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Smooth Hierarchical Surface Triangulations

Tran 5. Gieng®
Bemd Hamann
Kenneth I, Joy
Gregory L. Schussman
Issac ). Trotts

Center for Image Processing and Integrated Computing
Department of Computer Science
University of California, Davis 95616-8562

Abstract

We present & new method to produce a hierarchical set of triangle

meshesthat can bewsed to blend different levels of detnil in s smooth

fashion. The algorthm produces o sequence of meshes Mg, Ay,
My, .., My, where each mesh M, can be transformed 1o mesh
A4 through a set of mangle-collapse operations. For each -
angle, n function is genermied that approximates the underlying sur-
face in the aren of the triangle, and this function serves as a basis
for assigning & weight to the mangle i the ordering opemtion. and
for supplying the paint to which the triangles are collapsed. This
technigue allows us 10 view a mangulated surface made| at varying
levels of detail while insuring that the simplified mesh approximates
the ominal surface well,

CR Categories and Subject Descriptors: L33 [Computer Graph-
ies]: Ficture/Tmage Generation - Viewing Algorithms; 1.3.6 [Com-
puter Gruphics]; Methodology and Techniques - Interation Tech-
migues.

Addltional Keywords: mesh simplification, trinngle meshes, level-
of-detail representation, shape approxiEmsation,

1 INTRODUCTION

The most critical and fundamental reseanch problem encountered in
the visualization of complex models is the development of methods
for storing, approximating, and rendering the very large data sets
that defing them. The problem is fo develop different represents-
tions of the datn sct, each of which can be substiuted for the com-
plete set depending en the requirements of the viswalization bech-

nique. The dats set may be represented by o few points; or by sev-
eral million podnts if necessary, with each of the data sets contain-

ing the essential features of the original datn. A hierarchical or sl
liresoluion representation allows the study of large-scale fentures
by considering the data set a1 a coarse resolution and the stady of
small-scale features by considering the dotn set at o fine resolution,

* | paenp bamann, joy, s s orons e uedavis edu
0-8188-8262-0/87 $10.00 Copyright 1337 IEEE.

We miroduce a method io produce n hicrarchical representation
of large unstreciuned iranghe meshes, Given an imitial mesh Adg,
our algerithm reduces the number of triangles through & seres of
triangle-collspie operations. A triangle is selectad from the mesh
and removed E!}'{:ullapimg it to & point (see Figure 13 A weight is
nssigned io each trisngle and s used as the criterion 1o select trinn-
gles oo be collapsed. This weight 18 parthnlly based on o curvature
measure determined by the principal curvatures of a function that
approximates tee surfsce in the area of ench triangle. To insune that
the new mesh sccurately approximates ihe underlying surface, we
wse the surface approximate to supply the point to which the irian-
£le is collapsed,

In o given mesh, we can identify a number of trinngles that can be
collapsed simultanecusly, and thig allows our algorithm to output &
soquence of meshes Adg, My, Mg, ..., M, with the propeny that
A can be smoothly collapsed to M50, By collapsing a relatively
large mumber of triangles in &n intermediate triangulation simuliane-
opusly, we achieve significant memory savings, Thas the transition
from mesh A 1o Mg is characterized by collapsing many tri-
angles in parallel — instead of collapsing just one. The sequence of
meshes, along with the iRangle-collapse opemtion, can be used io
create a smooth visual tmaosition beteresn levels in the hierarchy of
triangle meshes.

In Section 2, we discuss the relnied work in mesh reduction. 'We
examine the trinngle-collapse operation in Section 3, Here we de-
fing what it means for o triangle 1o be “collapsible,” and exhibit the
affect of the triangle-collapse opemtion on the mesh. In Section 4,
we construct & function that approximates the underlying surface in
tlse aren of a miangle. This approximating surfece is used n wo
ways: (1) to define the poant to which a trangle will collapse, and (2}
i peRign weights to the riangles. The caleulaton of the weights is
discussed in Section 5. [n Section &, we give n complete description
af the algorithm which generates a sequence of rizngle-collapse op-
erations and n sequence of meshes. Implementotion issues are dis-
cussed in Seetion T and results of the algorihm's use are given in
Section &,

2 RELATED WORK

Three classes of algonthms exist that pre wied to reduce the number
of trinngles in a mesh:

» plporithms that simplify the mesh by removing vertices [13,
14].

