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stochasticity, and extinction
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(Received 8 May 2014; accepted 18 August 2014)

To understand the interplay between environmental stochasticity and Allee effects, we analyse persis-
tence, asymptotic extinction, and conditional persistence for stochastic difference equations. Our analysis
reveals that persistence requires that the geometric mean of fitness at low densities is greater than one.
When this geometric mean is less than one, asymptotic extinction occurs with high probability for low
initial population densities. Additionally, if the population only experiences positive density-dependent
feedbacks, conditional persistence occurs provided the geometric mean of fitness at high population
densities is greater than one. However, if the population experiences both positive and negative density-
dependent feedbacks, conditional persistence only occurs if environmental fluctuations are sufficiently
small. We illustrate counter-intuitively that environmental fluctuations can increase the probability of
persistence when populations are initially at low densities, and can cause asymptotic extinction of pop-
ulations experiencing intermediate predation rates despite conditional persistence occurring at higher
predation rates.

Keywords: population dynamics; stochastic difference equations; demographic Allee effect; positive and
negative density dependence; extinction; persistence

1. Introduction

Populations exhibit an Allee effect when at low densities individual fitness increases with density
[2,43]. Common causes of this positive density-dependent feedback include predator-saturation,
cooperative predation, increased availability of mates, and conspecific enhancement of reproduc-
tion [7,8,18,19,29,43]. When an Allee effect is sufficiently strong, it can result in a critical density
below which a population is driven rapidly to extinction through this positive feedback. Conse-
quently, the importance of the Allee effect has been widely recognized for conservation of at risk
populations [4,8,11,42] and management of invasive species [27,31,44]. Population experiencing
environmental stochasticity and a strong Allee effect are widely believed to be especially vul-
nerable to extinction as the fluctuations may drive their densities below the critical threshold
[4,7,8,12]. However, unlike the deterministic case [10,13,14,22,24–26,34,37,48], the mathe-
matical theory for populations simultaneously experiencing an Allee effect and environmental
stochasticity is woefully underdeveloped (see, however, Dennis [12]).
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To better understand the interplay between Allee effects and environmental stochasticity, we
examine stochastic, single species models of the form

Xt+1 = f (Xt, ξt+1)Xt (1)

where Xt ∈ [0, ∞) is the density of the population at time t, f (x, ξ) is the fitness of the population
as a function of its density and the environmental state ξ , and the environmental fluctuations ξt

are given by a sequence of independent and identically distributed (i.i.d.) random variables. Here
we determine when these deterministic and stochastic forces result in unconditional stochastic
persistence (i.e. the population tends to stay away from extinction for all positive initial condi-
tions with probability one), unconditional extinction (i.e. the population tends asymptotically to
extinction with probability one for all initial conditions), and conditional stochastic persistence
(i.e. the population persists with positive probability for some initial conditions and goes extinct
with positive probability for some, possibly the same, initial conditions). Section 2 describes
our standing assumptions. Section 3 examines separately how negative-density dependence and
positive-density dependence interact with environmental stochasticity to determine these differ-
ent outcomes. For models with negative density-dependence (i.e. f (x, ξ) is a decreasing function
of density x), Schreiber [40] proved that generically, these models only can exhibit unconditional
persistence or unconditional extinction. For models with only positive-density dependence (i.e.
f (x, ξ) is an increasing function of density x), we prove that all three dynamics (unconditional
persistence, unconditional extinction, and conditional persistence) are possible and provide suf-
ficient and necessary conditions for these outcomes. Section 4 examines the combined effects
of negative- and positive-density dependence on these stochastic models. We prove that condi-
tional persistence only occurs when the environmental noise is ‘sufficiently’ small. Throughout
all of the sections, we illustrate the main results using models for mate-limitation and predator-
saturation. Section 5 concludes with a discussion of the implications of our results, how these
results relate to prior results, and future challenges.

2. Models, assumptions, and definitions

Throughout this paper, we study stochastic difference equations of the form given by
Equation (1). For these equations, we make two standing assumptions

Uncorrelated environmental fluctuations: {ξt}∞t=0 is a sequence of independent and identically
distributed (i.i.d) random variables taking values in a separable metric space E (such as R

n).

Fitness depends continuously on population and environmental state: the fitness function
f : R+ × E → R+ is continuous on the product of the non-negative half line R+ = [0, ∞)

and the environmental state space E.

The first assumption implies that (Xt)t≥0 is a Markov chain on the population state space
R+. While we suspect our results hold true without this assumption, the method of proof
becomes more difficult and will be considered elsewhere. The second assumption holds for most
population models.

Our analysis examines conditions for asymptotic extinction (i.e. limt→∞ Xt = 0) occurring
with positive probability and persistence (a tendency for populations to stay away from extinc-
tion) with positive probability. Several of our results make use of the empirical measures for the
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Markov chain (Xt)t≥0 given by

�t = 1

t

t−1∑
s=0

δXs

where δx denotes a Dirac measure at the point x i.e. δx(A) = 1 if x ∈ A and 0 otherwise. For
any interval [a, b] of population densities, �t([a, b]) is the fraction of time that the population
spends in this interval until time t. The long-term frequency that (Xt)t≥0 enters the interval [a, b]
is given by limt→∞ �t([a, b]), provided the limit exists. As these empirical measures depend on
the stochastic trajectory, they are random probability measures.

3. Negative- versus positive-density dependence

3.1. Results for negative-density dependence

For models with only the negative density dependence (i.e. fitness f is a decreasing function
of density), Schreiber [40] proved that the dynamics of the model (1) exhibit one of three
possible behaviours: asymptotic extinction with probability one, unbounded population growth
with probability one, or stochastic persistence and boundedness with probability one. Closely
related results have been proven by Chesson [5], Ellner [15], Gyllenberg et al. [21], Fager-
holm and Högnäs [16] and Vellekoop and Högnäs [46]. Prior to stating this result, recall that
log+ x = max{log x, 0}.
Theorem 3.1 Schreiber [40] Assume f (x, ξ) is a positive decreasing function in x for all ξ ∈ E
and E[log+ f (0, ξt)] < ∞. Then

Extinction: if E[log f (0, ξt)] < 0, then limt→∞ Xt = 0 with probability whenever X0 = x ≥ 0,

Unbounded growth: if limx→∞ E[log f (x, ξt)] > 0, then limt→∞ Xt = ∞ with probability
whenever X0 = x > 0, and

Stochastic persistence: if E[log f (0, ξ)] > 0 and limx→∞ E[log f (x, ξt)] < 0, then for all ε >

0 there exists M > 0 such that

lim sup
t→∞

�t

([
1

M
, M

])
≥ 1 − ε almost surely

whenever X0 = x > 0.

