smoother
pseudopotentials. The tradeoff is that the resulting pseudowavefunctions are not orthogo-
nal, so that additional augmentation functions, localized in the core region, and an overlap
operator must be included in the calculation. Overall, ultrasoft pseudopotentials make pos-
sible calculations that are computationally infeasible with NCPP. Ultrasoft pseudoptentials
are used in Chapters 3 and 4 for certain species of atoms.

The projector augmented-wave (PAW) method [42, 43] can be viewed as a gen-
eralization of the ultrasoft pseudopotential method, with some advantages. Like ultrasoft
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pseudopotentials, PAW potentials allow one to solve for smooth psuedowavefunctions with
a plane-wave basis set. However, the PAW method also retains the full all-electron wave-
functions for valence and core states, in a manner similar to, but more general than, linear
augmented-plane-wave methods or linear muffin tin orbital methods [44]. In the PAW
method, pairs of pseudo and all-electron partial waves, and corresponding projectors, are
defined, all within a core region localized about an atom. The partial waves and projectors
are similar to the augmentation functions and pseudopotential projectors in the ultrasoft
method, but in the PAW method the full all-electron wavefunction can be reconstructed.
Expectation values of physical operators are determined by evaluating the expectation value
for the smooth pseudowavefunctions, retaining the computational advantages of the plane-
wave basis, as well as one-center integrals evaluated on radial grids in the core region, which
are also computationally efficient. Thus, with some additonal complexity, the PAW method
provides additional physical information above the pseudopotential method. We use PAW
potentials in Chapter 2.

Ionic forces

After an electronic structure calculation has been performed, the forces on the ions
in the system can be computed. The input from the electronic structure calculation is the
ground state electron density. The force on atom I is given by

FI = −
∂E({R})

∂RI
. (1.32)

Within DFT, we have

−
∂E({R})[n]

∂RI
= −

∫
n(r)

∂Vext(r)

∂RI
dr −

∂Eion-ion({R})

∂RI
−

∫
∂E({R})

∂n(r)

∂n(r)

∂RI
dr. (1.33)

The first two terms on the right side are due to the explicit derivative with respect to ionic
position; the third term is implicit through the derivative with respect to the charge density.
At the ground state, the third term is zero, because ∂E/∂n is constant, and the integral of
∂n/∂RI over all space is zero due to charge conservation.

The relaxation of the ionic positions of a system to their equilibrium values pro-
ceeds as follows. An electronic structure calculation is performed for {R} fixed at guessed
starting positions. From this calculation, forces are obtained, which are subsequently used
to move the ions towards a better guess. Electronic structure and force calculations, and
updates of ionic positions, are repeated until equilibrium positions are reached and the
forces on the ions are below a threshold value. Expressions similar to those for the forces
hold for the stress [22], which can be used to relax the unit cell parameters to equilibrium
as well.

1.2.3 Phonons

We now turn to the solution of the hamiltonian describing the ionic motion, Eq.
1.4. For given {R}, the term En({R}) can be determined by the methods of Sec. 1.2.2.
Within the Born-Oppenheimer approximation, we assume that the state n represents the



13

ground state at fixed {R}, so we drop the subscript n. The solution of this hamiltonian,
for ionic positions near their equilibrium values, gives the phonon frequencies and eigendis-
placements of the system. The phonon frequencies are experimentally measurable quantities
(as discussed in Chapters 5 and 6), and the phonon modes enter into the electron-phonon
interaction (studied in Chapter 6). Our discussion follows Ref. [45].

For a solid or molecule in its equilibrium geometry, with ionic positions {R0}, the
forces on the ions are zero. Let us define E({u}) = E({R})−E({R0}), with uI = RI−RI,0.
In the harmonic approximation, which is valid for small {u}, we can expand E to second
order. The first order term is zero, and we have

E({u}) =
∑

IJαβ

Cαβ
IJ u

α
I u

β
J , (1.34)

where α, β index the Cartesian direction, I, J index the ion number, and Cαβ
IJ are the

interatomic force constants

Cαβ
IJ =

∂2E

∂Rα
IR

β
J

= −
∂Fα

I

∂Rβ
J

. (1.35)

The sums run over all the ions in the molecule or crystal.
For now, we treat the system classically; the main formulas carry over to the

quantum case. The normal modes of the system are given by the eigenvectors Uα
I and

eigenvalues ω2 of the interatomic force constant matrix, from the equation

∑

J,β

(Cαβ
IJ −MIω

2δIJδαβ)U
β
J = 0. (1.36)

In an infinite periodic crystalline solid, we can write the atomic position vector as
RI,0 = Rl + τs, where Rl is the position of the lth unit cell in the Bravais lattice, and τs
is the position of the atom in the unit cell. We also let us(l) = uI , i.e., the displacement
from equilibrium of the atom s in cell l.

With this notation, the interatomic force constants are

Cαβ
st (l,m) =

∂2E

∂uαs (l)∂u
β
t (m)

= Cαβ
st (Rl −Rm), (1.37)

which depend on l and m only through the difference Rl−Rm. Then the interatomic force
constants are Cαβ

st (Rl), defined relative to a reference cell with m = 0.
The dynamical matrix is the Fourier transform of the intearatomic force constants:

C̃αβ
st (q) =

∑

l

e−iq·RlCαβ
st (Rl), (1.38)

where q is a wavevector in the first Brillouin zone. Then, for each wavevector q, the normal
mode frequencies ω(q) and diplacement patterns Uα

s (q) are the eigenvalues and eigenvectors

of the dynamical matrix C̃αβ
st (q):

∑

t,β

(Cαβ
st (q)−Msω

2(q)δstδαβ)U
β
t (q) = 0. (1.39)
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The normal modes at different wavevectors are decoupled and behave as independent har-
monic oscillators.

The dynamical matrix can also be written as a derivative with respect to lattice
distortions of wavevector q. Defining us(q) as the amplitude of the lattice distortion

us(l) = us(q)e
iq·Rl , (1.40)

we have

C̃αβ
st (q) =

1

Nc

∂2E

∂u∗αs (q)∂uβt (q)
. (1.41)

From the quantum mechanical perspective, because the different normal modes
are decoupled, we can solve each of them independently as is done for a simple harmonic
oscillator. Then

Ĥion =
∑

qν

(nqν +
1

2
)~ωqν , (1.42)

where
nqν = b†qνbqν (1.43)

is the number operator giving the number of phonons in mode qν, and b†qν and bqν are the
phonon creation and annihilation operators.

To find the normal modes of a system, we need to calculate the interatomic force
constants in real space or the dynamical matrix in wavevector space. The two main first-
principles approaches to these calculations are the frozen phonon approach and density-
functional perturbation theory.

Frozen phonons

In the frozen phonon approach, the interatomic force constants are calculated by
displacing atoms a finite small distance away from their equilibrium positions and calculat-
ing the forces on the resulting atoms. For a displacement ∆Rβ

J “frozen in” to the structure,
the force on another atom (Eq. 1.32) can be computed as already described. Then the
interatomic force constant (Eq. 1.35) is computed as

Cαβ
IJ = −

∂Fα
I

∂Rβ
J

≈
∆Fα

I

∆Rβ
J

. (1.44)

For each displacement, a separate self-consistent DFT calculation is required. An
advantage of the frozen phonon approach is that no new methodology is required; the
self-consisent Kohn-Sham DFT can be applied as before. A disadvantage of this approach
is that for q 6= 0, a supercell is required. For small q 6= 0, the supercell is very large
and computationally expensive. The frozen phonon approach has been shown to be very
accurate in many system, such as semiconductors [46]. In Chapter 5, the frozen phonon
method is used to calculate q = 0 phonon modes in the material ZnCr2O4.
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Density-functional perturbation theory

In the density-functional perturbation theory (DFPT) approach [45, 47–50], the
derivatives of the energy E are calculated at the equilibrium positions of the ions, with no
explicit displacement of the ionic positions. This method requires knowledge of the linear
response of the density with respect to the perturbation. The discussion of DFPT here
mainly follows Ref. [45].

In DFT, we can get the interatomic force constants (Eq. 1.35) by differentiating
Eq. 1.33 with respect to ionic coordinates:

∂2E({R})

∂RI∂RJ
=

∫
∂n(r)

∂RJ

∂Vext(r)

∂RI
dr + δIJ

∫
n(r)

∂2Vext(r)

∂RI∂RJ
dr +

∂2Eion-ion({R})

∂RI∂RJ
. (1.45)

Only the first two terms on the right side of Eq. 1.45 depend on the electronic structure.
The second term depends on the density n(r), which is obtained from the original DFT
calculation, and the first depends on the linear response ∂n(r)/∂RI of the density to a
perturbation involving the movement of an ion.

To obtain this linear response, we first note that, taking the derivative of Eq. 1.15,

∂n(r)

∂RI
= 2Re

∑

i

ψ∗
i (r)

∂ψi(r)

∂RI
, (1.46)

recalling that the sum is over occupied states i. For a time-reversal invariant hamiltonian,
we can drop the requirement to take the real part.

Taking the derivative of the Kohn-Sham equations (Eq. 1.19), with ĤKS and VKS

defined as in (Eq. 1.22) we have

(HKS − ǫi)
∂ψi(r)

∂RI
= −

(
∂VKS(r)

∂RI
−

∂ǫi
∂RI

)
ψi(r), (1.47)

where

∂VKS(r)

∂RI
=
∂Vext(r)

∂RI
+

∫
1

|r − r′|

∂n(r′)

∂RI
dr′ +

∫
∂VXC(r)

∂n(r′)

∂n(r′)

∂RI
dr′ (1.48)

and
∂ǫi
∂RI

= 〈ψi|
∂VKS(r)

∂RI
|ψi〉. (1.49)

Equations 1.46, 1.47, and 1.48 can be solved self-consistently for the density response
∂n(r)/∂RI , wavefunction derivatives ∂ψi(r)/∂RI , and potential response ∂VKS(r)/∂RI .
The result allows us to compute the derivative in Eq. 1.45.

An alternate, equivalent form, combining these three equations into one large linear
system, is the following:

(HKS − ǫi)
∂ψi(r)

∂RI
+

∑

j

(Kij
∂ψj

∂RI
)(r) = −

∂Vext(r)

∂RI
ψi(r), (1.50)

with orthogonality constraints

〈ψn|
∂ψj(r)

∂RI
〉 = 0, (1.51)
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and with the operator Kij defined as

(Kij
∂ψj(r)

∂RI
)(r) = 2

∫
ψn(r)

(
1

|r − r′|
+
∂VXC(r)

∂n(r′)

)
ψ∗
m(r′)

∂ψj(r
′)

∂RI
dr′. (1.52)

For periodic crystals, we can compute the dynamical matrix in wavevector space
instead of the interatomic force constants in real space. The equation in wavevector space
corresponding to 1.45 is

C̃αβ
st (q) =

1

Nc

[∫ (
∂n(r)

∂uαs (q)

)∗ ∂Vext(r)

∂uβt (q)
dr + δst

∫
n(r)

∂2Vext(r)

∂u∗αs (q = 0)∂uβt (q = 0)
dr

+
∂2Eion-ion({R})

∂u∗αs (q)∂uβt (q)

]
.

(1.53)

Only the first two terms of the right hand side depend on the electronic structure. The first
term requires the calculation of the density response due to the lattice distortion us(q) of
wavevector q. Because of the linearity of the DFPT equations (Eqs. 1.46, 1.47, and 1.48 or
Eq. 1.50), this density response is also of wavevector q. Thus in calculating the dynamical
matrix, the q-dependence factors out, and we need only compute functions in the original
unit cell; no supercell is needed to compute the dynamical matrix at arbitrary wavevector q
in the first Brillouin zone. The fact that no supercell is required is a significant advantage of
the DFPT approach over the frozen phonon approach. To obtain a full phonon dispersion
throughout the Brillouin zone, as is done in Chapter 6, one can calculate the dynamical
matrix on a grid of q-vectors using DFPT, Fourier transform to real space to obtain the
real-space interatomic force constants, and then Fourier transform back to q-space for a
set of q-points on an arbitrarily fine grid. The accuracy of this Fourier interpolation will
depend on the extent of the force constants in real space in comparison to the fineness of
the original q-grid for which the dynamical matrices were calculated with DFPT.

1.2.4 Magnetism

Magnetism in a solid arises from the polarization of electron spin or orbital angular
momentum. In this thesis, we are interested mostly in magnetic moments that are localized
in space and are associated with a particular ion or atom, rather than spin polarization
of itinerant electrons. These localized moments often retain atomic-like d character, such
as in the transition metals. The interaction of these localized moments arranged in a
regular crystal lattice can give rise to long-range ferromagnetic, antiferromagnetic, or more
complex order. The interaction between local magnetic moments can be affected by their
relative positions, giving rise to spin-phonon interactions (as in Chapter 5). Screening of
local magnetic moments by itinerant electrons is also interesting and can lead to the Kondo
effect [51].

An approach to studying magnetism from first-principles in a solid is to calculate
the electronic structure, allowing for spin and orbital polarization, and to map the results
to a simple model, such as a Heisenberg, Anderson [52], or Hubbard [53] model. With first-
principles calculations, it is possible to associate local moment values to atoms by projecting
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the electronic states onto local orbitals, and to calculate parameters in the models, such
as the exchange coupling constant J between neighboring local moments in the Heisenberg
model. The projection onto local orbitals is not uniquely defined; one can choose to project
onto harmonics within spheres of finite radii about certain atoms, or onto pseudoatomic
orbitals, for example.

So far, in our discussion of DFT in Section 1.2.2, we assumed that that the densities
for spin-up and spin-down electrons n↑(r) and n↓(r) were equal, and n(r) = n↑(r)+n↓(r).
We can allow the spin-up and spin-down densities to be different, so that spin-polarization
is possible. The differences in densities for spin up and spin down are handled in the total
energy functional, and in particular the exchange-correlation functional. In the local spin
density approximation (LSDA) [21], the spin-polarized generalization of the LDA, we have

EXC [n
↑(r), n↓(r)] =

∫
n(r)ǫXC(n

↑(r), n↓(r))dr, (1.54)

where ǫXC(n
↑(r), n↓(r)) is the exchange-correlation energy per electron of the interacting

homogeneous electron gas for spin densities n↑(r) and n↓(r). A similar generalization
is possible for spin-polarized GGA. Here the spins are assumed to be collinear (axis of
quantization is the same for all points in space), but the generalization to noncollinear
spins is possible.

In some magnetic systems, such as transition metal oxides or the cuprates, the
LSDA ground state is far from the experimental one. For example, CoO and FeO are
metallic in the LSDA but are insulators experimentally. In such systems with localized
d electrons, correlation is important and is not treated correctly by the LSDA. One way
of understanding this error is that in the LSDA, the localization of electrons is driven by
exchange, with an energy scale of ∼1 eV, while physically, in these strongly-correlated
materials, localization is driven by an on-site coulomb interaction between electrons, with
an energy scale of ∼10 eV [54]. From another perspective, the LSDA suffers from self-
interaction error [24,55], in which the interaction of the electron with itself via the hartree
term in the energy is not completely cancelled out by the exchange term. In addition, the
LSDA does not allow for orbital polarization (except in the case of external effects such as
crystal field splittings), instead tending to distribute electrons among the different orbitals
equally [56].

Some of the problems of the LSDA can be corrected within a DFT framework by
the LDA+U method [54, 57–59]. The LDA+U method is motivated by the Hubbard and
Anderson models [52, 53], in which strongly-correlated electron systems are treated with
tight-binding orbitals and a parameter U that characterizes the on-site coulomb interaction
between two electrons. These localized electrons could be, for example, the d electron states
from transition metal ions in a solid. For a localized (atomic-like) orbital, U can be defined
as

U = E(n + 1) +E(n − 1)− 2E(n), (1.55)

where E(nd) is the total energy of the system with a localized-orbital occupancy of nd. For
non-integer localized-orbital occupancies, as can happen in DFT, we can define U as

U =
δ2Etot

δn2d
. (1.56)
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In the LDA+U method, it is assumed that the total energy of a correlated system
is well-described by the LSDA, but the orbital energies are not. As in the Anderson impurity
model [52], electrons are separated into two subsystems: localized (usually d) electrons and
delocalized (usually s and p) electrons. The localized states interact via the on-site Hubbard
U coulomb energy, which is screened by the delocalized electrons. For the LDA+U method,
the LDA energy functional is modified to include a Hubbard U term for the localized
states; a double-counting term is also subtracted off because the LDA already includes
on-site coulomb interactions in the total energy in an averaged way:

ELDA+U = ELDA + EHub − EDC. (1.57)

In a simple approximation neglecting exchange and nonsphericity and assuming a single
atomic site, we have

EHub =
1

2
U
∑

i 6=j

ninj (1.58)

EDC = U
N(N − 1)

2
, (1.59)

where ni is the occupancy of the i-th localized state. Then the eigenvalues for the localized
states are given by

ǫi =
∂ELDA+U

∂ni
= ǫLDA + U(

1

2
− ni), (1.60)

where ǫLDA is the LDA eigenvalue. Thus the U correction shifts the orbital energies by−U/2
and +U/2 for occupied and unoccupied orbitals, respectively, giving a gap of U . Shifting
the orbital energies so that the gap is closer to the true gap for electronic excitations should
improve the description of the ground state, even though we would not necessarily expect
the orbital energies from DFT to be accurate.

More generally, we can write the LDA+U functional as

ELDA+U [n
σ(r), {nIσmm′}] = ELDA[n(r)] + EHub[{n

Iσ
mm′}]− EDC[{n

Iσ}], (1.61)

where nIσmm′ is the occupation matrix for localized orbitals on atom I, and nIσ =
∑

m n
Iσ
mm.

The index m labels the localized orbitals and usually corresponds to the magnetic quantum
number. The occupation matrix will be defined shortly. In a fully rotationally invariant
formulation, [56], including exchange, the Hubbard term is

EHub[{n
Iσ
mm′}] =

1

2

∑

{m},σ,I

{〈m,m′′|Vee|m
′m′′′〉nIσmm′n

I,−σ
m′′m′′′+

(〈m,m′′|Vee|m
′,m′′′〉 − 〈m,m′′|Vee|m

′′′,m′〉)nIσmm′nIσm′′m′′′ ,

(1.62)

with

〈m,m′′|Vee|m
′m′′′〉 =

2l∑

k=0

ak(m,m
′,m′′,m′′′)F k, (1.63)
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where l is the angular momentum of the localized electrons,

ak(m,m
′,m′′,m′′′) =

4π

2k + 1

k∑

q=−k

〈lm|Ykq|lm
′〉〈lm′′|Y ∗

kq|lm
′′′〉, (1.64)

and F k are radial Slater integrals; |lm〉 and Ykq are spherical harmonics. For d electrons,
the F k are expressed in terms of screened coulomb and exchange interactions U and J :

U = F 0, (1.65)

J =
F 2 + F 4

14
, (1.66)

and F 4/F 2 is set to a constant, its approximate value in atoms (≈ 0.625 for 3d elements).
The expression for J for f electrons involves F 6. The U and J (equivalently the F k) are
treated as parameters in the theory.

The double-counting term is

EDC[{n
Iσ}] =

∑

I

U

2
nI(nI − 1)−

∑

I

J

2
[nI↑(nI↑ − 1) + nI↓(nI↓ − 1)], (1.67)

with nI = nI↑ + nI↓.
The definition of the occupation matrix is not unique. For our work, we define the

occupation matrix in terms of a projection operator P I
mm′ [55]:

nIσmm′ =
∑

k,ν

fσkν〈ψ
σ
kν |P

I
mm′ |ψσ

kν〉, (1.68)

where ψσ
kν are the valence electronic wave functions of the system and fσkν is the corre-

sponding occupation number (ν is the band index). We define our projection operator to
project states onto localized orbitals, and we choose atomic pseudowavefunctions φIm for
our localized orbitals:

P I
mm′ = |φIm〉〈φIm′ |. (1.69)

For our work on ZnCr2O4 in Chapter 5, we make use of a plane-wave pseudopoten-
tial implementation of the rotationally invariant LDA+U method, as described in Ref. [60].
For treating correlations on transition metal adatoms on graphene in Chapters 3 and 4, we
use a simplified rotationally invariant scheme [55].

There are several approaches to handling the U (or J) parameter in LDA+U
calculations. For a fully first-principles calculation, U should also be calculated. Several
methods for calculating U are given in the literature, [54, 55]. A more empirical approach
can be taken, where U is chosen such that the calculated value of some physical quantity
matches that of experiment; this is our approach in Chapter 5. In other cases, when a
direct comparison with experiment is not possible, it is reasonable to explore a range of U
values and check the dependence of the results on this parameter; this approach is followed
in Chapters 3 and 4.
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1.2.5 Electron-phonon interaction

Many-body formalism

So far, we have described methods of calculating the electronic structure of a
condensed matter system for ions in fixed positions (Sec. 1.2.2) and the normal modes for
the ionic motion of the system in the harmonic approximation (Sec. 1.2.3). The Kohn-Sham
orbitals and eigenvalues from Sec. 1.2.2 are within the independent-electron approximation
and are approximations to the excited states of the full system, described by the hamiltonian
of Eq. 1.2. Likewise, the normal modes and frequencies from Sec. 1.2.3 are each independent
of the excitations of other phonon modes.

However, many interesting physical phenomena involve the interaction of electrons
with ionic motion. To describe this electron-phonon interaction, we will use the language
of second quantization and the many-body formalism. In this section, we focus on periodic
solids, and in particular metals.

Given single-electron energies and states ǫnk, ψnk, and phonon frequencies and
displacements ωqν, Uqν , we can write down the hamiltonian of the interacting electron-
phonon system as

H =
∑

nk

ǫnkc
†
nkcnk +

∑

qν

ωqν(b
†
qνbqν +

1

2
) +

∑

n,m,k,q,ν

gνmn(k,q)(c
†
m,k+qcnkbqν + h.c.)

= He +Hp +Hep, (1.70)

where c†nk, cnk and b†qν , bqν are creation and annihilation operators for electrons and phonons,
respectively, and h.c. denotes hermitian conjugate. The electron-phonon matrix element is

gνmn(k,q) =

(
~

2Mωqν

)1/2

〈m,k+ q|δqνVSCF |n,k〉, (1.71)

M is the ionic mass, and δqνVSCF is the derivative of the self-consistent potential (that
the single-electron states experience) with respect to a collective ionic displacement corre-
sponding to phonon wavevector q and mode ν. This hamiltonian is often referred to as the
Frölich hamiltonian [61, 62]. The single particle electron states and phonon modes are ob-
tained using the methods of Sections 1.2.2 and 1.2.3. Since, in the calculation of the phonon
modes, the electrons are allowed to respond to the ionic motion, δqνVSCF is screened by the
Coulomb interaction, and the phonon frequencies are screened by both the Coulomb and
electron-phonon interactions.

We have neglected the hamiltonian for the electron-electron interaction; electron-
electron effects enter into the electronic states in a mean-field way via the Hartree and
exchange-correlation potentials, and through screening of the phonon frequencies and of
δqνVSCF , but are not treated fully. The electron-electron interaction in the context of
superconductivity will be treated via the the coulomb pseudopotential µ∗.

Eventually, we will want to compute the superconducting properties of a solid.
It turns out that, within the Nambu-Gorkov-Eliashberg theory [63–65] (or Eliashberg the-
ory for short), we can determine the superconducting properties from the electron-phonon
properties of the normal, non-superconducting state. Thus for now, we focus on the normal
state.
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For the normal state of a metallic solid, the Frölich hamiltonian can be solved
using the Green’s function formalism [66–69]. We let G and D denote the electron and
phonon propagators. From Dyson’s equation, we have

G(p) = G0(p) +G0(p)Σ(p)G(p), (1.72)

D(q) = D0(q) +D0(q)Π(q)D(q); (1.73)

the subscript 0 denotes the bare propagator, Σ(p) and Π(q) are the (irreducible) electron and
phonon self-energies, respectively, and p and q are the electron and phonon four-momenta,
respectively. Many properties of interest can be determined from the self-energies.

For the normal state, Migdal [70] showed that with certain approximations, the
self-energies are computed correctly to order (m/M)1/2, with m and M being the electronic
and ionic masses, even for strong coupling (large g). The approximations are the following:
the vertex Γ can be replaced by the bare coupling g, the Feynman diagrams only up to first
order are included, and G can be replaced by G0.

