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A study is made of the single pafticle dynamics of an electron-
pdsitron storage ring where the phase slip factor is made small in order to
make the ring nearly isochronous and reduce the bunch length. What is

. found is that a quasi-isochronous ring makes it possible to obtain a bunch
length in the millimeter range, about one order of magnitude shorter than -
Ppresent values.

In this study we have extended the Work of others on isochronous
storage rings by quéntitativcly including higher-order terms in the
longitudinal equations of motion. Scaiing laws are then derived relating the
linear term with the next highest order term. These scaling laws which are
derived from a 2-dimensional Hamiltonian (1 dimension of position and 1
of momentum) establish criteria for stability. Thése scaliﬁg laws are then

checked with full 6-dimensional tracking on one particular lattice.

PACS numbers: 29.27.Bd, 41.85.Gy -



I. INTRODUCTION

Thé exploration of the structure of matter at sméller and smaller distances follows
two paths. The first is the construction of higher energy accelerators, like SSC, LEP and
fumrc linear colliders, to allow for a direct investigation of very short distances and more
massive particles; the second is the Study, usually af lowér energies, of the violation of
symmetry principles, or dctailed tests of the validity of the standard model. Examples of
this second approacﬁ are the study of CP violation in K meson or B meson systems, and
the related proposals of K factories, B factories and ¢ factories. In these factories the mosf ,
importaht parameter is the collider luminosity. To reach their goal these systems must have
an circr larger luminosity; in the case of B faétdries the required Qaluc is gmzitcr then 1033
cm 25 -1, and values in excess of 103 ¢m 25 -1 would be desirable.

One strategy for increasing the collider 1ﬁminosity isto incr/easc the average electron
and positron beam current. An alternative to this approach is to mal!<e the luminosity larger
by increasing the beam densities at the iﬁteréction point [1]. This requires a reduétion in the
bunch length and # strong beam transverse focusing to a beta function of the order of the
bunch lehgth. In this case the luminosity scales like the inverse of ﬂlé bunch length.

1:_1 this paper we focus on the possibility of reducing | the bunch length in an
electron-positron storage ring co}lider by making the storage ring nearly isochronous, i.e.
with a revolution time independent of particle energy. This is ddhe by reducing the lin;car
te'r_m in the ring phase Slip factor .to nearly zero. We study the beam dynamics in this
ess'ehﬁally'nonline;ar situation and estaﬁlish the condiﬁon for stable single pafticle motion.

‘We find that by considering only the longitudinal degree of freedom (corrcsponding
to the direction in which the beam is travelling) it is possible to arrive at an analytical
formula which describes the size of the stable longitudinal phase space area, including the
effects of nohlinear terms. The size of the stable phase space area in an accelerator is -

important because it has a direct bearing on the lifetime of a beam of particles in a storage



ring. The larger this area is, the smaller the chance that a particle can "visit" an unstable
region of phase space and 'get lost from the beam.

From this analytical formula we derive scaling laws which dctexminc_: how largé the
nonlinear terms can be a:td still provide a sufficiently large enough stable phase space area
for a good beam lifetime. We also show how 1t is possible to control the nonlinear terms in
the equations of motion with sextupoleS and higher order magnets.

Finally our scaling laws which, are derived froni a two dimensional Hamiltonian
are checked on a specific accelerator lattice with 6-dimensional trackin_gv. The accelerator
lattice which we chose as an example of a quasi-isochronous ring is the synchrotron at the .
| UVSOR facility at the Institute for Moiecular Science in Okazaki, Japan [2]. The results of
the 6- d1mcns1ona1 tracking code give us confidence that the scaling laws do give a good

‘measure of the size of the stable phase space area for that lattlce

A. Reference frame

Prior to beginhinga discussion of the equations of motion of a particle in a storage |
ring collider we will first define the reference frame to be usedv throughout this discussion. = °
There e;tists in all storage rings a closed orbit called the ideal or reference or design orbit of
| the ring. ﬁis design orbit is the orbit of the "ideal" particle for which the machine is
designed. The ideal particle has the reference energy, Eo, and the proper phase with respect
to the radio frequency cavity, and follows this design orbit. It is convenient to use a
coordinate system where a particle's position is measured w1th respect to this design orbit.
The inétantaneous position of a particle in the ring can be specified in terms of (s,x,y),
"v_vhere s is the azimuthal coordinate_ of the particle me_:asured along the design orbit from
some reference point, x and y are the reSpective radial and vertical distances of the particle

from the design orbit. This coordinate system is illustrated in Fig. 1.



