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ABSTRACT

This paper deals with the problem of robust model predic-

tive control of an uncertain linearized model of a building en-

velope and HVAC system. Uncertainty of the model is due to

the imperfect predictions of internal and external heat gains of

the building. The Open-Loop prediction formulation of the Ro-

bust Model Predictive Control (OL-RMPC) is known to be un-

necessarily over-conservative in practice. Therefore, we adopt a

Closed-Loop prediction formulation of Robust Model Predictive

Control (CL-RMPC) which exploits an uncertainty feedback pa-

rameterization of the control sequence and results in a tractable

formulation of the problem. To improve on the efficiency of CL-

RMPC we propose a new uncertainty feedback parameterization

of the control input, which leads to a number of decision vari-

ables linear in time horizon as opposed to quadratic as in previ-

ous approaches. To assess our approach we compare three differ-

ent robust optimal control strategies: nominal MPC which does

not have a priori information of the uncertainty, OL-RMPC and

CL-RMPC. We show results from a quantitative analysis of per-

formance of these controllers at different prediction error values

of the disturbance. Simulations show that CL-RMPC provides

a higher level of comfort with respect to OL-RMPC while con-

suming 36% less energy. Moreover, CL-RMPC maintains per-

fect comfort level for up to 75% error in the disturbance predic-

tion. Finally, the newly proposed parameterization maintains the

performance of CL-RMPC while reducing the simulation time

by an average of 30%.

∗Address all correspondence to this author.

1 Introduction

Advanced control algorithms are considered critical en-

ablers to achieve low energy consumption in commercial build-

ings. Entire sections of the ASHRAE 90.1 standard [1] are ded-

icated to the specification of control requirements. Although the

optimal control of an HVAC system is a complex multi-variable

problem, it is standard practice to rely on simple control strate-

gies that include PID and bang-bang controllers with hystere-

sis. In most cases, standard sequences of operations for typi-

cal installations are used by control contractors. Each sequence

controls the HVAC equipment during an operation phase such

as optimal start, safety shutdown and normal operation. After

installation and tuning, the building is inspected by a commis-

sioning agent that verifies that the building satisfies the owner’s

expectations. The commissioning agent does not only verify the

expected performance right after installation, but also after the

building has started its operations.

This short summary of design and validation practices in the

building industry shows the importance of a model-based design

flow for building controls. To attain energy efficiency, control

algorithms need to be tailored to the physical properties of the

building at hand rather than being an adaptation of a standard

sequence designed for a “typical” building. To design an opti-

mal controller that balances comfort and energy usage, a ther-

mal model of the building is needed. To achieve building-level

energy-optimality, the model should be able to capture the in-

teraction between physically connected spaces in the building,

occupancy schedules, and state and input constraints.

Optimal control of HVAC components using model-based

control techniques has shown promising results for achieving en-

ergy efficiency in buildings [2–6]. However, these control tech-



niques rely heavily on a perfect (or almost perfect) mathematical

model of the building or a perfect estimation of the unmodeled

dynamics of the system [2].

Although a great deal of progress has been made in model-

ing the thermal behavior of building envelope and HVAC sys-

tem [2, 4, 5, 7–9], the random nature of some components of

these systems makes it very hard to predict, with high fidelity,

the temperature evolution of the room using mathematical mod-

els. These random events and phenomena include building oc-

cupancy by people which along with other internal loads such

as the heat emitted from electrical devices and lighting, account

for the total internal heat generation of the building. The outside

environment of the building is also subject to many random and

hard-to-accurately-predict phenomena such as the wind speed,

solar radiation, cloudiness of the sky and outside air temperature.

The aggregate effect of all these factors constitutes the total ex-

ternal heat gain of the building. The authors name these two heat

gains of the building, the “unmodeled dynamics” and propose a

methodology in [2] to estimate these loads which act as distur-

bance to the system dynamics. However, as mentioned earlier,

it is difficult to obtain a perfect prediction of the loads in future

times. On the other hand, model-based optimal controllers such

as Model Predictive Control (MPC) are highly dependent on ac-

curate predictions of these disturbances. In order to account for

these modeling deficiencies, it is usually a reasonable assump-

tion to consider an additive norm-bounded1 uncertainty to the

model. The question here is how to integrate this uncertainty in-

formation in the control design to achieve the desired comfort

level while consuming minimum energy.