In the case of stochastic persistence, Theorem 3.1 implies that the typical trajectory spends
most of its time in a sufficiently large compact interval excluding the extinction state 0.

To illustrate Theorem 3.1, we apply it to stochastic versions of the Ricker and Beverton-Holt
models. For the stochastic Ricker model, the fitness function is f (x, ξ) = exp(r − ax) where
ξ = (r, a). Stochasticity in rt and at may be achieved by allowing rt to be a sequence of i.i.d.
normal random variables or at to be a sequence of i.i.d. log-normal random variables. These
choices satisfy the assumption limx→∞ E[log f (x, ξt)] = −∞. This stochastic Ricker model is
almost surely persistent if E[log f (0, ξt)] = E[rt] > 0. If E[rt] < 0, then asymptotic extinction
occurs with probability one.

For a stochastic version of the Beverton-Holt model, we have f (x, ξ) = a/(1 + bx) with ξ =
(a, b). Stochasticity in at and bt may be achieved by allowing them to be sequences of i.i.d. log-
normal random variables. These choices satisfy the assumption limx→∞ E[log f (x, ξt)] = −∞.
This stochastic Beverton-Holt model is almost surely persistent if E[log f (0, ξt)] = E[log at] >

0. If E[log at] < 0, then asymptotic extinction occurs with probability one.
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3.2. Results for positive-density dependence

In contrast to models with only negative-density dependence, models with only positive-density
dependence exhibit a different trichotomy of dynamical behaviours: asymptotic extinction for all
initial conditions, unbounded population growth for all positive initial conditions, or conditional
persistence in which there is a positive probability of the population going asymptotically extinct
for some initial conditions and a positive probability of unbounded population growth for some,
possibly the same, initial conditions. To characterize this trichotomy, we say {0, ∞} is accessible
from the set B ⊂ (0, ∞) if for any M > 0, there exists γ > 0 such that

P

[{
∃t ≥ 0 : Xt ∈

[
0,

1

M

]
∪ [M , ∞)

}∣∣∣∣X0 = x

]
> γ

for all x ∈ B.

Theorem 3.2 Assume f (x, ξ) is an increasing function of x for all ξ ∈ E. Define f∞(ξ) =
limx→∞ f (x, ξ). Then

Extinction: if E[log f∞(ξt)] < 0, then limt→∞ Xt = 0 with probability one whenever X0 =
x ≥ 0.

Unbounded growth: if E[log f (0, ξt)] > 0, then limt→∞ Xt = ∞ with probability one when-
ever X0 = x > 0.

Conditional persistence: if E[log f (0, ξt)] < 0 and E[log f∞(ξt)] > 0, then for any 0 < δ <

1, there exist m, M > 0 such that

P

[
lim
t→∞ Xt = ∞

∣∣∣X0 = x
]

≥ 1 − δ and P

[
lim
t→∞ Xt = 0

∣∣∣X0 = y
]

≥ 1 − δ,

for all x ∈ [M , ∞) and all y ∈ (0, m].
Moreover, if {0, ∞} is accessible, then

P

[{
lim
t→∞ Xt = 0 or ∞

}∣∣∣X0 = x
]

= 1

for all x ∈ (0, ∞).

To illustrate Theorem 3.2, we apply it to stochastic versions of models accounting for mate-
limitation and a predator-saturation. For many sexually reproducing organisms, finding mates
becomes more difficult at low densities. For instance, pollination of plants by animal vectors
becomes less effective when patches become too small because lower densities result is reduced
visitation rates by pollinators [20]. Alternatively, fertilization by free spawning gametes of ben-
thic invertebrates can become insufficient at low densities [28,32]. To model mate-limitation, let
x be the density of females in the population. Assuming a 50–50 sex ratio (i.e. x also equals the
density of males in the population), Dennis [11], McCarthy [35], Scheuring [36] modelled the
probability of a female finding a mate by the function

x

h + x
,

where h is a half-saturation constant, i.e. the male density at which 50% of the females find a
mate. If λ is the number of daughters produced per mated female, then the fitness function is

f (x, ξ) = λx

h + x
, where ξ = (λ, h).

Stochasticity in ξt may be achieved by allowing λt, ht to be sequences of i.i.d. log-normally dis-
tributed random variables. Since E[log f (0, ξt)] = −∞, this stochastic model always exhibits
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Figure 1. Effect of initial population density on persistence for the stochastic mate-limitation model. The stochastic
mate-limitation model with f (x, ξ) = λx/(h + x) where ξ = (λ, h) was simulated 10, 000 times for each initial density.
The fraction of runs where the final density was greater than 100 are plotted as a function of initial density x0. Parameters:
h = 10 and λ log-normally distributed with log-normal mean 0.1 and log-normal standard deviations σ as shown.

asymptotic extinction for some initial conditions with positive probability. Theorem 3.2
implies that asymptotic extinction occurs for all initial conditions with probability one
if E[limx→∞ f (x, ξt)] = E[log λt] < 0. On the other hand, conditional persistence occurs if
E[log λt] > 0.

Figure 1 illustrates how the probability of persistence for the mate-limitation model depends
on initial condition and the level of environmental stochasticity. Interestingly, higher levels
of environmental stochasticity promote higher probabilities of persistence when initial pop-
ulation densities are low. Interestingly, when the population is below the ‘Allee threshold’,
environmental stochasticity provides opportunities of escaping the extinction vortex.

Another common Allee effect occurs in species subject to predation by a generalist predator
with a saturating functional response. Within such populations, an individual’s risk of predation
decreases as the population’s density increases. For example, in field studies, Crawley and Long
[9] found that per capita rates of acorn loss of Quercus robur L. to invertebrate seed predators
were greatest (as high as 90%) amongst low acorn crops and lower (as low as 30%) on large
acorn crops. To model Allee effects due to predator-saturation, Schreiber [37] used the following
fitness function:

f (x, ξ) = exp

(
r − P

h + x

)
, where ξ = (r, P, h),

where r is the intrinsic rate of growth of the focal population, P is the predation intensity,
and h is a half-saturation constant. Stochasticity may be achieved by allowing rt to be nor-
mally distributed and ht, Pt be log-normally distributed. Theorem 3.2 implies that unbounded
growth occurs for all initial conditions whenever E[log f (0, ξt)] = E[rt − Pt] > 0. Alterna-
tively, E[log f∞(ξt)] = E[rt] < 0 implies asymptotic extinction with probability one for all initial
conditions. Conditional persistence occurs when both of these inequalities are reversed.