& alporithms that simplify the mesh by removing edpes [9], and

& glporithms that simplify the mesh by removing faces [8]
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Figure |: Collapsing n triangls: The shaded triangle is selected from the mesh in (a), collapsed toward the centroid of the triangle i (b),
ereating & new mesh i (c) which bas four fewer riangles than the original mesh.

The preblems of vertex-removal are chamscterized by the algo-
rithm of Schroeder ot al. [14] In thés algorithm, vertices are idan-
tified through a distance-to-plane criterion, where an average plane
i formed through a verex and its adjacent vertices. If the vertex is
within a specified distance of the average plane, it can be delated,
ptherwise it is retained. Femoving & vertex from the mesh creates a
hole that must be re-triangulated, and severa] strategies may beused.

Hoppe [¥] describes o continuous-resolation representation of &
mesh, based upon an adge-collapse operation. The mesh reduction
problem i formulated in terms of o optimization problem [10], or-
dering the edges according to an energy minimization function. The
result is an initial coarse represantation of the mesh, and & finear
fist of edge-collapae operations, each of which can be regenamted
to genarate finer representations of the mesh. The geometrically-
continuous edge-collapss operation allows the development of a
smooth visual ransition between various levels of the represenia-
tion.

Hamann [%] has developed an algorithm that simplifies the mesh
by removing triangles. Trinngles are selecied for removal by first
ordering them acoording to the principal curvatares at their vertices
{zee [T]). The curvature values are pre-compuied based on the orig-
ingl trisngulated mesh, Trinngles sre then inserted into & priocty
quene and removed ileratively, Modified triangles have new curva-
fures calculaied af their vertices and are insered back Into te pri-
ority queue. The user can specify n percentage of triangles to be re-
moved or an emror iolemnce,

Our algarithm is also based upon & triangle-removal sirtegy but
creates m hiemrchy of mashes, not just a hiemmchy of triangles.
These meshes can be used o create o continwous-reduction algo-
rithimn thiat enablesus to vary the level of delail over the set of meshes
and io blend the levels in o continugus-resobution reprecentation of
the dats set

3 TRIANGLE-COLLAPSE OPERATIONS

Irs this comtext, our surface is & piecewiss linear surfuce defined by
& mesh of triangles. We roquine that the trianghe mesh be connecied
and that each sdge in the mesh be shared by at most two triangles.
Meshes should not be self-intersecting — that is, no trinngle of the
mesh should have an intersection with the interior of another irian-
gle

3.1 Stenclls

If we are to collapse & given wiangle T, it is the tiangles sumound-
ing T that influence the resuliing mesh after the collapse. This set
of triangles, the siencil Sy of T, is the set of trisngles T), where
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Figurs 2: Stencils of triangles: (a) The shaded trisngle hos o con-
nected noyelic stencil; (b) the shaded mangle has a disconnected
ncyclic stencil; (c) the shaded triangle has a connected cyclic sten-
cil; and (d) the shaded tiangle has & complete stencil. In this last
cage, the siancil boundary polygon iz outlined in bold. We note that
the boundsry polygon of the trangle in (a) would contain a veriex
of the triangle, and therefore the stencil is not complete,

Ti # T and such that T; shares a veriex with T (sea Figurs 2), The
stencil is called commectad if for each pair of tianghes T, and T5,
in the stencil, n sequence of triangles T5, , Thy , ., T, exist such
that Ty, and Tj,,, are neighbors' forj = 1,....k = 1.

Three triangles T, T, and T form a cpele in the mesh if they
are pairwise neighbors, Each triangle of a cycle must have s veriex
of valence three. A stencil § is callad gyelic if thers is & cyele in the
sleneil, otherwize the stencil iz called aopelic, We note that a cycle
can only exizt in the siencil if the ¢ycle contins a neighboring i
angle of T2, Cycles can be eliminated in the original mesh by edg2

| & pedphboring wiangle of T shares an edge with T,
EIF the cyele does not contmin o neighbar of T, then it will not be in the
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Figure 3: Edge swapplng t0 remove cyoles in the stencil: (a) the
selecied trisngle contning a cycle in e stencil; and (b) the cycle is
remaved by swapping the common sdge between the triangle and
itz neighboring triangle that belongs to the cvele.

Figure 4: Introducing cycles into the trsngulation: (a) The vertex
pa has valence four, and when trisngle T i collapsed in (b), acycle
&5 infrodoced in the stencils of the ranghes T and 75,

swapping (ses Figure 1) where repeated swapping may be necessary
to eliminate the three cycles that could possibly occur in the stencil.