II. LONGITUDINAL EQUATIONS OF MOTION (2-DIMENSIONAL
' THEORY) % - |
Our discussion of quasi-isochronoue storage rings will be preceded by a short
summary of the general equations of motion for the longitudinal degree of freedom of a
storage ring, after which the differences between conventional rings and quasi-isochronous
' rings may be more clearly illustrated. The main difference between a conventional and a
quasi~isoehronous storage ring lies in the longitudinal beam (iynamics; the tran.sx;erse beam
dynamics are not strongly influenced, exeept for the synchrobetatron coupling effects. In
particular the -synchretron oscillation ﬁ'equency is assumed to be very small. Defining what -
we mean by‘ very small is one of the key questions te be addressed here.
Let's first define what we mean when we say that a storage ring is isochronous. A
storage ring-is isochronous when the time it takes for a particle to make one revolution
v around the ring is independent of its energy The degree to whieh a storage ring approaches
the isochronous condition is descnbed by the parameter 7, the phase slip factor ‘The phase
slip factor is defined as the relauve difference of the revolution time Wthh an arbitrary
particle and the reference particle take to go around the ring, divided by the arbitrary

particle's relative energy deviation from the reference particle:

(Ta—To)To
(Ea EO)/EO

-

n= (1)

In the limit that 7 goes to zero, the machine is operating in an isochronous mode.
When 7 is small, we say the machine is operating in a "quasi-isochronous” mode. What we
mean by small is several orders of magnitude smaller than what exists in machines
presently. This means values of the first order phase slip factor, 7, (see equations 11 and

12) of 104 to 10-5. The bunch length in a storage ring is proportional to the square root



of n¢, [1]. Reducing 7, by two orders of n‘lagnimde'bresults in a bunch length reduction
of one order of magnitude. Reducing the phase slip factor is the method by which the
quasi-isochronous ring accomplishes the decrease in the Bunch length. Of interest is the fact
that when we rhake 7lc, small, nonlinear terms which are usually neglected in the
equations of motion can become important. To allow for this possibility we assume in the
equation of motion that 1 is a function of the particle energy, 11 =1 (8 ), where § = (E3 -
E@)/Eg is an arbitrary particle's relative energy deviation from the reference particle. We
define the phas¢ distance, Y, as the difference between the arbitrary particle's and the
reference particle's time of arrival at the RF cavity multiplied by 27/T¢, Therefore, in one
turn the changé in the phase distance is AY =2n(T, - To)/To). Using as variables & and .
¥ we can wrife_ the equatioﬁs of motion for electrons in the presence of synchrdtron

radiation energy losses and a radio frequency system that can compensate these losses as

v =n(s)s o @)
5'=§%‘;%sin(hlp+ %)_%Eogh + Jgd) + fluctuations | 3)

where Vq is fhe_ RF peak volfag'e, Uy is the energy radiated per turn from the reference
particle, Jg is the radiation damping partition number [3j, and with fluctuations we indicate
the term arising from quantum fluctuations in the emission of synchrotron radiation. The
prime superscript irnpﬁes a derivative with respect to g, where ¢ is time and @y =2 Ty
is the revolution frequency of the reference particle around the ring. The harmonic number

_ his the ratio of the RF frequency to the révofution frequency (h = wrp/ax).

A Phase slip factor



The phase slip factor, 17 (), as discussed earlier is dép_endent upon two quantities:
- the difference in velocity between the test particle and the ideal particle and the differénée in
path length between the test particle and the ideal particle as they travel around the ring. The
faster the test particie moves, the farther it moves, tending to decrease ?’; however, the
\‘long-er the path length, the longer it will take to move around the ring, tending to increase
Y. The information concerning these effects is embodied m the i)hase slip factor and can be

rewritten as

n= _(Ta—ToVTo _AT/To _A¥PRR - : @
(Ea—EoYEo AE[Ey  AE/Ep.