4. Positive- and negative-density dependence

For populations exhibiting positive- and negative-density dependence, the fitness function f (x, ξ)

can increase or decrease with density. For these general fitness functions, we prove several results
about asymptotic extinction and persistence in the next two subsections.
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4.1. Extinction

We begin by showing that assumptions

A1: E[log f (0, ξt)] < 0, and

A2: there exists γ > 0 such that x �→ f (x, ξ) is increasing on [0, γ ) for all ξ ∈ E,

implies asymptotic extinction occurs with positive probability for populations at low densities.
Furthermore, we show this asymptotic extinction occurs with probability one for all positive
initial conditions whenever the extinction set {0} is ‘accessible’, i.e. there is always a positive
probability of the population density getting arbitrarily small. More specifically, we say {0} is
accessible from A ⊂ [0, ∞) if for any ε > 0, there exists γ > 0 such that

P[∃t ≥ 0 : Xt < ε|X0 = x] > γ

for all x ∈ A. We call a set B ⊂ R+ invariant if P[X1 ∈ B|X0 ∈ B] = 1.

Theorem 4.1 Assume A1 and A2. Then for any δ > 0, there exists ε > 0 such that

P

[
lim
t→∞ Xt = 0

∣∣∣X0 = x
]

≥ 1 − δ

for all x ∈ [0, ε]. Furthermore, if {0} is accessible from [0, M ) for some M > 0 (possibly +∞),
and [0, M ) is invariant, then

P

[
lim
t→∞ Xt = 0

∣∣∣X0 = x
]

= 1

for all x ∈ [0, M ).

There are two cases for which one can easily verify accessibility of {0}. First, suppose that
f (x, ξ) = g(x)ξ . If (ξt)t≤0 is a sequence of log-normal or gamma-distributed i.i.d. random vari-
ables and x �→ xg(x) is bounded (i.e. there exists M > 0 such that xg(x) ≤ M for all x). Then,
it follows immediately from the definition of accessibility that {0} is accessible from [0, ∞).
Hence, in this case E[log f (0, ξt)] < 0 implies unconditional extinction. Since log-normal ran-
dom variables and gamma random variables can take on any positive value, we view this case as
the ‘large noise’ scenario, i.e. there is a positive probability of the log population size changing
by any amount.

Alternatively, for sufficiently, small noise, there are a set of simple conditions for accessibility
of {0}. Define F : R+ × E → R+ by F(x, ξ) = f (x, ξ)x and the ‘unperturbed model’ F0 : R+ →
R+ by F0(x) = F(x, E[ξ1]). For any x ∈ R, define x+ = max{0, x}. A system (1) satisfying the
following hypotheses for ε > 0 is an ε-small noise system:

H1 F0 is dissipative, i.e. there is a compact interval [0, M ] and T ≥ 1 such that FT
0 (x) ∈ [0, M ]

for all x ∈ [0, ∞),

H2 P[F0(x) − ε ≤ F(x, ξ1) ≤ F0(x) + ε] = 1 for all x ∈ R+,

H3 for all x ∈ R+ and all Borel sets U ⊂ [(F0(x) − ε)+, F0(x) + ε] with positive Lebesgue
measure, there exist α > 0 and γ > 0 such that

P[F(z, ξ1) ∈ U] > α

for all z ∈ [(x − γ )+, x + γ ].
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The first assumption ensures that the unperturbed dynamics remain uniformly bounded. The
second assumption implies that the noise is ε-small, while the third assumption implies the noise
is locally absolutely continuous.

Proposition 4.2 Assume the difference equation xt+1 = F0(xt) has no positive attractor. Then
there exists a decreasing function ε : R+ → R+ such that, for any M > 0, there exists an invari-
ant set K ⊃ [0, M ] such that {0} is accessible from K whenever the system (1) is an ε(M )-small
noise system.

As a direct consequence of Theorem 4.1 and Proposition 4.2, we have

Corollary 4.3 For any M > 0, there exists ε0 > 0 such that if the system (1) is an ε-small
noise system for ε ≤ ε0, the dynamics induced by F0 has no positive attractor, and assumptions
A1-2 hold, then

P

[
lim
t→∞ Xt = 0

∣∣∣X0 = x
]

= 1

for all x ∈ [0, M ].

4.2. Persistence

When E[log f (0, ξ1)] > 0 and there is only negative-density dependence, Theorem 3.1 ensured
the system is stochastically persistent. The following theorem shows that this criterion also is
sufficient for models that account for negative- and positive-density dependence.

Theorem 4.4 If

(i) E[log f (0, ξ1)] > 0, and
(ii) there exist xc > 0 such that E[sup{x>xc} log f (x, ξ1)] < 0 and E[supx≤xc

log+ f (x, ξ1)] < ∞,

then for all ε > 0 there exists M > 0 such that

lim sup
t→∞

�t

([
1

M
, M

])
≥ 1 − ε almost surely,

whenever X0 = x > 0.

Remark 4.5 If there exists xc > 0 such that f (x, ξ) is a decreasing function in x on [xc, ∞),
E[log f (xc, ξ1)] < 0, and E[supx≤xc

log+ f (x, ξ1)] < ∞, then condition (ii) in Theorem 4.1 is
satisfied.

When the invasion criteria are not satisfied (i.e. E[log f (0, ξ1)] < 0), conditional persistence
may still occur. For instance, suppose the stochastic dynamics have a positive invariant set B ⊂
(0, ∞): there exists γ > 0 such that B ⊂ [γ , ∞) and Px[Xt ∈ B for all t ≥ 0] = 1 for all x ∈ B.
When such a positive invariant set exists, populations whose initial density lie in B persist. The
following proposition implies that conditional persistence only occurs if there is such a positive
invariant set.

Proposition 4.6 Assume A1–A2. If the system (1) is bounded in [0, M ] (i.e. P[Xt < M for
all t ≥ 0] = 1), then either limt→∞ Xt = 0 with probability one whenever X0 = x ≥ 0, or there
exists a positive invariant set B ⊂ (0, M ].
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In the case of small noise, the following proposition implies the existence of a positive attrac-
tor for the unperturbed dynamics is sufficient for the existence of a positive invariant set. In
particular, conditional persistence is possible when E[log f (0, ξ1)] < 0.

Proposition 4.7 Assume that A ⊂ (0, ∞) is an attractor for the difference equation xt+1 =
F0(xt). Then there exists a bounded positive invariant set K whenever the system (1) satisfies H2
for ε > 0 sufficiently small.

4.3. Mate-limitation and predator-saturation with negative-density dependence

To illustrate Theorems 4.1, 4.4 and Propositions 4.2, 4.7, we apply them to models accounting for
negative-density dependence and positive-density dependence via mate-limitation or predator-
saturation. The deterministic version of these models were analysed by Schreiber [37].