If & trisngle T bas & connecied acychic stencil S7, we can order
the triangles of the stencil such that a polygon describing the bound-
ary of the stencil is obtained {the stencil boumdory pofygon). If this
polygon contains nd vertices of the origmal inangle T, the stencil
is called complere. Examples of various triangles and their stencils
ars shown in Figure 2.

3.2 Conslderations when collapsing a triangle

As can be seen in Figure 1, as o thangk is collapsed, the friangle
and its neighbors are eliminsted from the mash. The wangls is re-
placed by a single point, which is connected o all points of the sten-
¢il boundary polygon, creating a new tiangulation of the regen.
The pew mesh contains four fewer trangles. Geomstrioally, this
transition i smooth; topologically, it is "discontinuows™ when the
thres vertices eventually become one.

The collapsing process can introduce mangles with scyclic sten-
cils. Cycles in the stencil cocur only in neighboring trinngles and
exch trianghe in e oycle must bave & vertex of valence three. IF
any of the points p, , pa, or pa has valence four, collapsing the tri-
angle T will result in reducing the valence of this vertex by one =
thug sreating & venex of valence three and & cycle. This oyele will
causs thres of the mesh io bave acyclic stencils (zee Fig-
ure4), We dofine a collapsible triangle a8 one that does not introduce
sdditional cycles 05 a result of the collapsing siep.

Collapsing a trinngle affects all tnangles in the siencil. Ifthe sten-
il is “oddly shaped,” this con polentnlly create folds in the resulting
triangles. To avoid this problem, we require the stencil boundary

stencil.
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Figure 5: To establish coordinates of the stencil points, each point
is projected onto P, The local coordinates u, and v,, along with the
distance d; from the plane, define the coordinates of the point in the
legal coordinate system.

p;lm:un. when projecied onio the plane of the triangle, to bs star-
shaped.

With these observations, we define o miangle T 1o be collapsi-
Bie if (1) it bas & complete sencil S5 (2) the unigue vertices of the
neighboring triangles that are not part of the trisngle T' do not have
valence four; and (3) its boundary polygon s star-shaped when pro-
jeated to the plane of the tangls. With the collapsing operation,
vertices change valences, and trinngles dizappear. Thus a iriangle
may not be collapsible in one mesh of the hiemrchy, but may be
collapsible in other meshes, To collapse n tangle, we only need
identify the stencil boundary polvgon and the point e p to which the
triangle is collapsed. For a complete discussion of the topological
considerations of the collapsing operation, see [6].

4 APPROXIMATING THE UNDERLYING

SURFACE

Let py, P2, -y P be the vertices of the triangles that makes up the
stencil of T, and kst ¢ be the centroid of T. We establish a local
eoordinate system in ihe plane of T whose ongin i ¢, uses any
two orthonormal vecters @ and ¥ in the plane of P, and uses the
umit normal vector @ fo the plane of the triangle T, For each ver-
tex Py, we denote its coordinates in the local coordinate system
5 [y, 75, @) (562 Figure 5} If each p; can be irmnsformed into
(g, w5, dj ) in the new coordinate system for 7 = 1,2...,n, then
“m"Hﬂlﬂm{“l:bliii]'lf"jauﬂriﬂ}l“'r‘%!hliﬂ}w
construct a least-squares, degres-two pohmaomial

fris, o) = taon” + caauw + coat® + &1 08 + coav + o,
(1
which will be wsed to spproximate the orginal surfsce in the area

of the trinngle. We can substitute the coordinates of the points
(4, 5, dy) into equation (1), creating the linear system

8 ww oW ow w1 e a0 d;
1.1 €11
ol wavz ol wp w1 da
Cn.2 = 653 = 5
. . O e S R L €10 :
| £p,1 €1
n My U 1 ' ' d
fy ntn Eﬁ n n £8,5 5.8 "
(2)



The resulting nomal squations are

3.0
£1,1 j’
: ¥
e | e | 2 g
oo (22| =uT | ], I
€a,1 '
i ™

and, provided the determinant of U7 7 does not vanish®, this sys-
tem can be solved and the coefficients of the function fr(w, ¢) de-
fermined.