In the Migdal approximation, following the rules for Feynman diagrams, the ex-
pression for the phonon self-energy is

Πqν = −2i
∑

nm

∫
dk

(2π)4
|gνmn(k,q)|

2G0(k + q)G0(k); (1.74)

the factor of 2 is for spins, and k and q are four-momenta. The expression for the electron
self-energy can be found similarly. The bare electron propagator is

G0(k, ω) =
1

ω − ǫnk + iη(k, ω)
. (1.75)

Putting this expression in to 1.74, and focusing only on the imaginary part of the phonon
self energy, we can integrate over energy to get

Π
′′

qν = 2π
∑

mn

∫

BZ

dk

ΩBZ
|gmn,ν(k, q)|

2(fnk − fmk+q)δ(ωqν + ǫnk − ǫmk+q), (1.76)

where fnk is the Fermi-Dirac occupation function. In the “double-δ approximation”, the
term fnk − fmk+q is approximated by ωqνδ(ǫmk+q − ǫF ) and δ(ωqν + ǫnk − ǫmk+q) by
δ(ǫnk − ǫF ), were ǫF is the Fermi energy. Then Eq. 1.76 becomes

Π
′′

qν = 2πωqν

∑

mn

∫

BZ

dk

ΩBZ
|gmn,ν(k, q)|

2δ(ǫmk+q − ǫF )δ(ǫnk − ǫF ); (1.77)

The imaginary part of the phonon self-energy is the phonon linewidth Π
′′

qν = γqν , which is
related to the lifetime of a phonon due to the electron-phonon interaction.

An important quantity in the theory of electron-phonon interactions and supercon-
ductivity is the Eliashberg spectral function α2F (ω), which gives the frequency spectrum of
coupling of electronic states on the Fermi surface due to phonons. In terms of the phonon
linewidths, α2F (ω) can be written as [71]

α2F (ω) =
1

2πN(ǫF )

∑

ν

∫

BZ

dq

ΩBZ

γqν
ωqν

δ(ω − ωqν), (1.78)
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where N(ǫF ) is the density of states at the Fermi level per unit cell per spin.
The electron-phonon coupling constant λ is given by the integral

λ = 2

∫ ∞

0

α2F (ω)

ω
dω. (1.79)

The constant λ is also called the mass enhancement parameter, as it characterizes the
renormalization of the electronic mass for states at the Fermi level due to electron-phonon
interactions:

m∗ = (1 + λ)m. (1.80)

It also enters as a parameter into common formulas for the superconducting transition
temperature Tc.

The main role of first-principles calculations in the theory of electron-phonon in-
teractions is the computation of the electron-phonon matrix element gνmn(k,q). If g

ν
mn(k,q)

is computed from first principles, then the electron-phonon properties follow from the above
described many-body Green’s function machinery. The first-principles calculation of elec-
tronic states and phonon normal modes and frequencies is described in Sections 1.2.2 and
1.2.3. The variation in the self-consistent potential for the electrons due to a phonon per-
turbation, δqνVSCF , is also obtained in a first-principles phonon calculation. Thus, all the
ingredients for a first-principles calculation of gνmn(k,q) are available. Further details of the
calculations are given in Chapter 6.

Superconductivity

Superconductivity is perhaps the most interesting physical phenomenon arising
from the electron-phonon interaction. Here we briefly review the Bardeen, Cooper, and
Schrieffer (BCS) theory of superconductivity [11], and then touch upon Eliashberg the-
ory [63–65], which is an extension of the BCS theory, and its relation to electron-phonon
interactions in the normal state. The Eliashberg theory is the basis for our first-principles
calculation of superconducting Tc.

The main idea of the BCS theory is that an attractive interaction between electrons
leads a superconducting ground state in which electrons form Cooper pairs. The pairing and
correlations between pairs explain the experimentally observed superconducting properties,
including the energy gap for electronic excitations, zero resistance, the Meissner effect, and
the discontinuity of the specific heat as a function of temperature.

Our discussion of BCS follows Ref. [66]. In BCS, it is assumed that the most impor-
tant pairing is between states of opposite spin and momentum. The “reduced” hamiltonian
describing this interaction is given by

Hred =
∑

kσ

ǫknkσ +
∑

kk′

Vk′kc
†
k′↑c

†
−k′↓c−k↓ck↑, (1.81)

where nkσ = c†kσckσ, σ denotes the spin, and Vk′k is the effective interaction between
electrons. For simplicity we assume a single band.
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Solving the reduced hamiltonian for the BCS ground state |ψ0〉 (for temperature
T = 0), one finds that the energy required to create a quasiparticle of momentum k in the
superconducting state is

Ek = (ǫ2k +∆2
k)

1/2, (1.82)

where the energy gap parameter ∆k satisfies an integral equation

∆k = −
∑

k′

Vkk′

∆k′

2Ek′

(1.83)

with the constraint that the expectation value of the number of electrons is fixed:

〈ψ0|
∑

kσ

nkσ|ψ0〉 =
∑

k

(1−
ǫk
Ek

) = N0. (1.84)

We can solve the gap equation if we approximate the interaction to be constant and attrac-
tive within a shell of width 2ωc about the Fermi surface:

Vkk′ =

{
−V if |ǫk| and |ǫk′ | < ωc

0 otherwise.
(1.85)

Then we get

∆k =

{
∆0 if |ǫk| < ωc

0 otherwise,
(1.86)

with

∆0 ≃ 2ωc exp

[
−

1

N(0)V

]
(1.87)

in the weak coupling limit, N(0)V . 1/4; N(0) is the density of states at the Fermi level.
At finite temperature (β = 1/kBT ), the gap equation is

∆k = −
∑

k′

Vk′k

∆k

2Ek

tanh
βEk

2
. (1.88)

Again using the approximation for Vkk′ of Eq. 1.85, we can solve for the gap and find
that it decreases as T increases from 0. At the superconducting transition temperature Tc,
the gap vanishes. In the weak coupling limit, we have for the superconducting transition
temperature

Tc = 1.14ωc exp

[
−

1

N(0)V

]
. (1.89)

Although the origin of the attractive interaction is not specified in the BCS theory,
it is known from the isotope effect that the attraction in conventional superconductors comes
from the electron-phonon interaction. Then the cutoff freqency for the interaction ωc can
be associated with some phonon frequency, such as the Debye frequency ωD. From Eq.
1.89, we see that the main physical quantities determining Tc in the BCS theory are the
strength of the interaction V , the density of states at the Fermi level N(0), and the phonon
frequency ωc = ωD.
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In the Eliashberg theory, the BCS theory is extended to include retardation and
damping effects. The hamiltonian is the same as in the normal state theory of Migdal
(Eq. 1.70). However, in the superconducting state, the anomalous Green’s functions, or
off-diagonal elements of the Green’s function matrix in Nambu-Gorkov formalism, are al-
lowed to be nonzero. Solving for the self-energy using the first-order diagrams leads to the
Eliashberg equations for the superconducting gap ∆(k, ω).

In many known superconductors, the gap is mostly isotropic, or independent of k.
In the isotropic approximation, McMillan [72] solved the Eliashberg equations numerically
and fitted the results with a simple form for Tc, using only a few parameters. In the
calculation of Tc in Chapter 6, we use the Allen-Dynes [73] form of the McMillan equation:

Tc =
ωlog

1.2
exp

(
−

1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

)
, (1.90)

where µ∗ is the Coulomb psuedopotential [74], which describes the repulsive electron-
electron interaction, and ωlog is the logarithmic average of the phonon frequencies (see
Eq. 6.7). For weak coupling, this equation reduces to the BCS result (Eq. 1.89), where
N(0)V in BCS corresponds to λ − µ∗ in the McMillan equation. In the McMillan equa-
tion, the important electron-phonon parameters are ωlog and λ, which can be determined
from the Eliashberg spectral function (Eq. 1.78). The Eliashberg spectral function incor-
porates information about the electron-phonon coupling strength, N(0), and the phonon
frequencies, the same physical quantities entering into the BCS result.



25

Chapter 2

First-principles study of metal

adatom adsorption on graphene

In this chapter, the adsorption of 12 different metal adatoms on graphene is studied
using first principles density functional theory with the generalized gradient approximation.
The adsorption energy, geometry, density of states (DOS), dipole moment, and work func-
tion of each adatom-graphene system are calculated. For the adatoms studied from Groups
I, II, and III of the periodic table, the results are consistent with ionic bonding, and the
adsorption is characterized by minimal change in the graphene electronic states and large
charge transfer. For transition, noble, and Group IV metals, the calculations are consistent
with covalent bonding, and the adsorption is characterized by strong hybridization between
adatom and graphene electronic states. For ionically bonded adatoms, the charge transfer
is calculated quantitatively using two methods, one based on the DOS and the other based
on the real space charge density. A variation in dipole moments and work function shifts
across the different adatoms is observed. In particular, the work function shift shows a
general correlation with the induced interfacial dipole of the adatom-graphene system and
the ionization potential of the isolated atom. Work presented in this chapter has been
published in Ref. [75].

2.1 Introduction

Graphene and carbon nanotubes (CNTs) are among the most prominent nanoscale
materials currently studied. The confinement to one or two dimensions and the high sym-
metry of these materials lead to interesting new physics and many potential applications,
especially involving the electronic structure and transport properties. One dimensional
CNTs can be metallic or semiconducting, depending on chirality, and can act as quantum
wires with minimal scattering [76]. Two dimensional graphene has a rather unique sublat-
tice symmetry and is a zero-gap semiconductor with a point-like Fermi surface and a linear
dispersion at the Fermi level. These properties are responsible for the observed ballistic
transport, Dirac-like quasiparticles, and anomalous Quantum Hall effects in graphene [4].

Because of the diversity of properties of the metallic elements, the variety of struc-
tures formed, and the availablity of experimental techniques at the nanolevel, the adsorp-
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tion of metals on the surfaces of these systems is a promising approach to controllably
modify graphene and CNTs. Adsorption of alkali atoms has been used to chemically dope
CNTs [77, 78] and fabricate field effect transistors [79]. Potassium has also been used to
chemically dope graphene, allowing graphene quasiparticle dynamics [80] and minimum
conductivity [81] to be studied. Furthermore, K atoms have also been used to tune the
electronic structure of graphene bilayers [82].

Metals adsorbed on nanoscale carbon surfaces have been shown experimentally
to form a variety of structures, such as continuous coatings or discrete clusters [83], and
these structures can be manipulated to give rise to interesting new phenomena. For example,
experiments have demonstrated the ability to control metal adatom diffusion between metal
clusters on CNT surfaces [84]. Moreover, understanding the metallic structures that form
and their interface with the carbon surface is essential to fabricating electronics devices
for applications and transport experiments. Significant progress has been made in recent
studies to understand such metal contacts to nanotubes and graphene [85,86].

Much previous theoretical work on this subject has focused on the adsorption
properties of one or a small set of metal adatoms on carbon nanostructures, particularly the
structure, bonding, and charge transfer of 2D alkali adatom layers on graphite [87]. Other
calculations surveyed of a range of adatoms on single-walled CNTs and reported on trends
in binding energy and bond character, as well as the possibility of magnetic adatoms [88].
While there is a close relation between CNTs and graphene, the strong curvature of small-
radius CNTs leads to rehybridization of the sp2 C-C bond and can result in adsorption
behavior that is different from graphene.

In this chapter, the adsorption of 12 different metal adatoms on graphene is studied
using first-principles density-functional theory (DFT). Details of our method are described
in Section 2.2. The adatoms chosen are often used in experiments and span a range of
valences, including s and p valence metals, transition metals, and noble metals. The ad-
sorption energy, geometry, density of states, dipole moment, work function, and magnetic
moment are calculated. To augment previous work for alkalis on graphite [87] and other
surfaces [89, 90], the issue of charge transfer is discussed, and for a subset of adatoms,
charge transfer is determined quantitatively using two methods, one based on the density of
states and the other based on the real space charge density. The large set of data resulting
from this work is obtained with a uniform set of approximations, allowing for the direct
comparison of values across the range of adatoms and the derivation of general adsorption
trends.

Our results, described in Section 2.3, show that many adatoms bind to graphene
with an adsorption energy of ∼ 1 eV. From the density of states, we determine that the
adatoms considered in this work from Groups I, II, and III (I-III) of the Periodic Table
bond ionically to graphene, transferring close to one electron to graphene without signif-
icantly modifying the graphene electronic states; other transition, noble, and Group IV
metal adatoms modify the graphene states to a large degree, indicative of covalent bonding.
Several adatoms induce a large dipole moment and work function shift relative to isolated
graphene. We find a strong relation between the work function shift and the ionization
potential of the isolated atom.
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2.2 Methods

Our calculations are performed within first-principles DFT under the generalized
gradient approximation (GGA) of Perdew, Burke, and Ernzerhof (PBE) [26], including
spin polarization. The Vienna Ab-initio Simulation Package (VASP) is used to perform
all calculations [91–93]. Ion cores are modeled with projector augmented wave (PAW)
potentials [42, 43]. The semicore 1s states of Li, 2p states of Na, 3p states of K and Ca,
and d states of Ga, In, Sn, Pd, and Au are treated explicitly as valence. A plane-wave
basis set with a maximum plane-wave energy of 500 eV is used for the valence electrons
wavefunctions. All parameters in the calculation are chosen to converge the total energy to
0.01 eV.

Graphene has two C atoms arranged in a two-dimensional honeycomb lattice with
a hexagonal primitive unit cell. We use our calculated graphene lattice constant of 2.47 Å,
which is slightly larger than the experimental value of 2.46 Å. For notation, we let the x
and y directions be parallel and the z direction perpendicular to the graphene plane.

The adatom-graphene system is modeled using one metal adatom in a 4×4 hexag-
onal graphene supercell (Fig. 2.1; we refer to the metal adatom arrangement as a 4×4 layer).
This setup corresponds to a coverage of 1 adatom per 32 C atoms. The in-plane lattice
constant is 9.88 Å, which is also the distance between neighboring adatoms. We use a
supercell length of 15 Å in the z direction.

The calculation using the 4 × 4 coverage approximates the interaction of an iso-
lated adatom with graphene. Although the adatom-adatom interaction is not negligible, the
distance between adatoms is large enough that the overlap of the electronic states of neigh-
boring adatoms is small. For K, the total energy of a 4× 4 metal layer of K in the absence
of graphene differs from that of the isolated K atom (described below) by less than 0.01 eV.
Potassium has the largest atomic radius of all adatoms considered (2.20 Å; Ref. [94]).

The adatom-graphene system lacks inversion symmetry and therefore has a net
electric dipole moment perpendicular to the surface. To remove spurious dipole interactions
between periodic images along the z direction, we self-consistently apply corrections to the
local electrostatic potential and the total energy [95,96]. These corrections are necessary in
order to get the correct vacuum energy level, which we use to determine the work function.
We find corrections to the total energy to be as large a 0.2 eV.

Calculations for the isolated 4 × 4 graphene, isolated 4 × 4 adatom layer, and
4×4 adatom-graphene system are performed with the same-sized hexagonal supercell. The
Brillouin zone is sampled with a 9× 9× 1 Γ-centered k-point grid, and Gaussian smearing
with a width of σ = 0.05 eV is used for the occupation of the electronic levels. We consider
the binding of the adatom on three sites of high symmetry: the hollow (H) site at the center
of a hexagon, the bridge (B) site at the midpoint of a carbon-carbon bond, and the top
(T) site directly above a carbon atom (Fig. 2.2). For each adsorption site for the adatom-
graphene system, the adatom is relaxed along the z direction and the C ions in graphene
in all directions until forces on the ions are less than 0.05 eV/Å. The supercell dimensions
are kept fixed for all calculations.

To calculate adsorption energies, we also require the total energy of an isolated
atom, which is approximated by the calculation with a single atom in a cubic supercell of
length 14 Å. Only the Γ point of the Brillouin zone is sampled in this case.
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Figure 2.1: Adatom on the hollow site in a periodic 4×4 arrangement on a graphene surface.

Figure 2.2: The three adsorption sites considered: hollow (H), bridge (B), and top (T).
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2.3 Results

2.3.1 Adsorption energy and geometry

In this work, we define the adsorption energy as

∆E = Ea + Eg − Eag, (2.1)

where Eag is the total energy per adatom of the 4× 4 adatom layer on graphene, Ea is the
total energy of an isolated atom, and Eg is the total energy of the isolated graphene per
4× 4 supercell (containing 32 C atoms).

The adsorption geometry is obtained from the positions of the atoms after relax-
ation. The adatom height (h) is defined as the difference in z coordinate of the adatom
and the average of the z coordinates of the C atoms in the graphene layer. The distance
(dAC) between the adatom and its nearest carbon atom(s) is also calculated. In some cases,
the distortion of the graphene layer is significant. We quantify the distortion by computing
the maximum deviation in the z direction of the C atoms in the graphene layer from the
average of their positions.

Of the three adsorption sites considered, the site with the largest adsorption energy
(minimum total energy) is referred to as the favored site. We assume that the most likely
diffusion pathway between favored sites is via the high-symmetry site with the next largest
adsorption energy. The energy difference between these two sites is referred to as the
diffusion barrier (Ediff). More accurate determination of the diffusion barrier would require
calculating the complete potential energy surface or using, for example, the nudged elastic
band method [97]. For all atoms which bind to the H or T sites (B site), the next largest
adsorption energy is for the B site (T site).

Adsorption energies and structural properties for the three sites considered are
summarized in Table 2.1. Metal adatoms from Groups I-III all bind most strongly to the
H site. Within Group III, the adsorption energy decreases monotonically with increasing
atomic number; however, this trend is not followed by the alkali metals. Our calculated
adsorption site, adsorption energies, and heights are in reasonably good quantitative agree-
ment with previous calculations for alkalis [99–102] and for In [103]. There is not complete
agreement on the nature of the bonding of Al with graphite among previous experimen-
tal and theoretical works [104–108], but within our calculation, Al fits into the consistent
picture that we find across the different elements.

For the alkalis, the relatively high ratios of adsorption energy to bulk cohesive
energy suggest that alkalis are able to form 2D layers on the surface of graphene, as op-
posed to 3D clusters, in agreement with experiments observing 2D alkali layer formation
on graphite [87]. On the other hand, the ratio ∆E/Ec for Group III elements is lower than
for the alkalis, which is reasonable given the experimentally observed island or 3D cluster
formation for Al and In on nanotubes or graphite [83,84,104,105].

The general consensus from both experiment and theory is that for dispersed alkali
adatoms, the bonding to graphite is mainly ionic [87]. In Sec. 2.3.2, we provide evidence that
Group I-III adatoms bond ionically to graphene. Our result indicating that these elements
adsorb to the H site is consistent with previous work for alkalis on metal surfaces [90] which
shows that for ionic bonding, sites of high coordination are favored.
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Table 2.1: Energetic and structural properties for the hollow (H), bridge (B), and top (T)
sites for the 12 adatoms considered in this work. The properties listed are the binding
energy (∆E), difference between binding energy and binding energy of lowest energy site
(Emax

a −∆E), adatom height (h), adatom-carbon distance (dAC), and graphene distortion
(dGC). For reference, we include the experimental cohesive energy per atom of the bulk
metal (Ec) from Ref. [98] and the ratio of the adsorption energy to the bulk cohesive energy
(∆E/Ec).

Atom Site ∆E Ec ∆E/Ec Emax
a −∆E h dAC dGC

(eV) (eV) (eV) (Å) (Å) (10−1 Å)

H 1.096 1.630 0.672 1.71 2.23 0.0
Li B 0.773 0.322 1.88 2.09 0.2

T 0.754 0.342 1.89 2.02 0.3
H 0.462 1.113 0.415 2.28 2.70 0.1

Na B 0.393 0.069 2.44 2.59 0.1
T 0.389 0.074 2.49 2.54 0.1
H 0.802 0.934 0.859 2.60 2.99 0.1

K B 0.739 0.063 2.67 2.85 0.3
T 0.733 0.069 2.67 2.77 0.2
H 0.632 1.840 0.343 2.29 2.72 0.1

Ca B 0.484 0.148 2.33 2.53 0.2
T 0.478 0.154 2.34 2.46 0.2
H 1.042 3.390 0.307 2.13 2.56 0.1

Al B 0.927 0.115 2.22 2.33 0.1
T 0.911 0.131 2.22 2.24 0.2
H 0.858 2.810 0.305 2.20 2.63 0.0

Ga B 0.762 0.096 2.30 2.41 0.0
T 0.749 0.109 2.31 2.33 0.1
H 0.690 2.520 0.274 2.45 2.83 0.1

In B 0.622 0.069 2.53 2.63 0.0
T 0.614 0.077 2.55 2.56 0.1
H 0.114 0.142 3.19 3.48 0.1

Sn B 0.253 0.003 2.79 2.81 0.8
T 0.256 3.140 0.082 2.82 2.75 0.7
H 1.869 4.850 0.385 1.80 2.33 0.2

Ti B 1.301 0.568 2.05 2.27 0.3
T 1.301 0.568 2.00 2.18 0.3
H 0.748 4.280 0.175 1.53 2.11 0.1

Fe B 0.231 0.517 2.22 2.35 0.0
T 0.149 0.599 2.18 2.13 0.5
H 0.852 0.230 2.03 2.46 0.3

Pd B 1.081 3.890 0.278 2.21 2.18 1.4
T 1.044 0.038 2.21 2.10 1.1
H 0.085 0.011 3.53 3.80 0.0

Au B 0.089 0.007 3.06 3.11 0.4
T 0.096 3.810 0.025 2.69 2.55 1.4
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For each element from Groups I-III, the adsorption energy and height for the B site
is similar to the energy and height for the T site, while for the H site the adsorption energy
is larger and the height is smaller. For an ionically-bonded adatom, the equilibrium height
results from a balance of the electrostatic attraction between oppositely charged adatom
and surface and the short range electron repulsion. Since the graphene electron density is
lower at the H site than at the B or T sites, the adatom is stabilized closer to the surface.
Thus ionic bonding appears to favor adsorption to the H site because, in addition to having
a higher coordination as mentioned above, the adatom is also closer to the sheet, reducing
the electrostatic energy (see also Ref. [109]).

The diffusion barriers via the B site for adatoms from Groups I-III are around 0.1
eV, with the exception of Li, which has a significantly smaller size than the other atoms.
Within Group I or Group III, the trends in adsorption height or diffusion barrier are well
correlated with atomic radius. For ionic bonding, as the adatom radius increases, its height
increases, and the effect of the corrugation of the graphene is reduced. Elements from
Groups I-III do not distort the graphene sheet by a significant amount, even on the B or
T sites, where the distortion is greatest. Thus the C-C bonds near the adatom retain their
sp2 character and do not rehybridize significantly with any adatom orbitals. This result
provides further support for the ionic bonding picture.

The 3d transition metal Ti has the largest adsorption energy of the adatoms con-
sidered, while Fe has a more modest adsorption energy. Like elements from Groups I-III,
Ti and Fe favor the H site. However, the diffusion barriers are much larger than those
for Groups I-III (about 0.5 eV). In addition, the H site adsorption height for Fe is small
compared with the other adatoms studied. As discussed in subsequent sections, Ti and
Fe bond covalently with graphene. Covalent bonds are directional, and the bond forma-
tion depends on the adatom coordination. Therefore it is reasonable that the adsorption
energy is strongly dependent on the adsorption site. Our calculations for binding energy
and geometry are in reasonable agreement with previous calculations for Ti and Fe on
graphene [110–112]. In contrast to the strong binding we observe in our calculations, some
experiments suggest that the Ti-graphene interaction is weak [113]. This difference may be
due to a larger Ti surface density in experiment than in our calculations, which may reduce
the Ti-surface interaction.

Though Pd has a filled d shell, it binds strongly to the B site of graphene, implying
covalent bonding. The electronic structure presented in Section 2.3.2 shows that, like Ti and
Fe, Pd adsorption involves hybridization of adatom d orbitals with the orbitals of graphene.
However, the observation of d orbital hybridization alone is not enough to determine the
favored adsorption site for a given adatom.

Although, like the alkalis, the Au atom has a single s valence electron, the Au
adsorption energy is small. Sn adsorption is slightly stronger but is also weak relative to
other adatoms. Adsorption of these elements to graphene likely involves van der Waals
forces, which are not captured by DFT with the GGA. To the extent that our calculations
accurately describe Au and Sn adsorption on graphene, the bonding is covalent; such bond-
ing is consistent with adsorption to the T site, which allows for greater direct hybridization
between the C atom and the adatom than adsorption to the H site.

In contrast to Group I-III elements, Pd, Au, and Sn adatoms all induce noticeable
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distortion (≥ 0.07 Å) of the graphene sheet upon adsorption. The strong distortion likely
changes some of the graphene sp2-like orbital character to a more covalently reactive sp3-like
character. These three adatoms can diffuse readily along the hexagonal C bond network.
For Au and Sn, the diffusion barrier is very small (< 0.01 eV), and since the adsorption
energies are small, the adsorption heights are correspondingly large. Our results for Au
are in good agreement with previous calculations using the GGA [103, 114, 115]; previous
calculations with the local density approximation (LDA) give somewhat larger adsorption
energies [103,116].

