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Abstract

We formulate the single transverse spin asymmetry in heavy quarkonium production in lepton-

nucleon and nucleon-nucleon collisions in the non-relativistic limit. We find that the asymmetry is

very sensitive to the production mechanism. The final state interactions with the heavy quark and

antiquark cancel out among themselves when the pair are produced in a color-single configuration,

or cancel out with the initial state interaction in pp scattering when they are in color-octet. As a

consequence, the asymmetry is nonzero in ep collisions only in the color-octet model, whereas in

pp collisions only in the color-singlet model.
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1. Introduction. Single-transverse spin asymmetry (SSA) is a novel phenomena in

hadronic reactions [1, 2], and has long been observed in various processes. In these pro-

cesses, a transversely polarized nucleon scatters off a unpolarized nucleon (or virtual photon)

target, and the final observed hadron have asymmetric distribution in the transverse plane

perpendicular to the beam direction depending on the polarization vector of the scattering

nucleon. Recent experimental studies have motivated much theoretical developments for

understanding the underlying physics associated with the SSA phenomena.

An important theoretical progress made in the last few years is the uncover of the crucial

role of the initial/final state interactions [3], which leads to a non-vanishing SSA in the

Bjorken limit in the semi-inclusive hadron production in deep inelastic scattering (SIDIS)

and Drell-Yan lepton pair production processes. These initial/final state interactions were

understood as a result of the gauge link in the gauge invariant transverse momentum de-

pendent (TMD) quark distributions [4–6], and the SSA can be traced back to a naive

time-reversal-odd distribution, the so-called Sivers function [7]. The difference between the

initial and final state interaction in the above two processes results into a sign change for the

associated quark Sivers function and the SSAs. The Sivers function has been extended to

the gluon sector, and the associated prospects have been investigated in recent years [8–13].

Heavy quark and quarkonium productions are natural probes for the gluon Sivers func-

tion [10, 14]. Especially at low transverse momentum, their production will be sensitive to

the intrinsic transverse momentum [15], and can be used to study the gluon Sivers effect.

Meanwhile, the heavy quarkonium production has attracted many experimental and theo-

retical investigations in the last decade, starting from the anomalous production discovered

at the Tevatron pp̄ experiment [16] and a theoretical framework for studying the heavy

quarkonium system, the so-called non-relativistic QCD (NRQCD) [17]. The basic argument

for the NRQCD factorization is that the heavy quark pair are produced at short distance

in a color-singlet or color-octet configurations. The hadronization of the pair (in singlet or

octet) is described by the associated matrix elements, which can be characterized according

to the velocity expansion [17]. This framework had success in explaining some experimental

observations. Yet, we do not have a definitive answer for the production mechanism [18–21].

In this paper, we formulate the SSA in heavy quarkonium production by carefully exam-

ining the initial and final state interaction effects. We follow the general arguments of the

NRQCD factorization. The SSA depends on the color configuration of the pair produced
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at short distance, although the hadronization details are not relevant to obtaining a non-

zero SSA. Therefore, the experimental study of the SSAs shall shed light on the production

mechanism for the heavy quarkonium. We will focus on the gluon-gluon (photon-gluon)

fusion contributions in two processes: one is the lepton-nucleon ep scattering and one is

nucleon-nucleon pp scattering, schematically as

A(PA, S⊥) + B(PB) → [QQ̄](1,8) + X → H + X , (1)

where A is the polarized nucleon with momentum PA, B the un-polarized hadron or photon

with momentum PB. The heavy quark pair QQ̄ produced at short distance (∼ 1/MQ, MQ

the heavy quark mass) can be in a color-singlet (labeled with (1)) or color-octet (labeled

with (8)) configurations, and H represents the final physical quarkonium state. The SSAs

coming from the initial/final state interactions are calculated based on the interactions

between the quark pair or the incident gluon with the remanet of the polarized target. We

are interested in a kinematic region of low transverse momentum for the heavy quarkonium,

P⊥ ≪ MQ, where the TMD parton distribution is relevant. In the following, we will present

a general analysis for the SSAs coming from these interactions in this kinematic region.. A

detailed argument for low P⊥ factorization in terms of the TMD parton distributions is also

important. Especially, when P⊥ is the same order of the heavy quark kinetic energy in the

quarkonium’s rest frame, the Coulomb gluon radiation from the heavy quark might interfere

with the initial gluon radiation and break the TMD factorization [15, 22]. We will come to

this important issue in the future.

2. Final state interactions with the quark pair in the non-relativistic limit. We

first discuss how to formulate the final state interactions effects with the quark pair, taking

the lepton-nucleon scattering as an example. In this process, the dominant subprocess is

the photon-gluon fusion channel, where the photon comes from the lepton radiation. As

we discussed in the introduction, in order to obtain a nonzero Sivers-type SSA, we have

to generate a phase from either the initial or final state interactions. Because the lepton

(photon) is colorless, there is no initial state interaction in this process.