4.1 Curvature estimates

The two principal curvatures of the graph of f7{u, v} &re

wp o= B4 H2— K and (4}
wia B A =K, (5)

whene K is the Causadan carvanere of the surface af (w, v}, and H
is the mean curvaiuee af (o, v) (3ee [4]) The Gaussian curvature i
defined by

- fut.ru o, f:1
(14 13+ f7P°

and the mean curvature by

K (6)

g LR = Uuhfu + (04 B o
1+ £2+ f2)8

In our case, fr(», v) is a hivariate polynomial, and its partial deriva-
lives are

_fu. =g g 4 £ 90+ &1 .8,
Jo =c1an+ 2eoar+ oo,
Fun = 33,0,

fow = 2cp 3, 8nd

.Fn.': L 1 Y

defining the cosfficients that we can substifute directly into equa-
tions (6] and {7} 10 obtain the Gawsssian and mean curvatures of fr
of {w, v}, These can then be substituted in fo equations (4) and (5}
to vbiain the two principal curvafures,

W use this bivariate polynomial to deiermine both the curvatures
of fhe enderdying surfaces and to desermine the point 10 which a tri-
angle T' is o be collapsed. The curvanres are cvalunted ot (w, v) =
(0, 0] ond the "collapse point™ is defined o be

c + fr(0,0)d, (&}
This is the point where the approximating surface infersects o line
through the centroid e in the direction given by .

5 TRIANGLE WEIGHTS

Given o tmangle T, we caloulate its weight os

W(T) = A(T) (warlT) + waa|T) + wV(T),

¥1f the determinant does vanish, points in an “extended siencil™ are con-
sadered,

where A[T) i& the area of T, x({T) s the absolute curvatre! of
the approximating function in the ares sbout T, ofT") 5 a shape
measune which assigns higher weights 1o trinngles that are nesr
equilateral, and V(T'} i a topological measure which penalizes
triangles that will produce high-valence vertices when collapsed
These quantities are combined through user-specified weights w,
L LF ﬂﬂl‘u,mﬂ E Uiy, g, Wy, % ] mdu.. 4+ g 4w =
Those riangles with a small weight will have the least impact on the
mesh when caollapsed.

The curvatuse weight 5( T} is the absolute eurvature of the graph
of the approximating function fr{w, o) of T 8w = v = 0, normal-
ized by the maximum absolute curvature observed in the dais s
When we multiply this weight by the area of the triangle, large iri-
angles in areas of high curvature have the longest weight, and smaf|
trizmigles in flng arens have the smallest

The angle weight o T') is given by

s (gmr)

where o, 1 = 1,2, 3, are T interior angles; o{7T") mnges from
zero for degenerate triangles to one fior equilateral triangles. When
multiphied by the aren of the wrisngle, this assigns a greater weight
i large equilatern] irnngles and o smaller weight oo namrow smnll
tnangles,

Triangles that have high-valence vertices have difficulty in pass-
ing the star-shaped requinement for collapsibility, We saek o nvaid
these situations by ndding a term that depends on the potential va-
lence of the vertex to which the trisngle will be collapsed. The topo-
logieal term V(1) penalizes triangles that produce ventices of high
valence when collapsed (see Figure 6} This term is given by

ViT) = ]ﬂﬂ'ﬂl
iy

whene m, 15 chogsn 10 be & maximum-valence normalizing factor
and £ p is the point 0 which the mriangle is collspeed,

& MESH REDUCTION

Given an initial triangle mesh Ay, we calculate o weight for each
triangle T of the mash and place the trinngle on & pricrity queue—
ordered by increasing weight. Then iterate over the followsng pro-
cedure; r

& Amangle T i removed from the front of the queue, collapsed,
and o new mesh &5 penernied.

¢ The triunghes of the stencil of T' that were modified have their
weights recalculated and are remseried into the queus.

We continue until o coarse mesh is genernted with a specified num-
ber of triangles.

We This process generates o series of triangle-collapse
opemtions  Oo, C3,05,...,Cm  and 0 sequence of meshes
Mo, My, My, M, each of which differs from the pre-
vious mesh by one trianghe collapse. Since each of the tmangle
collnpse operations .4 reversible, we can store the coarse mesh
M, and the sequence Cs, Co—y, ..., Ci (in sienilar way to [10])
and create desired meshes of various resolutions. by reversing
the trinngle-collapse operations — “expanding the vertices into
triangles” - in sequence.