2.3.2 Electronic structure

In this section, we compute the electronic structure of the adatom-graphene system
and identify general trends across the different adatoms considered. The Kohn-Sham density
of states (DOS) is computed for each adatom on the favored adsorption site using a 24×24×1
Γ-centered Brillouin zone sampling, and the energy eigenvalues are smeared with Gaussians
of width σ=0.1 eV. To generate the projected DOS (PDOS), the electron wavefunctions
are projected onto spherical harmonics localized within a sphere centered about each atom.
For the C atoms in graphene, the sphere radius is chosen to be 1.03 Å. For each adatom,
the sphere radius is chosen to be the atomic radius, taken from Ref. [94].

We first consider alkali adsorption using K as an example. Of the metal adsorbates
considered here, the alkalis are closest to ideal ionic bonding. Fig. 2.3 shows the DOS for K
on the graphene H site and the DOS for isolated graphene, for both spin up and spin down.
For each curve, the Dirac point of the graphene (where the DOS is zero) is clearly visible.
In the plots, we shift the isolated graphene DOS to align its Dirac point with that of the
K-graphene DOS. We denote the energy of the Dirac point by ED. Near and below the
Fermi level (EF), the isolated graphene DOS closely matches that of the adatom-graphene
system, except near clearly defined peaks at -17 eV and just above EF (corresponding to 3p
and 4s adatom states, respectively), showing that the graphene states are nearly unaltered
by the adsorption of K adatoms.

Fig. 2.4 shows the same K-graphene DOS near the EF, along with the projection
of the DOS onto graphene and the K s state. The spin up 4s peak lies close to the Fermi
level and is partially occupied, while the spin down 4s peak lies approximately 0.5 eV above
EF and is unoccupied. The position of these peaks above EF are probably underestimated,
since it is well known that GGA Kohn-Sham energy eigenvalues often differ from the true
quasiparticle energies. There is no evidence for hybridization between the K 4s peaks
and the graphene states; the PDOS of the graphene shows no peaks near the K 4s levels.
Furthermore, the broadening of the K 4s peaks due to interaction with the graphene is
small.

For K on graphene, the Fermi level is shifted higher in energy relative to ED,
reflecting a greater occupation of graphene states. Also, in an isolated atom, the spin up
4s peak is fully occupied, while in the adatom-graphene system the spin up 4s peak is only
partially occupied. These observations suggest that the bonding is predominantly ionic and
that close to one electron of charge (e) is transferred from the 4s state of the adatom to the
graphene states.

Similar characteristics for the DOS are found for Na, including splitting of the 3s
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Figure 2.3: Spin up (top) and spin down (bottom) total DOS for K on the H site of graphene
and for isolated graphene. The energy is relative to EF of the K-graphene system. The
curves are aligned at the Dirac point.
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Figure 2.4: Spin up (top) and spin down (bottom) total DOS, PDOS on the graphene states,
and PDOS on the K s states, for K on the H site of graphene. The energy is relative to EF.
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Table 2.2: Electronic properties for the favored adsorption site for the 12 adatoms considered
in this work. The properties listed are the electric dipole moment per adatom (p), work
function (Φ), magnetic moment per adatom of the adatom-graphene system (µAG), and
magnetic moment of the isolated atom (µA). The calculated work function for isolated
graphene is 4.26 eV. Also included is the experimental ionization potential of the isolated
atom (IP) from Ref. [117]. The electric dipole moments are in units of debye (D), and the
magnetic moments are given in Bohr magnetons (µB).

Atom Site p (D) Φ (eV) µAG(µB) µA(µB) IP (eV)

Li H 3.46 1.94 0.00 1.00 5.39
Na H 2.90 2.21 0.27 1.00 5.14
K H 4.48 1.49 0.17 1.00 4.34
Ca H 0.85 3.18 1.04 0.00 6.11
Al H 0.93 3.08 0.00 1.00 5.99
Ga H 1.83 2.66 0.00 1.00 6.00
In H 2.57 2.34 0.00 1.00 5.79
Sn T 0.19 3.81 1.81 2.00 7.34
Ti H 1.39 3.16 3.41 4.00 6.83
Fe H 1.84 3.24 2.03 4.00 7.90
Pd B 1.23 3.61 0.00 0.00 8.34
Au T -1.29 4.88 0.96 1.00 9.23

valence spin up and spin down peaks, with partial occupation of the 3s spin up peak and an
increase in EF relative to ED. For Li, the 2s spin up and spin down states are degenerate
and lie about 0.9 eV above EF, suggesting that more charge is transferred to graphene by
Li than by Na or K. The degeneracy of the Li spin up and spin down 2s states and the
splitting and partial occupancy of the Na 3s and K 4s states are in good agreement with
previous theoretical calculations [99, 100]. The ionic bonding picture for the alkalis from
the DOS agrees with our calculated energetic and structural properties and with the the
consensus from previous experiment and theory [87].

The adsorption of Na or K adatoms on graphene leads to a net magnetic moment
(Table 2.2) that is reduced from that of the isolated atom. This reduction results from
partial charge transfer to the graphene, whose states are not spin polarized in the case
of ionic bonding. One should exercise care in interpreting the magnetic moment results,
which may be sensitive to adatom arrangement. The 4 × 4 adatom structure used for
these calculations has not been observed experimentally; in addition, the GGA may not
accurately describe the occupation of such localized adatom states.

In the case of Ca, the isolated atom has a filled 4s shell with two electrons. How-
ever, when Ca is adsorbed onto the graphene H site, its spin down 4s peak lies above EF

and is unoccupied, resulting in a magnetic moment of about 1 Bohr magneton (µB) per
adatom. Experiments assessing the possibility of such a strong localized moment would
be of interest. As with K, little hybridization of the 4s states with the graphene sheet is
observed.

We now discuss the PDOS for Al on the H site (Fig. 2.5), which is respresentative
of the Group III elements. These elements have two s valence electrons and one p valence
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Figure 2.5: Spin up total DOS, PDOS on the graphene states, and PDOS on the Al s and
p states, for Al on the H site of graphene. Spin up and spin down states are degenerate.
The energy is relative to EF.

electron in the outermost shell. Compared with the alkalis and Ca, Al adsorption affects
the graphene electronic structure to a greater degree. The 3s state of Al appears to split
and hybridize with the graphene states at -8.6 eV and -3.3 eV relative to EF. The Al 3p
peak lies 1.3 eV above EF and is noticeably broadened due to the Al-graphene interaction.
Nevertheless, the Dirac point is still clearly visible. Between ED and EF, the states are
mostly from the graphene, and the DOS appears to be minimally altered from the isolated
graphene case. Therefore, as for the alkalis, it is reasonable to characterize the bonding as
ionic, involving charge transfer of nearly one electron per adatom to graphene. Although
the interaction of the Al 3s state with graphene may contribute somewhat to the overall
bonding, it may not be important for properties which depend mostly upon the states at
EF, such as transport.

For Al, Ga and In, the valence p peak remains above EF, so that in all cases, close
to one electron per adatom is transferred to graphene. Since there is little occupation of the
valence p peak, the up and down spin states are degenerate, and there is no net magnetic
moment for the Group III elements. Other features of the PDOS mentioned for Al are
qualitatively the same for Ga and In. The ionic characteristics of the PDOS for Group III
elements are consistent with the energetic and structural information discussed in Section
2.3.1. For In, the position of the 5p peak and the large charge transfer inferred from the
PDOS are in good agreement with previous ab initio calculations [103].

Unlike the elements from Groups I-III, the transition metals Ti, Fe, and Pd sig-
nificantly alter the graphene electronic structure. An important common feature in the
DOS for these adatoms on graphene is the strong hybridization of the adatom d states with
the graphene states to form covalent bonds. The PDOS for Ti on the H site of graphene
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is shown in Fig. 2.6. Strong hybridization of Ti 3d states and graphene states is evident
from the prominent peaks in the PDOS. In the spin up PDOS, these hybrid Ti 3d/graphene
states lie in a broad range about EF. Because the graphene states are strongly altered, the
Dirac point is no longer evident. In the spin down PDOS, the Ti 3d states lie mostly above
EF. In this case, it appears that ED lies below EF, and one might infer electron transfer
from Ti to graphene, though for covalent bonding, the concept of charge transfer is more
ambiguous than for ionic bonding. Charge transfer does help to explain the reduction in
magnetic moment from the isolated to the adsorbed atom (Table 2.2). Electrons which
are spin-polarized in the isolated atom are transferred to less polarized graphene states
when the atom is adsorbed on graphene.1 The hybridization, charge transfer, and magnetic
moment are in reasonable agreement with previous calculations [110].

As for Ti, the PDOS for Fe on the H site (Fig. 2.7) shows that there is covalent
bonding and hybridization between 3d states and graphene states. The spin up 3d states
of Fe are occupied and are split into two main peaks plus a broad band spanning several
eV. The spin down 3d states of Fe also consist of two main peaks, one at EF, as well as
broad features. The spin up and spin down 4s states lie approximately 0.4 eV and 1.1 eV
above EF. The DOS illustrates that approximately two electrons are shifted from the 4s
states in atomic Fe to the spin down 3d states in the Fe-graphene system. Consequently,
the magnetic moment is reduced from 4 µB for the isolated Fe atom to 2.03 µB per adatom
for Fe adsorbed on graphene. The hybridization of the spin down 3d states lowers their
energy relative to the 4s states, explaining this transfer of electrons.

Since the graphene states are altered by Fe adsorption, the Dirac point can no
longer be clearly identified. The DOS suggests that EF does not shift much from ED, indi-
cating that little, if any, charge is transferred between the adatom and graphene. However,
as for Ti, the applicability of the charge transfer concept is unclear.

Interestingly, although the Pd atom has a filled 4d shell, the 4d orbitals strongly
hybridize with the graphene states when Pd is adsorbed on the B site (Fig. 2.8). These
states lie below EF, and there is no magnetic moment. The Pd 5s peak lies about 0.9
eV above EF, and the Fermi level of graphene appears to remain at the Dirac point. In
Pd and Fe, the bonding is almost completely covalent. For Au and Sn, near EF, the 6s
and 5p orbitals, respectively, hybridize with the graphene states. However, as noted above,
the GGA may not be an accurate approximation for the bonding of these two elements to
graphene.

2.3.3 Charge transfer

For adatoms from Groups I-III, the DOS provides evidence for ionic bonding and
charge transfer between the adsorbate and substrate. Extracting a quantitative value for
charge transfer from ab initio calculations is useful for comparing with both experiment and
simple models. However, charge transfer is an ambiguous quantity and there is no unique
definition. Some discussion of the concept of charge transfer in the context of adsorption
to metal surfaces can be found in Ref. [89]. Charge transfer is most sensible in the context

1Note that the magnetic moment of the ground state for the isolated Ti atom given by the GGA differs
from that in experiment.
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Figure 2.6: Spin up (top) and spin down (bottom) total DOS, PDOS on the graphene
states, and PDOS on the Ti s, p, and d states, for Ti on the H site of graphene. The energy
is relative to EF.
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Figure 2.7: Spin up (top) and spin down (bottom) total DOS, PDOS on the graphene
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Figure 2.8: Spin up total DOS, PDOS on the graphene states, and PDOS on the Pd s, p,
and d states, for Pd on the B site of graphene. Spin up and spin down states are degenerate.
The energy is relative to EF.

of ionic bonding. In the case of covalent bonding, charge is shared in the bond between
adsorbate and substrate, and thus the charge transfer concept is less relevant.

For alkalis on graphite, various definitions of charge transfer are considered in
several previous works [99,101,118–120]. In this work, we compare two definitions of charge
transfer. One is based on the shift in EF relative to the graphene DOS resulting from
adatom adsorption. The other is based on integration of the charge density in real space.
We apply these definitions to Group I-III adatoms. The other adatoms considered in this
work bond with some degree of covalency to graphene and do not permit the same analysis.

Table 2.3: Fermi level shift relative to the graphene states (∆EF), charge transfer de-
termined from the DOS (∆qDOS), adsorbate-substrate cutoff distance (Rcut), and charge
transfer from charge density integration (∆qρ), for adatoms from Groups I-III.

Atom ∆EF (eV) ∆qDOS (e) Rcut (Å) ∆qρ (e)

Li 0.95 0.90 1.64 0.39
Na 0.86 0.73 1.57 0.32
K 0.88 0.76 1.64 0.41
Ca 0.89 0.78 1.44 0.18
Al 0.94 0.88 1.37 0.14
Ga 0.94 0.88 1.44 0.21
In 0.92 0.84 1.51 0.27
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Charge transfer from the DOS

The DOS of the adatom-graphene system can be used to determine the charge
transfer, assuming that the graphene states remain unchanged due to adatom adsorption
(aside from a rigid shift). As discussed in Section 2.3.2, this assumption is good for the
alkalis and is reasonable for Groups II and III as well. For these systems, electrons are
donated to the graphene, filling the rigid graphene states and thereby shifting the Fermi
level up from the Dirac point. To calculate charge transfer from the adatom-graphene DOS,
the Dirac point is identified, and the shift in Fermi level

∆EF = EF − ED (2.2)

is determined. The charge transfer ∆qDOS is given by the integral of the isolated graphene
DOS from ED to ED+∆EF. The Fermi level shift ∆EF and charge transfer ∆qDOS are given
in Table 2.3 for each of the elements in Groups I-III considered in this work. A positive
charge transfer indicates transfer of electrons from the adatom to graphene.

It is interesting that ∆EF ≈ 0.9 eV for all Group I-III elements we considered
(although a small difference in ∆EF can give a significant difference in ∆qDOS). The largest
charge transfer is for Li, but Na, K, and Ca all transfer less charge than the Group III
elements.

Similar methods have been used previously to estimate charge transfer for K on
graphite at a low coverage, using Fermi level shifts determined from experiments. Charge
transfer has been estimated to be around 0.7 e from electron energy loss spectroscopy [121]
at a coverage of less than 0.1 monolayer (ML). For K, a coverage of 1 ML corresponds to a
2×2 hexagonal adsorbate structure. This value is in reasonable agreement with our results,
although our coverage is at least 2.5 times greater than that in experiment. Using a Fermi
level shift determined from photoemission, the charge transfer has been estimated to be
around 0.1 e [122,123], significantly less than our and most other previous results for charge
transfer [87]. Issues related to adatom coverage are discussed further in Section 2.3.4.

Charge transfer from the charge density

Partitioning the charge density in real space can be used to define charge transfer
as well. (In what follows, the charge density refers to the valence electron charge density.)
First, we define the charge density difference as

∆ρ(r) = ρag(r)− ρlayera (r)− ρrelaxedg (r). (2.3)

For all quantities in Eq. 2.3, the charge density is computed in the same hexagonal supercell.
The quantity ρag is the charge density of the adatom-graphene system. The charge density

of the 4 × 4 adatom layer without graphene, ρlayera , is calculated with the adatom in the
same position in the supercell as for the adatom-graphene calculation. The quantity ρrelaxedg

is the charge density of an isolated 4× 4 graphene layer, computed with the atoms fixed to
their relaxed coordinates from the adatom-graphene calculations; these coordinates differ
from those of isolated graphene. The charge density difference quantifies the redistribution
of electron charge due to the adatom-graphene interaction.
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Figure 2.9: The x-y planar averaged electron charge density difference (∆ρavg) for K on
graphene H site, as a function of position in the z direction. Two vertical lines indicate the
position of the graphene sheet (0 Å) and the position of the adatom (2.60 Å). The arrow
at 1.64 Å indicates Rcut used in calculating ∆qρ.

As an example, Fig. 2.9 shows the x-y planar averaged charge density difference
(∆ρavg) as a function of z for K on the H site. The position of the graphene sheet at z = 0
Å and the position of the adatom at z = 2.60 Å are indicated by vertical lines. The plot
illustrates electron transfer from the adatom to the graphene with a large overall electron
density increase near the graphene sheet and an electron density decrease near the adatom.

To determine the charge transfer using the spatial charge density, the regions of
space belonging to the graphene or the adatom must be specified, introducing a degree of
arbitrariness to the definition. For the purpose of comparison, we adopt the definition used
in several previous works [99,101,118–120]. An adsorbate-substrate cutoff distance Rcut is
defined as the distance from the graphene plane to the point between the plane and the
adatom at which charge accumulation changes to charge depletion, for electron transfer from
the adatom to the graphene (or vice versa, for opposite electron transfer). For example, in
Fig. 2.9, the region with z < Rcut is assigned to the substrate, and the region with z > Rcut

is assigned to the adatom. The charge transfer ∆qρ is given by the integral of the charge
density difference in the substrate region. The results for Rcut and ∆qρ are given in Table
2.3 for adatoms from Groups I-III.

For the alkalis, Rcut, ∆qρ, and plots of the planar-averaged charge density differ-
ence are consistent with previous calculations [101], with small differences likely coming from
the different number of graphene layers used. Within Group I or Group III, the values for
Rcut and ∆qρ are similar. The alkalis have greater charge transfer than the other elements.
For Group III, Rcut and ∆qρ increase monotonically with atomic number. The cutoff dis-
tance Rcut is nearly the same for all the alkalis (as noted in Ref. [101]), but is different from
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Rcut for the Group III elements. That the effective “thickness” of the graphene depends on
the adsorbate is an indication of the arbitrariness of the charge transfer definition.

Comparison of charge transfer definitions

The charge transfer values differ significantly depending on the definition, with
∆qDOS > ∆qρ for a given element. Also, ∆qDOS is larger for the Group III elements than
for the alkalis (aside from Li), while the reverse is true for ∆qρ. It is not surprising that the
two definitions give different values, since the charge density associated with an electronic
state with a defined energy can be spatially extended. Both definitions have reasonably
simple pictures; which one is more meaningful depends on the physical properties of interest.
Examining the DOS would be more useful if one were interested in the carrier concentration
of graphene, while the charge density definition might be more suited for simple electrostatic
models of the adatom-graphene interaction or for interpreting core level shift measurements.

2.3.4 Dipole moment and work function

The electric dipole moment perpendicular to the graphene sheet is an alternative
to charge transfer for quantitatively describing the real space charge rearrangement due
to adatom-graphene interaction. For ionically bonded adatoms, the dipole moment has a
large contribution from charge transfer between adatom and substrate, but rearrangement
of charge in covalent bonds and polarization of semicore states localized on the adatom also
play a role. These contributions could also apply to covalently bonded adatoms.

Unlike charge transfer, the dipole moment is well-defined for both ionic and cova-
lent cases considered here. We compute the dipole moment p in the z direction for the unit
cell of the adatom-graphene system as

p = −

∫
ρ(z)zdz +

∑

i

Ziezi, (2.4)

where ρ(z) is the valence electron density integrated over the x-y plane [ρ(z) ≥ 0 by def-
inition], i indexes the ion, Zi is the net atomic number of ion i, e is the electronic charge
(e > 0), and zi is the z coordinate of ion i. The sum and integral are over the unit cell.
Since there is one adatom per unit cell, p gives the dipole moment per adatom.

In general, adatom adsorption on graphene is expected to alter the Fermi level and
dipole moment of the system, and there can be a large change in work function relative to
isolated graphene. We define the work function as

Φ = Evac − EF, (2.5)

where Evac is the reference vacuum energy. In our calculation, Evac is determined from the
electrostatic potential in the vacuum region, far enough away from the adatom-graphene
system in the z direction that the value is converged. Because the adsorption is only one
side of the graphene sheet, the vacuum energies on the two sides of the graphene sheet
differ, with the potential difference proportional to the dipole moment (to leading order in
multipoles) via

∆V = −4πenap, (2.6)
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where na is the number of adatoms per unit area on the graphene surface (na = 1.18× 1014

adatoms/cm2 for our 4 × 4 supercell). We use the term “dipole potential” to refer to this
potential difference ∆V . In calculating the work function, Evac is defined as the vacuum
energy on the side of graphene that the adatoms are adsorbed to. The work function of
isolated graphene is calculated to be 4.26 eV, an underestimate of the experimental value
for graphite (about 4.6 eV) [124], but consistent with other DFT calculations using the
PBE functional [125]. This ∼ 10% underestimation is not expected to qualitatively affect
the broad trends described below.

The calculated dipole moment per adatom and work function for each adatom
are listed in Table 2.2. Of the adatoms considered, the alkalis generate the largest dipole
moments and the largest decreases in work function. Other adatoms with ionic character
(Groups II-III) and even the covalently bonded adatoms also decrease the work function of
graphene noticeably. In contrast, Au adatoms increase the work function of graphene.

Fig. 2.10 shows a plot of the work function shift (∆Φ) relative to isolated graphene
versus the dipole moment for the 4× 4 adatom arrangement considered here. Remarkably,
the adatoms from Groups I-III lie on a straight line given by the sum of the dipole potential
(Eq. 2.6) and an offset energy (Eoff):

∆Φ = −4πenap− Eoff. (2.7)

Fitting this equation to the data for Groups I-III gives Eoff = 0.74 eV. The observed linear
relationship is consistent with the ionic bonding picture obtained from other data presented
in this work. In particular, the fitted value for Eoff is close to ∆EF for these adatoms,
which is about 0.9 eV (Table 2.3). Eq. 2.7 indicates that two dominant contributions to ∆Φ
for ionically bonded adatoms are (i) the dipole potential, which shifts the graphene states
rigidly with respect to the vacuum, and (ii) the filling of graphene states due to electron
transfer from the adatom, resulting in a shift of the Fermi level relative to the graphene
states.

For alkali adatoms on bulk metal surfaces, previous work has shown that to first ap-
proximation the work function shift is simply given by the dipole potential, ∆Φ = −4πenap
[126]. For a bulk metal surface, any charge transfer between adatom and substrate changes
EF by an infinitesimal amount, so there is a negligible Fermi level shift relative to the metal
electronic states. On the other hand, since graphene is 2D and has a small DOS near EF,
charge transfer from adatom adsorption does result in a finite band filling term that con-
tributes significantly to ∆Φ. Thus the ionic bonding picture for adsorption on graphene is
consistent with that for adsorption on metals.

In Fig. 2.10, the data for adatoms not in Groups I-III lie above the plotted line
and are not collinear, possibly indicating that these adatoms each have different band filling
terms that are smaller than 0.74 eV, which implies smaller charge transfer than for adatoms
from Groups I-III. It is also possible that, for these adatoms, ∆Φ is not simply described
as the sum of a dipole potential term and a band filling term. These observations are
consistent with evidence from the binding energy, geometry, and DOS that their bonding
is more covalent and less ionic in character.

Fig. 2.11 shows that ∆Φ is well correlated with the experimental ionization po-
tential (IP) of the isolated atom [117]. We fit the values of ∆Φ and IP for the 12 species to
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Figure 2.10: Plot of the work function shift (∆Φ) relative to isolated graphene versus dipole
moment (p) for the 4 × 4 adatom coverage. Red squares are elements from Groups I-III;
other elements are marked by green circles. The dotted blue line is given by Eq. 2.7.

a line and obtain the following relation for the 4× 4 coverage:

∆Φ = 0.58 IP− 5.09 eV, (2.8)

where ∆Φ and IP are in units of eV. The overall trend of larger decreases in Φ for smaller
IP values is reasonable, since Φ (IP) is the energy to remove an electron from the adatom-
graphene system (isolated atom). Within the ionic picture of bonding, adatom species
with lower IPs are more likely to transfer their outer shell electrons to the graphene sheet,
thereby both creating a larger dipole layer and raising EF relative to vacuum to a greater
degree. However, it is interesting to note that adatoms with covalent character also follow
the general trend relating ∆Φ and IP.

We now remark on the possible coverage dependence of our results. Decreasing
the coverage would decrease na and Eoff in Eq. 2.7, but we would not expect p to change
significantly. Therefore we would expect the line in Fig. 2.10 to shift up and its slope
to decrease in magnitude. Going to a high coverage would increase na but would also
affect p and Eoff due to increased adatom-adatom interaction, and a linear relation between
∆Φ and p might no longer hold. In Fig. 2.11, we would also expect the slope to change
monotonically with the coverage if adatom-adatom interactions are small, but the linear
relation between ∆Φ and the IP also might not hold at high coverages.

The adatom coverage (θ) and arrangement are important to consider when com-
paring our results to experiment. Previous experiments measuring ∆Φ for adatoms on
graphite focus mainly on K. Experimentally, K is observed to form a dispersed phase at low
coverages on graphite, with a large adatom-adatom spacing. As the coverage is increased,
the K-K spacing decreases until a critical coverage θc is reached. Above θc, hexagonal 2× 2
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K islands form, and the islands are separated by a dispersed phase with spacing correspond-
ing to a 7× 7 structure. Further increasing the coverage causes the islands to grow until a
full 2× 2 monolayer of K is formed (θ = 1 ML for K) [127,128].