To account for negative-density dependence, we use a Ricker-type equation. In the case of the
mate-limitation model, the fitness function becomes

f (x, ξ) = exp(r − a x)
x

h + x
, where ξ = (r, a, h) (2)

where r is the intrinsic rate of growth in the absence of mate-limitation, a measures the strength
of infraspecific competition, and h is the half-saturation constant as described in Section 3.2.
In the absence of stochastic variation in the parameters r, a, h, the dynamics of persistence and
extinction come in three types [37]. If f (x, ξ) < 1 for all x ≥ 0, then all initial conditions go
asymptotically to extinction. If f (x, ξ) > 1 for some x > 0, then dynamics of extinction are
governed by the smallest positive fixed point M and the critical point C of F(x) = xf (x, ξ).
If F(F(C)) > M , then there is a positive attractor in the interval (M , ∞) for the deterministic
dynamics. Alternatively, if F(F(C)) < M , then the model exhibits essential extinction: asymp-
totic extinction occurs for Lebesgue almost every initial density, but there is an infinite number
of unstable positive periodic orbits. In particular, there is no positive attractor.

To account for environmental stochasticity, we assume, for illustrative purposes, that rt is
uniformly distributed on the interval [r − ε, r + ε] with r > 0 and 0 < ε < r. Furthermore, we
assume that a = 1 and h > 0. As E[log f (0, ξt)] = −∞, Theorem 4.1 implies that limt→∞ Xt = 0
with positive probability for initial conditions X0 sufficiently close to 0. When the deterministic
dynamics support a positive attractor (i.e. F(F(C)) > M ) and the noise is sufficiently small (i.e
ε > 0 sufficiently small), Proposition 4.7 implies that the density Xt for the stochastic model
remains in a positive compact interval contained in (M , ∞). Alternatively, if the deterministic
dynamics exhibit essential extinction and the noise is sufficiently small, Proposition 4.2 implies
limt→∞ Xt = 0 with probability one for all initial densities despite the deterministic dynamics
having an infinite number of unstable periodic orbits. Finally, when ε is sufficiently close to r
(i.e. the noise is sufficiently large), Theorem 4.1 implies that limt→∞ Xt = 0 with probability one
for all positive initial conditions. This later outcomes occurs whether or not the deterministic
dynamics support a positive attractor. Each of these outcomes is illustrated in Figure 2.

For the predator-saturation model, we use the fitness function

f (x, ξ) = exp

(
r − a x − P

h + x

)
, where ξ = (r, a, h, P), (3)

where h and P are the half-saturation constant and the maximal predation rate, respectively,
as described in Section 3.3. The dynamics of persistence and extinction for this model without
stochastic variation come in four types [37]. If f (0, ξ) > 1, then there is a positive attractor whose
basin contains all positive initial densities. If f (x, ξ) < 1 for all x ≥ 0, then all initial conditions
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Figure 2. Asymptotic dynamics of extinction and persistence for the stochastic mate-limitation model with negative–
density dependence. For each parameter value, the model was simulated 10, 000 time steps for multiple initial conditions.
The final 1000 points of each simulation are plotted. Model details: The fitness function is f (x, ξ) = exp(r − ax)x/(h + x)
where r is uniformly distributed on [4.5 − ε, 4.5 + ε].
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go asymptotically to extinction. If f (x, ξ) > 1 for some x > 0, then dynamics of extinction are
governed by the smallest positive fixed point M and the critical point C of F(x) = xf (x, ξ).
If F(F(C)) > M , then there is a positive attractor in the interval (M , ∞) for the deterministic
dynamics. Alternatively, if F(F(C)) < M , then the model exhibits essential extinction.

To account for stochasticity, we assume for simplicity that Pt is uniformly distributed on
the interval [P(1 − ε), P(1 + ε)] for some P > 0 and 0 < ε < 1. Furthermore, we assume that
a = 1, r > 0, and h > 0. When E[log f (0, ξt)] = r − P > 0, Theorem 4.4 implies the system is
stochastically persistent. Alternatively, when E[log f (0, ξt)] = r − P < 0, Theorem 4.1 implies
that limt→∞ Xt = 0 with positive probability for initial conditions X0 sufficiently close to 0.
Assume r < P. If the deterministic dynamics support a positive attractor (i.e. F(F(C)) > M )
and the noise is sufficiently small (i.e. ε > 0 sufficiently small), Proposition 4.7 implies that
the density Xt for the stochastic model remains in a positive compact interval contained in
(M , ∞). Hence, the population exhibits conditional persistence. Alternatively, if the determin-
istic dynamics exhibit essential extinction and the noise is sufficiently small, Proposition 4.2
implies limt→∞ Xt = 0 with probability one for all initial densities. Finally, when ε is sufficiently
close to 1 (i.e. the noise is sufficiently large) and P > r, Theorem 4.1 implies that limt→∞ Xt = 0
with probability one for all positive initial conditions. Each of these outcomes is illustrated in
Figure 3.

5. Discussion

A demographic Allee effect occurs when individual fitness, at low densities, increases with
population density. If individuals on average replace themselves at very low densities, then
the population exhibits a weak Allee effect. Alternatively, if there is a critical density below
which individuals do not replace themselves and above which where they do, then the popula-
tion exhibits a strong Allee effect. It is frequently argued that environmental stochasticity coupled
with a strong Allee effect can increase the likelihood of a population falling below the critical
threshold, rendering them particularly vulnerable to extinction [7,43]. While this conclusion is
supported, in part, by mathematical and numerical analyses of stochastic differential equation
models [12,30,49], these earlier analyses are specific to a modified Logistic growth model with
Brownian fluctuations in the log population densities. Here, we analysed discrete-time models
allowing for general forms of density-dependent feedbacks and randomly fluctuating vital rates.
Our analysis demonstrates that environmental stochasticity can convert weak Allee effects to
strong Allee effects and that the risk of asymptotic extinction with strong Allee effects depends
on the interaction between density-dependent feedbacks and environmental stochasticity.