We can make a straightforward modification to this algorithm
that, instead of collapsing just a single triangle in & set, Wentifies o

*We define the ahsodule curvanae 4 2s the sum of the absolute values
of the principal curvatures s 4 = |ug | 4 |mz ],
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Figure 6; Prodocing vertices of high valence. If the dark-shaded triangle in (8) is collapsed, the mesh in (b) is produced. If the dark rangle
in (b) is collapsed, the mesh in (¢} is produced, which contains & veriex of valence 12

Figure 7: Several triangles of the mesh can be collapsed simuliane-
ously. To qualify for this, the risngle stencils mist nol intsrsect

cartain percentage of trianghes that can be collapsed in paralisl This
algorithm recognizes that two triangles can be collapsed in simubta-
neously if their stencils do not overlap (see Figure 7).

Therefors, we remove 8 set of triangles from the queve if thess
conditions hold:

¢ Each trinngle has & weight less than n specified value.

» If we have removed Ta; 11, Tay iery Th, e we can
coly remove a triangle T if it bas & weight less than n speci-
fied value, and if the stencil of T does not intersect any of the
stepcils of the Ty, i =0, ..., k.

Cmce the sequence of triangles T, Th, 15, ..., Tk has been se-
lected, the triangles are collapsed and a new mesh M, is generated.
The weights of the riangles in the stencils of T}, ¢ = 0, ..., k are
recaleulsted and the quens is reordered. A new sequencs of trinn-
gles is selected from the queus and & mesh A is created, and the
process continiies.

The result of this procedurs is a sequence of triangle collapse op-
erations Cog, 1,0, s Cigres Cmen and meshes Mg, My, My, ...
with the property that any mesh A{; can be tmnsformed to mesh
M43 by simultaneously performing the edge collapses . ;. Thess
are agnin stored as a coarse mesh Ady, and the reversed set of
ﬁ'll-ﬂ'lﬁ"ﬂﬂum ﬂp’ﬂld.m 'c-:“ﬂun-h "':Cﬂ‘ E-ﬂi"'l'ﬂlid"'lcﬂ'ﬁ
with “markers” indicating which collapses can be done simultane-
ously.

This leads to n significantly smaller number of trian-
gulation levels in the final hierarchy and allows & smooth blending
algorithm to be implemented by defining a partial triangle-collapse
operstion between consecutive meshes, If we define s parsmetes ¢,
0 <t < 1, we can define a triangle mesh A(t), with the propesty
that AM;(0) = My and Mi(1) = Miga. Milt) is constracied
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Figure 8: The triangle T is the result of triangle T after the collapse
of T The ancestral points of T' are the union of the vertices of T
and T.

by "partially collapsing” all selected triangles of M,: T is n se-
lected trinngle of A4y, with pa, pa, and py as its vertices, and cp is
the point to which the triangle iz collapsing, then the mesh Ai(t)
is the result of lnearly interpolating py and o p —that 18,

paft) =1 +t{er —m)
pa(f) = ps + t{ep — pa), and
pa(t} = ps + tler — pa).

The meshes Adi(t) provide & geometrically continuous method to
vary smoathly between different meshes in the hismmchy.

7 ANCESTRAL INFORMATION

The sequence of meshes and triangle-collapse opermtions provides
an ancesirnl hierarchy for aoy triangle T of & mesh Ay which al-
fows T to be associnted with & set of vertices in the original mesh,
T iz either » triangle in both Ad; and Ay, or T was modified
from o trisngle T in Ad;_y through the collapse of a triangle Ti.
In the first case, the ancestmal points associated with T in A4, are
just the ancestral points of T in A ;_;. In the second case, the an-
cestral points of T' are the union of the sncestmal poots of T and
thosa of T, (3e¢ Figurs 8). In this way every triangle T has & set
of ancestral points in the original mesh Ady which are the points that
affect the construction of the vertices of T

When recalculnting the weight of a triangle T in the stencil of
collspsed risngle, we use the ancestral points in the original mesh
io calculate the approximating surface. These ancestml poinis are
input to the spproximating function caloulstion in Section 4, & new
spproximating function is constrocied, end the collapse point is cal-
culated by squation (8). With this procedure, we always use the ver-
tices of the original mesh to calculate the weights of the triangles,
minimizing the errors that could sccumulate,