The 4×4 structure used in this work corresponds to a coverage θ = 0.25 ML, which
may be above the critical coverage (θc ≈ 0.1 − 0.3 ML, Refs. [127] and [129]). Therefore,
experimentally, the 0.25 ML coverage might consist of a mix of 2×2 islands and the dispersed
phase, not a uniform 4× 4 phase.

The work function for K on graphite as a function of coverage has been measured
experimentally by the retarding potential method and by photoemission spectroscopy [129].
The work function shift relative to clean graphite at θ = 0.25 ML was measured to be about
-1.6 eV, while our calculation for the 4× 4 structure gives ∆Φ = −2.77 eV.

The discrepancies between our results and experiment are reasonable if we consider
the differences between the 2× 2 islands, the dispersed phase, and the 4× 4 structure. The
2× 2 island structure was experimentally reported to be metallic [127], and compared with
the dispersed phase there is less charge transfer and a smaller dipole moment per adatom.
For the 2×2 structure, the work function approaches the value for bulk metallic K [129]. At
the hypothetical 4×4 structure, it is possible to obtain a large ∆Φ because, compared to the
more dispersed phase, there is a higher density of polarized adatoms, and compared to the
metallic 2× 2 phase, there is greater polarization and a larger dipole potential contributing
to the work function shift.
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2.4 Conclusion

In this chapter, the adsorption of 12 different metal adatoms on graphene is studied
using first-principles density-functional theory. Calculations of adsorption energy, geometry,
density of states, charge transfer, dipole moment, and work function give a consistent picture
of bonding for the adatoms considered. Adatoms from Groups I-III exhibit characteristics
of ionic bonding, including adsorption to the H site, small distortion of the graphene sheet,
little change in the graphene electronic states, and significant charge transfer and work
function shifts. For these adatoms, charge transfer is calculated quantitatively using two
methods, one based on the DOS and the other based on the integration of the real space
charge density. The observed trends differ for these two definitions, demonstrating their
different physical meanings. The work function can be understood to have two main con-
tributions coming from the dipole potential and from the Fermi level shift due to graphene
band filling. Transition metal atoms with d valence electrons, noble metals, and Group IV
elements exhibit covalent bonding characteristics with strong hybridization of adatom and
graphene electronic states. The utility of the charge transfer concept is less clear than in
the ionic case, but both ionic and covalent adatoms follow a linear relationship between ∆Φ
and the IP. Our work can serve as a basis for future experimental and theoretical studies
of adsorption on graphene. In the next chapter, we go on to study the gating of adatoms
on graphene.
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Chapter 3

Gated adatoms on graphene

In this chapter, a first-principles pseudopotential density-functional method for
studying the gating of adatoms on graphene is presented. A variation in gate voltage is
assumed to vary the number of electrons in the adatom-graphene system. The method is
applied to the cases of Li and Co on graphene. The projected density of states, charge
density, and local electrostatic potential are computed as a function of gate voltage. In
the case of Li, the calculations show that the Li adatom can be ionized by changing the
gate voltage, and that the ionization is accompanied by a sharp change in the electrotstatic
potential of the adatom. In the case of Co, correlation in the 3d shell is treated using
the LDA+U method, with several values of the U parameter considered. For U = 2 eV
or greater, an ionization effect analogous to the case of Li is found for the Co adatom.
This result is consistent with recent scanning tunneling spectroscopy experiments for Co on
graphene. Work presented in this chapter has been published in Ref. [130].

3.1 Introduction

In Chapters 1 and 2, some of the remarkable properties of graphene were dis-
cussed. The modification of pristine graphene is crucial for the study and elucidation
of its properties, as well as for tailoring it for practical applications. Modifications that
have received attention recently include growing or placing graphene on a variety of sub-
strates [131–135], applying mechanical strain [136, 137], patterning graphene into nanorib-
bons or dots [138–140], and forming bi- or multi-layer graphene [82,141].

Two important modifications are the variation of the carrier concentration of
graphene via an applied gate voltage and the adsorption of adatoms or molecules on the
graphene surface. It has been shown that gate voltages applied to graphene on a SiO2 sub-
strate can induce both electron and hole carriers up to a concentration of n ∼ 1013 cm−2

via the field effect [3]. With electrochemical gating, carrier concentrations of n & 1014 have
been reported for graphene [142,143]. The field effect is possible because of the semimetal-
lic nature of graphene, with linear DOS that vanishes at the charge neutrality point (NP)
or Dirac point, and the 2D nature of graphene makes for a straightforward experimental
geometry. The field effect was important in early measurements on graphene confirming
high mobility and Dirac quasiparticles in graphene [3, 131,144,145].
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In Chapter 2, studies of metal adatom adsorption on graphene were presented. As a
2D material, graphene is naturally amenable to the addition of adsorbates. Experimentally,
adsorbates on graphene have been used as dopants that change the number of charge carriers
[80, 146, 147], as sources of scattering in transport measurements [81], or as a method of
band gap opening or otherwise altering the electronic structure of graphene [82,148,149]. In
addition to considering the above phenomena, theoretical work on adsorbates on graphene
has explored other possibilities, such as the formation of regular arrays of adsorbates, the
existence of local moments, Kondo physics, and magnetically ordered arrays, and exotic
phenomena such as atomic collapse [150].

In graphene, variation of the gate voltage and adatom or molecule adsorption can
be combined in the same system. In this way, the chemical potential of the adsorbate-
graphene system can be precisely controlled. In some cases, such control can be used to
explore the electronic structure of an adatom-graphene system over a range of energies [81];
in other cases, it can be used to carefully tune the properties of the adsorbate-graphene
system, such as in the optimization of a graphene chemical sensor [147] or in the possible
tuning of the Kondo effect [151,152].

A recent scanning tunneling spectroscopy (STS) experiment demonstrated the
ability to controllably ionize a Co adatom on graphene using either a back gate voltage
or the STS tip bias voltage [17]. The charging of a localized state on a surface has been
demonstrated using STS on other systems [153–156], but those experiments lacked the
precise control of ionization via backgate voltage that is possible on graphene. Given that
STS is a natural tool for studying single adatoms on graphene, the amount of experimental
data for STS on such systems should grow in the near future.

The unique opportunity that graphene presents to control the chemical potential
of adsorbates on graphene using a gate voltage motivates the theoretical study of the gating
of adatoms on graphene. In this chapter, we present a first-principles method for studying
gated adatom-graphene systems. The method is applied to a prototype system, a Li adatom
on graphene, as well as a more experimentally relevant case, Co on graphene. The electronic
structure, including the density of states, charge density, and local electrostatic potential,
is computed as a function of gate voltage. For both Li and Co on graphene, we find
the presence of atomic-like states that remain localized on the adatom. Our results show
that such states can be ionized by variation of the gate voltage, and that such ionization
induces a sharp change in the local electrostatic potential, in agreement with the recent
STS experiment. This method has the potential to be applied to a wide variety of other
adatoms and molecular adsorbates.

The chapter is organized as follows. In section 3.2 we present the model and
details of the calculation. Sections 3.3 and 3.4 present the results for Li and Co adatoms
on graphene, respectively. In section 3.5 we discuss our results in relation to experiment,
as well as some implications of our results. Section 3.6 concludes the chapter.
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3.2 Method

3.2.1 Computational Framework

Our calculations are performed using the first-principles plane-wave pseudopo-
tential method [27] and density-functional theory (DFT) [20, 21] using the spin-polarized
generalized gradient approximation functional of Perdew, Burke, and Ernzerhof (PBE) [26].
The Quantum-ESPRESSO package [157] is used to perform the calculations. Ion cores are
modeled using ultrasoft pseudopotentials [41]. 1 For C and Li, the n = 1 shell is treated
as core and n = 2 as valence; for Co, 3s and 3p electrons are treated as core, while 4s
and 3d are treated as valence. A nonlinear core correction is included for Li [40]. The
electronic valence states are modeled using plane-waves with an energy cutoff of 45 Ry for
the wavefunctions and 180 Ry for the charge density for Co on graphene, and 30 Ry and
120 Ry respectively for Li.

In the case of Co, we consider the possible strong correlations in the 3d shell using
the so called LDA+U method [59] (or GGA+U in this work). In this approach, a Hubbard
U term is added to the functional to model the Coulomb repulsion between 3d electrons
localized on the Co atom. We use the rotationally-invariant formulation within a plane-
wave psuedopotential framework, as described in Ref. [55]. Note that a single Coulomb
parameter U is used (the exchange parameter J = 0 eV). We consider three values for U :
0, 2 and 4 eV.

The calculations are performed for an adatom on graphene in a supercell with
periodic boundary conditions. For the graphene in-plane (x-y) directions, a 6× 6 supercell
containing 72 C atoms and 1 adatom is used (Fig. 3.1). We use the lattice constant of 2.463
Å that we calculated for clean graphene; thus the distance between adatoms in our supercell
arrangement is 14.78 Å. In the out-of-plane z direction perpendicular to the graphene plane,
the unit cell length is 15 Å. The Brillouin zone is sampled using a 3×3×1 Γ-centered k-point
grid, and a Gaussian smearing of 0.05 eV is used for the electronic occupations.

The electronic density of states (DOS) is computed using a 21× 21× 1 Γ-centered
k-point grid (a 0.1 eV Gaussian smearing is used in the plots). The projected DOS (PDOS)
is computed by projecting the electronic wavefunctions onto orthogonalized pseudoatomic
orbitals; orbital occupations are obtained from the Löwdin analysis.

We consider three adsorption sites of high symmetry (as in Chapter 2): hollow
(H), at the center of a hexagon; bridge (B), at the midpoint of a C-C bond; and top (T),
on top of a C atom. The adsorption height h of the adatom, defined as the perpendicular
distance between the adatom and the graphene plane (Fig. 3.2), is optimized such that the
force on the adatom is less than 0.001 Ry/a.u. The C atoms in graphene are kept fixed
at their coordinates for a perfect graphene sheet. For calculations of the same adatom at
different levels of doping (discusssed in Section 3.2.2), the adatom height is optimized at
zero doping (neutral charge) and then kept constant across all doping values. The effects
of the approximation of fixed adatom height and C positions are discussed in Section 3.5.

1We used the pseudopotentials C.pbe-rrkjus.UPF, Li.pbe-n-van.UPF, and Co.pbe-nd-rrkjus.UPF from
http://www.quantum-espresso.org.
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Figure 3.1: Adatom on hollow site in 6 × 6 unit cell. The view is along the −z direction,
perpendicular to the graphene plane. A circle of radius s centered around the adatom in
the x-y plane is indicated.

Figure 3.2: View of an adatom on graphene along the +y direction of the unit cell. The
height h is defined as the perpendicular distance above the graphene plane.

3.2.2 Modeling of the applied gate voltage

In experimental studies, the application of a gate voltage to the adatom-graphene
system changes the total charge of the sample by adding or removing electrons and changing
the chemical potential. We model this effect in our calculation by varying the total charge
of the system from the neutral value by adding or removing electrons (doping the system).
We consider several values of the total charge that range below and above neutral. For each
given value of total charge considered, we fix the corresponding number of electrons per unit
cell and perform a full self-consistent calculation of the electronic structure. Thus the Kohn-
Sham electronic orbitals are allowed to relax according to the doping level. This method
can be contrasted with a rigid-band model in which addition or removal of electrons changes
the occupation of the electronic orbitals, but the orbitals themselves remain unchanged.

For a doping level away from neutral, the calculation involves a charged supercell.
We employ a standard method for cancelling the divergence of the total energy for charged
supercells, which is to add a compensating uniform (constant in space) background charge
of opposite sign and with total magnitude equal to the net charge of the electrons plus ions
in the system. (See, for example, Ref. [95].)

3.2.3 Supercell interactions

We briefly discuss the supercell interacations present in our calculations. In the
z-direction perpendicular to the plane, the 15 Å separating periodic images is sufficient
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to make overlap of wavefunctions on neighboring images negligible. However, monopole
(for charged systems), dipole, and higher order electrostatic interactions between periodic
images are present. It is possible to correct for such interactions [158,159]; such corrections
are not included in the work described in this chapter.

For the graphene in-plane directions, we take the 6 × 6 supercell containing one
adatom and 72 C atoms to approximate a single adatom on an infinite graphene sheet.
The choice of supercell size minimizes the bandwidth of localized atom-derived states while
maintaining a reasonable computational cost. Due to their long range nature, electrostatic
interactions between periodic images are not negligible. Therefore, we do not expect the
long-range effects of gating adatoms on graphene to be captured accurately by our calcu-
lations. Note also that in order to model effects such as ionization of the adatom, one
must dope the system on the order of 1 electron (e) per adatom, which corresponds to a
charge density of 1 e/72 C, while in experiments for graphene on SiO2, the doping range is
approximately ± 1 e/1000 C. Despite the presence of long range electrostatic interactions
between periodic images and the discrepancy with experimental doping level, we believe
the 6 × 6 supercell is a reasonable approximation for the local behavior (within several Å)
of the adatom on graphene under applied gate voltage.

Alternatively, for a system consisting of an adatom layer at a concentration of ∼
1 adatom/72 C (as opposed to a single adatom) on graphene, the supercell interactions are
physical and the 6 × 6 supercell is a reasonable approximation. However, in this case the
large doping of ∼ 1e/72 C may not be experimentally achievable.

3.3 Lithium adatom on graphene

We consider the adsorption and gating of Li adatoms on graphene as a prototype.
Li and other alkali atoms are often used in carbon nanotube and graphitic systems as a
dopant, for example in graphite intercalation compounds [160]. Possessing one valence
electron, an alkali adatom binds to graphene at the hollow site, transferring close to one
electron to the graphene sheet, according to the calculations of Chapter 2. In the present
calculation, the Li atom is modeled with a pseudopotential with one valence electron in the
2s state.

We reconfirm that the lowest energy binding site for Li on graphene is the hollow
site. Our calculated adsorption height of 1.89 Å is somewhat larger than previous DFT-
PBE calculations that treat Li 1s semicore states as valence (Table 2.1 and Refs. [99, 100])
but is in good agreement with calculations for which Li 1s semicore states are treated as
core [101]. Figure 3.3a shows the PDOS for the neutral Li-graphene system. The spin-up
and spin-down states are degenerate. There is an atomic-like state A deriving from the Li
2s and 2p orbitals 1 eV above the Fermi level (EF ), while the Dirac point of the graphene
DOS lies 0.7 eV below EF . We interpret this result as a complete transfer of the single
valence electron of the Li atom to the graphene sheet.

In Fig. 3.3, the PDOS for several levels of doping are plotted. The primary feature
that we focus on is the ionization of the Li adatom as the doping is changed from 0 e to +3
e, or vice versa (unless otherwise noted, doping levels are quoted in number of electrons per
unit cell, relative to neutral). Let us consider the progression from 0 e to +3 e doping. At
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Figure 3.3: PDOS for Li adatom on graphene for various dopings: (a) 0 e (b) +1 e (c)
+2 e (d) +3 e. Projections onto C 2p (solid red), Li 2s (dashed green), and Li 2p (dotted
blue) are shown. Arrows indicate majority (up) and minority (down) spin channels. A state
localized on the Li adatom is labeled A. Energies are relative to the Fermi energy EF .
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a doping of +1 e, as in the 0 e case, a localized state A deriving from the Li atom is clearly
distinguishable and remains unoccupied. At +2 e doping, the A state becomes partially
occupied in the spin-up (majority) channel. Note also the splitting between up and down
spins for the localized state, which is the same in origin as the splitting between occupied
spin-up and unoccupied spin-down 2s states in an isolated Li atom. At +3 e doping,
the Li spin-up peak A is completely occupied, with the Li spin-down states remaining
unoccupied. We interpret this result as the increase in ionization state of the Li adatom
by 1 e. Importantly, the A peak does not appear to hybridize with the graphene states at
any level of doping, which suggests that the state is localized on the Li atom. Therefore,
orbitals for the Li-graphene system can be assigned relatively unambigously to either the
graphene or to the Li adatom.

When a free atom is ionized, the electrostatic potential due to the atom changes,
since the contribution to screening of the potential from the added or removed electron
changes. We find a similar effect for the ionization of the Li adatom on graphene. From
our self-consistent field calculations, we extract the local electrostatic potential (bare ionic
pseudopotential plus electronic Hartree potential), VBH(~r), for the system. (In this work,
“potential” refers to the potential energy for an electron.) To compare VBH for several
different dopings, we consider the difference

∆VBH(~r) = V n
BH(~r)− V gr

BH(~r), (3.1)

where V n
BH is the potential for the adatom-graphene system with doping level n, and V gr

BH

is the potential for a clean graphene sheet with zero doping.
We consider the quantity

∆VBH(s, z) =
1

2πs

∫ 2π

0

∆VBH(s, θ, z)dθ, (3.2)

the average of ∆VBH over a a ring of radius s, centered around the adatom x-y position, at
a height z above the graphene plane, and parallel to the plane (see Figs. 3.1 and 3.2); the
position ~r = (s, θ, z) is expressed in cylindrical coordinates. In Fig. 3.4 we plot ∆VBH(s, z)
for several different heights. The plots are aligned so that the potentials are zero at a
distance from the adatom of s = 7.39 Å, equal to one-half the lattice constant of the 6× 6
unit cell.2 For comparison, we also plot V Li

B (s, z), the local bare ionic pseudopotential for
Li.

Compared with the potential at zero doping, the potential with +1 e has almost
the same shape for all the heights plotted. However, the addition of another electron
brings about a sharp change in the VBH ; the potential becomes significantly shallower. The
addition of a further 1 e does not change the potential signifcantly, aside from a constant.

Comparing the potentials at different heights, we see that near the graphene sheet
(h = 0.0 and 0.7 Å), the adatom potential is already screened strongly by the graphene
electrons at 0 e doping, resulting in a VBH that is much shallower than the bare ionic Li
potential. The change in potential at s = 0 from +1 e to +2 e is about 0.3 eV. In contrast,

2A more natural way to align the potentials would be to set them to zero at a distance far from the
adatom, where the potential is close to that of a clean graphene sheet, but due to the limited supercell size
in the calculation, the potential at the edge of the unit cell is not converged to the clean graphene limit.
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Figure 3.4: Plots of ∆VBH(s, z) for a Li adatom on graphene for several doping values and
at heights z = (a) 0 Å, (b) 0.7 Å, and (c) 2.7 Å above the graphene plane. The local ionic
potential for Li, V Li

B (s, z), is also plotted.
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the potential at h = 2.7 Å is weakly screened up to +1 e doping but becomes more strongly
screened at +2 e doping, with a change in VBH of approximately 4 eV at s = 0.

Comparison of the plots of the potential to the PDOS plots shows that filling of
graphene-like states when going from 0 e to +1 e doping does not change the potential
significantly (except by a constant), while the ionization of the Li adatom when increasing
the doping from +1 e to +2 e corresponds to a sharp change in the shape of the potential.
These changes in the potential can be understood by considering how the charge density
changes as the doping level is increased. Define the charge density difference

∆ρ(~r) = ρn(~r)− ρ0(~r), (3.3)

where ρn(~r) is the charge density of the adatom-graphene system with doping level n, and
ρ0(~r) is the charge density at a reference doping level. For Li we take 0 e as the reference
doping level. As we did for ∆VBH , we take the circular average

∆ρ(s, z) =
1

2πs

∫ 2π

0

∆ρ(s, θ, z)dθ (3.4)

for radius s and height z.
Figure 3.5 shows ∆ρ(s, z) for various heights. Upon filling the graphene-like states

when going from 0 e to +1 e doping, the charge density near the graphene changes fairly
uniformly across the 2D graphene plane, increasing at h = 0.7 Å and decreasing slightly at
h = 0 Å. At h = 2.7 Å the charge density changes little. This result is consistent with the
additional electrons occupying graphene π∗ orbitals which lie above and below the graphene
plane and are delocalized across the graphene sheet. The local Hartree potential due to such
a uniform (in the x-y plane) charge density is also uniform. Therefore the difference in VBH

between 0 e and +1 e should be nearly constant, as is found in our calculations.
On the other hand, when the doping is increased from +1 e to +2 e, the charge

density at h = 2.7 Å shows a much larger increase near the adatom than away from it,
while nearer to the graphene plane, the charge density change is small. (At h = 0.7 Å
the charge density actually decreases near the adatom and increases away from it, but the
magnitude of charge density change is small compared with that calculated at h = 2.7
Å.) This charge density change corresponds to occupation of an orbital localized on the
Li adatom, above the graphene plane (i.e., ionization of the Li adatom). Since the local
Hartree potential is greater at points of greater charge density, the large increase in charge
density near the Li adatom increases VBH near the adatom relative to points further from
the adatom, consistent with our calculations. Furthermore, the change in VBH is sharp
because the charge density is concentrated on the adatom, rather than spread out over a
plane.

A notable feature of the PDOS is the change in orbital character of the A peak.
At 0 e doping, the A peak has mostly Li 2s character, but has some 2p character, since the
spherical symmetry of the potential near the Li adatom is broken by the graphene. As the
doping is increased, the 2s character of the peak decreases and the 2p character increases.
A possible explanation is that the orbital becomes more extended into the vacuum and
less localized on the Li adatom. The orbital becomes more extended because the increase
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Figure 3.5: Plots of ∆ρ(s, z) for a Li adatom on graphene for several doping values and at
heights z = (a) 0 Å, (b) 0.7 Å, and (c) 2.7 Å above the graphene plane.
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in charge on the graphene increases the Hartree potential, pushing the wavefunction away
from the graphene.

To summarize the results for Li on graphene, the PDOS calculations show that
the Li adatom is ionized when the doping is increased or decreased between 0 e and +3 e.
The ionization corresponds to a large change in charge density localized on the Li adatom
and a sharp change in VBH , in analogy with the ionization of a free atom.

3.4 Cobalt adatom on graphene

Our study of Co adatoms on graphene is motivated by recent STS experiments
on this system, in which it was found that the Co adatom could be controllably ionized by
gate or tip bias voltage [17]. In addition, the Co atom has a partially occupied 3d shell and
therefore has the possibility of forming a local moment on graphene. Several theoretical
works have studied the Kondo physics of Co on graphene [161–163] and of adatoms on
graphene in general [151,164–167], but we do not consider the Kondo effect in this work.

Following the example of Li on graphene presented in Section 3.3, we start with
the undoped case. For plain GGA (U = 0 eV) we find that the lowest energy binding site
is the H site with a binding height of 1.56 Å above graphene, in reasonable agreement with
other works [112, 161–163, 168, 169]. For U = 2 and 4 eV, we also find the H site to be
lowest in energy, with heights of 1.75 and 1.88 Å, respectively.3

Figures 3.6c, 3.7c, and 3.8c show the PDOS for the neutral Co-graphene system
for the three values of U considered in this work. Due to symmetry, the five 3d orbitals (for
a given spin) split into a singly degenerate A1 orbital, deriving from the dz2 atomic orbital,
a doubly degenerate E1 orbital, derving from dzx and dzy orbitals, and a doubly degenerate
E2 orbital, deriving from dx2−y2 and dxy orbitals. The E1 and E2 orbitals hybridize strongly
with the graphene sheet, while the A1 and 4s orbitals hybridize weakly or not at all with
graphene, although they can hybridize with each other.

For U = 0 eV, the spin-up Co 3d states are almost completely occupied (occupancy
4.7), while the spin-down 3d states are partially occupied (occupancy 3.6), with the E1

orbital lying at EF . The spin-up and spin-down Co 4s states have occupancies close to
zero (0.1). Thus the Co atom orbital occupation is 3d8.34s0.2. The Dirac point ED of the
graphene lies slightly below EF , indicating a small amount of charge transfer from Co to
graphene, consistent with the reduction in occupation on the Co atom from 9 for the free
atom to 8.5 on graphene.

The addition of a U of 2 eV changes the PDOS significantly. In comparison to the
U = 0 eV case, the 3d levels are shifted away from EF , and the occupations of the 3d levels
are pushed to near-integer values. These effects are typical for the LDA+U method [59].
The spin-up 3d states remain near-fully occupied (occupancy 4.9), while the spin-down 3d
state occupancy is 3.0; the E1 orbitals have been pushed ∼1.0 eV above EF by the addition
of the U , and their occupation is reduced to zero. On the other hand, the spin-up Co 4s
state is partially occupied (occupancy 0.7) and lies at EF . In this case, the Co atom orbital

3If the C atoms in graphene are allowed to relax, the H site remains the lowest in energy for U = 0 and
2 eV, but the T site is lowest in energy for U = 4 eV. This result is consistent with Ref. [162].
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occupation is 3d7.94s0.7. The effect of the additional U = 2 eV is to transfer approximately
0.5 e from the 3d orbital to the 4s orbital of Co.