We present an overview of existing min-max formulations

of Robust Model Predictive Control (RMPC) for uncertain con-

strained discrete-time systems. A min-max strategy for MPC

tries to optimize the worst-case scenario cost function with re-

spect to uncertainties. Standard min-max MPC schemes easily

lead to conservative controllers because they typically deal with

open-loop formulations. Moreover, Open-Loop Robust Model

Predictive Control (OL-RMPC) is known to be unnecessarily

overly conservative in most applications [10, 11]. The reason

is that the optimal open-loop control sequence has to deal with

all the future disturbances without using the information of the

future measurements that will be obtained as the horizon window

recedes. An extension to min-max MPC that resolves this prob-

lem is closed-loop min-max MPC or Closed-Loop Robust Model

Predictive Control (CL-RMPC). However, CL-RMPC leads to

an intractable problem which is much harder to solve [12]. Fortu-

nately, approximation of closed-loop min-max MPC using a con-

vex programming framework is possible by the use of semidef-

inite relaxations. The idea in CL-RMPC, is to approximate the

intractable min-max problem by introducing new decision vari-

ables into the system and parameterize the future control se-

quence in the future states or disturbances [13, 14].

On the other hand, nominal MPC in practice is regarded as

a state feedback controller. The reason is that, although MPC

1Refer to Section 3 for definition and more details.

at each time step solves an open-loop optimal control problem,

only the first entry of the resulting optimal control sequence is

implemented on the plant at each time step, and this process is

repeated as the prediction horizon recedes. This feedback of the

measurement information to the optimization endows the whole

procedure with a robustness, typical of closed-loop systems [11].

Therefore, nominal MPC is capable of rejecting some level of

unmodeled or unpredictable disturbances due to its closed-loop

nature.

Note that in the control of building climate, it is not ex-

tremely crucial to respect temperature bounds at all times and

based on some standards, some level of temperature constraint

violations would be acceptable (e.g., the European standards

state that the room temperature must be kept within a certain

range with a certain probability [3].) and can be tolerated if it

translates into considerable reductions in total or peak energy

consumption of the whole HVAC system.

Based on the discussion of last three paragraphs, nominal

MPC, OL-RMPC, and CL-RMPC, exhibit some level of robust-

ness in their performances. In this paper one of the questions that

we will try to answer is: “which of the above controllers would

be the best choice for the building climate control, in the pres-

ence of uncertainty?” We carry out a quantitative analysis of the

performance of the above controllers. Through simulations we

assess the performance of the controllers for a range of predic-

tion accuracies.

A new disturbance feedback parameterization of the input

is proposed. It is shown in the paper that this parameteriza-

tion reduces the number of decision variables of the optimization

problem and hence results in a faster alternative than the existing

parameterizations in the literature, while maintaining the perfor-

mance level of the RMPC.

A number of related works can be found in the literature. A

model predictive controller was implemented by the authors on

the model utilized in this work, in [2]. It was shown that in the

case of perfect disturbance load prediction the controller man-

ages to maintain the temperature within the comfort zone for all

times while reducing the total and peak conditioned air consump-

tion with respect to the existing control strategy of the building,

by 68% and 35%, respectively. In [6] the authors investigate

a bilinear model under stochastic uncertainty with probabilistic,

time varying constraints.

In this work we build upon [2, 8], in which we focused on

modeling of the building thermal behavior and concurrent esti-

mation of parameters and unmodeled dynamics. In this paper,

we focus on optimal control design in the presence of imperfect

disturbance predictions. Contribution of this work is twofold:

1. We propose a new disturbance feedback parameterization.

Simulations show that the new parameterization enhances

the computational and performance characteristics of the

CL-RMPC. The new parameterization leads to a number

of decision variables, linear in time horizon as opposed to

quadratic, for the previously introduced parameterizations.
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The resulting sparse feedback gain matrix also reduces the

simulation time by 30% with respect to the previous param-

eterization.

2. To validate our approach, we compare the performances of

three different controllers for a range of prediction error val-

ues. Exhaustive quantitative analysis show how much the

performance of the MPC will deteriorate in the case of im-

perfect predictions. We quantify how much the energy con-

sumption and discomfort indices will degenerate as a func-

tion of disturbance prediction error.

The rest of the paper is organized as follows. Section 2

presents the proposed high-level thermal model for buildings.