where A¥ is the change in ¥ per turn for given AE.
The full expression for 7 is [4]

o [he | |
), dWRFETT LR

‘where ps is the local fadiu,s of ;:ufvaune of the design trajectory and By is the velocity of
the particles in the laboratory frame‘ divided by the velocity of light. To simplify this initial
‘discuséion of a quasi—isochro‘nous ring, we will expand 77 in succéssive orders of 6 and
assume that § is constant for each particle during bne revolution. This is a reasonable -
assumption in the absence of synchrotfon fadiation_ and in the limit that the Synchrotron
oscillation frequency, V'SO (see equaﬁibn '23), 1s small. We do this in two steps. First, x, s

‘x “and y "are written in terms of a series expansion in.powers of &

x =xﬁ¥bxo5+Dxl5?+... ' v D (6).



y =B | - M
X =‘x;3.+D}C06+D;C152+... | | ' (8)
Y =Yg | | | ®

where xg is the betatron amplitude of the oscillation and D_xo and D x, are the first and
second order components of the dispersion function. We assume for simplicity that the
dispersion is zero in the vertical (y) direction. Second, the square root in equation 5 is

expanded in powers of 8. The phase slip factor can thc_n be written

| n:%(l+ N1+ n206+... - ' | | (10)

. At this point we define the closed orbit phase slip factor, 7)¢, which is the phase slip
factor without any betatron oécillatibn terms (i.e. xg=yg = 0). In other words 7 is the
- difference in revolution time that a particle with an ehergy offset ,6, ravelling on its' closed
orbit takes to circulate around the ring relative to the reference particle. For the remainder of
- this discussion we will only discuss 7)., neglecting betatron oscillations. However betatron
oscillations will be introduced in the nur'hel'ical tracking. -
| The closed orbit phase slip factor, 7., can be expréssed as a power series expansion
ind | }
ninclfnc25+--o | | © (1)

The term Ne, is given by



Lo - : : _ _
=1 X0 1
Ty ——f ds [———}— — S - (12)
Loj, L ps /30276 o |
The M, term is given by

Lo

: ' 2' ’ : . .
ey =7 ds[D;O +Px 1 Qﬁl}r 3 {1,+ 1 } (13)
o LT P opod ol opgl  Bedl

0

Normally the 7], term is the dominant term in determining the patticle'é rr_iotion. ’

For highly relativistic particles it is usually positive but can be made nearly zero or negative

‘by having in the ring regions of inverted bending, p; < 0, or of negative dispersion, Dy
0 '<_ 0 [51.

As anvéxample of whaf typical values of the emittance, first order phase slip factor,

diépérsion and B, are, we give their values in the smooth approximatioh [3]. In the

 smooth approximaiion thé emittance, &, the phase slip factor 7, the di‘spersio'n Dy,,

and the horizontal beta function f; are

e=§_5-83—6,%m v - 4
xvxi . } ‘ :
11 | ' '

foy=Lt-—1— ‘ | | | . (5)
T -

on=% - - " (16)
Vx_ . ’

=R : : ' : R
=R - an.



where vy is the horizontal tune of the ring, R is the average radius of the ring, J, is the
horizontal betatron radiation damping partition and 8,5 is the relative rfns_ energy spread
~of pafticles in the ring. | ‘

For a ring which has an 8 meterhradius, an rms energy spread of 3.5 x 104 and a
“horizontal tune of 3: € =7.3 x 108 mrad, Dy, = 0.89m, 7¢y = 0.11, and Bx = 2.67m

having assumed Jg/J, = 2.
III. QUASI-ISOCHRONOUS STORAGE RINGS

: The value of 7., can be adjusted to be zero or neg’ativc. by having regions of
negative dispersioh or inverted bending in the ring (see equation 12). The effects of the
higher ofdcr terms of the phase slip factor become important when the linear phase siip
factor, 7)¢;, is made small. |

As a first step toward'understanding the bchavior of a quasi-isochronous storage
ring, we study the equations of motion where the phase slip factor is given as