The U = 4 eV case is similar to the U = 2 eV case. The Co 4s states and ED have
approximately the same position relative to EF , and the occupancies of the Co 3d states
are the same. However, the Co 3d states are shifted further from EF by the larger U value.

Our PDOS calculations for U = 0 eV (plain GGA) are in good agreement with
previous works [163,168,169]. In addition, our PDOS for U = 0 and U = 2 eV correspond
well to two configurations found in another work (Figs. 1(a) and 1(b) in Ref. [162]).

We now consider the doping dependence of the PDOS for Co on graphene. Figure
3.6 shows the PDOS for U = 0 eV for various levels of doping. At a doping of −2 e, the
spin-down E1 orbital is unoccupied, as are some graphene π states, with ED lying above
EF . As the doping is increased, the occupation of the spin-down E1 orbital increases, as
does the occupation of both spin-up and spin-down graphene states. We find that as the
occupation of the spin-down E1 orbital changes, the orbital stays pinned to EF , in contrast
to the graphene-derived states. Comparing the energy of the E1 peak to the Dirac point
of graphene, we find that at low doping, when E1 is unoccupied, it lies below ED, but
at high doping, E1 becomes mostly occupied and its energy is above ED. The increase
in occupation of the 3d shell coincides with a shift towards higher energy of the occupied
3d levels as well. Increasing the doping from +1 e to +2 e, The occupations of both the
spin-down E1 and spin-up 4s orbitals increase simultaneously.

The PDOS for U= 2 eV and U = 4 eV (Figs. 3.7 and 3.8) show similar trends
with respect to gating that differ from the U = 0 eV case. We focus the discussion on the
results for the U = 2 eV calculations. As for the case of Li, we focus on the ionization of
the Co adatom by gating. Just as for the zero doping case, for doping levels between −2 e
and +2 e, the effect of the U is to shift the 3d levels away from EF . As a result, the effect
of gating is to ionize the Co adatom by occupying or unoccupying the 4s level, which is
localized on Co and hybridizes only weakly with graphene.

The ionization of Co by changing the occupation of the 4s level is analogous to
the ionization of Li by changing the occupation of the 2s level. In Figs. 3.9 and 3.10, we
plot ∆VBH(s, z) and ∆ρBH(s, z) for Co on graphene with U = 2 eV at selected heights
for several doping values. The quantities ∆VBH(s, z) and ∆ρBH(s, z) are defined in Eqs.
3.1-3.4, in the same way as for Li. The bare ionic pseudopotential for Co, V Co

B (s, z), is
also plotted. Note that the Co ion core has charge +9 e, so that even at −2 e doping of
the Co-graphene system, the ionic potential is screened by ∼ 8 electrons localized on the
Co adatom, unlike in the Li case. For Co, we take −2 e as the reference doping level for
ρ0(~r) in the definition of ∆ρ(~r) (Eq. 3.3). Just as in the Li case, VBH for the graphene case
shows a sharp change upon ionization of the Co adatom, and the added charge density that
ionizes Co is localized close to the adatom (within a few Å in the x-y plane). Furthermore,
the change in the charge density near the graphene plane for Co (Figs. 3.10(a) and (b)) is
simlar to the case of Li (Figs. 3.5(a) and (b)).

Interestingly, in the U = 4 eV case, when the doping changes from +1 e to +2 e,
the configuration of the 3d shell changes abruptly. The A1 state becomes unoccupied, while
the E1 state becomes occupied. Apparently, at a large enough doping, increasing the occu-
pation of the 3d shell becomes favorable, but in order to satisfy near-integer occupations of



60

Figure 3.6: PDOS for Co adatom on graphene with U = 0 eV for various dopings: (a) −2 e
(b) −1 e (c) 0 e (d) +1 e (e) +2 e. Projections onto C 2p (solid red), Co 4s (dashed green),
Co 3d A1 (dotted blue), Co 3d E1 (small-dotted magenta), and Co 3d E2 (dash-dotted cyan)
are shown. Arrows indicate majority (up) and minority (down) spin channels. Energies are
relative to the Fermi energy EF .
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Figure 3.7: PDOS for Co adatom on graphene with U = 2 eV for various dopings: (a) −2 e
(b) −1 e (c) 0 e (d) +1 e (e) +2 e. Projections onto C 2p (solid red), Co 4s (dashed green),
Co 3d A1 (dotted blue), Co 3d E1 (small-dotted magenta), and Co 3d E2 (dash-dotted cyan)
are shown. Arrows indicate majority (up) and minority (down) spin channels. Energies are
relative to the Fermi energy EF .
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Figure 3.8: PDOS for Co adatom on graphene with U = 4 eV at various dopings: (a) −2 e
(b) −1 e (c) 0 e (d) +1 e (e) +2 e. Projections onto C 2p (solid red), Co 4s (dashed green),
Co 3d A1 (dotted blue), Co 3d E1 (small-dotted magenta), and Co 3d E2 (dash-dotted cyan)
are shown. Arrows indicate majority (up) and minority (down) spin channels. Energies are
relative to the Fermi energy EF .



63

Figure 3.9: Plots of ∆VBH(s, z) for a Co adatom on graphene with U = 2 eV for several
doping values and at heights z = (a) 0 Å, (b) 0.7 Å, and (c) 2.7 Å above the graphene
plane. The local ionic potential for Co, V Co

B (s, z), is also plotted.
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Figure 3.10: Plots of ∆ρ(s, z) for a Co adatom on graphene with U = 2 eV for several
doping values and at heights z = (a) 0 Å, (b) 0.7 Å, and (c) 2.7 Å above the graphene
plane.
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the orbitals (favored by the LDA+U), the doubly degenerate E1 orbital becomes (approx-
imately) fully occupied, rather than occupying the A1 orbital and partially occupying the
E1 orbital.

To summarize the results for Co on graphene, we find that the choice of the U
parameter has significant effects on the PDOS. For U = 0 eV, the gate voltage can change
the occupation of both 3d and 4s orbitals. For U = 2 or 4 eV, the gate voltage can ionize
the 4s orbital in a manner analogous to the Li adatom case.

3.5 Discussion

In this section, we discuss some implications of this work. In Ref. [17], Co atoms
on a graphene surface with a controllable gate voltage were studied using scanning tunneling
spectroscopy. Our calculations for Co on graphene are in agreement with the experimental
results in several respects. In our calculations of the PDOS, we find resonances near EF

that derive from Co adatom states, and these resonances are localized around the adatom.
Similarly, the experimentally measured differential conductance (dI/dV ) on top of the Co
atom shows resonances near EF . Although experimentally these resonances cannot be
identified unambiguously as coming from Co atomic-like states, their behavior with respect
to a change in gate voltage was measured and is in agreement with the behavior of the
peaks in our calculation. In both cases, the position of the resonances relative to EF can
be shifted by application of the gate voltage. In particular, the peaks can be shifted above
or below EF , changing the occupation of the atomic-like state and the ionization state of
the adatom.

Furthermore, our calculation shows that the change in ionization of the Co adatom
is accompanied by a sharp change in the electrostatic potential at and around the adatom.
This sharp change in the potential is induced whenever the adatom is ionized, whether by
the gate voltage or by the STS tip. The sharp change in the potential upon ionization is
consistent with a large response in the dI/dV signal seen in experiment, both when varying
the tip-sample bias with the STS tip above the adatom, and when varying the tip position
at fixed gate and bias voltages.

In these respects, our calculation is in good qualitative agreement with several
features in experiment. Due to several approximations in our calculation, the agreement
with experiment cannot be considered quantitative, but by treating these approximations
more exactly, the calculations might be brought in better quantitative agreement. In our
calculation, we neglect the SiO2 substrate upon which the graphene sits in experiment. It
is known that graphene on SiO2 has corrugations [170] and “charge puddles” [16] that can
affect the electronic structure of graphene. However, the charge puddles cause fluctuations
in ED of only 30 meV and have spatial width of 20 nm, so on the scale of an atom,
the charge puddles only shift the reference doping level for zero applied gate voltage. The
corrugations could have some effect on the binding site and geometry of the Co adatom on
graphene.

Our calculations also assume that the C and adatom positions remain fixed as
the doping level is changed. In Chapter 2, it was found that adatom adsorption on the H
site induced little distortion in the graphene lattice. Therefore, for the undoped adatom-
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graphene system, a rigid graphene lattice approximation is reasonable. Upon doping, we
might expect the adatom height to change somewhat. This could affect the hybridization
between the adatom and graphene in the case of Co. We do not expect doping to distort
the graphene lattice much because the change in charge density is mostly either delocalized
across the graphene plane or, when localized, centered on the adatom, not on the C atoms.
The exception might be Co for U = 0 eV, in which case some distortion and shifting of
energy levels is possible.

Another approximation is the use of Kohn-Sham eigenvalues for the electronic
spectra. While this approximation often gives reasonable results, the spectra may be mod-
ified by many-body effects. The use of three values for U in our calculations reflects some
uncertainty in the treatment of correlation in the Co-graphene system. Our results show
that the value of U affects the binding height and the character of the Co resonances near
EF in the electronic DOS. Other works in the literature have considered other approxi-
mations to correlation in this system [161–163], and further work on this topic would be
worthwhile.

The effects of the supercell approximation have been considered in Section 3.2.3.
We also note that the experimental results include the effects of the scanning tunneling
microscopy tip, but our calculation does not include such effects.

Despite these approximations, our calculations capture well the experimental ob-
servation of gate-induced ionization, and there is the possibility of further quantitative
improvement of these calculations.

In the case of Li on graphene, we found that the Li adatom can be controllably
ionized by the gate voltage in a manner similar to the Co case. Such ionization may not
be experimentally realizable due to the large energy difference between the Li atomic-like
state and ED. Nevertheless, Li on graphene serves as a model system to understand the
gating of adatoms on graphene theoretically.

The gating of adatoms on graphene opens the possibility of controllably tuning
the chemistry of adatoms or molecules on a graphene surface by the application of a gate
voltage, which would have many exciting possibilites for catalysis, hydrogen storage [171],
and other applications which may yet be discovered. The periodic table offers a wide variety
of atoms for experimental and theoretical study, not to mention molecules. While not all
atoms or molecules will be gateable experimentally, the method described in this work
can be used to search for and predict specific adsorbates for which tuning the electronic
structure by gating is experimentally realizable.

3.6 Conclusion

In conclusion, this chapter presents a method for studying the gating of atoms on
graphene using first principles calculations. A Li adatom on graphene serves as a useful
model for understanding the gating of adatoms on graphene. By calculating the electronic
structure, including the PDOS, potential, and charge density, we demonstrate the ionization
of a Li adatom by doping and a concomitant sharp change in the electrostatic potential.
Calculations for Co on graphene demonstrate an ionization effect, analogous to the Li case,
which is in good agreement with experimental results. We discuss the various approxima-
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tions used in this work, and consider ways to improve upon them. Using this method to
study other adatoms or molecules may yield interesting new results that can be verified in
experiment and may lead to practical applications. In Chapter 4, we present an application
of this method to study the idea of adatom “alchemy.”



68

Chapter 4

Possibility of transforming the

electronic structure of one species

of graphene adatoms into that of

another by application of gate

voltage

As discussed in Chapter 3, graphene provides many advantages for controlling the
electronic structure of adatoms and other adsorbates via gating. In this chapter, using the
projected density of states and charge density obtained from first-principles density func-
tional periodic supercell calculations, we investigate the possibility of performing “alchemy”
of adatoms on graphene, i.e., transforming the electronic structure of one species of adatom
into that of another species by application of a gate voltage. Gating is modeled as a change
in the number of electrons in the unit cell, with the inclusion of a compensating uniform
background charge. Within this model and the generalized gradient approximation to the
exchange-correlation functional, we find that such transformations are possible for K, Ca,
and several transition metal adatoms. Gate control of the occupation of the p states of In
on graphene is also investigated. The validity of the supercell approxmation with uniform
compensating charge and the model for exchange and correlation is also discussed. Work
presented in this chapter has been published in Ref. [172].

4.1 Introduction

Much scientific effort is directed towards finding ways to control the electronic
properties of materials, thereby opening greater possbilities for understanding fundamental
physics and developing practical applications. The application of an electric field via gate
voltage is a widely used method for controlling electronic properties of a variety of materials.
The most well-known example is the field-effect transistor, a fundamental unit of many
modern electronic devices.
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Over the past several decades, it has become possible to fabricate smaller and
smaller systems with electronic properties that can be controlled by a gate voltage. Because
a quantum dot or nanoparticle of size ∼100 nm exhibits quantum confinement effects, its
total charge, and transport through it, can be controlled electron by electron [173]. The
study of quantum dots has led to the observation of fascinating phenomena such as Coulomb
blockade and the Kondo effect [174,175].

Even smaller than such “artificial atoms”, single atoms or small molecules would
be the ultimate limit of systems whose electronic properties could be controlled. Recent
experiments have reported attaining this limit in molecules [176, 177], atoms bonded to
organic ligands [178], or dopant atoms in Si [179,180], by observing Coulomb blockade and
Kondo effects. In such systems, engineering wavefunctions [179] and constructing qubits
[181] are now a possibility.

Recently, the controllable ionization of a Co atom adsorbed on graphene using a
back gate voltage was shown [17]. This experiment demonstrates that gated adsorbates
on graphene have great potential as atomic-scale systems with controllable electronic prop-
erties. Furthermore, recent theoretical studies have suggested that oxygen diffusion on
graphene [182] and fluorine chemical bonding [183] can be controlled with gate voltage. As
discussed in Sec. 3.1 of this thesis, graphene has many beneficial properties for control of the
electronic structure of adsorbates [4]. Its two-dimensional lattice of carbon atoms offers a
clean, structurally robust surface for the adsorption of a wide variety of atoms or molecules.
Its surface is amenable to imaging techniques and applications in surface chemistry, unlike
atoms embedded in bulk materials. Importantly, neutral graphene has a small, linear den-
sity of states (DOS) near the Fermi level (EF ), which enables a large shift of EF when a
gate voltage is applied.

Guided by the idea that a singly-ionized isolated atom is isoelectronic to one of its
neighbors in the Periodic Table, we suggest that it is possible to transform, electronically,
an adatom on graphene into another adatom by gate-controlled ionization. We use the term
“alchemy” to refer to such a transformation. In Chapter 3 of this thesis, we investigated
the ionization of adatoms on graphene using first-principles calculations, finding reasonable
qualitative agreement with essential features of experiment [130]. In this chapter, we use a
similar approach to explore the possiblity of alchemy of adatoms on graphene via gating.
Using plane-wave pseudopotential (PWPP) density functional calculations with the gen-
eralized gradient approximation (GGA) and periodic supercells, we find that alchemy-like
transformations are possible for both s and d valence adatoms, as demonstrated for K, Ca,
Co, Ni and Cu adatoms. In addition, the calculations show that the occupation of localized
p states of an In adatom on graphene can also be controlled by gate voltage. We discuss
some limitations of comparing our model to experimental results, with particular focus on
the approximation for exchange and correlation, supercell size, and electrostatic effects of
periodic supercell calculations.
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4.2 Method

4.2.1 Details of calculation

We perform our calculations using the first-principles PWPP method [27] within
the framework of spin-polarized density-functional theory (DFT) [20, 21], as implemented
in the Quantum-ESPRESSO package [157]. The GGA exchange-correlation functional of
Perdew, Burke, and Ernzerhof is used [26]. Ultrasoft pseudopotentials [41] are employed to
model the ion cores for C, Co, Ni, Cu, and In; norm-conserving pseudopotentials [38] are
employed for K and Ca. 1 The 4s and 4p states for K and Ca, 4d, 5s, and 5p states for
In, and 4s and 3d states for Co, Ni, and Cu are treated as valence states. Nonlinear core
corrections [40] are included for K, Ca, Co, Ni, and In. The plane wave energy cutoff for the
electronic valence states is 30 Ry for the wavefunctions and 240 Ry for the charge density
for K and Ca on graphene, and 40 Ry and 240 Ry, respectively, for Co, Ni, Cu, and In.

For calculations involving transition metals (TM), the LDA+U method [59] is
often applied to treat correlations among d electrons. Our main results, given in Section
4.3.1, are restricted to the plain GGA case (U=0). In Chapter 3, the LDA+U method was
considered for Co on graphene, and it was found that for U=0 eV, a Co 3d state is present
at EF , while for a U of 2 eV or 4 eV, a Co 3s state is at EF . In the present chapter,
we further assess the importance of the approximation for exchange and correlation on the
PDOS for gated Co, Ni, and Cu adatoms on graphene by performing LDA+U calculations
using the implementation of Ref. [55]. We use a U of 4 eV and pseudoatomic orbitals for
the projections. The effects of the additional U are discussed in Section 4.3.3.

The calculational geometry consists of an adatom on graphene in a 6× 6 supercell
[30] with 72 C atoms and 1 adatom. The x and y directions are defined to be parallel to
the graphene plane, while the z direction is perpendicular to the plane. The calculated
lattice constant for graphene is a = 2.463 Å, and the unit cell height perpendicular to the
graphene plane is Lz = 15 Å. The unit cell dimensions are kept fixed for all calculations.
A 3 × 3 × 1 Γ-centered grid is used to sample the Brillouin zone, and a 0.05 eV Gaussian
smearing is used for the electronic occupations.

In all cases, the adatom is placed on the hollow (H) site, above the center of a
hexagon formed by six C atoms. In Chapter 2 and other previous studies using the GGA,
the adatom on the H site was found to have lower energy than on the bridge (B, midpoint
of C-C bond) or top (T , above C atom) sites for all adatoms except for Cu [112,169,184].

As in Chapter 3, we assume that the main effect of applying a gate voltage to
adatoms on graphene is to change the total number of electrons in the system. We therefore
model gating by adding electrons to or removing electrons from the unit cell. A compen-
sating uniform background charge is added to cancel the divergence of the total energy for
charged supercells [95, 185]. The electric field of the applied gate voltage is not included,
but its effects are estimated in Section 4.3.4.

The method used in this work is similar to that of Chapter 3. The main difference
is that in the present chapter, for each doping level, all atomic positions are fully relaxed

1We used the pseudopotentials C.pbe-rrkjus.UPF, Co.pbe-nd-rrkjus.UPF, Ni.pbe-nd-rrkjus.UPF,
Cu.pbe-d-rrkjus.UPF, and In.pbe-d-rrkjus.UPF from http://www.quantum-espresso.org. Pseudopotentials
for K and Ca were generated using the Quantum-ESPRESSO package.
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such that the force on each atom is less than 0.002 Ry/a.u.

4.2.2 Relation of model to experiments

We now discuss the relation of our model to experiments, expanding on several
points made in Sec. 3.2. The experiment of Ref. [17] studied Co adatoms on graphene at
low coverage (∼ 1 Co/2000 C). At such coverages, the doping level required to ionize an
adatom is within the experimentally accessible range for graphene on an SiO2 substrate with
back gate; the doping range for this setup is ∼ ±1013 e/cm2. However, achieving such a low
adatom coverage in supercell calculations would require a prohibitively large supercell for the
graphene in-plane direction. A 6×6 supercell is computationally accessible, but calculations
with such a supercell can be expected to differ in some ways from experimental studies in
the low coverage limit. In the calculation, adatom-adatom interactions are not negligible,
especially for charged cells. In addition, because of the high coverage, a large doping level
of ± 2 e/cell, or ∼ ±1014 e/cm2, is required to occupy/unoccupy adatom levels. Since
there is charge transfer and doping, there are band filling errors in the supercell calculation
as compared to the low coverage limit. Despite these issues, we believe that qualitative
features of our calculation can give insight into experiments conducted at the low adatom
coverage limit.

On the other hand, for experiments involving adatoms on graphene at higher cov-
erages, the adatom-adatom interactions and large doping levels of the supercell calculation
are physically relevant. Such large doping levels are not achievable for current experiments
on graphene on SiO2. However, doping levels as high as 4× 1014 e/cm2 have been achieved
using an electrolytic gate [143]. Therefore, experimental observation of the DOS for the
doping levels considered in this work are within the realm of possibility. However, in mod-
eling large doping levels using supercell calculations with a uniform neutralizing background
charge, electrostatic errors can be significant. Corrections for such errors are not included
in the results of Section 4.3.1, but are estimated in Section 4.3.4. In summary, a quan-
titative comparison of supercell calculations with experiments with low adatom coverage
would likely require very large supercells, but low doping levels. For comparison to exper-
ments at high adatom coverage, supercell sizes and doping levels close to that of the present
calculation are appropriate, but electrostatic corrections are more important than in the
low coverage case. We believe that the present computationally feasible model provides
qualitative results that are relevant to experiment and useful for future theoretical studies
with improved computational methods.

4.3 Results

4.3.1 Adatom alchemy within the GGA

K and Ca adatoms

We begin with the results for s valence adatoms. We find that K and Ca bind with
heights of 2.57 Å and 2.34 Å above the graphene plane, respectively, in agreement with the
results in Chapter 2 (Table 2.1) using slightly different ionic pseudopotentials. The adatom
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height is defined to be the difference in z coordinate of the adatom (za) and the average
z coordinate of the C atoms in graphene (zg). Figure 4.1(a) shows the PDOS for K on
graphene for zero doping. A distinct peak with predominantly K 4s character lies 0.8 eV
above EF and is unoccupied. This state exhibits little hybridization with the graphene p
states, and may thus be considered an atomic-like state localized on the K adatom. The
graphene p PDOS is nearly unmodified below and up to 1 eV above EF . The Dirac point
ED of graphene is clearly seen and lies 0.7 eV below EF . This result is consistent with ionic
bonding with charge transfer of the 4s valence electron of K to the graphene sheet. The
net magnetization of the adatom-graphene system is zero.

Figure 4.1(f) shows the PDOS for Ca on graphene for zero doping. As in the case
of K, there are distinct peaks corresponding to Ca 4s atomic-like states that do not hybridize
with graphene. However, for the Ca adatom, the spin-up and spin-down Ca 4s states are
split by about 1.0 eV, with the spin-up state occupied and spin-down state unoccupied. In
the graphene PDOS, ED lies 0.6 eV below EF ; above EF the graphene states are modified
by hybridization with Ca 3d states. As in the K case, the Ca adatom transfers one electron
to graphene, but it retains its other 4s valence electron.

We now consider the effect of doping on the PDOS of the adatom-graphene system.
Figures 4.1(b) and 4.1(c) show the PDOS for K on graphene with dopings of +1 e and +2
e, respectively (all quoted doping levels are per unit cell). At +1 e doping, the atomic-like
K 4s spin-up state becomes partially occupied, and the up and down states become split
in energy. At +2 e doping, the spin-up state is completely occupied, with a splitting of
0.7 eV between up and down states. The result is the ionization of the K adatom. The
ionization of adatoms on graphene was studied previously in calculations for Li and Co
adatoms in Chapter 3. The PDOS plots in Figs. 4.1(d) and 4.1(e) show that the Ca adatom
can be similarly ionized by removal of electrons. At −1 e doping, the Ca adatom 4s state is
partially unoccupied; at −2 e doping, it is completely unoccupied, with degenerate spin-up
and spin-down states.

The corresponding PDOS plots in the left- and right-hand sides of Fig. 4.1 show
qualitatively similar adatom levels and occupations. The K adatom with +2 e doping
(Fig. 4.1(c)) has a single valence electron in the spin-up state, with the spin-down state
unoccupied, just as in the case of the Ca adatom with 0 e doping (Fig. 4.1(f)). The two
cases differ somewhat in the level splittings and position of peaks relative to the graphene p
states. In addition, the occupied adatom state for K with +2 e doping acquires somewhat
more p character than the corresponding Ca state for 0 e doping. Nevertheless, we can
consider a K adatom doped with electrons to be transformed into a “quasi-Ca” adatom.
Similarly, according to the calculated PDOS, the hole doped Ca adatom is transformed into
“quasi-K” (Figs. 4.1(a) and 4.1(d)).

We also look at similarities in the charge densities for K and Ca adatoms with
corresponding doping levels. Figure 4.2 shows total valence charge density isosurfaces for K
and Ca adatoms at different doping levels. In all cases, the planar isosurface for the charge
density of graphene is clearly visible, while signifcant changes are seen in the charge density
near the adatom as the doping is changed. For undoped K on graphene (Fig. 4.1(a) and
4.2(a)), the localized atomic-like 4s state is unoccupied, and thus there is no valence charge
density on the adatom. However, doping to +2 e occupies the spin-up K adatom state



73

Figure 4.1: PDOS for K and Ca adatoms on graphene. Figures on the left are for K with
doping levels (a) 0 e (b) +1 e (c) +2 e. Figures on the right are for Ca with doping levels
(d) −2 e (e) −1 e (f) 0 e. Projections onto C 2p (solid red) and adatom 4s (dashed green),
4p (dotted blue), and 3d (dash-dotted magenta, Ca only) states are shown. Arrows indicate
majority (up) and minority (down) spin channels. Energies are relative to the Fermi energy
EF .
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Figure 4.2: Isosurfaces of valence charge density for K and Ca adatoms on graphene. Figures
on the left are for K with doping levels (a) 0 e (b) +1 e (c) +2 e. Figures on the right are
for Ca with doping levels (d) −2 e (e) −1 e (f) 0 e. The isovalue is 0.001 e/a.u.3 for each
plot.