In Figs. 1 and 2 we plot the generic final state interaction diagrams, for color-singlet and

color-octet cases, respectively. If the pair are produced in a color-single configuration, a

gluon has to be radiated. In general, we will have final state interactions with the quark

pair (Fig. 1(a,b)) and the radiated gluon (Fig. 1(c,d)). The interaction with the unobserved
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FIG. 1: Vanishing SSA in photo(lepto)-production of heavy quarkonium when the heavy quark pair

are produced in a color-singlet configuration. The two final state interactions with the quark (a)

and antiquark (b) cancel out each other; the final state interactions with the unobserved particles

cancel out among different cuts.

particle (here is the radiated gluon) vanishes after we summing different cut diagrams [2, 23].

For example, the contribution from Fig. 1(c) is proportional to pole contribution from the

propagator labeled by a short bar with momentum k′ + k1,

1

(k′ + k1)2 + iǫ
δ((k′)2)|pole = −iπδ((k′ + k1)

2)δ((k′)2) ,

whereas the contribution from Fig. 1(d) will be

1

(k′)2 − iǫ
δ((k′ + k1)

2)|pole = +iπδ((k′)2)δ((k′ + k1)
2) .

Clearly, these two contributions cancel out each other, because the other parts of the scat-

tering amplitudes for these two diagrams are the same except the above pole contributions

which are opposite to each other. The above result is quite general, and shows that all the

final state interactions with the unobserved particles do not contribute to the SSA for the

associated process.

Therefore, we only need to consider the final state interactions with the quark pair. Two

example diagrams are shown in Figs. 1(a) and (b). In the non-relativistic limit, the final
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state interaction with the quark in Fig. 1(a) can be derived as follows,

Φ(k − P

2
; ij)(−ig)γρT bi

6k− 6k1 + MQ

(k − k1)2 − M2
Q + iǫ

Γ

≈ g

−k+
1 + iǫ

Φ(k − P

2
; ij)T bΓ , (2)

where k and P are momenta for the quark and the quark pair, respectively, Φ represents

the wave function for the pair, ij are color indices for the quark and antiquark, b is the

color index for the gluon attaching to the quark line, ρ is the index contracted with the

gauge potential Aρ, and Γ represents other hard part for the scattering amplitude. The

light-cone momentum components are defined as k± = (k0 ± kz)/
√

2, and we assume that

the polarized nucleon is moving along the +ẑ direction: PA = (P+
A , 0−, 0⊥). In the non-

relativistic limit, each of the quark and antiquark carries half of the pair’s momentum,

k ≈ P/2, and they are on mass shell: k2 ≈ M2
Q. More over, the dominant contribution from

the gluon interaction with the nucleon remanet comes from the gauge potential A+ in the

covariant gauge, and where the gluon momentum is collinear to the polarized nucleon. In

above derivation, we have also only taken the leading power contributions, and neglected all

higher order correction in terms of 1/MQ. This derivation shows that we can simplify the

final state interaction as an eikonal propagator. Similarly, when the gluon attaches to the

antiquark, Fig. 1(b), the contribution will be proportional to

−g

−k+
1 + iǫ

T bΦ(k − P

2
; ij)Γ , (3)

where the Γ is the same as above. The minus sign of this result comes from the interaction

with the antiquark. We can combine the contributions from these two diagrams together,

and it is proportional to

g

−k+
1 + iǫ

(

Φ(k − P

2
; ij)T b − T bΦ(k − P

2
; ij)

)

Γ . (4)

From this, we immediate find that the SSA contribution vanishes if the pair are produced

in a color-singlet configuration, for which the color matrix for Φ will be Φ
(1)
ij ∝ δij , and the

above two terms cancel out each other completely. This observation is generic, and only

depends on the non-relativistic approximation we made and it is valid for higher orders

too. Therefore, we conclude that the SSA for heavy quarkonium production in ep scattering

vanishes in the non-relativistic limit in the color-singlet model.
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FIG. 2: Nonzero SSA in ep collisions arise when the heavy quark pair are produced in a color-octet

configuration. The two final state interactions with the quark (a) and antiquark (b) have net effects.

However, the above arguments do not hold when the pair are produced in a color-octet

configuration, for which we will have net effects from the two final state interactions. We

show these interactions in Fig. 2. Because the pair are in color-octet, the color matrix of

the wave function can be parameterized as Φ
(8,c)
ij ∝ T c

ij where c = 1, · · · , 8 represents the

color-index of the pair. The sum of the two final state interactions will be proportional to

g

−k+
1 + iǫ

(−ifbcd)Φ
(8,d)Γ , (5)

where the latter factor is the same hard part in the above scattering amplitude. This result

can be summarized into a diagram shown in Fig. 3(a), and can be easily extended to a

two-gluon exchange contributions (b), which is proportional to

g

−k+
2 + iǫ

g

−k+
1 − k+

2 + iǫ
(−ifdce)(−ifbef )Φ

(8,f)Γ . (6)

When it is generalized to all orders, we will find the final state interactions can be summed

into a gauge link associated with the gluon distribution, and the SSA depends on the gluon

Sivers function, which is the spin-dependent part of the following distribution [25],

xG⊥
1T (x, k⊥) =

∫

dξ−d2ξ⊥
P+(2π)3

e−ixP+ξ−+i~k⊥·~ξ⊥ (7)