We present the system dynamics used in the control derivation

problem along with the state and input constraints and the uncer-

tain model in Section 3. Section 4 describes the robust control

strategies exploited in the paper. Section 5 presents the indices

based on which we assess the performances of the introduced

controllers. Section 6 presents results obtained from simulation

of controllers and a comparison of their performance for differ-

ent uncertainty bounds. Conclusions are drawn in Section 7.

2 Building Thermal Model
We use the model that was proposed in [8] in which the

building is considered as a network. There are two types of nodes

in the network: walls and rooms. There are in total n nodes, m

of which represent rooms and the remaining n−m nodes repre-

sent walls. The temperature of the i-th wall is governed by the

following equation:

Cwi

dTwi

dt
= ∑

j∈Nwi

Tj −Twi

R′
i j

+ riαiAiq
′′
radi

(1)

where Twi
, Cwi

, αi and Ai are the temperature, heat capacity,

absorption coefficient and area of wall i, respectively. R′
i j is the

total resistance between wall i and node j. q′′radi
is the radiative

heat flux density on wall i. Nwi
is the set of all of neighboring

nodes to node wi and, ri is equal to 0 for internal walls, and to 1

for peripheral walls.

The temperature of the i-th room is governed by the follow-

ing equation:

Cri

dTri

dt
= ∑

j∈Nri

Tj −Tri

R′
i j

+ ṁri
ca(Tsi

−Tri
)

+wiτwi
Awi

q′′radi
+ q̇inti

(2)

where Tri
, Cri

and ṁri
are the temperature, heat capacity and

air mass flow into the room i, respectively. ca is the specific

heat capacity of air, Awi
is the total area of window on the walls

surrounding room i, τwi
is the transmissivity of glass of window

i, q′′radi
is the radiative heat flux density radiated to node i and

q̇inti is the internal heat generation in thermal zone i. Nri
is the

set of all of the neighboring nodes to room i and, wi is equal to

0 if none of the walls surrounding room i has window, and is

equal to 1 if at least one of them has. The details of building

thermal modeling and estimation of the un-modeled dynamics is

presented by the authors in [2, 7, 8].

The heat transfer equations for each wall and room in the

building yields the following state space form of the system dy-

namics

ẋt = Axt + f (xt ,ut ,dt)

yt =Cxt (3)

where xt ∈ R
n is the state vector representing the tempera-

ture of the nodes in the thermal network, ut ∈ R
l.m is the input

vector representing the air mass flow rate and discharge air tem-

perature of conditioned air into each thermal zone, and yt ∈R
m is

the output vector of the system which represents the temperature

of the thermal zones. l is the number of inputs to each thermal

zone (e.g., air mass flow and supply air temperature). dt is the

vector of unmodeled dynamics which is a function of q′′radi
, Tout

and q̇inti , and A and C are matrices of proper dimensions.

2.1 Internal and external disturbance loads

Heat flux is radiated from the sun to the exposed walls and to

the peripheral rooms through windows. This heat flux is a func-

tion of the altitude and azimuth angle of the location of the build-

ing on the Earth, orientation of the considered wall or window,

day of the year, time of the day, outside weather and sky con-

dition, and etc., which makes it very hard to estimate the exact

value of this quantity. The authors propose a methodology in [2]

for estimating the unmodeled dynamics of the nonlinear system

of the building. Unmodeled dynamics vector comprises the ef-

fect of the external heat loads from solar radiation and ambient

air temperature as well as the internal heat gains from occupants

and equipments using a parameterization technique, using two

quantities, being the ambient air temperature and CO2 sensor

measurement data. However, due to prediction errors associ-

ated to imperfect weather predictions, random occupancy of the

building and random internal loads, it is in general very hard to

accurately predict the un-modeled dynamics of the system.

These disturbance loads are random; however by studying

the historical data of a building for different seasons with dis-

tinctive weather conditions and various occupancy patterns, it

is possible to find out the cumulative effect of the disturbance

loads within a range of uncertainties, for any given weather con-

dition and occupancy pattern, using similar techniques as the one

proposed in [2]. For the rest of the paper we assume that the l∞
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norm2 of the disturbance load to the building is known. Note that

l∞ norm of the disturbance load represents the maximum value

of disturbance load during a given day, hence a good measure of

worst-case scenario.

2.2 Testbed for model validation

We validate the model that was developed as discussed

above using the historical data of zone temperature of a specific

thermal zone at Bancroft library of UC Berkeley campus. The

details of the model validation technique and its results can be

found in [2, 8]. We use Air Mass Flow (AMF), Discharge Air

Temperature (DAT), and Outside Air Temperature (OAT) data to

simulate the thermal behavior of the considered zone, and com-

pare the simulation results with the measured temperature data

of the zone. WebCTRL of Automated Logic Corporation (ALC)

is used to access the data.