N="1c; + N0 : : . (18)

and ignore higher ordef terms ih 6.:
We begin with a discussion of what is importaﬁt for good beam stability and
lifetime in the ring from a single pafticle‘ dynamics point of view. A serious consideration |
when designing a storage ring which has good beam lifetime is that there should be a
"1a‘rge"» three-dimensional . volume, the dynamic.aperttllre, in which particles can stably
circulate arouhd the ring, oscillating arounvd'the reference trajectory. For a ring circulating
electrons or ‘povsitrons, this vblumc should at least be fen times the rms value in all three
dimensions [3]. The reason for this is that sudden changes in the momentum of a pérticlc

can result from the emission of a photon, and this change can shift the particié to a much -

N

9



different region of phase space than it occupied previously. The particle will then tend to
damp down to the reference particle's position because-of radiation damping. The whole
region iﬁ which the particle "lives" must be stable or thc.particlc will be lost. Because the
Iongitudinél equati;)ns of motion can be rather nonlinear in a qﬁasi—isbchronous stérage
ring,-wc had concerns about the size of the stable ‘longitudinal phase space area. We have
derived general scaling laws which give the size of the longitudinai phase space in terms of
Me, and 7 5 |

In the development of these 'scaling laws four approximations are made. The first
- approxi'rhation'is that the longiﬁ&nﬂ and transverse motion. are uncoupled. So when
looking af longitudinal phase space only the longitudiﬁal équation% of motions, équations 2
and 3, need to be considered. The second approximation made is that the transverse

displacement of a particle is only a function of its energy and can be written
x=Dyy+ Dy, 4 | 19)

In other words, the particle's betatron oscillations are ignoréd G.e. = 7). Thc third.
- approximation is based upon the assumption that there are no longitudinal dampingin the
system. The fourth apprOximation is that there are no energy fluctuations due to photon
emissions. |

These approximations are made for scvcrai rcason.sl. The first reason is that treating
- the motion as completely dccbuplcd r’naices arriving at an analyticél expression for the size
of the dynamic aperture possiblé. This assumption of decoupled motion is reasonable,
especially if the transverse motion is relatively linear and the betatron oscillations are small.

The second reason is that the particles in the ring will perform synchrotron |
oscillations about a stable fixed point. This stable fixed point varies for particles with
betatron oscillations of different amplitudes. Particles with a large betatron oscillation will

oscillate about a point with a larger value of & than particles with small betatron oscillations.

10



As long as thé stable fixed point is not shifted too much, the assumption of zero betatron
amplitude shouldn't affect the stable phase space area. . |

The third reason for making these approximations is that longitudinal damping
provides a stabilizing presence. In our calculations we are concerned with beam loss dué to
leév’mg the dynamic aperture. In such a case th_ié would lead to rapid particle los_s,' usually
in a time mﬁch less then a damping time. Hence we neglect damping and stochastic
fluctuation proc¢s$¢s because they operate on a sloWer time scale. This is justifiable if the
dynamic aperture is much larger then the beﬂm emittances. Thé results which have been
derived from this analysis should serve as guidelines.

The loﬂgitudinal equations of motion (equations 2 arid 3) in the absence of damping

and fluctuations can be rewritten as

¢ = h{ne,6+ 15,87 . | 0)
;':%[sm (¢ + g0)— sin (¢0)] o | @

- where ¢ = h . In this case the system cé.n be described by the Hamiltonian

H= %hncla-z + %hnczts_B + %’0—[098 (0+¢0)+ psinfgo)] (22)

From the Hamiltonian it is now possible to distinguish stable frovm’ the unstable
| regions of phase space. Now we would like to single out two different longitudinal phase

space regimes: the RF bucket and the Alfa bucket regime.

A. RF b_ucket

11



For ac.cclerators with a large 7, o Me, can be ignofed in the cquations of
_ motion. The stable phase space is bounded by a separatrix which can be seen in Fig. 2. The
trajectories are characterized by one stable and one unstable fixed point. |
For the sake of an example, let's assume that the ring is operating above transitioh,
ie. Ne, > 0. Thét means that the higher-energy particles have a smaller revolution
frequéncy than the lower-energy particles. In this case cos'¢0 < 0. The synchrotron

- frequency or small oscillation frequency around the stable fixed point is

Rl eV '- o |
vio = S @

The separatrix which passes through the unstable fixed point encloses the stable
phase space area (see Fig. 2). The fixed point is locatedat ¢ = T —2¢p and 6=0. The

maximum stable energy displacement is

S = ,\/{ﬂhano )smd)o cos¢0]} | | .- (24)

Now that the stable phase space area is defined it can be compared with the rms
bunch length and rms energy spread. In this RF bucket regime, where M, is large and

TNc,is small, the conditions for a good lifetime are

oL, < %1}_(5;,;3@) | @5)
Srms <2k 8 | | (26)

B. Alfa bucket

12 .