8 RESULTS

The algorithm that we have presented allows the representation of
large triangular meshes at varying levels of detail, requiring = rels-
tively small pumber of triangulation levels to be stored. Cur algo-
rithm is based on the iden of collapsing a |large percentage of trian-
gles in an iniermediate mesh n a single step. This principle leads
I significant reductions regarding storage requeremnenis.  Further-
mare, it is possible to smoothly taverse the hiemarchy “upwards™
and “downwards™
We have applied our algorithm to several ba l? triangulated mod-

els and have achieved very encouraging resu

# The skull data set of Figures 5-12 is the output of o marching-
cubes algorithm [12]°. and is represented by & hiesarchy of 48
meshes. Figure O shows the compleie data set where we have
colared the the collapsing triangles and therr stencils. Fig-
ure 10 shows the data set at level seven; Figure 11 shows the
dotn et at level 16; and Figure 12 shows the data set of level
29. The last level contnins less that five percent of the iriangles
of the original datn =1

# The bunny dats set of Figures 13-19 contains 69,668 trian-
gles, In Figure 13, which shows the complete data s&f, we have
colored the the collapsing iranghes and their stencils. Yarious
lewels of detail along with their collapsing trinngles and sten-
cils are shown in Figures 14-16. These illusirations are cho-
sen o represent meshes Ad, (1], where {15 & real number. Flai-
shaded {llustrmtions of the bunny data sct ot bevels comespomid-
ing to Figures 13, 15, and 16 are shown in Figures 1719,

The pictures can be viewed in real time on & Silicon Graphics
Indigo” system with a 1 50MHz R4400 processorand | 28MEB RAM.
The initial preprocessing siep of the algorithm sets up the hierarchy
of meshes in 15 minules for the skull dat set and 20 minstes for
fhve bunny data set. The illastrations were generated wsing weights
of re = wa = w, = . When removing a sequence of trian-
ghes from the queue the algorithm atempted to select 2.5% of the
triengles 1o be collspeed simulaneously,

9 CONCLUSIONS

We hove introduced a new algorithm for the hierarchical represen-
tation of very large triangle meshes, The algonthm generates a hi-
erarchical sct of meshes for n given irinngular mesh. This algorithm
produces o sequenceal meshes Ay, Ay, M, . My, where each
mesh Ad, & collapsed o mesh A4, 5 through e setof simultancous
triangle-collapse operntions, For each mmangle, a function is gener-
ated thut approximates the underlying surfsce in the area of the frian-
gle, and this funclion serves 28 & basis for assigning weights to cach
trinngle and for supplying the point to which trinngles are collapsad,
Using this representation allows us to display a large triangle mesh
nt various levels of demil in real time, while preserving the geometny
of the original mesh

This work has extended previous work on level-of-detail anaky-
sis for trinngle meshes in several ways. First, our algorithm focuses
on the trinngle a8 o primitive — and the friangle-collapse operation as
the primnry reduction strategy for the mesh. Second, our algorithm
produces & sequence of meshes which, together with the triangle-
collipse operntion, can be used o produce o continuous level-of-
detail varintion m the model. We have iniegrated this modal into
a prototype viewing system that suppons interactive level-of-detail

TFor review purposes we have presenied these images in s lange fiemal
For the procecdings, the images would be reduced in size o lie oo @ single

nage.
BThis is the cause of the ridges along the skull in the dats set.

manipulation of complex models defined by large manghe meshes,
Finelly, whenever we compuate the location of 2 new veriex replac.
ing i irianghe, we consider the ancestral hiersrchy created by the col-
lapse operations caleulate the weights of tiangles using the original
surface datn. This ensures that the simplified mesh approximates the
originnl surface well.
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Figure 14: The bunay data setat level-of-detail 642 contains 39,0046
irangles, some of which are partially collapsed. The mesh along
with the collnpsing trinngles and their stencils are shown,

Figurs 1T: The original bunny dats get using fat shading. The daty
gt confaing 6%, 668 tmangles.

Figure 15: The bunny dats set at Jevel-of-detail [B93 contains

10,408 triangles, some of which are almost completely collapsed. Figure |8: The bunny data set ot levelof-detnil 18.93 using flat
The mesh along with the collapsing trisngles and their stencils are shading. The mesh contatng 10,408 tnangles,
ghown,

Frgure 16: The bunny dats setat level-of-detai] 25,67 contains 4,944
triangles, some of which are partally collapsed. The mesh aloog
with the collapeing trisngles and their stencils are shown,

Figure 1% The bunny dsts set at level-of-detnil 25.67 using fat
shoding. The mesh contning 4 %44 fnangles,
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