The Existing Control Strategy (ECS) of the considered

building is used as a basis to assess the effectiveness of the pre-

sented controllers. The ECS in this case, turns on the air flow

valves at 5:00 am and turns them off at 5:00 pm. It is shown in [2]

that this is a relatively conservative and energy-hungry control

strategy which neglects the effects of outside weather condition

and the building occupancy.

3 Preliminaries

3.1 System dynamics

We use the nonlinear system described in Section 2 and ex-

pressed in (3). The system dynamics is linearized around the

nearest equilibrium point to the specified operating point of the

system (details in [7]). The algorithm to find the equilibrium

point of the system starts from an initial point and searches, us-

ing a Sequential Quadratic Programming (SQP) algorithm, un-

til it finds the nearest equilibrium point. First we linearize the

model considering all the inputs to the model. Once the system

dynamics is linearized, we divide the inputs into manipulated

variables and disturbance variables. Discretizing the state space

realization leads to the following discrete time LTI system:

xk+1 = Axk +Buk +Edk (4)

where dk ∈ R
r stores the disturbance at time k and the orig-

inal B obtained from linearization process is split into two parts

B
′
= [B E]. Where B stores the columns corresponding to the

manipulated variables and E stores the columns of B
′

corre-

sponding to the disturbance variables. In this study, air mass

flow is a manipulated variable and we regard the rest of the in-

puts as disturbance variables as they are not controlled.

2For vector x = (x1,x2 , ...,xn), the l∞ norm is given by: ||x||∞ :=
max(|x1 |, |x2 |, ..., |xn |).

3.2 State and input constraints
The system is subject to input constraints

U := {u ∈ R
m|Suu ≤ su} (5)

where Su ∈R
q×l.m, su ∈R

q and U ⊂R
l.m is a bounded poly-

topic set. The polytopic constraints on the state is given by

X := {x ∈R
n|Sxx ≤ sx} (6)

where Sx ∈ R
p×n, sx ∈ R

p and X ⊂ R
n.

3.3 Additive uncertainty

Consider the uncertain linearized system dynamics given by

xk+1 = Axk +Buk +E(dk +wk) (7)

where the disturbance uncertainty wk ∈ R
r is a stochas-

tic disturbance. We assume it is only known to be bounded

in some measure, but otherwise unknown. The set of possible

disturbance uncertainties is denoted by W and wk ∈ W ∀k =
0,1, ...,N − 1. The disturbance set W is one of the ingredi-

ents that determine the type of optimization problem we end up

with. For an uncertain Linear Programming (LP) when the cor-

responding uncertainty set W is a polyhedron, then the robust

counterpart is also an LP. When W is ellipsoidal, then the ro-

bust counterpart becomes a second-Order Cone Programming

(SOCP) [15]. For this application we consider box-constrained

disturbance uncertainties given by

Wλ = {w : ||w||∞ ≤ λ} (8)

As an example, Fig. 1 depicts the temperature of the room

from the validated model and the corresponding estimated un-

modeled dynamics (in dashed red). The additive uncertainty to

the system yields a temperature trajectory which is shown in the

same figure (in solid blue).

3.4 Disturbance prediction error
To illuminate the effectiveness of the controllers laid out in

Section 4, we assess their performances for different disturbance

prediction error values denoted by δ and defined as

δ =
λ

||d||∞
(9)

4
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Figure 1. Room temperature and the corresponding unmodeled dynam-

ics realization (in dashed red). Disturbance plus uncertainty and the cor-

responding room temperature for λ = 1 in the case of ECS is shown in

solid blue. Note that although ECS is a rather conservative control strat-

egy, it still fails to keep the temperature within the comfort zone at all

times.

where λ is the l∞ norm bound of the uncertainty and d =
[d

′

1,d
′

2, ...,d
′

N ]
′

is the disturbance realization vector3.

3.5 Chance constraints

In this work we focus on uncertainty models given by (8).