What happens as we decrease ncl? When we reduce the value of 7¢ L the
energy acceptance given by equation 24 becomes larger. However the longitudinal
' chrofnaticity term, 7]c,, if non zero, becomes important, and the phase-space vtrajcctoriés
are modified. With a non zero value of N, there are now two stable fixed points and two
unstable ones. The stable fixed pointsare (¢ = 0, §=0) and (§ = & —2¢,, 6 =-
Me,/ Nec,) - The unstable fixed points are (=7 ~2¢5 6 =0) and (¢=0,0=~
Mey/ Mey) - |

There are two phase-space regimes corrcSpohdjng to whether the distance between:
the stable and unstable ﬁxéd points is larger or smaller than the ﬁnear maximum énergy

displacement defined in equation 24 and they are separated by the condition

=/ {Ehz%%g (E"%)Si‘i%4'°°s 0| | @7)

~ These two regimes can be seen in Figs. 3a and 3¢ respcctivély, where 3b is the case which
lies on the boundary between the two regimes and occurs when equation 27 is satisfied.

’ The first regime is the RF bucket regime Whe’re there are two stable phase space
areas which lie over each other (see Fig. 3a). One bucket is just that which is i]lustratcd‘ in
Fig. 2 and the other is one which is directly bél:)w it. These stable phase-space buckets are
sometimes described as “fish," whére the stable fixed points represents the eye and the
unstable fixed points represents the tail. If the machine .is operated above transition, the
upper fish is "swirnming"vin the ncgativ_c ¢ direction, while the lower fish is "swimming" '
in the posmve ¢ direction. |

The effect of decreasing the ratio of Ne, / Ne, is that the lower fish will rise
towards the upper fish. At the point where Ney/ Ne, = ém the two fish are both
"shan'xjg" the two unstable fixed points. Each separatrix goes through the two unstable

fixed points. By decreasing the ratio still further, the result is that the fish "exchange" tails.

13



Now the fish are "swimming" up and down. The fisﬁ whose "eye" is at (0,0) is
"swimming" in the positive 6 direction and the fish whose "eye" is at (& — 2¢g, —
Ne,/Ne 2) “is "swimming" in the negative § direction. “ |

The regime in which the fish are "swimming" up and down we refer to as the alfa
bucket regime (see Fig. 3c). In the RF bucket regime the RF cavity determines the size of
the buckets, whereas in the alfé bucket regime the phase slip factor determines the size of
the buckets.

In the alfa bucket regime the condition for a good lifetime is
1 Na ' -
Orms < }ﬁ %;' | . v (28)

For a given value Ne, this gives a limit for the smallést value of Me, which the ring
can s‘upport with a good lifetime. In order to have a smaller value of Me, we would need
- to first reduce the value of Ne,- In other words the lqngifudinal chromaticity needs to be
reduced in c;rder to decrease Ne, - ‘For a given My the phase space will be iar'gest when
Ne, = 0 . Therefore it\ is desirable to set Nc, 0 zeTo.
The term n(l,)_ acts as a change in the longitudinal or synchrotron tune of a particle

“in the ring as a function of its energy. The term e, is related to what we call the
""longitudinal chromaticity" of fhe ring and it corresponds to a change in the sy_nChrotron

tune with energy

_ avs(8= O) _y TNy
96 *0ncy

Vs

@9) -
The first and last two terms in the expression (equation 13) for Mc, are always
positive. In the absence of sextupoles the first term in equation 13 which is a function of

Dy, is always positive and for highly relativistic particles is the dominant term for

1

14



determining ey The second term in equation 13 which is a function of D x, can be
rﬁade poéitive_or negative with sextupoles and can balance out the other terms. Therefore
the longitudinal chromaticity can be set to zero with sextupoles (setting Mey = 0) in the
same manner as transverse chromaticity. The use of sextupoles to con&ol e, has been
suggested by othérs in connection with minimizing beam loss during transition crossing in
hadron synchrotrons [6].