×
〈

PS⊥|F+
µ(ξ

−, ξ⊥)L†

ξ−,ξ⊥
L0,0⊥F µ+(0)|PS⊥

〉

,

where sum over color indices is implicit. F µν is the gluon field strength tensor, F µν
a =

∂µAν
a −∂νAµ

a −gfabcA
µ
b A

ν
c , x the momentum fraction carried by the gluon, k⊥ the transverse

momentum. Lξ the process-dependent gauge link [4, 5]. For the diagrams in Fig. 3, the

gauge link sums all the final state interactions with the quark pair (in color-octet state), for
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FIG. 3: Summarize the two final state interactions in Fig. 2 into a gauge link associated with the

gluon interaction.

which we have future pointing gauge link going to +∞,

Lξ−,ξ⊥ → L∞
ξ = P exp

(

−ig

∫ ∞

0

dζ−A+(ζ− + ξ)

)

, (8)

in the covariant gauge, where Aµ = Aµ
c t

c is the gluon potential in the adjoint representation,

with tcab = −ifabc. A transverse gauge link at the spatial infinity is needed to retain the

gauge invariance in a singular gauge [5].

A potential contribution to the above gluon Sivers function comes from the quark Sivers

function by splitting. Following the calculations in [24], we find that the large k⊥ gluon Sivers

function can be generated from the twist-three quark-gluon correlation function TF (x) [2],

G⊥
1T =

αs

2π2

ǫαβSα
⊥kβ

⊥

(~k2
⊥)2

Nc

2

∫

dx′

x′

{(

x′ ∂

∂x′
TF (x′, x′)

)

× (1 − ξ)
[

1 + (1 − ξ)2
]

+ TF (x′, x′)2(1 − ξ)2
}

, (9)

where ξ = x/x′ and a sum over all quark flavor is implicit. The overall sign of this distribution

depends on the relative contribution from the derivative and non-derivative terms, and the

up and down quark contributions.

In summary, the SSA in ep collisions vanishes in the color-single model, but survives in

the color-octet model.

3. SSA in pp collisions. Now, we turn to the SSA in heavy quarkonium production in

pp collisions. In this process, we have both initial and final state interactions. However, as

we showed above, when the heavy quark pair are produced in a color-singlet configuration,

there is no final state interaction, and we only have initial state interaction contribution.

We show a typical diagram in Fig. 4(a) in the gluon-gluon fusion subprocess. This diagram

is in particular the dominant channel for χc production in the color-singlet model [17]. The
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FIG. 4: Only initial state interactions contribute to the SSA in hadron-production process in the

color-singlet model (a). On the other hand, the SSA vanishes in the color-octet model, because the

cancelation between initial (b) and final (c) state interactions.

initial state interactions for this diagram can be analyzed, and we find the SSA will depend

on the gluon Sivers function defined in Eq. (7), however with a gauge link going to −∞,

Lξ−,ξ⊥ → L−∞
ξ = P exp

(

−ig

∫ −∞

0

dζ−A+(ζ− + ξ)

)

, (10)

and the associated SSA will be opposite.

However, if the quark pair are produced in a color-octet configuration, we will have

both initial and final state interactions. After taking into account both contributions, the

associated gauge link becomes, Lξ−,ξ⊥ → L−∞
ξ L∞

ξ , which is responsible for the SSA. However,

the contributions from the two gauge links cancel out each other completely. This is because

the combined gauge link is invariant under time-reversal transformation: the two gauge links

transform into each other and the combined one remains the same. We have also checked

this cancelation by an explicit calculation up to two gluon exchange contributions. This

result indicates that a standard TMD factorization breaks down for this case, similar to

recent discussions on the dijet-correlation in hadronic collisions [26].

4. Summary. In this paper, we have formulated the single spin asymmetry in heavy

quarkonium production in high energy scattering in the non-relativistic limit which should

be valid in the limit MQ → ∞. Very interesting observations were found. The SSA vanishes

in ep collision when the pair are produced in a color-singlet configuration, and a nonzero

SSA arises from the color-octet contribution from the gluon Sivers function with the gauge

link pointing to +∞. On the other hand, the SSA in pp collisions in the color-single model

depends on the initial state interactions leading to a gluon Sivers function with gauge link

pointing to −∞, and the initial and final state interactions cancel out each other in the
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color-octet model and the SSA vanishes to all orders.

In our discussions, we only considered the gluon-fusion contributions. The quark channel

is also important for heavy quarkonium production, especially in pp collisions at relative low

energies. In this case, the SSA will depend on the quark Sivers function from the initial

state interaction in the color-single model, which however is opposite to the Drell-Yan SSA

because of different color-factor, with a relative factor (−1/2Nc)/CF . In the color-octet

model, both initial and final state interactions contribute. At one-gluon exchange order, the

final state interaction dominate over the initial one, and their total contribution carries an

overall factor −(Nc/2 + 1/2Nc)/CF relative to that in the Drell-Yan process for each quark

flavor contribution. It will be interesting to compare the SSA in these two processes, and

scan the energy dependence [14, 27].
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