The results of this work can be easily extended to robust MPC

problems with chance constraints such as [3]. Note that the un-

certainty model used in [3] assumes independent and identically

normally distributed random variables, i.e. v ∼ N (0, I). How-

ever, the normally distributed disturbance v is approximated with

a norm-bounded disturbance w ∈ R
p, motivated with a work by

the authors of [15] in which they show that a chance constraint

of the form

Xc = {P(φ(x0,U,d,w) ∈ X )≥ 1−α} (10)

which requires that the condition φ(x0,U,d,w) ∈ X is

fulfilled with a probability greater than or equal to 1 − α,

can be approximated by a hard constraint if the uncertainty

bound λ is chosen according to Theorem 5 in [3]. Note that

φ(x0,U,d,w) denotes the solution to (7) given the initial state

x0, the control input U = [u
′

1,u
′

2, ...,u
′

N ]
′
, the disturbance real-

ization d = [d
′

1,d
′

2, ...,d
′

N ]
′
, and the uncertainty realization w =

[w
′

1,w
′

2, ...,w
′

N ]
′
.

4 Controller design

As introduced in Section 3 we consider l∞ bounded additive

uncertainties in the control derivation.

3Note that x′ represents the transpose of vector x.

4.1 Robust MPC against additive uncertainty

The crucial question in robust control is how to exploit

knowledge about uncertainty. Typical knowledge can be bounds

on uncertain parameters in the system, or bounds on external

disturbances, such as the disturbance load to the building. In this

paper we consider additive uncertainty to the system model as

described in (7).

A typical robust strategy involves solving a min-max prob-

lem to optimize worst-case performance while enforcing input

and state constraints for all possible disturbances. In this sec-

tion we formulate a min-max robust constrained optimal control

problem for the building air temperature regulation system af-

fected by additive bounded input disturbances.

4.1.1 Open-Loop Predictions A min-max strategy

for MPC tries to optimize the worst-case scenario cost function

with respect to uncertainties. Define the worst-case cost function

as

J0(x(0),U0), max
w[.]

{||PxN ||p +
N−1

∑
k=0

||Qxk||p + ||Ruk||p}

s.t. xk+1 = Axk +Buk +E(dk +wk) (11)

wk ∈ W

∀ k = 0, · · · ,N −1

Where ||.||p can be any polytopic norm and N is the time

horizon. The robust optimal control problem is formulated as

follows

J∗0(x(t)), min
Ut

J0(x(t),Ut) (12)

subject to:

xk+1 = Axk +Buk +E(dk +wk) k = 0, · · · ,N − 1 (13a)

yk =Cxk k = 1, · · · ,N (13b)

uk ∈ U k = 0, · · · ,N − 1 (13c)

xk ∈ X k = 1, · · · ,N (13d)

∀ wk ∈ W k = 0, · · · ,N − 1 (13e)

At each time step t, only the first entry of Ut is implemented

on the plant. At the next time step the prediction horizon N is

shifted leading to a new optimization problem. This process is

repeated until the total time span of interest is covered.

Using the above formulation, we derive a robust counterpart

of an uncertain optimization problem in which constraints are

satisfied for all possible uncertainties, and worst-case objective is

5
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Figure 2. Performance of MPC and OL-RMPC in the presence of addi-

tive uncertainty with δ = 50%. It can be observed that the OL-RMPC

yields an overly conservative control algorithm resulting in excessive en-

ergy consumption.

calculated. This system does not involve the uncertain variables

anymore, and corresponds to the worst-case scenario model.

Performances of MPC and OL-RMPC are depicted in Fig 2.

In the case of MPC, the controller is designed for the model

with only disturbance dk known a priori, and implemented on

the model which has as input, both known disturbance dk and

the unknown additive uncertainty wk.

4.2 Approximate closed-loop min-max MPC

It is shown in Fig. 2 that the Open Loop Constrained Ro-

bust Optimal Control (OL-CROC) is conservative. This is be-

cause we are optimizing an open-loop control sequence that has

to cope with all possible future disturbance realizations, with-

out taking future measurements into account. The Closed-Loop

Constrained Robust Optimal Control (CL-CROC) formulation

overcomes this issue but it can quickly lead to an intractable

problem [13]. There are some alternative approaches which in-

troduce feedback in the system and, in some cases, can be more

efficient than CL-CROC.