 We have derived an expressio.n (see Appendix A) todetcrminc; how effective a
sextupole is at changing the value of Ne,- The change in Ne, resulting from a thin
sextupole with an integrated strérigth of S located at a longitudinal position s(S) where

D, 0 and Dyo are the rcspecﬁve horizontal and verﬁcal dispersion at s(S) is
Anicy =~ 25D3, ~ 3% | - e

where L is the length of the trajectory around the ring of the reference particle.

In order to control indeﬁendently the chromaticity both transversely and
longitudinally without effecting thé linear lattice functions, three families of sextupoles are
needed. This third family of se’xtup'olés is important if the machine is going to opérat¢ at
very small values of Ne,- In equation 30 we give an.eﬁ(pression for the effect of a
sextupole on Ne,- One can also determine the proper field strengths for all three sextupole
families from the one-turn transfer map of the ring [7]. |

. The two dimensional theory can be generalized to include higher order & terms in
the phase slip factor. The unstable fixed point in the alfa bucket regime is found by setting
1 = 0. The maximum value of 8;; which is stable is the smallest solution of equation- 31

which is real.

Nyt NeyOm + nc36,3,'+ ...=0 : - _ (3D

15



In the development of these laws we have ignored any synchrobetatron coupling.
Therefore these results need to be verified for any given quasi-isochronous latdée with full
} 6-D trackmg

. IV. COMPARISON OF THE TWO DIMENSIONAL THEORY WITH SIX
DIMESIONAL TRACKING ,

" We have made a comparison of the two dimensional theory with six dimensional
tracking for one particular lattice. As mentioned earlier, the storage ring which we;chose as
an example- of a quasi-isochronous ring is the lattice of the ‘UVSOR ring [8]. A list of

-parameters of the ring in a normal and low 7, operaﬁon are given in table I. V

The lattice of the ring is a double bend achroniat 6f periodicity four. There are four '
families of quadrupoles and two families of sextupoles. When going from the normal to the
low 7, i configuration, the four families of quadrupoles were‘ adjusted to kecp ‘the
transverse tunes constant, to'keep the beta functions at the end of each period nearly
constant, 'and to vary 7]c,. The sextupnles were Aadjustcd to keep the transverse
chromaticities constant. In the low ncl_cnnﬁguration, Ne, is 1.3 x 10-3 and nc' . is
0.16. The ﬁrst order phase slip factor in the low Ne, is one thirtieth of the normal
conﬁgura‘tion. We used this low u configuration for our tracking comparison.

The tracking was done with an explicit symplectic integrator [9]. The integrator was
derived from the full six dimensionai Hamiltonian [10] for a particle in an isomagnetic
guide field with a thin lens 'cavity Also this code utﬂizcs automatic differentiation 1 i] to
calculate Taylor series relative to the synchronous particle making one revolutlon around
the nng From these Taylor series or one turn map, we can extract both linear and nonlinear
properties of the map such as chromaticity, Ney» Meys Mege and ...[7]. |

| We chose the following criteria fnr determining whether ornota particle is outside
of the dynamic aperture: A particle which vcniures more then 1m transvers‘ely from the

reference orbit is considered lost and is thus outside of the dynamic aperture.
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We used the following procedure when tracking. Particles were launched with
- initial transverse coordinates, x and y ‘and an initial relative energy offset & but no initial
transvefsc momenté Wx=py= O)' or initial longitudinal offset (s = 0). These particles wcre
“pushed" around the ring until they were either lost from the dynamic aperture or survived
-5 synchrotron oscillatiéns (10,000 turns). The particles with the largest initial values of x
and y which survived were -fét:orded. This gives us a fairly good idea of the size of the
dynémic aperture. |

| We initially tracked parﬁcles With small betatron oscillations. The results can be
seen in Fig. 4. The cusp of -the "fish" is at & - 0.008 which is the \}alue prediéted by
ncllnc2. This means that the higher order terms in 7j¢ ie. Nc4, Ne4» - dO DOt
contribute significantly to the bucket shape.