(Fig. 4.1(c)), with corresponding increase in charge density on the adatom (Fig. 4.2(c)).
This charge density isosurface plot resembles that of the Ca adatom on graphene for zero
doping (Fig. 4.2(f)); in the latter case, the Ca adatom also has its spin-up atomic-like
state occupied. Similarly, doping Ca on graphene to −2 e unoccupies the spin-up localized
atomic-like state, reducing the charge density on the adatom (Fig. 4.2(d)) and making it
similar to that of K on graphene with zero doping (Fig. 4.2(a)).

Transition metal adatoms

We now consider whether TM adatoms, possessing both d and s valence electrons,
can be transformed electronically into other adatom species via gating. For 0 e doping,
the calculated adsorption heights for Co, Ni, and Cu on the H site are 1.54, 1.55, and
1.94 Å, respectively, in reasonable agreement with previous results [112,169,184]. Although
previous calculations report that Cu adsorption energies for the T or B sites are lower than
for the H site [169,184], for comparison we find it useful to model adsorption on the H site
for all three adatoms.

Figures 4.3(a) and (f) show the PDOS at zero doping for Co and Ni on graphene,
repsectively. In both cases, the 3d states of the adatom strongly hybridize with the graphene
p states, while the adatom 4s states hybridize weakly with graphene. For Co, the 4s states
are unoccupied, while there is approximately one hole in the 3d spin-down shell, and the
system is spin-polarized. For Ni, the 3d shell is completely occupied, the 4s states are
unoccupied, and the system is not spin-polarized.

In order to transform Co into Ni, the ionization of Co would have to fill the 3d shell,
while transforming Ni to Co would require partially unoccupying the 3d shell. According
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Figure 4.3: PDOS for Co and Ni adatoms on graphene. Figures on the left are for Co with
doping levels (a) 0 e (b) +1 e (c) +2 e. Figures on the right are for Ni with doping levels (d)
−2 e (e) −1 e (f) 0 e. Projections onto C 2p (solid red) and adatom 4s (dashed green) and
3d (dash-dotted magenta) states are shown. Arrows indicate majority (up) and minority
(down) spin channels. Energies are relative to the Fermi energy EF .

to our calculations, the former does not occur, but the latter does. For Ni on graphene at
−2 e doping (Fig. 4.3(d)), the occupation of the 3d state is in fact decreased, such that
its electronic structure resembles that of undoped Co. As in the case of K and Ca, the
relative positions of the atomic d and s states and graphene differ between neutral Co on
graphene and doped Ni on graphene, but the ordering and occupations of the s- and d-
derived adatom states are qualitatively similar. On the other hand, the Co 4s states lie
close to EF for the undoped system, so that when electrons are added, the occupations of
both the Co 4s and 3d states are increased. At +2e doping, the Co 4s and 3d states are
partially occupied and lie at EF , which is different from the case of the undoped Ni adatom.

While the transformation of Co to quasi-Ni upon doping does not occur in our
calculations, we find that it is possible to transform Ni to quasi-Cu, and vice versa. Figure
4.4 shows the PDOS for various dopings for Ni and Cu. The 3d states lie far enough below
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Figure 4.4: PDOS for Ni and Cu adatoms on graphene. Figures on the left are for Ni with
doping levels (a) 0 e (b) +1 e (c) +2 e. Figures on the right are for Cu with doping levels (d)
−2 e (e) −1 e (f) 0 e. Projections onto C 2p (solid red) and adatom 4s (dashed green) and
3d (dash-dotted magenta) states are shown. Arrows indicate majority (up) and minority
(down) spin channels. Energies are relative to the Fermi energy EF .

EF that their occupation is unchanged by doping. Instead, the occupation of the 4s spin-
up states is varied by doping. In fact, tranformations between Ni and Cu are analogous to
those between K and Ca, a main difference being that the 3d states are completely occupied
in the TM case and completely unoccupied for the alkali/alkaline case.

In adatom

In addition to changing the occupation of s- and d-like adatom states by gating,
it is also possible to change the occupation of p-like adatom states. For an In adatom
on graphene at zero doping, the In 5p states hybridize with graphene and are somewhat
broadened (Fig. 4.5(a)). The main peak lies 0.4 eV above EF ; these atomic-like states
are spin-degnerate and unoccupied. Upon increasing the doping to +2 e (Fig. 4.5(c)), the
spin-up 5p states become partially occupied, and the up and down states split in energy
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Figure 4.5: PDOS for an In adatom on graphene with doping levels (a) 0 e (b) +1 e (c)
+2 e. Projections onto C 2p (solid red) and adatom 5p (dotted blue) states are shown
(adatom 5s and 4d states lie outside the energy window). Arrows indicate majority (up)
and minority (down) spin channels. Energies are relative to the Fermi energy EF .

in a manner similar to that of the s states of a doped K adatom. However, one should
take note of the large change in In adatom height for +2 e doping, as discussed in Section
4.3.2. Because of this large change in height, the adatom and graphene states are almost
completely decoupled (Fig. 4.5(c)).

4.3.2 Effect of gating on atomic positions

In this section we discuss the effect that gating has on the positions of the graphene
C atoms and the adatom. To quantify the displacement of C atoms from their position in
pristine graphene, we define (as in Sec. 2.3.1) the distortion to be the maximum absolute
difference between any C atom z coordinate and the average z coordinate of all the C atoms
in the graphene. For the undoped case, we find that the distortion is less than 0.01 Å for
all the adatoms considered, consistent with the results of Chapter 2 for adatoms on the H
site of graphene. With doping, the maximum distortion is less than 0.025 Å.

We do find changes in the position of the adatom relative to graphene as a function
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Table 4.1: Heights of adatoms above graphene sheet for different doping levels considered
in this work. The +/− signs in the adatom species headings denote addition/removal
of electrons, with the doping amount indicated by the corresponding column under the
“doping” heading.

Doping (e) Height (Å)
+ − K (+) Ca (−) Co (+) Ni (−) Ni (+) Cu (−) In (+)

0 −2 2.57 2.19 1.54 1.61 1.55 1.82 2.51
+1 −1 2.58 2.27 1.48 1.58 1.57 1.81 2.50
+2 0 2.68 2.34 1.60 1.55 1.63 1.94 3.60

of doping. The adatom heights for the different doping levels considered in this work are
presented in Table 4.1. For most adatoms, the changes in height are about 0.1-0.2 Å; In is
an exception.

An explanation for the trends in adatom height is suggested by the changes in
occupation of adatom electronic levels as seen in the PDOS. For both K and Ca, an increase
in adatom height correlates with an increase in the occupation of the adatom s orbital. A
similar correlation holds for Ni when the doping is increased from 0 to +2 e and for Cu
when the doping of is increased from −2 to 0 e. On the other hand, for Ni, an increase in
adatom height is correlated with a decrease in occupation of adatom d states when going
from 0 to −2 e doping. The case of Co is at first glance unusual, but it also follows the
same trends. When the doping level is increased from 0 to +1 e, the occupation of Co d
states is increased, and the adatom height decreases. Increasing the doping level from +1
to +2 e increases the occupation of the Co s state, and the adatom height increases.

We explain the correlation between adatom heights and occupancies of s or d states
as follows. Adatom s states do not hybridize strongly with the C p states of graphene. When
the occupation of the adatom s state is increased, the radius of the electronic cloud of the
adatom is increased, pushing the adatom away from the graphene. On the other hand,
adatom d states do hybridize strongly with C p states, forming covalent bonds. Increasing
the occupation of adatom d states strengthens the bond between the adatom and graphene
and decreases the adatom height.

For In, the adatom height is increased by more than 1 Å when the doping is
increased from +1 to +2 e. This result indicates that the binding of In is signifcantly
weakened by this increase in doping. For In on graphene with zero doping, the binding
has large ionic character, as indicated by the charge transfer from In to graphene, which
leaves the In adatom positively charged. When the doping is increased to +2 e, In p states
become filled, and the In adatom is no longer positively charged but rather close to neutral.
Therefore the ionic bonding is significantly weakened.

A similar effect may happen for K. From 0 to +2 e doping, the K height is only
increased by 0.11 Å, but for larger dopings the adatom height could increase and the binding
could weaken even more. A more complete analysis of possible desorption of adatoms due
to gating would be interesting but would need to take into account electrostatic errors
in the potential and total energy for the supercell calculation with uniform neutralizing
background.

We remark on the importance of relaxation of the atomic coordinates in the PDOS
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for gated adatoms. As a test, we calculate the PDOS for gated adatoms on graphene in
which the C atoms are fixed to their positions in ideal, flat, two-dimensional graphene and
the adatom height fixed to the optimized height for the undoped system, as in Chapter
3. We then compare these calculations to the calculations presented in Section 4.3.1 for
fully relaxed structures. Little qualitative difference is seen in most cases; the few noticeable
differences can be explained by the change in adatom height. For example, in the calculation
for the In adatom at +2 e doping with adatom height fixed to the optimized height for zero
doping, there is adatom-graphene hybridization, but in the fully relaxed calculation, the
hybridization is greatly reduced due to the increased adatom height. For all adatoms, the
effect of the C lattice distortion on the PDOS is small, which is reasonable given the small
amount of distortion. We conclude that the main effect of the atomic relaxation is the
change in adatom height. It is noted that the C lattice distortion may be more important
for adatoms bound to the B or T sites.

4.3.3 Effect of Hubbard U

In this section, the effect of correlation in the 3d shell of TM adatoms, as modeled
by the LDA+U method, is discussed. For Co on graphene, we find that for U=4 eV and
a doping of 0 e, the T site is favored over the H site when all atoms are fully relaxed, in
agreement with previous studies [162]. Furthermore, in Chapter 3, it was shown that for Co
on the H site and U=2 or 4 eV, the DOS is changed qualitatively; a 4s rather than a 3d Co
adatom state lies at EF . Doping changes the occupation of the 4s state, in contrast to the
U=0 eV case, for which the doping changes the 3d occupations. Since the results depend
on the value of U , some doubt is cast on the U=0 eV result that Ni can be transformed
into quasi-Co. It would be useful but beyond the scope of this study to determine whether
a U of several eV or close to 0 eV is more appropriate to describe Co on graphene.

For Ni and Cu on graphene, we performed calculations for a doping of 0 e and
U=4 eV. In both cases, the favored adsorption site was unchanged from the U=0 eV case
(H for Ni and B for Cu). Furthermore, the DOS was qualitatively unchanged; the adatom
3d shell is completely filled (closed), and the 4s state is above (for Ni) or at (for Cu) EF .
We therefore expect that the results for doping of Ni or Cu on graphene will not be affected
signifcantly by a U parameter that lies within this range.

4.3.4 Estimate of electrostatic errors in supercell calculations with uni-

form background charge

The use of periodic supercells to model charged systems can lead to unphysical
effects that should be accounted for in calculations. In this section, we describe our method
of estimating these effects and discuss the implication of these effects on our results for the
PDOS and atomic positions.

Method of estimation

An infinite lattice of periodically repeated charged supercells has a divergent total
energy per unit cell. To get a finite total energy, a compensating charge must be added to the
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cell to make it neutral. For the calculations in this chapter, a uniform compensating charge
is employed [95,185]. Such an approach is commonly used as it is automatically implemented
in many plane-wave pseudopotential approaches [27]. However, the compensating charge
is unphysical and can affect the electrostatic potential and total energy. Furthermore, the
unphysical interaction between neutral periodic supercell images can also be significant.

In this section, we determine a correction to the electrostatic potential and use
this correction to estimate the effects on our results for the PDOS and atomic positions.
We build upon the approach of Ref. [186] for charged slabs and additionally include dipole
corrections.

As in Ref. [186], let ρ denote the charge density of the slab (in the present case, a
graphene plane with adatoms) and ρ̃ denote the slab plus background charge density ρb:

ρ̃(~r) = ρ(~r) + ρb(~r), (4.1)

where in the present case ρb(~r) = −〈ρ(~r)〉 is uniform (the angled brackets denote the average
over the unit cell). Similarly, let V denote the electrostatic potential of the slab, Ṽ denote
the electrostatic potential of the slab plus background charge density in periodic boundary
conditions, and Vb denote the potential of the background charge:

Ṽ (~r) = V (~r) + Vb(~r). (4.2)

In analogy with the method of Ref. [187], let us define the corrective potential as

Vcorr(~r) = V (~r)− Ṽ (~r), (4.3)

so that Vcorr(~r) = −Vb(~r). Then Poisson’s equation for the corrective potential is

∇2Vcorr(~r) = 4πρb(~r). (4.4)

We obtain the corrective potential by solving this equation with appropriate boundary
conditions.

The potential Ṽ and charge density ρ̃ are solved for self-consistently using standard
PWPP DFT methods. The corrective potential Vcorr is added a posteriori to Ṽ to get the
potential V of the slab in vacuum without any background charge. Therefore, the charge
density ρ̃ and potential V are not consistent with each other. Some change in the charge
density is expected if it is solved for self-consistently in the corrected potential V ; the effects
of this change in charge density on the PDOS and forces are expected to be small and are
neglected.

In order to solve Poisson’s equation for the corrective potential, we make a planar-
average approximation [188] in which we assume that the corrective potential is uniform
in the x-y plane and only varies in the z direction perpendicular to the graphene plane.
Under this approximation, Poisson’s equation is one-dimensional and can be solved if the
boundary conditions are specified.

For a charged system with two-dimensional periodicity, such as a charged slab,
the boundary conditions require some consideration. The potential of a uniformly charged
infinite 2D plane relative to a point infinitely far away from it is infinite, so the zero of the
potential energy cannot be defined as the vacuum level, as is often done for zero-dimensional
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charged systems. This issue can be dealt with by specifying a reference electrode [186], a
plane at a specified distance from the slab whose potential is defined to be zero. This
distance should be large enough to ensure that the plane lies in a region of vacuum where
the potential as a function of z is linear.

In addition to choosing the position of the reference electrode, the slope of the
potential at the reference electrode must also be specified. In the present work, we consider
two possible boundary conditions. Boundary condition 1 (BC1) is specified such that the
electric fields far in the vacuum region on either side of the slab are equal in magnitude but
opposite in sign. Such a boundary condition could be obtained in experiment with both
back and top gates and appropriately tuned potential differences. For boundary condition 2
(BC2), the electric field is zero far in the vacuum region on the adatom side of the slab. The
BC2 is relevant for experiments with a single back gate. The back gate electrode contains
an equal and opposite sign charge per unit area as the charged slab. For BC2, as for a
parallel plate capacitor, a finite electric field exists in the region between the back gate
electrode and the charged slab, and zero electric field exists in the vacuum region on the
side of the slab facing away from the back gate.

With the boundary conditions specified, we solve for the corrective potential Vcorr.
Following Ref. [186], let q denote the net charge of the unit cell (q > 0 for excess electrons),
A0 the unit cell area in the graphene plane, z0 a chosen origin, Λ the distance between the
reference electrode and the origin (Λ > 0), Lz the length of the unit cell in the z direction,
and p the dipole moment per unit cell in the z direction:

p =

∫

cell

ρ(~r)zd~r. (4.5)

For an origin chosen such that the dipole moment is zero, the corrective potential for BC1
was given in Ref. [186]. We use Vmon to denote this “monopole” potential:

Vmon(z) =
2πq

A0

[
(z − z0)

2 − LzΛ + (Lz/2)
2

Lz

]
. (4.6)

If the dipole moment is not zero, we add to Vmon a dipole potential [96, 158]:

Vdip(z) = −
4πp

A0

z − z0
Lz

, (4.7)

so the corrective potential is given by

Vcorr = Vmon + Vdip. (4.8)

The origin should be chosen such that z0 ± Lz lies in the vacuum region, but aside from
this criterion the precise choice does not affect the corrective potential. For any shift in
the origin, the change in Vmon will be compensated for, aside from an overall constant, by
a change in Vdip via a change in p. The overall constant is not important for the estimates
given in the present work, but would be important if one needed to determine total energy
differences for charged slabs. Likewise, the choice of reference electrode position is not
particularly important in this work, so long as it lies in the vacuum region where the
potential is linear.
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Figure 4.6: Planar-averaged uncorrected electrostatic potential (solid red) and corrected
potentials for boundary condition 1 (dashed green) and boundary condition 2 (dash-dotted
blue) for K on graphene with doping level of +2 e/cell. The vertical dashed and dotted
black lines denote the graphene and adatom z positions, respectively.

The potential for BC2 can be obtained from the potential for BC1 by adding a
linear potential, equivalent to adding a constant electric field perpendicular to the graphene
plane:

Vcorr = Vmon + Vdip + Vefield, (4.9)

with

Vefield =
2πq

A0
(z − z0). (4.10)

As an example, the planar-averaged uncorrected electrostatic potential and cor-
rected potentials for BC1 and BC2 for K on graphene with a doping level of q = +2e are
plotted in Fig. 4.6. The origin is chosen to be at 7.5 Å, near the position of the graphene
plane. The reference electrode is chosen to be at 0 Å, so that Λ = 7.5 Å. For the 6 × 6
unit cell, A0 = 189.09 Å2, and Lz = 15 Å. The dipole moment is calculated to be p = 3.45
eÅ. As expected, the potential becomes linear at the edges of the unit cell for the corrected
potentials; for BC1, the magnitudes of the slopes on either side of the graphene plane are
equal, while for BC2, the slope is zero on the adatom side of the graphene plane.

After computing the corrective potential Vcorr, we can estimate the effect of this
potential on the PDOS and atomic positions. For the PDOS, we might expect the potential
to shift the positions of the adatom states relative to the graphene states. For a rough
estimate of this shift, we assume that the graphene states lie at the position of the graphene
plane zg, while the adatom states lie at the position of the adatom za. In reality these
states have some z distribution, but our simple assumption gives a reasonable estimate.
The estimate for the relative energy shift is given by ∆ǫ = Vcorr(za)− Vcorr(zg).
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For the atomic positions, we estimate the force on the adatom, F a
corr, and the

graphene plane, F g
corr, due to Vcorr. We have

F a
corr = −Qa

d

dz
Vcorr(z)|z=za , (4.11)

and similarly for F g
corr. To estimate the net charge Qa of the adatom we take the difference

of the Löwdin electron charge [189] and the ion core charge. The same is done for the C
atoms and then averaged over all the atoms in graphene to get the net charge Qg. The
force on the graphene plane turns out to be small in comparison to the force on the adatom,
so F g

corr can be neglected in our estimates. The force can be translated into a change in
the adatom height above the graphene sheet by assuming a harmonic potential of a given
curvature between the adatom and graphene. We neglect the additional change in PDOS
that this change in adatom position would cause.

Estimation results

For BC1, we find that |∆ǫ| < 0.1 eV for most adatoms and doping levels. One
exception is K, for which ∆ǫ ∼ −0.3 eV. Also, in the case of In, ∆ǫ ∼ −0.5 eV for q = +2e;
the large shift is related to the large adatom height of 3.60 Å. Although these shifts in the
PDOS might change the precise values of the doping levels at which states are occupied
or unoccupied, they do not appear large enough to change qualitatively our main results
concerning adatom alchemy.

As for the forces under BC1, in all cases, |F a
corr| < 0.2 eV/Å. As a rough estimate,

assuming an out-of-plane adatom vibration mode energy of ∼ 10 meV (Ref. [17]) and using
an atomic mass of ∼ 40 (for K), a force of 0.2 eV/Å gives a displacement of ∼ 0.2 Å.

From these estimates, we can conclude that our model consisting of a charged
adatom on graphene in a periodic supercell with neutralizing background gives qualitatively
reasonable results for the physical system with BC1. Electrostatic corrections at least to
dipole order should be included to get quantitative results to ∼ 0.1 Å precision in adatom
position and ∼ 0.1 eV precision in the PDOS.

The applied electric field which provides the difference in potential between BC1
and BC2 is close to 1 eV/Å for a doping level of ± 2 e. Such a large electric field leads to
estimates of |∆ǫ| ∼ 1 eV for DOS energy shifts and |F a

corr| ∼ 1 eV/Å for force corrections.
Therefore, the model used in the present calculations is not adequate for a system with
BC2 at these doping levels; explicit inclusion of the electric field is important and has a
signifcantly larger effect than the inclusion of potentials Vmon and Vdip.

Despite this difference, our results still have relevance for experiments for gated
adatoms on graphene in which both the adatom coverage and the doping level are signif-
icantly reduced (by an order of magnitude). In such cases, the electric field due to the
back gate is reduced in proportion to the doping level, and the corrections are smaller.
As noted in Section 4.2.2, the different adatom coverage between our calculation and such
experiments should be taken into account when comparing the two.

We mention several references that have addressed aspects of charged supercell
calculations relevant to the present work. A monopole and dipole potential correction
similar to the one given here and implemented self-consistently is described in Ref. [159].
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A more general scheme to compute the full corrective potential for a charged system in
uniform neutralizing background is given in Ref. [187]. A Green’s function approach for
charged slabs that can include an “effective screening medium” is detailed in Ref. [190].
A somewhat different approach to dealing with charged supercells is to explicitly model
a countercharge of computationally advantageous shape [191–193]. Several studies have
applied this approach to charged slab geometries [194–201].

4.4 Conclusion

The controlled “alchemy” of adatoms, as explored in this work, could have signif-
icant applications. Many chemical reactions rely on TM catalysts, which may be difficult
to control. One could imagine transforming, via gating, adatoms which are easier to deal
with experimentally but less useful chemically into other adatoms that can catalyze impor-
tant reactions. We have investigated this tranformation for certain adatoms, but it may be
possible for other species as well; this possibility warrants future study. Graphene coated
with Ca or TM adatoms is also a possible material for hydrogen storage [202]. Gating such
adatom-graphene materials might allow for controlled adsorption/desorption of hydrogen.

In summary, the gate-controlled alchemy of adatoms on graphene is explored us-
ing first-principles density-functional supercell calculations with the GGA. Transformations
between K and Ca, between Ni and Cu, and of Ni to Co are demonstrated. The gating of In
adatoms is also studied. Changes in adatom height with gating are explained by comparison
with the PDOS. The inclusion of a Hubbard U to model correlation in 3d states of adatoms
can have a significant effect on the results. Also, electrostatic corrections to the supercell
approximation with uniform background charge are important for obtaining quantitative
results for large amounts of doping. We therefore caution against interpreting our results
as definitive predictions of adatom alchemy. Nevertheless, we hope that this work will stim-
ulate further theoretical and experimental study of the phenomenon of adatom alchemy on
graphene via application of gate voltage.
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Chapter 5

Ab initio calculations of phonon

splitting in antiferromagnetic

ZnCr2O4

The full zone-center optical phonon spectrum and the exchange coupling constant
J of the uniform collinear antiferromagnetic (AFM) ordered phase of ZnCr2O4 are calcu-
lated within density-functional theory using the local spin density approximation (LSDA),
the LSDA plus Hubbard U (LSDA+U), and the spin-polarized generalized gradient approx-
imation (σ-GGA). The AFM ordering is found to induce splittings in the infrared active
phonon modes, confirming the importance of spin-phonon coupling in ZnCr2O4. The σ-
GGA and the LSDA+U give magnitudes of phonon frequencies close to experiment, while
the LSDA frequencies are slightly softer. However, only the LSDA+U exchange constant
and phonon splittings are consistent with experiment and previous calculations. A corre-
spondence between the exchange constant and the splittings for the infrared active phonon
modes is found. The work presented in this chapter has been published in Ref. [203].

5.1 Introduction

Spin-lattice coupling has implications for phase transitions and phonon spectra
for a wide variety of correlated electron materials, including magnetic insulators [204] and
metals [205], frustrated magnetic systems [206], and multiferroics [207]. Zinc chromite
(ZnCr2O4) provides an experimentally realizable correlated electron system for studying
this coupling. It forms a normal cubic spinel crystal structure [208] in which the Cr3+ ions
form a sublattice of vertex sharing tetrahedra, the pyrochlore lattice.