4.2.1 Feedback predictions What we really would

like to solve is the closed-loop min-max problem where we in-

corporate the notion that measurements will be obtained in the

future times.

min
uk|k

max
wk|k

· · · min
uk+N−1|k

max
wk+N−1|k

N−1

∑
j=0

p(xk+ j|k,uk+ j|k) (14)

where p(.) is the performance index. Instead of solv-

ing this intractable problem, the idea in feedback prediction,

sometimes referred to as closed-loop predictions, is to intro-

duce new decision variables vk+ j|k, and parameterize the fu-

ture control sequences in the future states and vk+ j|k such as

uk+ j|k = mk, jxk+ j|k +vk+ j|k. This way, there is at least some kind

of feedback in the system, although not optimal. To incorpo-

rate feedback predictions, we write the feedback predictions in a

vectorized form U = MX + v. Where v and X are given by v =
[v

′

k|k,v
′

k+1|k, · · · ,v
′

k+N−1|k]
′
, and X = [x

′

k|k,x
′

k+1|k, · · · ,x
′

k+N−1|k]
′
.

The only requirement for matrix M is that this matrix is causal

in the sense that uk+ j|k only depends on xk+i|k, i ≤ j. Notice that

feedback predictions introduce a new tuning knob in min-max

MPC, which is matrix M. However the choice of M is not ob-

vious, and no guideline exists in the literature, on how to select

its entries. In [13] it is shown through simulation examples that

the choice of M is crucial for good performance of the min-max

controller.

However sometimes M is incorporated as a decision variable

in the online optimization problem. The obtained optimization

problems are convex. Unfortunately, the optimization problem

grows rapidly, although polynomially in the system dimension,

the number of constraints and the prediction horizon. To resolve

this problem, it is shown in [13] how the general solution can

serve as a basis for off-line calculations, and approximations

with a reduced degree of freedom, but with much better com-

putational properties (we have somehow implemented this idea

in constructing a better M in what follows).

The main problem with the min-max formulations based on

these parameterizations is the excessive number of decision vari-

ables and constraints. The reason is the high-dimensional param-

eterization of matrix M.

4.2.2 Alternative Parameterizations To resolve

this issue we study some other parameterizations that have been

introduced in the literature and also the parameterization that we

introduce later in this paper.

It is shown in [13] that the problem with the parameteriza-

tion introduced previously, is that the mapping from M and v

to X and U is nonlinear, hence optimization over both M and v

is likely to cause problem. At least, it is not obvious how this

parameterization can be incorporated in a standard convex opti-

mization framework. Due to this problem, alternative parameter-

izations are introduced. One of the parameterizations introduced

in [13] is as follows:

1. Lower Triangular Structure (LTS): Define the affine

disturbance feedback as:

ui :=
i−1

∑
j=0

mi, jw j + vi ∀i = 1,2, ...,N − 1 (15)

where Mi, j ∈ R
l.m×r and vi ∈R

l.m are given by

6



M :=













0 · · · · · · 0

m1,0 0
. . . 0

...
. . .

. . .
...

mN−1,0 · · · mN−1,N−2 0













, v :=













v0

...

...

vN−1













(16)

and w = [w0 w1 · · · wN−1]
′ is the vector of distur-

bance. Therefore the input can be written as U = Mw + v.

The control sequence is now parameterized directly in the un-

certainty. The mapping from M and v to X and U is now bilin-

ear. What we have here is basically a sub-optimal version of the

closed-loop min-max solution [13].

Note that other parameterizations such as Toeplitz are also

introduced in [13]. However, Toeplitz structure was shown to

deteriorate the performance of the CL-RMPC in our simulations

and therefore is not considered here.

2. Two Lower Diagonal Structure (TLDS): By analyzing

the structure of the optimal matrix M, we observed that the pa-

rameterization of the input need not consider feedback of more

than past two values of w at each time, hence we propose the

following disturbance feedback:

ui := mi,i−2wi−2 +mi,i−1wi−1 + vi

=
i−1

∑
j=i−2

mi, jω j + vi ∀i = 1,2, ...,N − 1
(17)

and the corresponding parameterization matrix M is an N ×
N matrix that has the entries on the first and second diagonal of

M below its main diagonal as decision variables and 0 elsewhere

as given by

M =























0 0 · · · 0 0 0

m21 0 0 · · · 0 0

m31 m32

. . .
...

...
...

0 m42

. . . 0
...

...
...

. . .
. . . m1,2 0 0

0 · · · 0 mN,N−2 mN,N−1 0























(18)

and v remains as in the previous structure. Note that in this

structure we exploit the sparsity of the feedback gain matrix to

enhance the computational characteristics of the optimal prob-

lem.

A schematic of the robust optimal control implementation

on the nonlinear building model is depicted in Fig. 3.