The results of tracking particles with large betatron oscillations can be seen in Fig.
- 5. In Fig. 5 one can see.a three dimensional closed surface viewed from three different |
angles. Particles that had initial'coordinatcs_ inside the aperture s@ivcd and those outside.
were lost. This sﬁrface gives a rough idea of how large the dynamic aperture is. What is
found is that the scaling laws give an accurate prediction of the length of the stable phase
spacé area in 6. The longitudal aperture does begin to shrink appreciably only at very laige
bctatrori amplitudes.

We can conclude from thése results that the emittance of the ring contribﬁtcd véry
littlé to determining the size of the longitudinal phase space afea. The longitudinal phase
space in this ring is determined priniarily by the Me, and 4110 ) terms. This gives us
confidence that for the ring, the simple scaling lav&, equation 28, agrees well with the 6
dimensional tracking and is thus »é good guide to determining the size of the stable
‘Jongitudinal phase space area for that particular lattice. | |

In order to proceed to lower values of Te, it is necessary to adjust the sextupoles

in the ring to lower Nec,- At UVSOR they were experimentally able to adjust N¢, by
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varying sextupole strengths [12]. Being able to contol Nc, allowed them to operate the

ring at a lower value of 7, .
V. CONCLUSION

We have demonstrated that the size of the longitudinal phase space is governed by
the strengths of the higher order 6 terms of the phase slip factor. We derived simple scaling
laws to give a quanntatlve estlmate of how large this phase space area is. We also showed
“-that it is possible to correct the higher order terms in the equation of motion with higher
order rnaghets and to give an expression for the effect of a sextupole on 7,. It is thus
possible from the point of single parﬁcle'dynamics to operate a ring with a small value of
nclr and still have a sofﬁcienﬂy large stable longitudinal phase spaee area. Therefore
A storage rings should be able to produce short bunch lengths by just decreasing Mey-

We have previously studied the effect of the longitudinal microwave instability on
the collective stabihty of the beam [1]. We found that the threshold peak current should not
decrease as we lower Nc,- In fact with the inclusion of radiation damping, the bunch
should be able to tolerate a larger peak current than when operating in a larger 7., regime.
This work was done assuming a br_oad band impedence and SPEAR scaling. We are in the
pfocess of studying the effect of the vacuum impedence [13] .or the effect of coherent
radiation which increases as the bunch length decreases. We hope to report on this soon.
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APPENDIX A THE EFFECT OF A THIN LENS SEXTUPOLE ON Ne,

Let us assume that there exists a 6-dimensional phase space where a vector z in this

space is of the form

Z= (X, Px, ¥, Py,T =Ct,pr=—0) E | : (A1)

and where ¢ is the speed of light, py, py, and py are the canonical momenta of x, y, and 7.
Let's also assume a thin lens sextupole is located at a position sg in the ring. Let M be the
one turn map of the ring (without an RF cavity) about the on energy closed orbit originating '

at s(S). The map M has the effect of taking a ray z; at p'osition ssand rriaping_it into avf_ay

zf
zr= Mz, | h (A2)

which is just the ray after one turn.

P

Let us also define fhe maps Mo and M, as the maps of the ring without the

sextupole and thc map of the sextupole rcspcctively.‘ The map M is just
M = MoMs | N X )

We can write the Hamiltonian for a thin lens sextupole as

Hg =%‘.(x3_3xy2) : . (A4)
where S is the integrated strength of the sextupole. The map M, can be written as
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Mg = e~ Hs: k | | | C(AS)

where : H; : is a Lie operator (we are using the notation of Dragt). The Lie operator : f: is

defined
:fg =1f.281 N ' | (A6)

where f and g are functions of z and [ f, g ] is the Poisson bracket of f and g. We now
compare maps M and M( to see hdw map M changes the one turn map and thus e, to
first order in sextupole strength. -

First we makcv a canohical transfbrma’tion on the maps M and Mg bringing them
- into their normal forms. By transforming tovnormal form variables (Floquet or action angle
variables), one flushes out all the characteristics of the map such as beta functions,
dispersion, and is left with only glqbal pfopcrﬁcs of the map such as tune, chromaticity,
Ne,s 170'2, .. We write fhe transformation of thc- maps intq their normal forms Ng and N |

as

No = Ag MAG! - | (A7)

N=AMA-l=AudoMAG AT | (AS8)