The cubic crystal field splits the d orbitals of Cr3+ into three occupied t2g orbitals
and two unoccupied eg orbitals. The three electrons occupying the t2g orbitals have parallel
spins, giving the Cr3+ ions a total spin of S = 3/2. Between neighboring Cr3+ ions, both
antiferromagnetic (AFM) direct exchange, from the overlap of the t2g orbitals which are
directed towards the nearest neigbors, and ferromagnetic (FM) superexchange, via Cr-O-
Cr bonds, are present [209, 210]. The overlap of orbitals of nearest neighbor Cr3+ ions is
such that direct exchange is much stronger than superexchange, and the overall interaction
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is antiferromagnetic. Further neighbor interactions between Cr3+ ions are much smaller
and can be neglected. Hence we can model the magnetic interactions using a Heisenberg
hamiltonian,

H = J
∑

i,j

~Si · ~Sj , (5.1)

where J is the exchange coupling constant, and the sum is over all nearest neighbor pairs.
From paramagnetic susceptibility measurements, the Curie-Weiss temperature ΘCW =
−390 K, which gives J = 4.5 meV [211]. Thus ZnCr2O4 is a physical example of a py-
rochlore antiferromagnet.

The ideal pyrochlore AFM is a well known frustrated system, with the classi-
cal Heisenberg system failing to order down to zero temperature [212]. Indeed, ZnCr2O4

achieves AFM order only at a Néel temperature TN = 12.5 K; such a low TN relative to
|ΘCW | is a signature of frustration. Inelastic magnetic neutron scattering experiments have
shown that spin-lattice coupling can play a crucial role in the relief of frustration and a
transition to an AFM ground state with a Jahn-Teller like distortion of the lattice [211].

Furthermore, the recent observation of a phonon splitting below TN in an infrared
(IR) active zone-center phonon mode has been attributed to spin-phonon coupling [213].
Phonon frequencies have been calculated for many materials using total energy approaches
and density functional theory (DFT) with great success [28]. Within DFT, the local (Spin)
density approximation [L(S)DA] has been widely used. In ZnCr2O4, the presence of d
electrons localized on the magnetic Cr3+ ions suggest that electron correlation effects are
important in this material. By the addition of a Hubbard-like U term to the LSDA, the
LSDA+U method [59] attempts to capture effects of correlation. However, it is not im-
mediately clear how important electron correlation is in determining the properties of zinc
chromite, and in particular the phonon frequencies and the magnetic-induced phonon split-
ting. A recent first principles LSDA+U calculation used a value of U = 3.0 eV [214], which
is relatively small compared to other correlated electron systems [54]. Additionally, in CrO2,
Toropova et al [215]. found that the LSDA accounts for experimental data better than the
LSDA+U . We explore these approaches, and we also consider the (spin-polarized) Gener-
alized Gradient Approximation [(σ-)GGA], which has been shown to give better agreement
with experiment than the L(S)DA for some systems [216,217].

In this chapter we present results of LSDA, LSDA+U , and σ-GGA calculations
of zone-center phonon frequencies for the uniform (zero-wavevector) ordered collinear AFM
phase of ZnCr2O4. Our LSDA+U results are in agreement with the previous ab initio

calculation [214]. Calculations of the exchange constant J and insulating band gap provide
additional insight into the origin of the phonon splitting of ZnCr2O4. We find that phonon
frequency magnitudes can be described reasonably well using the σ-GGA and are slightly
softer for the LSDA. However, only with the LSDA+U method are the exchange constant
and phonon splittings in agreement with experiment.

5.2 Computational Details

Our LSDA [23, 24], σ-GGA [26], and LSDA+U [60] calculations are performed
using the plane-wave pseudopotential method, as implemented in the Parallel Total Energy
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Figure 5.1: Collinear AFM order for a Cr3+ tetrahedron in ZnCr2O4. The full unit cell is
not shown. Arrows indicate spins.

Code (PARATEC) [218,219], with Troullier-Martins norm-conserving pseudopotentials [38]
and a plane-wave cutoff of 250 Ry. For the Brillouin zone sampling, a 3× 3× 3 Monkhorst-
Pack k-point grid [220] with an offset of 0.5× 0.5× 0.5 is used. For the Cr3+ d electrons in
LSDA+U , U = 3.0 eV and j = 0.60 eV are used for the Coulomb and exchange parameters,
respectively. The same value of U was used in previous LSDA+U calculations for ZnCr2O4

(Ref. [214]) and CrO2 (Refs. [215, 221]) and reproduced features in photoemission data in
other Cr3+ spinels [222].

5.2.1 Structure

The cubic spinel structure is characterized by two parameters: the lattice constant
a and the anion parameter u, which governs oxygen ion positions within the Zn-Cr lattice.
For the calculation of the exchange constant J , we use the experimental paramagnetic (PM)
cubic structure a = 8.327 Å and u = 0.386 [223].

The bandstructure and phonon calculations are performed for uniform AFM order-
ing with collinear spins (Fig. 5.1). We fully relax the forces on the atoms but keep the PM
lattice constant. The Zn2+ and Cr3+ ions remain in their ideal positions in cubic spinel,
while the relaxed oxygen ions reduce the structural symmetry from cubic to tetragonal,
consistent with the AFM ordering. Note that experimentally the tetragonal distortion is of
the whole lattice, not just the oxygen atoms. Our relaxed oxygen coordinates deviate only
a small amount from cubic symmetry and are close to the coordinates of the experimental
PM phase and previous calculations.

5.2.2 Phonons

We calculate the full set of 39 optical and 3 acoustic zone-center phonons by diag-
onalizing a 42× 42 dynamical matrix, which is obtained using the frozen phonon approach.
From group theory, the zone-center phonons of cubic ZnCr2O4 (point group Oh) transform
according to the following irreducible representations (irreps) [224]:

Γ = A1g + Eg + T1g + 3T2g + 2A2u + 2Eu + 4T1u + 2T2u.
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In a symmetry coordinate basis, the dynamical matrix can be put into block diagonal form.
For each irrep, the number of degenerate irreducible subblocks equals the dimension of the
irrep, and these subblocks do not mix. We use the symmetry coordinates and notation
given in Ref. [224].

When collinear AFM ordering is introduced, the symmetry of the system is reduced
to tetragonal (point group D4h), and each triply degenerate T mode splits into a doublet
and a singlet, while each doubly degenerate E mode also splits. The mixing of subblocks
belonging to different irreps of cubic ZnCr2O4 symmetry is small and can be neglected, as
explained in the following.

Although the system has tetragonal symmetry, the frequencies we obtain by di-
agonalizing the full dynamical matrix show all degeneracies split, due to the use of finite
displacements in the frozen phonon approach for calculating forces. A second set of fre-
quencies is obtained by diagonalizing only within the irreducible subblocks according to the
cubic irreps, setting to zero any off-block-diagonal elements that give mixing between irreps.
The resulting frequencies give the expected twofold degeneracies in the T phonon modes.
Compared with diagonalization of the full dynamical matrix, the subblock diagonalization
changes the frequencies by only a small amount. The results presented in this work are
those obtained from the subblock diagonalization.

5.3 Results

5.3.1 Ground State Properties

Each of the LSDA, LSDA+U , and σ-GGA methods gives an insulating ground
state. The bands near the band gap are predominantly of Cr d orbital character. The
band gaps are of the same order; however, the gap increases from the LSDA (1.0 eV), to
the σ-GGA (1.5 eV), to the LSDA+U (2.2 eV). The LSDA+U gap is larger than that of
the LSDA, as expected [54], since the Hubbard U term pushes occupied and unoccupied d
bands farther apart in energy.

We also calculate the exchange constant J . Let E0 be the total energy per unit
cell excluding the magnetic contribution; the unit cell contains four Cr3+ ions (two formula
units), and each Cr3+ ion has six nearest neighbors. From the Heisenberg hamiltonian, the
total energy per unit cell of the collinear AFM phase is EAFM = E0−4JS2, and that of the
collinear uniform FM phase for the same structure is EFM = E0+12JS2. The difference in
energy is 16JS2, from which we calculate J . The values are listed in Table 5.1. Only the
LSDA+U result compares well with the previous first principles LSDA+U calculation (4.2
meV, Ref. [214]) and experiment (4.5 meV, Ref. [211]), while the LSDA and σ-GGA results
are not in agreement. The exchange constant J is somewhat sensitive to the U parameter,
and the agreement of our calculation of J with experiment helps to justify the choice of U .

5.3.2 Phonons

The experimentally accessible modes are the five Raman active modes, A1g, Eg,
and 3T2g, and the four IR active modes, 4T1u. Our calculated Raman and IR phonon
frequencies are listed in Tables 5.2 and 5.3, along with previous LSDA+U results. Also
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Table 5.1: Calculated and experimental exchange constant J and spin-phonon coupling
constant λ3 of the T1u(3) mode.

J (meV) λ3 (cm−1)

LSDA 9.1 20
σ-GGA 7.1 15
LSDA+U 4.3 12

Experiment (Ref. [213]) 4.5 6-10

given are experimental results for Raman modes in the paramagnetic phase [224], and IR
modes both above and below TN [213]. The remaining optical modes are given in Table
5.4. Under the reduction to tetragonal symmetry induced by the collinear AFM ordering,
let the ẑ direction be the tetragonal axis. The T modes split into a doublet and a singlet;
the doublet modes transform as vectors perpendicular to the tetragonal axis, which we may
take as x̂ and ŷ, while the singlet transforms as the vector ẑ. In our notation, the doublet is
labeled by x̂, and the singlet by ẑ. The split E modes are labeled by a and b. The splitting
for any mode is labeled by ∆. The splittings are not directly comparable to experiment,
since our calculations are done for the uniform collinear AFM phase, while the experimental
sample in the AFM phase shows nonuniform ordering.

We now compare the magnitudes of the calculated phonon frequencies. The LSDA
calculation gives softer phonons than the σ-GGA and LSDA+U calculations by ∼ 5% [the
T1u(4)x̂ mode is an exception]. These relative magnitudes of the LSDA and σ-GGA results
are consistent with previous results for other materials, both non-spin- [217] and spin-
polarized [216,225]. We emphasize that our calculations for all methods use the same value
of the lattice constant. In the case of silicon, harder phonons in the GGA are consistent
with reduced electron screening [226]. The increased band gap for the σ-GGA and the
LSDA+U relative to the LSDA suggests that a similar effect occurs in ZnCr2O4.

Our LSDA+U calculations are consistent with those of Fennie and Rabe [214].
For the most part, our phonon frequencies are slightly softer, as might be expected for our
use of a slightly larger lattice constant (8.33 Å versus 8.26 Å).

The fact that the LSDA frequencies are not far from the LSDA+U frequencies is
perhaps surprising. For example, we compare ZnCr2O4 to the magnetic oxide MnO in the
AFM ordered phase, for which the LSDA gives transverse optical phonon frequencies of 101
and ∼ 0 cm−1 [204], while the LSDA+U gives frequencies close to the experimental values
of 268 and 293 cm−1 [227]. The failure of the LSDA to give reasonable phonons and the
relatively large value of U = 6.9 eV necessary for the LSDA+U calculations to reproduce
the experimental phonon frequencies are evidence for this strong correlation. In ZnCr2O4,
the LSDA reproduces the insulating AFM phase and gives reasonable values for the phonon
frequencies; this result and the smaller value of U = 3.0 eV reflects the reduced importance
of electron correlation in ZnCr2O4, as compared with some other magnetic oxides.

Furthermore, our calculations show that the σ-GGA gives phonon frequencies very
close in magnitude to the LSDA+U frequencies. The phonon and band gap calculations
demonstrate that the σ-GGA, more so than the LSDA, accounts for many of the properties
of ZnCr2O4 without explicit inclusion of a U correlation term in the exchange-correlation
functional.
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Table 5.2: Calculated and experimental frequencies for Raman active modes, in cm−1.

A1g Eg T2g(1) T2g(2) T2g(3)
a b ∆ x̂ ẑ ∆ x̂ ẑ ∆ x̂ ẑ ∆

LSDA 656 429 430 1 566 579 13 489 480 9 187 184 3
σ-GGA 691 441 441 0 602 611 9 510 502 8 192 190 2

LSDA+U (this work) 677 449 453 4 596 601 5 516 512 4 193 191 2
LSDA+U (Ref. [214]) 687 466 608 521 185
Experiment (Ref. [224]) 692 457 610 515 186
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Table 5.3: Calculated and experimental frequencies for IR active T1u modes, in cm−1.

1 2 3 4
x̂ ẑ ∆ x̂ ẑ ∆ x̂ ẑ ∆ x̂ ẑ ∆

LSDA 578 602 24 452 476 24 295 386 91 131 201 70
σ-GGA 617 633 16 469 483 14 333 400 67 158 203 45

LSDA+U (this work) 602 614 12 468 480 12 339 391 52 182 206 24
LSDA+U (Ref. [214]) 620 630 10 510 526 16 342 392 50 174 198 24

Experiment 9 K (Ref. [213]) 619 501 368 379 11 186
Experiment 13 K (Ref. [213]) 619 501 371 186
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Table 5.4: Calculated frequencies for silent modes, in cm−1.

A2u(1) A2u(2) Eu(1) Eu(2) T1g T2u(1) T2u(2)
a b ∆ a b ∆ x̂ ẑ ∆ x̂ ẑ ∆ x̂ ẑ ∆

LSDA 620 374 451 447 4 263 284 21 410 410 0 415 439 24 204 211 7
σ-GGA 660 414 473 469 4 279 296 17 420 422 2 436 456 20 199 203 4

LSDA+U (this work) 640 431 477 476 1 300 309 9 433 433 0 440 453 13 220 225 5
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5.3.3 Phonon Splittings

The inclusion of a U correlation term does make a significant difference in the
phonon splittings. Our calculated splittings for the T1u modes are in close agreement with
the results of Fennie and Rabe [214]. Among the three methods, there is a definite ordering
of the magnitude of the T1u splittings (from largest to smallest): LSDA, σ-GGA, LSDA+U .
The Raman mode splittings are smaller than the IR mode splittings, but appear to follow
a similar ordering.

The spin-phonon coupling is described by the equation [228]

ω = ω0 + λ〈~Si · ~Sj〉, (5.2)

where ω0 is the phonon frequency in absence of spin correlations, λ is a spin-phonon coupling
constant, and the spin correlation is both a thermal average and an average over the crystal,
with appropriate weights for each phonon. (Note: In this section, λ is not the electron-
phonon coupling constant discussed in Chapters 1 and 6.) We analyze the T1u(3) mode,
which has an experimentally measured phonon splitting and a large modulation of the Cr-Cr
distance (see Fig. 1 of Ref. [213]). We extract the coupling constant λ3, using our calculated
splitting and the spin-Peierls order parameter [206], 〈~S1 · ~S2 − ~S2 · ~S4〉 (see Fig. 5.1):

λ3 =
ωz − ωx

〈~S1 · ~S2 − ~S2 · ~S4〉
. (5.3)

For the collinear AFM phase, S1 = S2 = −S4 = 3/2, so 〈~S1 · ~S2 − ~S2 · ~S4〉 = 4.5. The
calculated and experimental λ3 are listed in Table 5.1. The ordering of the LSDA, the σ-
GGA, and the LSDA+U with respect to both the magnitude of J and the coupling constant
is the same.

This ordering can be explained by a direct exchange model of the Cr3+ magnetic
interactions. Because of the large modulation of Cr-Cr distance in the T1u(3) mode, direct
exchange dominates the spin-phonon coupling. For direct exchange,

J(r + δr) = J(r)e−αδr , (5.4)

where δr is the displacement from the equilibrium separation distance r of the Cr3+ ions, and
α is a constant. From a simplified model of a lattice of Cr3+ ions connected by springs [213],
we have

λ3 ∝
d2J(r)

dr2
= α2J(r). (5.5)

While not quantitatively correct, the proportionality of λ3 and J in this model explains
the trend in phonon splittings. As J increases, both λ3 and the magnitude of the phonon
splittings increase. While Cr-Cr modulation is not as strong in other modes as in the T1u(3)
mode, our calculations suggests that direct exchange plays a role in all the IR modes.

We consider the reason for the ordering of J values. The additional U term of
the LSDA+U compared with the LSDA acts as an explicit penalty term for electrons from
neighboring ions overlapping or “hopping” from one ion to another. Thus in the LSDA+U
the direct exchange interaction is less, and therefore the exchange constant J is smaller in
magnitude.
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The σ-GGA also tends to describe the localization of electrons better than the
LSDA, but not as well as the LSDA+U . This reasoning is supported by the result that
the value of the σ-GGA band gap size is in between the LSDA and LSDA+U values. This
result suggests that the d orbital overlap between neighboring Cr3+ ions, and hence the J ,
given by σ-GGA should also be in between that given by the LSDA or the LSDA+U .

For both J and λ3, the LSDA+U results give good agreement with experiment,
while the LSDA and σ-GGA results do not agree as well. Our calculations thus demon-
strate the importance of including correlation in DFT calculations of phonon splittings and
magnetic moments for ZnCr2O4. Using the LSDA+U value of λ3 and the experimentally
measured splitting for the T1u(3) mode, we obtain

〈~S1 · ~S2 − ~S2 · ~S4〉 =
ωz − ωx

λ3
= 0.92 (5.6)

as our value of the spin-Peierls order parameter in real ZnCr2O4.

5.4 Conclusion

We have calculated ground state properties and the full zone-center optical phonon
spectrum for ZnCr2O4 in the collinear AFM phase using the LSDA, σ-GGA, and LSDA+U
methods. All three methods give the proper insulating ground state, with the overall mag-
nitude of phonons close to experiment for the σ-GGA and the LSDA+U and slightly softer
for the LSDA, implying that U is not required to calculate some properties of ZnCr2O4.
This result is in contrast to other AFM insulating oxides, such as MnO. However, an explicit
U term is necessary to get an exchange constant J and spin-phonon coupling parameter
λ in agreement with experiment. The J dependence of the splittings is consistent with a
picture in which direct exchange dominates the magnetic interactions between Cr3+ ions
in ZnCr2O4. We have confirmed previous results that show that magnetic ordering has a
significant effect on the lattice degrees of freedom of ZnCr2O4. We conclude that correla-
tion effects are important in ZnCr2O4. Further application of the LSDA+U and σ-GGA+U
methods to spin-phonon coupling, spinels, and magnetic oxides can give a more complete
picture of electron correlation in these materials.
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Chapter 6

Electron-phonon coupling and

superconductivity in arsenic under

pressure

In the previous chapter, we studied spin-phonon coupling in an insulating mag-
netic material. In this chapter, we study electron-phonon coupling in metallic arsenic.
We perform first-principles calculations of the electronic structure, phonon dispersion, and
electron-phonon coupling in elemental As at various pressures above and below the rhom-
bohedral A7 to simple cubic (sc) structural transition. We find that the electron-phonon
coupling constant λ, and hence the superconducting transition temperature Tc, is largest
near the structural transition and decreases away from it. Changes in λ as a function of
pressure are primarly explained by changes in the density of states at the Fermi level for
pressures below the transition, and by changes in phonon frequency for pressures above
the transition. Although the couplings to the Γ1 optical phonon mode (for A7) and the R
phonon mode (for sc) are large, the contribution of these modes to λ for their respective
structures is modest. Work presented in this chapter has been published in Ref. [229].

6.1 Introduction

For many materials, applying pressure is known to cause structural phase transi-
tions and changes in superconducting transition temperature (Tc) [230]. A striking example
is elemental Li, which undergoes several structural phase transitions with increasing pressure
and reaches a Tc as high as 20 K [13–15]. Crystalline elemental As is known experimentally
to undergo a transition from the rhombohedral A7 structure at ambient pressure to the
simple cubic (sc) structure at around 25-32 GPa as pressure is increased [231, 232]. The
stability of the A7 structure at ambient pressure and the transition to sc with increasing
pressure can be explained by a Peierls distortion mechanism. In such a mechanism, strong
coupling of electrons to the sc R and A7 Γ1 optical phonon modes, Fermi surface nesting,
a Kohn anomaly are all involved [233–237].

In addition, As under pressure is superconducting [238,239], with the most recent
study measuring a peak in Tc around the pressure of the phase transition [18]. In this study,
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this peak in Tc was explained qualitatively by changes in the electronic density of states at
the Fermi level (ǫF ) and the phonon frequencies of the A7 Γ1 optical mode and the sc R
mode.

While these phenomena demonstrate that electron-phonon (e-p) coupling is im-
portant in As, it would be interesting to understand the role of e-p coupling in more detail.
In particular, a precise understanding of the relative importance of changes in the density of
states at ǫF [N(ǫF )], phonon frequency, and e-p matrix elements to changes in Tc would be
useful. In addition, the importance of particular phonon wavevectors in superconductivity
has been demonstrated in Li and other materials [240–242]. Given that the sc R mode has
particular importance in the structural transition in As, its role in superconductivity would
also be interesting to understand. Such physical insight might also be applicable to our
understanding of other materials that undergo changes in structure and Tc with pressure,
such as the other Group V elements.

Detailed studies of e-p coupling are now possible with recent methodological devel-
opments and increasing computational power. In particular, a recently developed method
based on Wannier functions allows the study of e-p coupling on fine grids in the Brillouin
zone (BZ) for electron and phonon states [243,244].

In the present study, we perform first-principles calculations of the electronic struc-
ture, phonon dispersion, and e-p coupling in As as a function of pressure around the A7 to
sc transition. Our results for Tc are in good agreement with experiment. We verify that
the peak in Tc is directly related to the structural transition, and we study the changes as a
function of pressure of the phonons, N(ǫF ), e-p matrix elements, the e-p coupling constant
λ, and Tc. We find that the softening of the A7 optical mode/sc R mode does not have
a large direct effect on Tc. The main importance of this mode is its role in the A7 to sc
structural transition, which leads to a large change in N(ǫF ) and thus a large change in
Tc. Furthermore, we find that the change in Tc above the structural transition pressure is
primarily due to changes in average phonon frequency across all modes.

In Sec. 6.2, we briefly describe the A7 structure and its relation to the sc structure.
The method and computational details for the present study are given in Sec. 6.3. In Sec.
6.4 we present our results, divided into the following subsections: the structure of As as a
function of pressure (Sec. 6.4.1) and the e-p properties of the sc structure (Sec. 6.4.2) and
the A7 structure (Sec. 6.4.3). General trends for e-p coupling as a function of pressure and
a comparison of our results to experiment are presented in Sec. 6.5. In Sec. 6.6 we conclude
this chapter.

6.2 A7 and sc structures in arsenic

The rhombohedral A7 structure contains two atoms per unit cell and can be speci-
fied by three parameters: the lattice constant arhom, the rhombohedral angle α between two
direct lattice vectors, and the internal parameter u, which determines the distance between
the two atoms in the cell. An A7 structure having the same species for its two basis atoms
and with α = 60◦ and u = 0.25 is equivalent to the sc structure.1

1For a more detailed description of the A7 structure, see Ref. [234] or other references cited in this
chapter.
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Elemental As at ambient pressure exists in the A7 structure with experimentally
measured lattice parameters of arhom = 4.1018 Å, α = 54.554◦, and u = 0.2276 (at 4.2
K) [245]. The structure is layered, with each As atom forming strong p-like bonds to each
of its three nearest intralayer neighbors, while interlayer bonding is weaker. The stability
of the A7 structure with respect to sc at ambient pressure can be understood in terms of a
Peierls mechanism. The rhombohedral distortion and the displacement of atoms away from
the sc positions, as indicated by the decreased u parameter, allow the formation of covalent
p-like bonds, open a gap at ǫF , and lower the overall energy of the crystal.

As pressure is increased, the energy gain from the Peierls-like distortion with
respect to the sc structure decreases, and the degree of distortion decreases until the sc
structure becomes stable at the transition pressure. The transition from A7 to sc with
increasing pressure has been observed experimentally [231,232] and has been the subject of
many theoretical studies [18,234–237,246–253].

The displacement of atoms involved in the transition between the A7 and sc struc-
tures corresponds to the A7 Γ1 optical mode. In the sc structure, the wavevector of this
mode is at the R point in the BZ.

6.3 Method and Computational Details

Our general procedure is as follows. We first determine the structural parameters
of As as a function of pressure and the A7 to sc transition pressure by performing variable-
cell relaxation calculations for various target pressures. Then, for selected pressures below
and above the transition, we calculate the electronic structure, phonon modes, and e-p
coupling. These quantities are then used to study the pressure dependence of Tc.

6.3.1 Electron-Phonon Coupling Formalism

We study the e-p coupling within a many-body formalism [66–68], as outlined in
Sec. 1.2.5. The e-p matrix element for the scattering of an electron in band n at wavevector
k to a state in band m with wavevector k+q by a phonon with mode index ν at wavevector
q is given by Eq. 1.71; we repeat it here for convenience:

gνmn(k,q) =

(
~

2Mωqν

)1/2

〈m,k+ q|δqνVSCF |n,k〉. (6.1)

In this expression, |n,k〉 is the bare electronic Bloch state, ωqν is the screened phonon
frequency, M is the ionic mass, and δqνVSCF is the derivative of the self-consistent poten-
tial with respect to a collective ionic displacement corresponding to phonon wavevector q

and mode ν. The quantities entering into Eq. 6.1 are obtained from first-principles band
structure and phonon calculations, as described in Sec. 6.3.2.