Nonlinear

Building

Model

RMPC

linearize

stochastic uncertainty

system
dynamics

optimal
input

bound

optimal input

disturbance

room temperature

Figure 3. Schematic of the control implementation.

5 Performance Indices

To compare the overall performance of the proposed con-

trollers we define two indices to measure the energy consump-

tion and comfort level provided by each controller.

The energy index Ie, is defined to be

Ie =

∫ 24

t=0
[Pc(t)+Ph(t)+Pf (t)]dt (19)

where cooling power Pc, heating power Ph and fan power Pf

are defined as

Pc(t) = ṁc(t)cp[Tout(t)−Tc(t)] (20)

Ph(t) = ṁh(t)cp[Th(t)−Tout(t)] (21)

Pf (t) = αṁ3(t) (22)

where cp = 1.012[kJ/kg.oC] is the specific heat capacity of

air and α = 0.5[kW.s3/kg3] is the fan power constant. Using

the above equations and constants, results in fan power values in

[kW ].
The discomfort index Id , is defined as the sum of all the

temperature violations during the course of a day.

Id =

∫ 24

t=0

[

min
{
∣

∣T (t)−T (t)
∣

∣ , |T (t)−T (t)|
}

.1B(t)c(T (t))
]

dt (23)

Where B(t) = [T (t),T (t)] is the allowable temperature

boundary at time t and 1 is the indicator function.

6 Simulation results

We implement the introduced controllers with a prediction

horizon of N = 24. We observed a dramatic degradation of the

performance for N < 24, and relatively long computational time

for N > 24. We believe the choice of N = 24 leads to a good bal-

ance between performance and computational cost. The utilized

cost function for the following simulations is given by

7



min
Ut ,ε̄,ε

{||Ut||1 + c1||Ut||∞ + c2(||εt||1 + ||εt||1)} (24)

and the state and input constraints are as follows:

xt+k+1|t = Axt+k|t +But+k|t +E(dt+k|t +wt+k|t) (25a)

yt+k|t =Cxt+k|t (25b)

T t+k|t − εt+k|t ≤ yt+k|t ≤ T t+k|t + εt+k|t (25c)

ut+k|t ≤ u (25d)

εt+k|t , εt+k|t ≥ 0 (25e)

wt+k|t ∈ W (25f)

where u = 63 [ f t3/min] is the higher limit on air mass flow,

[T .|t T .|t ] = [20 22]oC during occupied hours and [T .|t T .|t ] =
[19 23]oC during unoccupied hours. We utilize soft constraints

to guarantee feasibility of the problem at all time steps. For the

simulations we use c1 = 0.75 and c2 = 50.

The optimal controller and the resulting room temperature

with the presence of a box-constrained uncertainty in four cases

is depicted in Fig. 4. ECS refers to the Existing Control Strategy

implemented on the building. This case shows the behavior of

the original controller of the building if there were a hypothet-

ical extra additive load to the system. The next case shows the

performance of an MPC algorithm with only the accurate a pri-

ori knowledge of the disturbance (i.e. unmodeled dynamics of

the system) and not the uncertainty. The third case is OL-RMPC

in which the algorithm has a priori knowledge of both the dis-

turbance and the uncertainty bound. The fourth case algorithm

is a CL-RMPC which exploits the same knowledge as the third

case, with the difference that it utilizes the uncertainty feedback

strategy of (15).

We consider stochastic uncertainties with different uncer-

tainty bounds (λ) as introduced in (8). The MPC does not have

any a priori information regarding the additive uncertainty, and

calculates the controller solely based on the deterministic system

dynamics. However the RMPC integrates the uncertainty bound

information in the control derivation. Controller performances

are evaluated based on the energy and discomfort indices intro-

duced in Section 5.

Remark 1. It can be observed from Fig. 4, that the OL-

RMPC and CL-RMPC are the only two controllers that are able

to keep the temperature within the comfort zone, at all times,

with the difference that the CL-RMPC leads to 36% reduction

in energy index, Ie, while maintaining perfect level of comfort

(Id = 0).
Fig. 5 depicts how Discomfort index Id , varies with distur-

bance prediction error δ for MPC, OL-RMPC and CL-RMPC. It

is shown that both OL-RMPC and CL-RMPC manage to keep

the perfect comfort level (Id = 0), for prediction errors up to
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Figure 4. Control input and resulting temperature profile for original con-

troller, open-loop, closed-loop and regular MPC. The additive uncertainty

bound is considered δ = 60% in this case.
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Figure 5. Discomfort index Id [oCh] versus disturbance prediction error

(δ). We generate a uniform random sequence based on the disturbance

prediction error value δ. The generated random sequence is used in

the simulations for making this graph. Note that different data points for

one δ value refers to simulations with different random sequences. The

reason for such wide deviation of the simulation results stems from the

fact that depending on the value of the random variable at any time, the

resulting disturbance vector can either lead to higher or lower temperature

deviations with respect to the nominal disturbance value. Note that LSE

refers to Least Square Estimation.