When environmental fluctuations (ξt) drive population dynamics (xt+1 = f (xt, ξt+1)xt), an
Allee effect is best defined in terms of the geometric mean G(x) = exp(E[log f (x, ξt)]) of fitness.
If the geometric mean G(x) is an increasing function at low densities, an Allee effect occurs.
If this geometric mean is greater than one at low densities (G(0) > 1), then we proved that the
Allee effect is weak in that the population stochastically persists: the population densities spends
arbitrarily little time at arbitrarily low densities. When the geometric mean is less than one at low
densities (G(0) < 1), the stochastic Allee effect is strong: for populations starting at sufficiently
low densities, the population density asymptotically approaches zero with positive probability.
Since the geometric mean G(0) in general does not equal the intrinsic fitness f (0, E[ξt]) at the
average environmental condition, environmental stochasticity can, in and of itself, shift weak
Allee effects to strong Allee effects and vice versa. For example, a shift from a weak Allee effect
to a strong Allee effect can occur when a population’s predator has a fluctuating half-saturation
constant. Specifically, for the predator-saturation model considered here, the geometric mean
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at low densities equals G(0) = r − E[P/ht] where r is the intrinsic rate of growth of the focal
population, P is proportional to the predator density, and ht is the fluctuating half-saturation con-
stant of the predator. As Jensen’s inequality implies that G(0) < r − P/E[ht], fluctuations in ht

can decrease the value of G(0) from > 1 to < 1 and thereby shift a weak Allee effect to a strong
Allee effect.

In the absence of negative density-dependent feedbacks, we proved that there is a dynamical
trichotomy: asymptotic extinction for all initial densities, unbounded population growth for all
positive initial conditions, or a strong Allee effect (i.e. G(0) < 1 but G(x) > 1 for sufficiently
large x). When a strong Allee effect occurs and environmental fluctuations are large (i.e. the
support of log f (x, ξt) is the entire real line for all x > 0), populations either go asymptotically
to extinction or grow without bound with probability one. Moreover, both outcomes occur with
positive probability for all positive initial conditions.

Liebhold and Bascompte [33] used models with only positive-density dependence to exam-
ine numerically the joint effects of Allee effects, environmental stochasticity, and externally
imposed mortality on the probability of successfully exterminating an invasive species. Their
fitness function was

f (x, ξt) = exp(γ (x − C) + ξt),

where C is the deterministic Allee threshold, γ is the ‘intrinsic rate of natural increase’, and ξt are
normal random variables with mean 0. Since G(0) = exp(−γ C) < 1 and limx→∞ G(x) = +∞
for this model, our results imply both extinction and unbounded growth occur with positive prob-
ability and, thereby, provide a rigorous mathematical foundation for Liebhold and Bascompte’s
[33] numerical analysis. Consistent with our simulations of a stochastic mate-limitation model,
Liebhold and Bascompte’s [33] found that the probability of persistence increases in a sigmoidal
fashion with initial population density. In particular, environmental stochasticity increases the
probability of persistence for populations initiated at low densities by pushing their densities
above the deterministic Allee threshold. Conversely, for populations initiated at higher den-
sities, environmental stochasticity can increase the risk of asymptotic extinction by pushing
densities below this threshold. Indeed, we proved that the probability of asymptotic extinc-
tion approaches zero as initial population densities get large and the probability of asymptotic
extinction approaches one as initial population densities get small.

Since populations do not grow without bound, negative density-dependent feedbacks ulti-
mately dominate population growth at higher population densities [23,45,47]. While stochastic
persistence never occurs with a strong Allee effect, extinction need not occur with probabil-
ity one. Whether or not extinction occurs for all positive initial densities with probability one
depends on a delicate interplay between the nonlinearities of the model and the form of envi-
ronmental stochasticity. A sufficient condition for unconditional extinction (i.e. extinction with
probability one for all initial conditions) is that the extinction set {0} is ‘attainable’ from every
population density state. Attainability roughly means that the population densities become arbi-
trarily small at some point in time with probability one. For populations whose densities remain
bounded from above, we proved a dichotomy: either there exists a positive invariant set for
the process or {0} is attainable in which case there is unconditional extinction. Whether this
dichotomy extends to unbounded population state spaces remains an open problem.

When environmental stochasticity is weak and there is a strong Allee effect, the ‘unperturbed’
population dynamics determines whether extinction occurs for all initial conditions or not. By
‘weak’ we mean that the unperturbed dynamics F are subject to small, compactly supported
random perturbations (i.e. xt+1 − F(xt) lies in an interval [−ε, ε] for ε > 0 small). The existence
of a positive attractor is necessary for conditional persistence in the face of weak environmental
stochasticity. This result confirms the consensus in the mathematical biology community, that the
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existence of a positive attractor ensures that population trajectories can remain bounded away
form extinction in the presence of small perturbations [38].

For populations exhibiting a strong Allee effect and conditional persistence at low levels
of environmental stochasticity, there is always a critical level of environmental stochasticity
above which asymptotic extinction occurs with probability one for all initial population densi-
ties. Mathematically, there is a transition from the extinction set {0} being inaccessible for part
of the population state space at low levels of environmental stochasticity to {0} being accessi-
ble for the entire population state space at higher levels of environmental stochasticity. We have
illustrated this transition in stochastic models of mate-limitation and predator-saturation with
negative-density dependence. Surprisingly, for the predator-saturation models, our numerical
results show that environmental stochasticity can lead to asymptotic extinction at intermedi-
ate predation rates despite conditional persistence occurring at higher and lower predation rates.
This effect, most likely, is due to the opposing effects of predation on overcompensatory feed-
backs and the Allee threshold resulting in a larger basin of attraction for the extinction state at
intermediate predation rates.

While our analysis provides some initial insights into the interactive effects of Allee effects
and environmental stochasticity on asymptotic extinction risk, many challenges remain. Many
populations exhibit spatial, ontogenetic, social, or genetic structure. Proving multivariate ana-
logues to the results proven here could provide insights on how population structure interacts
with the effects considered here to determine population persistence or extinction. Furthermore,
all populations consist of a finite number of individuals whose fates are partially uncorrelated.
Hence, they experience demographic as well as environmental stochasticity [1]. In accounting for
bounded, finite population sizes in stochastic models, extinction in finite time is inevitable. How-
ever, these models often exhibit meta-stable behaviour in which the populations persist for long
periods of time despite both forms of stochasticity and Allee effects. This meta-stable behaviour
often is associated with quasi-stationary distributions of the finite-state models. Studying to what
extent these distributions have well definite limits in an ‘infinite-population size’ limit is likely
to provide insights into these metastable behaviours [17] and provide a more rigorous frame-
work to evaluate the joint effects of stochasticity and Allee effects on population persistence and
ultimately their consequences for conservation and management.
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Appendix

This appendix provides proofs of all the results in the main text. In Section A.1, we prove a general convergence
result based on an accessibility assumption that leads to the proofs of Theorems 4.1 in Section A.2 and Theorem 3.2
in Section A.3. In Section A.4, we prove Proposition 4.2. In Section A.5, we prove Proposition 4.6, and in Section A.7,
we prove Proposition 4.7.