The main quantities to be calculated are the phonon linewidth γqν , the phonon-
mode-dependent coupling constant λqν , the Eliashberg spectral function α2F (ω), and the
average e-p coupling constant (or mass enhancement parameter) λ. In the Migdal approxi-
mation [70], the phonon linewidth is given by Eq. 1.77; converting the integral over the BZ
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to a sum, we have

γqν = πωqν

∑

mn

∑

k

wk|g
ν
mn(k,q)|

2δ(ǫm,k+q − ǫF )δ(ǫn,k − ǫF ), (6.2)

where wk is the k-point weight (normalized such that
∑

kwk = 2). The sum over electron
wavevectors k can be performed on a uniform grid over the whole BZ, or over the irreducible
BZ (IBZ), with appropriate weights. The phonon-mode-dependent coupling constant is
given by

λqν =
γqν

πN(ǫF )ω2
qν

. (6.3)

In terms of the phonon linewidths, α2F (ω) is given by Eq. 1.78 [71]. Converting the integral
to a sum, we get

α2F (ω) =
1

2πN(ǫF )

∑

qν

wq

γqν
ωqν

δ(ω − ωqν). (6.4)

The sum over phonon wavevector q is performed either on a uniform grid over whole the
BZ, or over the IBZ, with appropriate weights wq, where

∑
qwq = 1. In Eqs. 6.3 and 6.4,

N(ǫF ) is the density of states at ǫF per unit cell and per spin. As in Eq. 1.79, the coupling
constant λ is given by the integral

λ = 2

∫ ∞

0

α2F (ω)

ω
dω. (6.5)

Other important frequency moments of α2F (ω) are defined as follows:

〈ω2〉 =
2

λ

∫ ∞

0

ωα2F (ω)dω (6.6)

and

ωlog = exp

(
2

λ

∫ ∞

0

log ω
α2F (ω)

ω
dω

)
. (6.7)

Conventional electron-phonon superconductors are well-described by the Eliash-
berg theory of superconductivity [65], which is based on the BCS theory [11]. Within
the isotropic approximation to the Eliashberg theory, we can determine the supercon-
ducting transition temperature Tc using the Allen-Dynes-modified McMillan equation, Eq.
1.90 [72,73]:

Tc =
ωlog

1.2
exp

(
−

1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

)
, (6.8)

where µ∗ is the Coulomb psuedopotential [74].

6.3.2 Computational Details

All of our electronic structure, phonon, and e-p calculations are performed from
first-principles using the Quantum-ESPRESSO (QE) code [157] within the framework of
density-functional theory [20, 21] and with the local-density approximation (LDA) [23, 24].
The As ions are modeled using norm-conserving pseudopotentials [37], while the valence
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electron states (five valence electrons per atom) are calculated using a plane-wave basis
set [27] with an energy cutoff of 50 Ry.

Following previous studies [248, 250–252], we calculate the structure of As as a
function of pressure by performing a variable-cell relaxation at constant pressure until the
components of the forces on the atoms are less than 10−4 Ry/a.u. and the pressure is within
0.05 GPa of the target pressure. For all such relaxations, the starting structure is that of
the experimental A7 structure [245] (see Sec. 6.2).

Close to the transition pressure, the structure is sensitive to the k-point sampling
of the BZ and the smearing used to occupy the electronic states. We found that using a
Methfessel-Paxton (MP) smearing [254] of 0.3 eV and a 40 × 40 × 40 shifted k-grid [220]
allowed us to converge arhom, α, and u to within 0.01 Å, 0.1◦, and 0.001, respectively, for
the pressures we considered. These parameters are comparable to those used in Ref. [252],
in which convergence was studied in detail.

For selected pressures, we calculate the elecronic structure, phonons, and e-p cou-
pling. Convergence of γqν and α2F (ω) (Eqs. 6.2 and 6.4) requires the calculation of e-p
matrix elements on a fine grid for both electrons and phonons. With the electron-phonon-
Wannier method [243, 244], such a calculation can be performed with relatively low com-
putational cost. The e-p matrix elements are computed from first principles on coarse
electron and phonon grids and then interpolated onto arbitrarily fine k- and q-grids by
Wannier-Fourier interpolation. The accuracy of this interpolation is checked by examining
the real space localization of the electronic Wannier states and the phonon perturbation
(related to the range of the interatomic force constants). Maximally localized Wannier
functions [255,256] are obtained with the Wannier90 code [257].

The computational parameters for the e-p calculations are as follows. For pressures
below the structural transition, we use the unit cell of the A7 structure. The self-consistent
charge density is computed using a 20×20×20 shifted k-grid and a 0.3 eV MP smearing for
the occupation of the electronic states. Wannier functions are computed for the lowest eight
bands, including all bands crossing ǫF . For the e-p matrix elements, electronic states are
computed on a uniform 6×6×6 Γ-centered coarse k-grid, while phonons are computed using
a 6 × 6 × 6 Γ-centered coarse q-grid. The matrix elements are interpolated onto uniform
Γ-centered fine k- and q-grids of 80 × 80 × 80 and 14 × 14 × 14, respectively.

For pressures above the structural transition, we use the unit cell for the sc struc-
ture. The density is computed using a 32×32×32 shifted k-grid with a 0.3 eV MP smearing
for the occupations. Wannier functions are computed for the lowest four bands. Grids cen-
tered at Γ of 6×6×6 (coarse) and 100×100×100 (fine) for electrons and 6×6×6 (coarse)
and 16× 16× 16 (fine) for phonons were used.

In Eq. 6.2, the δ-functions are approximated by Gaussian functions of width 0.01
Ry for all pressures.

The phonon calculations are performed using density-functional perturbation the-
ory (DFPT) [47], as implemented in QE. No anharmonic contribution is included. Near the
structural phase transition, the A7 Γ1 optical and sc R phonon modes soften considerably,
and the anharmonic contributions are significant [18,235]. Since the pressures at which we
perform our e-p calculations are not too close to the transition, the harmonic approximation
is satisfactory: Although there is some error in the phonon frequencies for these particular
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modes, it does not effect the main results. Anharmonic effects are discussed further in Sec.
6.4.

6.4 Results

6.4.1 Determination of As structure as a function of pressure

We performed variable-cell relaxation calculations for target pressures at 5 GPa
intervals in the range 0-50 GPa. The A7 lattice parameters, as well as the nearest neighbor
(d1) and next-nearest neighbor (d2) distances between As atom positions, are plotted in
Fig. 6.1. The lattice constants at 0 GPa agree well with previous LDA calculations [234,
236,246–248,252].

The A7 and sc structures are most easily distinguished by comparing d1 and d2
(Fig. 6.1(d)). When d1 6= d2, the crystal is in the A7 structure, while d1 = d2 in the sc
structure. Our calculated transition pressure is between 20 and 25 GPa, consistent with
the most detailed previous theoretical work [252].

A fit of the calculated energy versus volume values from 0 to 50 GPa to a Mur-
naghan equation of state [258] (EOS) gives B0 = 57.2 GPa and B′ = 4.21 for the bulk
modulus and its derivative, respectively, in reasonable agreement with the experimental
values of 55.6 GPa and 4.4 (Ref. [231]) and 58.4 GPa and 3.34 (Ref. [232]). It is known
that, compared to experiment, the LDA tends to underestimate the volume at a given pres-
sure. To convert our calculated pressure to an experimental one, we input the calculated
volume into a Murnaghan EOS with experimental B0 and B

′ and use the resulting pressure.
With this conversion procedure, the theoretical pressures of 20 and 25 GPa correspond to
experimental pressures of 28 and 35 GPa, respectively, using parameters from Ref. [231],
and 25 and 30 GPa, respectively, using parameters from Ref. [232]. The respective experi-
mental transition pressures of 32 and 25 GPa from the two experiments are consistent with
our calculations, although the pressure resolution in our calculation is not very fine, and
the method of relating calculated to experimental pressures is not rigorously justified.

We study the electronic structure, phonons, and e-p coupling at three (theoretical)
pressures (0, 10, and 20 GPa) for which As is in the A7 structure below the transition, and
three pressures (30, 40, and 50 GPa) for which As is in the sc structure above the transition.

6.4.2 As in the sc structure

Before discussing properties of As in the more complicated A7 structure, we present
our results for sc As.

The band structure along high-symmetry directions and the density of states N(ǫ)
for sc As at 30, 40, and 50 GPa are given in Figs. 6.2 and 6.3. (Here we have normalized
N(ǫ) to be per atom, with contributions from both spins summed.) At all pressures, three
bands cross ǫF . The bands broaden but otherwise do not change significantly as pressure is
increased. The most significant change in the electronic structure is the decrease in N(ǫF )
as pressure is increased (Fig. 6.3). This trend is in agreement with the calculations of
Ref. [18], although there are quantitative differences. Values for N(ǫF ) are presented in
Table 6.1.
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Figure 6.1: Lattice parameters (a) arhom, (b) α, and (c) u, and (d) nearest neighbor d1 and
next-nearest neighbor d2 distances for variable-cell relaxation calculations of As in the A7
structure with target pressures between 0 and 50 GPa. The transition pressure from A7 to
sc is found to be between 20 and 25 GPa.
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Figure 6.2: Electronic band structure for sc As at 30, 40, and 50 GPa. Energies are relative
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Figure 6.3: Electronic density of states N(ǫ) for sc As at 30, 40, and 50 GPa. Energies are
relative to ǫF .
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Figure 6.4: Phonon dispersion for sc As at 30, 40, and 50 GPa.

Figure 6.4 shows the phonon dispersions for sc As at 30, 40, and 50 GPa. Overall,
as pressure increases, the phonon frequencies increase, as expected. A significant change
in phonon frequency occurs for wavevectors near the R point in the BZ. Approaching the
transition pressure from above, the R phonon softens significantly. Previous studies have
indicated that Fermi surface nesting plays an important role in this phonon softening [236,
237].

The frequency of the R mode has been computed previously using the frozen
phonon method [18,235]. In comparison to our calculations, the frequencies from Ref. [235]
are softer at corresponding volumes. This discrepancy may be due to differences in k-point
sampling or plane-wave energy cutoff. Our calculated frequencies are lower than those of
Ref. [18] by approximately 50% at 30 GPa and 25% at 50 GPa. This difference indicates the
degree of anharmonicity of the R mode, since anharmonic effects were included in Ref. [18]
but not in the present study.

The e-p coupling parameter λq =
∑

ν λqν is plotted along high-symmetry direc-
tions in the BZ in Fig. 6.5. The coupling at R, reaching values of 35, 9.8, and 6.1 for 30,
40, and 50 GPa, respectively, is much larger than at other points in the BZ. The change in
λq at R with pressure can mainly be attributed to the change in ωqν , as the change in γqν
is small, and the change in N(ǫF ) is modest.

The calculated F (ω) and α2F (ω) for sc As are plotted in Fig. 6.6 (a Gaussian
smearing of width 0.5 meV ≈ 4 cm−1 is used). The shape of α2F (ω) is very similar to
that of F (ω). The main difference is the enhanced weight for higher frequencies for α2F (ω)
compared to F (ω).

The enhanced coupling to higher frequencies can be explained qualitatively as
follows. Higher frequency modes correspond to compression or stretching of bonds, while
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Figure 6.5: Electron-phonon coupling parameter λq for sc As at 30, 40, and 50 GPa. The
values of the peak at R are 35, 9.8, and 6.1 for 30, 40, and 50 GPa, respectively.

lower frequency modes correspond to bond bending. Modes which change bond length
modify the overlap of the half-filled p-like orbitals and thus change the electronic structure
near ǫF , in a manner similar to a Peierls distortion. Such modes therefore couple strongly
to electrons at ǫF . On the other hand, bond-bending modes do not affect the overlap of
p-like orbitals as much, and therefore couple less strongly.

The integrated λ as a function of frequency is also plotted in Fig. 6.6 (bottom) for
the three pressures considered. As α2F (ω) shifts to higher frequencies with higher pressure,
λ decreases.

The calculated ωlog, 〈ω
2〉1/2, λ, and Tc (for two values of µ∗) are given in Table 6.1.

For sc As, as pressure increases, the average phonon frequency increases, N(ǫF ) decreases,
and λ decreases, leading to a decrease in Tc. Similar values for N(ǫF ) and λ were obtained
in a previous study [259], although those calculations were not from first principles.

As pressure is decreased towards the transition from above, the increase in coupling
λq is much greater at points near R than at other regions of the BZ. As noted previously,
this increase in coupling is mainly due to phonon softening. An interesting question is how
much this particular coupling to phonons near R directly contributes to the increase in total
λ. To answer this question, we estimate what the increase in λ from 50 to 30 GPa would be
if there were no special coupling enhancement near R. We calculate λPcut, the coupling at
pressure P due to all q-points at least 0.3(π/acubic) away from R in reciprocal space, where
acubic is the sc lattice constant. We then get a new value λscaled = λ50GPa

(
λ30GPa
cut /λ50GPa

cut

)
,

which is the estimated coupling at 30 GPa without the special coupling enhancement at
R. We find λscaled = 0.46, while λ30GPa = 0.50. Therefore, the extra coupling near R
contributes a 0.04 increase in λ, whereas the overall increase in λ going from 50 to 30 GPa
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Figure 6.6: Phonon density of states F (ω) (top), Eliashberg spectral function α2F (ω) (bot-
tom, solid), and integrated λ (bottom, dashed) for sc As at 30, 40, and 50 GPa.

is 0.14. We conclude that the increase in total λ is not dominated by the R mode; rather,
a broad range of modes contributes to the increase.

The overall trends in e-p parameters as a function of pressure will be dicussed
further in Sec. 6.5.

6.4.3 As in the A7 structure

The calculated band structure (Fig. 6.7) and N(ǫ) (Fig. 6.8) at 0 GPa are in good
agreement with previous theoretical studies [234, 236, 249]. As pressure increases to 20
GPa, the bands broaden and N(ǫF ) increases significantly, as seen in the plot of N(ǫ) (Fig.
6.8). Values for N(ǫF ) are given in Table 6.1. A similar increase in N(ǫF ) was found in
Ref. [18], although there are quantitative differences. Note also how the shape of N(ǫ) for
A7 As approaches that of sc As (Fig. 6.3) as the pressure increases towards the structural
transition pressure.

The phonon dispersions at 0, 10, and 20 GPa are given in Fig. 6.9. An overall
hardening of phonons occurs with increased pressure. However, the optical phonon modes
at Γ soften with increased pressure as the structural transition is approached. As pressure
is increased and the structure moves closer to sc, the splitting between the optical modes at
Γ decreases. These modes become degenerate when the sc structure is reached. The disper-
sion for 0 GPa is consistent with previous experimental [260] and theoretical [237] studies.
Slight differences are likely due to the slightly smaller volume used for the present calcula-
tion. For all pressures considered, the calculated Γ1 optical frequencies are in good agree-
ment with previous frozen phonon calculations [18, 234]. The calculations, which include
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only the harmonic contribution, underestimate the experimental Raman frequencies [232],
with increasing error as the transition pressure is approached, indicating the increasing
anharmonicity of this phonon mode.

Figure 6.10 (top) shows F (ω) for 0, 10, and 20 GPa. Separate contributions
from the acoustic and optical branches are shown, as well as the total. In general, both
branches shift towards higher frequencies with higher pressure; the acoustic branch broadens
in frequency, while the width of the optical branch does not change much. A low frequency
tail, corresponding to the optical modes near Γ, appears in F (ω) for higher pressures.

The total and separate acoustic and optical contributions to α2F (ω) are shown in
Fig. 6.10 (bottom). The higher frequency optical modes have a greater e-p coupling than
the lower frequency acoustic modes, as seen by comparing the spectral weight of F (ω) and
α2F (ω). A similar effect for sc As was noted and explained qualitatively in Sec. 6.4.2.

The integrated λ is also shown in Fig. 6.10 (bottom). The total λ increases sig-
nificantly, from 0.19 to 0.43, when pressure is increased from 0 GPa to 20 GPa. In the
acoustic modes, a significant increase of ∼ 0.1 in the integrated λ occurs when going from 0
to 10 GPa, while a further increase to 20 GPa does does not increase the contribution from
acoustic modes to λ much. The optical mode contribution increases more than the acoustic
mode contribution upon increase of pressure from 10 to 20 GPa.

The coupling of the optical modes at Γ is very large, with λq reaching a value of 20
at 20 GPa. Both an increasing e-p matrix element and phonon softening contribute to this
large value of λq. However, the phase space near Γ is small, as seen in Fig. 6.10 (top right),
where in the range 100–200 cm−1, the optical contribution to F (ω) is small. Therefore,
although the coupling is large for the optical modes at Γ, the contribution of these modes
to the increase in total λ with increasing pressure is quite modest. From the integrated λ
curve, we estimate that the contribution of these modes to the increase in λ from 0 to 20
GPa is about 0.05, while the total increase in λ is 0.24. Furthermore, if anharmonic effects
were included in the calculation, the e-p coupling of the optical modes near Γ would likely
decrease due to an increased phonon frequency, leading to an even smaller contribution to
the increase in total λ. Thus the phonon softening itself is not the main direct cause of the
increase in λ with increasing pressure.

The primary importance of the phonon softening is indirect. Phonon softening
leads to structural changes and changes in electronic structure, the most important of which
is the increase in N(ǫF ). As discussed in Sec. 6.5, the increase in N(ǫF ) is the dominant
cause of increasing λ with pressure in the A7 structure.

The e-p quantities for A7 As are summarized in Table 6.1.

6.5 Discussion

To understand the relative contributions of changes in phonon frequencies, N(ǫF ),
and e-p matrix elements to changes in λ as a function of pressure, we consider the rela-
tion [72]

λ =
N(ǫF )〈g

2〉

M〈ω2〉
, (6.9)
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Table 6.1: Calculated frequency moments, N(ǫF ), electron-phonon coupling parameter λ, and superconducting transition tem-
perature Tc for As at various pressures.

P (GPa) Structure ωlog (K) 〈ω2〉1/2 (K) N(ǫF ) (states/eV atom) λ Tc (K)
µ∗ = 0.10 µ∗ = 0.15

0 A7 158 199 0.073 0.19 0.00 0.00
10 A7 194 232 0.148 0.32 0.19 0.01
20 A7 227 260 0.247 0.43 1.34 0.35
30 sc 253 284 0.290 0.50 2.99 1.19
40 sc 283 317 0.266 0.41 1.36 0.32
50 sc 298 341 0.253 0.35 0.58 0.07
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where 〈g2〉 is the average over the Fermi surface of the e-p matrix element, and M is the
ionic mass. Values for 〈g2〉 are obtained indirectly using Eq. 6.9 from the calculated values
of λ, N(ǫF ), and 〈ω2〉, as given in Table 6.1. (Other general relations between quantities
relevant for superconductivity are presented in Ref. [261].)

To analyze relative changes as a function of pressure, we take the natural logarithm
of the quantities, normalized to the value at 0 GPa, and plot them in Fig. 6.11 for the range
10-50 GPa. From Eq. 6.9, we have

log
λ

λ0
= log

N(ǫF )

N(ǫF )0
+ log

〈g2〉

〈g2〉0
+ log

〈ω2〉0
〈ω2〉

, (6.10)

where the subscript 0 denotes the value at 0 GPa. Positive values of log(x/x0) indicate
an increase in the value of x as compared to the value at 0 GPa, while negative values
indicate a decrease. Note also that for the McMillan-Hopfield parameter η = N(ǫF )〈g

2〉, we
have log(η/η0) = log(N(ǫF )/N(ǫF )0) + log(〈g2〉/〈g2〉0), so that in Fig. 6.11 the sum of the
contributions from N(ǫF ) and 〈g2〉 equals the contribution from η. As discussed in Ref. [72],
η can be considered as an electronic contribution to λ and 〈ω2〉 a phononic contribution.

Figure 6.11 shows the following effects as pressure is increased. The increase in
phonon frequencies acts in the direction of lowering λ. The average matrix elements 〈g2〉
generally increase, but the effect is not as significant as the effects from N(ǫF ) and phonon
frequencies. For A7 As, the dominant cause of the increase in λ is the large increase in
N(ǫF ), which overcomes the increase in 〈ω2〉. For sc As, it is interesting that the decrease
in N(ǫF ) with increasing pressure is compensated by the increase in 〈g2〉, so that η is almost
constant as a function of pressure. Equivalently, λ is almost proportional to 1/〈ω2〉; i.e.,
the dominant effect in the decrease of λ with increasing pressure is the increase in phonon
frequency. The overall trend for λ is to increase with pressure in the A7 structure, and
decrease with pressure in the sc structure.

In Fig. 6.12, we compare our calculations for Tc as a function of pressure to exper-
imental results from Chen et al [18]. The calculated values are shifted to the experimental
pressures, following the procedure described in Sec. 6.4.1. For Calculations 1A and 2A,
we use the EOS parameters from Kikegawa and Iwasaki [231] and Beister et al [232]. ,
respectively. For each set of points, one point (with calculated pressure 30 GPa) lies within
the pressure range for which a finite Tc was experimentally measured by Chen et al. Using
the McMillan equation, we adjust µ∗ to match the calculated Tc to the experimental value
at this pressure. Within each set of points, the same µ∗ is used for the other pressures. We
obtain µ∗ = 0.128 and 0.117 for Calculations 1A and 2A, respectively.

The validity of our results is supported by the fact that these values for µ∗ are
close to the accepted values for other conventional superconductors [72, 73]. In addition,
we find that at pressures below and above the peak in Tc, the calculated Tc is below 1.7 K;
this result is consistent with the experiment. However, we note that a transition from sc
to another structure was observed experimentally at around 48 GPa (Ref. [262]) and is not
accounted for in the present calculation.

We also consider how µ∗ might change with pressure. We expect µ∗ to vary with
N(ǫF ) as the pressure changes; a reasonable relation is given by a modified Bennemann-
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ues, the pressure is determined from the experimental Murnaghan equation of state (EOS)
parameters, using the calculated volume as input. For Calculations 1A (green squares) and
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stant for all pressures, while for Calculations 1B and 2B, µ∗ varies with pressure according
to Eq. 6.11 in the text. The horizontal line at 1.7 K denotes the lower limit of accessible
temperatures in the experiment.
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Garland formula [263–265]:

µ∗ =
CN(ǫF )

1 +N(ǫF )
(6.11)

where C is a constant and N(ǫF ) is given in states/eV atom. The effect on Tc is shown in
Fig. 6.12. Calculations 1B and 2B are the same as 1A and 2A, respectively, except that µ∗

is varied with pressure according to Eq. 6.11, using the calculated N(ǫF ) values (Table 6.1).
For Calculation 1B (2B), we set C = 0.57 (0.52) so that the µ∗ of 0.128 (0.117) matches
Calculation 1A (2A) at the point with a theoretical pressure of 30 GPa. If this variation
in µ∗ with pressure is included, the peak in Tc is somewhat broader than if µ∗ is taken to
be constant, but the results remain consistent with experiment. While the changes with
pressure of µ∗ and λ have opposite effects on Tc, the changes in λ dominate.

6.6 Conclusion

Our first-principles e-p coupling calculations for As at pressures above and below
the A7 to sc transition show that the peak in Tc is indeed related to the structural transition,
as suggested by previous studies. The main factor in the increase in λ and hence Tc with
increasing pressure below the transition is the large increase in N(ǫF ), while the decrease in
λ above the transition is mainly due to the increase in average phonon frequency as pressure
increases. The softening and large e-p coupling of the A7 Γ1 optical and sc R modes as
the transition is approached do not make a large direct contribution to the increase in λ;
nevertheless, they play important roles in the peak in Tc because they drive the structural
transition. The physical mechanisms discussed here have relevance for e-p coupling in other
Group V elements as well [266].
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[30] M. L. Cohen, M. Schlüter, J. R. Chelikowsky, and S. G. Louie, Phys. Rev. B 12, 5575
(1975).

[31] C. Herring, Phys. Rev. 57, 1169 (1940).

[32] J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).

[33] E. Antončik, Journal of Physics and Chemistry of Solids 10, 314 (1959).

[34] M. L. Cohen and V. Heine, in Solid State Physics, edited by F. S. Henry Ehrenreich
and D. Turnbull (Academic Press, 1970), vol. 24, pp. 37 – 248.

[35] J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14, 556 (1976).
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[122] P. Bennich, C. Puglia, P. A. Brühwiler, A. Nilsson, A. J. Maxwell, A. Sandell,
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