The canonical transformation Ai is the "extra" transformation one needed to bring the rﬁap
M into its normal form as a.rcsult of putting in a séxtupolc. It is to be treated as a
perturbation on the map and in the limit that the strength of the sextupole goes to zero, Aq
goes to the identity mzip. Since we are.interested in studying ncz, we need only to study
the rhaps to cubic degree in the Lie cxponeht (which is quadratic in the equations of

motion). The map N ¢ written in a single Lie exponent is
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Ng = exp(: — Uz = )y — U xS — pyJy & +L0;761 52 +L0;762 53 :) - (A9)

where L1, and [y are the horizontal and vertical tune, ,ux' and /,ty' are the horizontal vertical
chromaticity, Jx and Jj are the horizontal and vertical action and Lo s the length of the on-

energy closed orbit.. We can write the transformation matric A1 to third order as
Ay =exp(: F3 =)A12 - s (A10)

where the term A9 is the "extra" transformation needed to transform the map M into a
linear rotation and the term exp(:F3:) is the "extra" transfprmation needed to transform the
map M into a rotation to secohd order. The function F3 is a third order bolynomial.

The map of the ring to third order including the sextupole in its normal form is then .

calculated:

N=AMoMA-1 (Alla)

= awvdaom s AT . (A11b)

~

Because M; is third order in the Lie exponent it has no effect on the second order
- terms in the exponent. In other words the introduction of a thin lens sextupole has no effect
_on the tunes or y Therefore the transformation that normalizes Ny to first order is the

same transformation that normalizes N (i.e. A12 is the identity map). The map N can now

- be written as

N = exp(:F3 :)No(AoMsAgl)exp(—ﬂ ) - (A12)
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The tran/sformaﬁbn (A()M sAg 1) brings the map M into linear Floquet space

AoMsAg! = Adexp(: Hs Jg" A
= expldo: Hs A7) - | (A13b)
- =exp(: AoHs :) _ _ (A13c)

= exp(: HsrF :) | | "~ (Al134)

where the term Hgr is the Hamiltonian of the sextupole transformed into linear Floquet
space. The transformation shifts the coordinate to one relative to the energy closed orbit to

first order and then scales the axis transforming the phase space énipse into a circle:

Xold =N BxXnew + Dxo8 » i (A1)
~ Yotd = ByYnew +Dyo8 S - (A15)

The expression for HS"F is then just
Hsr = %( [V Bax + px06]3- 3[«/]3} + Dxo8]VByy + pyd) (A

The next step in normalizing the map is to factor'out the nonlinear part of the map
and to look at the exponent. We do this by writing the map Ng in terms of a linear rotation

Rpand a nonlinear rotation, exp(; FN )-

No= Roexp{:F, No:) ' (A17)

" The exponent can be e‘xp'ressed to lowest order in sextupole strength as

-1 A '
R, F3fF3 +FN0—HSF , (A18)
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The purpbse of F3is to perform a phase average over the monomials in the exponent.
Since the pure 6 terms are independent of phase, they rernaiﬁ unchanged by F3. Because
Me, I'CSUIFS from pure & 3 terms we only need to collect the terms in & 3. The only new |
terms (i.e. terms not coming from F N, ) are from Hgr . As a rcsullt of these terms we find

that the change in e, is

Ay =~ 22D - 3Dx0Dy) | - @AY
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TABLE I: Uvsor ring parameters in normal operation and small 77 configurations 2

PARAMETERS NORMAL 71 SMALL 1

length of the ring (m) 52.3 52.3
Energy of the beam (MeV) 600 600
Horizorital Tune (Qx) - 3.16 3.16
Vertical Tune (Qy) 262 2.62

phase slip factor, e, 35x102 1.297 x 10-3
peak voltage of rf cavity (V) 47.5 x 103 47.5 x 103
central frequency (Mhz) ~ 90.115 90.115
harmonic number 16 2 16
synchronous angle (rad) ~ -0.111" 0111
Energy loss/turn (V) 5.2x 103 5.2 x103
Synchrotion tune (Khz) ~ 14.8 2849
Synchrotron period (#turns) 381 1979

RMS Energy Spread (rel) ~ 3.46 x 104 346x 104
Bunch Length (mm) -39 o - 8

‘2 Parameters supplied by H. Ham_a
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