We begin with some useful definitions and notations. Let B be the Borel σ -algebra on R+. Let δy denote a Dirac
measure at y, i.e. δy(A) = 1 if y ∈ A and 0 otherwise for any set A ∈ B. Let R+ ∪ {∞} be the one-point compactification
of R+ and assume that {∞} is a fixed point for the system (1). For a sequence (xt)t≥0 ⊂ R+ ∪ {∞}, we write xt −−−→

t→∞ D

when (xt)t≥0 converges to D ⊂ R+ ∪ {∞}, i.e. if for any neighbourhood U of D, there exists T > 0 such that xt ∈ U for
all t ≥ T .

We consider the trajectory space formed by the product � = RN+ equipped with the product σ -algebra BN. For any
x ∈ R+ (viewed as an initial condition of trajectory), there exists a probability measure Px on � satisfying

Px[{ω ∈ � : ω0 ∈ A0, . . . , ωk ∈ Ak}] = P[X0 ∈ A0, . . . , Xk ∈ Ak |X0 = x]

for any Borel sets A0, . . . , Ak ⊂ R+, and Px[{ω ∈ � : ω0 = x}] = 1. The random variables Xt are the projection maps

Xt : � → R+,

ω �→ ωt .

For the proof of Theorems 4.1 and 3.2, we consider the space EN of the environmental trajectories equipped with the
product σ -algebra EN, and the probability measure Q on EN satisfying

Q[{e ∈ EN : e0 ∈ E0, . . . , ek ∈ Ek}] = P[ξ0 ∈ E0, . . . , ξk ∈ Ek]

for any Borel sets E0, . . . , Ek ⊂ E. For now on, when we write e ∈ EN, we mean e = (et)t≥0. Since E is a Polish space
(i.e. separable completely metrizable topological space), the space EN endowed with the product topology is Polish as
well. Therefore, by the Kolmogorov consistency theorem, the probability measure Q is well defined. In this setting, the
random variable ξt is the projection map

ξt : EN → R+,

e �→ et .

We use the common notation E (resp. Ex) for the expectation with respect to the probability measure Q (resp. Px).
Let x ∈ R+ and �x = {ω ∈ � : ω0 = x} be the cylinder of the trajectories starting at x. The continuous function

ϕ : EN → �x defined component-wise by

ϕ(e)t = Xt(ϕ(e)) = xf (x, e1)f (X1(ϕ(e)), e2) · · · f (Xt−1(ϕ(e)), et) (A1)

links the probability measures Q and Px. In fact, the pushforward measure of Q by ϕ is the probability measure Px, i.e.
for any Borel set A ⊂ �x, Px(A) = Q(ϕ−1(A)).

Recall that a set A ⊂ R+ ∪ {∞} is accessible from B ⊂ R+ ∪ {∞} if for any neighbourhood U of A, there exists
γ > 0 such that

Px[∃t ≥ 0 : Xt ∈ U] > γ

for all x ∈ B. A subset C ⊂ [0, ∞) is invariant for the system (1) if Px[X1 ∈ C] = 1 for all x ∈ C, and it is positive if
C ⊂ (0, ∞).
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A.1. Convergence result

Proposition A.1 Let B ⊂ R+ be an invariant subset for the system (1), and A ⊂ B be an accessible set from B. Assume
that there exists 0 < δ < 1 and a neighbourhood U of A such that

Px[Xt −−−→
t→∞ A] ≥ 1 − δ

for all x ∈ U. Then

Px[Xt −−−→
t→∞ A] = 1

for all x ∈ B.

Proof Define the event C = {Xt −−−→
t→∞ A}. By assumption there exists δ > 0 and a neighbourhood U of A such that

Px[C] ≥ 1 − δ

for all x ∈ U . Fix x ∈ B and define the stopping time τ = inf{t ≥ 0 : Xt ∈ U}. Since A is accessible from B, there exists
γ > 0 such that Px[τ < ∞] > γ . The strong Markov property implies that

Px[C] ≥
∫

�

PXτ [C] 1{τ<∞} dPx

≥ (1 − δ)γ .

The Lévy zero-one law implies that limt→∞ Ex[1C |Ft] = 1C Px-almost surely, where Ft is the σ -algebra generated by
{X1, . . . , Xt}. On the other hand, the Markov property and invariance of B imply that Ex[1C |Ft] = PXt [C] ≥ (1 − δ)γ .
Hence Px[C] = 1. �

A.2. Proof of Theorem 4.1

To prove the local extinction result, assume E[log f (0, ξt)] < 0 and that there exists γ > 0 such that x �→ f (x, ξ) is
increasing on [0, γ ) for all ξ ∈ E. Since E[log f (0, ξ1)] < 0 and x �→ f (x, ξ) is monotone on [0, γ ], there exists 0 <

x∗ < γ such that E[log f (x∗, ξ1)] < 0 and f (x, ξ) ≤ f (x∗, ξ) for all x ∈ [0, x∗) and all ξ ∈ E. The Law of Large Numbers
implies that

lim
t→∞

1

t

t−1∑
s=0

log f (x∗, ξs) < 0,

Q-almost surely. Define the random variable

R = inf
1

f (x0, ξ1) · · · f (xt−1, ξt)
,

where the infimum is taken over the set
⋃

t≥1{(x0, . . . , xt−1) ∈ [0, x∗)t}. As

lim sup
t→∞

1

t

t−1∑
s=0

log f (xs, ξs+1) ≤ lim
t→∞

1

t

t−1∑
s=0

log f (x∗, ξs) < 0, (A2)

Q-almost surely for any sequence {xt}t≥0 lying in [0, x∗), R > 0 Q-almost surely. Let � ⊂ EN be the set of probability
1 for which the limits in Equation (A2) exist and R > 0. Choose e ∈ � and x ∈ [0, x∗R(e)]. Let ϕ : EN → �x be the
function defined by Equation (A1). The definition of R(e) implies by induction that Xt(ϕ(e)) ≤ δ for all t ≥ 1. Hence,
our choice of x∗ implies that

lim sup
t→∞

1

t
log Xt(ϕ(e)) = lim

t→∞
1

t

t−1∑
s=0

log(f (Xs(ϕ(e)), es+1)

≤ lim
t→∞

1

t

t−1∑
s=0

log(f (x∗, es+1))

< 0

for all e ∈ �. As Q[�] = 1,

Px

[
lim sup

t→∞
1

t
log Xt = 0

]
= Q

[
lim sup

t→∞
1

t
log Xt ◦ ϕ = 0

]
≥ Q

[
R ≥ 1

x∗n

]

for all n > 0 and x ∈ (0, 1/n].
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Fix δ > 0. Since {R ≥ 1/x∗n}n≥1 is an increasing sequence of events and Q[∪n{R ≥ 1/x∗n}] = 1, limn→∞ Q[R ≥
1/x∗n] = 1 which implies that there exists N > 0 such that Q[R ≥ 1/x∗N] ≥ 1 − δ. Hence

Px

[
lim

t→∞ Xt = 0
]

≥ Q

[
R ≥ 1

x∗N

]

≥ 1 − δ

for all x ∈ (0, 1/N].
Now assume {0} is accessible from [0, M ) for some M > 0 (possibly +∞). Applying Proposition A.1 to A = {0} and

B = [0, M ] (resp. B = [0, ∞)) implies limt→∞ Xt = 0 with probability one whenever X0 = x ∈ [0, M ).

A.3. Proof of Theorem 3.2

To prove the extinction result, suppose that γ = E[log f∞(ξt)] < 0 and fix x ∈ R+. Let ϕ : EN → �x be the function
defined by Equation (A1). Since x �→ f (x, ξ) is an increasing function for all ξ ∈ E, we have

Xt(ϕ(e)) =
t−1∏
s=0

f (Xs(ϕ(e)), es+1)x <

t∏
s=1

f∞(es)x

for all e ∈ EN. By the Law of Large Numbers,

lim sup
t→∞

1

t
log Xt(ϕ(e)) ≤ lim

t→∞
1

t

(
t∑

s=1

log f∞(es) + log x

)
= γ < 0

for Q-almost all e ∈ EN. Therefore

Px

[
lim

t→∞ Xt = 0
]

= Q

[
lim

t→∞ Xt ◦ ϕ = 0
]

= 1,

which completes the proof of the first assertion.
To prove the unbounded growth result, suppose that α = E[log f (0, ξt)] > 0 and fix x ∈ (0, ∞). Since x �→ f (x, ξ) is

an increasing function for all ξ ∈ E, we have

Xt(ϕ(e)) =
t−1∏
s=0

f (Xs(ϕ(e)), es+1)x >

t∏
s=1

f (0, es)x

for all e ∈ EN. By the Law of Large Numbers,

lim inf
t→∞

1

t
log Xt(ϕ(e)) ≥ lim

t→∞
1

t

(
t∑

s=1

log f (0, es) + log x

)
= α > 0,

Q-almost all e ∈ EN. Therefore

Px

[
lim

t→∞ Xt = ∞
]

= Q

[
lim

t→∞ Xt ◦ ϕ = ∞
]

= 1,

which completes the proof of the first assertion.
To prove the Allee effect result, fix 0 < δ < 1 and assume that E[log f (0, ξ1)] < 0 and E[log f∞(ξ1)] > 0. The first

assertion of Theorem 4.1 implies that there exists m > 0 such that

Px

[
lim

t→∞ Xt = 0
]

≥ 1 − δ (A3)

for all x ∈ (0, m]. To prove the second part of the result, consider the process Yt = 1/Xt conditioned to the event {X0 > 0}.
It satisfies the following stochastic difference equation:

Yt+1 = g(Yt , ξt+1),

where g : R+ × � → R is the continuous function defined by g(y, ξ) = 1/f (1/y, ξ) for all y > 0 and g(0, ξ) = 1/f∞(ξ).
By definition of Yt , we have, for all m > 0,

Py

[
lim

t→∞ Yt = 0
]

= P1/y

[
lim

t→∞ Xt = ∞
]

for all y ∈ (0, m].
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Since, E[log g(0, ξ1)] = −E[log f∞(ξ1)] < 0, the first assertion of Theorem 4.1 applied to (Yt)t≥0 implies that for any
0 < δ < 1, there exist L > 0 such that

Py

[
lim

t→∞ Yt = 0
]

≥ 1 − δ

for all y ∈ [0, L). Therefore, for any 0 < δ < 1, there exists M = 1/L > 0 such that

Px

[
lim

t→∞ Xt = ∞
]

≥ 1 − δ (A4)

for all x ∈ [M , ∞).
To prove the last part, assume that {0, ∞} is accessible from R+ and fix δ > 0. By Equations (A3) and (A4), there

exist m, M > 0 such that

Px[Xt −−−→
t→∞ {0, ∞}] ≥ 1 − δ

for all x ∈ [0, m] ∪ [M , ∞). Proposition A.1 applied to A = {0, ∞}, B = R+ and U = [0, m] ∪ [M , ∞) concludes the
proof.

A.4. Proof of Proposition 4.2

The proof consists of combining two deterministic arguments with a probabilistic argument. The three of them use the
concept of (ε, T)-chain introduced by Conley [6]. An (ε, T)-chain from x to y in R, for a mapping F0 : R+ → R+, is a
sequence of points x0 = x, x1, . . . , xT−1 = y in R+ such that for any s = 0, . . . , T − 2, |xi+1 − F0(xi)| < ε. x chains to y
if for any ε > 0 and T ≥ 2 there exists an (ε, T)-chain from x to y.

The following propositions are the deterministic ingredients of the proof and are proved in [38].

Proposition A.2 Let A be an attractor with basin of attraction B(A) and V ⊂ U be neighbourhoods of A such that the
closure U of U is compact and contained in B(A). Then there exists T ≥ 0 and δ > 0 such that every δ chain of length
t ≥ T starting in U ends in V.

Proposition A.3 If F0 : R+ → R+ satisfies H1 and has no positive attractor, then for all x ∈ R+, ε > 0 and T > 0
there exists an ε chain from x to 0 of length at least T.

The probabilistic ingredient is an adaptation of Proposition 3 in [39] to our framework.

Proposition A.4 Assume the system (1) satisfies H3 for ε0 > 0. If x ∈ R+ chains to 0, then, for all ε ≤ ε0, there exists
a neighbourhood Uε of x and βε > 0 such that

Pz[∃t ≥ 0 : Xt < ε] > βε

for all z ∈ Uε .

Proof For any a, b ∈ R+, define I(a, b) := [(a − b)+, a + b]. Let ε ≤ ε0 and x0 = x, x1, . . . , xt = 0 be an ε/2-chain
from x to 0. There exists γt > 0 such that It := I(F0(xt−1), γt) ⊂ [0, ε]. Assumption H3 implies that there exist γt−1 > 0
and αt > 0 such that It−1 := I(xt−1, γt−1) ⊂ I(F0(xt−2), ε) and

Pz[X1 ∈ It] > αt

for all z ∈ It−1. Since It−1 ⊂ I(F0(xt−2), ε), assumption H3 implies that there exist γt−2 > 0 and αt−1 > 0 such that

Pz[X1 ∈ It−1] > αt−1

for all z ∈ It−2 := I(xt−2, γt−2). Repeating this argument, there exist I0, . . . , It ⊂ R+ and α1, . . . , αt > 0 such that for all
s = 1, . . . , t

Pz[X1 ∈ Is] > αs

for all z ∈ Is−1. Define α := mins αs. The Markov property implies that, for all z ∈ R+,

Pz[Xt ∈ It] = Ez[EX1 [· · · EXt−2 [PXt−1 [X1 ∈ It]]]]



204 G. Roth and S.J. Schreiber

Since for all s = 1, . . . , t, Pz[X1 ∈ Is] > α1Is−1 ,

Pz[Xt ∈ It] > αt for all z ∈ I0.

Choosing U = I0 and β = αt competes the proof of the proposition. �

Lemma A.5 Let ε > 0 and V ⊂ U be bounded subsets of R+. Assume that the system (1) satisfies H2 for ε and that
there exists T > 0 such that every ε chain of length t ≥ T starting in U ends in V. Then there exists a bounded invariant
set K ⊃ U for the system (1). Moreover, if U ⊂ (0, ∞), then K ⊂ (0, ∞).

Proof Assume that U ⊂ (0, ∞). Let L = supx∈U {F0(x)} + supx∈U {x} + Tε. Since every ε chain of length t ≥ T starting
in U ends in V , assumption H2 implies that, for any x ∈ U , Xt ∈ (0, L) for all t ≥ 0 with probability one whenever X0 = x.
Define the positive bounded Borel set

K := {x ∈ (0, L) : Px[∃t ≥ 0 : Xt > L] = 0}.
Since U ⊂ K, K is nonempty. To show that K is invariant for the system (1), let x ∈ K. By the Markov property,

0 = Px[∃t ≥ 0 : Xt > L] ≥ Ex[Py[∃t ≥ 0 : Xt > L]1Kc ].

Since, Py[∃t ≥ 0 : Xt > L] > 0 for all y ∈ Kc, Px[X1 ∈ Kc] = 0. Hence, K is a positive invariant set for the system (1).
If 0 ∈ U , then it follows from the same arguments that {x ∈ [0, L) : Px[∃t ≥ 0 : Xt > L] = 0} ⊃ U is invariant for the

system (1). �

Proof of Proposition 4.2 Since F0 is dissipative, there exists an attractor A such that B(A) = R+. Let V ⊂ R+ be a
neighbourhood of A and M0 = inf{M > 0 : V ⊂ [0, M ]}. For any M > M0, Proposition A.2 applies to A, V and [0, M ].
Hence there exists ε : [M0, ∞) → R+ a decreasing function, T : [M0, ∞) → N such that, for every M > M0, every
ε(M ) chain of length t ≥ T(M ) starting in [0, M ] ends in V . We extend the functions ε to R+ by defining ε(M ) = ε(M0)

for all M < M0.
Fix M ≥ 0, and assume that the system (1) is an ε(M )-small noise system. If M ≥ M0, then Lemma A.5 implies that

there exists an invariant set KM ⊃ [0, M ] for the system (1).
Assume that F0 has no positive attractor. Propositions A.3 and A.4 imply that, for all x ∈ KM (the closure of KM ) and

all ε ≤ ε(M ), there exists a neighbourhood Ux,ε of x and βx,ε > 0 such that

Pz[∃t ≥ 0 : Xt < ε] > βx,ε

for all z ∈ Ux,ε . Compactness of KM implies that, for any ε ≤ ε(M ), there is βε > 0 such that

Pz[∃t ≥ 0 : Xt < ε] > βε

for all z ∈ KM . Hence {0} is accessible from KM .
If M < M0, then [0, M ] ⊂ [0, M0] ⊂ KM0 . Moreover, by definition of ε(M ), KM0 is invariant for the system (1) and

{0} is accessible from KM0 . This concludes the proof. �

A.5. Proof of Theorem 4.4

After showing that the system (1) is almost surely bounded, the almost surely persistence follows as in the proof of
Theorem 1 in [41]. Define V : R+ → R+ by V (x) = x, α, β : � → R+ by α(ξ) = sup{f (x, ξ) : x > xc} and β(ξ) =
sup{xf (x, ξ) : x ≤ xc}. Hence, for any ξ ∈ � and x ∈ R+, we have V(xf (x, ξ)) ≤ α(ξ)V (x) + β(ξ). By assumption,
E[ln α] < 0 and E[ln+ β] < ∞ where ln+(x) = max{0, x}. Hence Proposition 4 in [3] implies that the system (1) is
almost surely bounded.

A.6. Proof of Proposition 4.6

Assume E[log f (0, ξ1)] < 0. Recall, we say Equation (1) is unconditionally extinct if limt→∞ Xt = 0 with probability one
whenever X0 = x ≥ 0. If there exists a positive invariant set B ⊂ (0, M ], then the system (1) cannot be unconditionally
extinct. If the system (1) is not unconditionally extinct, then, by Theorem 4.1, {0} is not accessible from [0, M ]. Therefore
there exists ε > 0 such that for all n ≥ 1, there exists xn ∈ [0, M ] such that

Pxn [∃t ≥ 0 Xt < ε] <
1

n
.
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Since the event {∃t ≥ 0 Xt < ε} is an open set of �, compactness of [0, M ] and weak∗ continuity of x �→ Px imply there
exists x ∈ [0, M ] such that Px[∃t ≥ 0 Xt < ε] = 0. Define the non empty positive set B = {x ∈ [0, M ] : Px[∃t ≥ 0 Xt <

ε] = 0} ⊂ [ε, M ]. To show that B is invariant, let x ∈ B. We will show that Px[X1 ∈ B] = 1. By the Markov property,

0 = Px[∃t ≥ 0Xt < ε] ≥ Ex[PX1 [∃t ≥ 0 s.t. Xt < ε]1Bc (X1)].

Since Py[∃t ≥ 0s.t.Xt < ε] > 0 for all y ∈ Bc, Px[X1 ∈ Bc] = 0 for all x ∈ B. Hence, B is invariant.

A.7. Proof of Proposition 4.7

Assume that A ⊂ (0, ∞) is a positive attractor with basin of attraction B(A). Let V ⊂ U ⊂ B(A) be positive compact
neighbourhoods of A. Proposition A.2 applies to A, V and U . Hence, there exists ε and T ≥ 0 such that every ε chain
of length t ≥ T starting in U ends in V . Assume the system (1) satisfies H.2 for ε. Then Lemma A.5 implies that there
exists a positive bounded invariant set for the system (1) which concludes the proof.
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