δ = 60% and δ = 75% respectively, while the MPC maintains

the perfect comfort level for uncertainty bounds up to δ = 20%.

The discomfort index for MPC goes as high as 4.61 [oCh]4 while

the value for CL-RMPC reaches 1.2 [oCh] in the worst case in

the simulations corresponding to δ = 100%.

Fig. 6 depicts the variations of Energy index Ie, versus the

uncertainty bound on the unmodeled dynamics. It is clear that

the energy index for RMPC increases dramatically with δ, while

the energy index for MPC changes slightly. However, this comes

4degree Celsius hour.
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Figure 6. Energy index Ie [kWh] versus disturbance prediction error

(δ). The data points for this graph were generated using a similar tech-

nique as in Figure 5. Note that LSE refers to Least Square Estimation.

with the drawback of increased discomfort index for MPC.

Remark 2. Exploiting the TLDS structure results in the

same control law that was obtained from the LTS structure. Ma-

trix M of LTS has l.m.r N(N−1)
2

variables (quadratic in N) while

matrix M of TLDS has l.m.r(2N−3) variables (linear in N), and

hence exhibits faster computation characteristics. On average,

the simulation time for TLDS is 30% less than the LTS structure,

as shown in Table 1.

The problem is solved using CPLEX 12.2 [16] on a 2.67

GHz machine with 4 GB RAM. We observed about 33% reduc-

tion in the simulation time, in average, when we used CPLEX

compared to the default solver of YALMIP [17], GLPK.

An important point to notice from Fig. 6 is how much more

energy needs to be supplied to the HVAC system to maintain the

comfort level in the presence of imperfect and faulty unmodeled

dynamics predictions. Consider the case where δ = 75%. MPC

will lead to a discomfort index of 1.7oCh on average, while the

RMPC is able to maintain the temperature below a discomfort

index of 0.016oCh on average. However this level of comfort

provided by the CL-RMPC comes at a cost of energy consump-

tion of almost 5 times more than the MPC case.

Remark 3. Note that due to the tradeoff between comfort

and energy consumption, the choice of which controller to use

is on the building HVAC operator, and depends on various fac-

tors such as criticality of meeting the temperature constraints for

the considered thermal zone in the building, and availability and

price of energy at that time of the day/year.

As observed from Fig. 5 and 6 the behavior of controllers

deviate considerably as the prediction error increases. For in-

stance, The energy required to keep the same level of comfort for

CL-RMPC in the case of δ = 75% is almost 4 times the energy

required to provide the same level of comfort when δ = 25%.

Therefore, these two plots make it clear how precious a good

model which accurately captures also the unmodeled dynamics

of the system can be in minimizing the operation costs of HVAC

systems of buildings.

Table 1. Comparison of LTS and TLDS uncertainty feedback parameter-

izations and Open Loop min-max results for the case of δ = 50%.

Number of Average

Controller feedback decision simulation time Ie Id

variables for N = 24, in [s] [kW h] [oCh]

LTS l.m.r(N(N+1)
2

) 200 16467 0

TLDS 3l.m.r(N − 1) 138 16467 0

OL - 159 22592 0.84

7 Conclusion

We presented a model predictive control strategy that is ro-

bust against additive uncertainty. Uncertainties are introduced to

the building thermal model through imperfect weather and oc-

cupancy predictions. We study the performance of two robust

optimal control strategies, i.e. Open-Loop Robust Model Predic-

tive Control (OL-RMPC) and Closed-Loop Robust Model Pre-

dictive Control (CL-RMPC) on a building model. CL-RMPC is

capable of maintaining the temperature within the comfort zone

for disturbance prediction errors up to δ = 75% as opposed to

nominal MPC which can maintain the perfect comfort level for

prediction errors up to δ = 20%. The open-loop and closed-loop

strategies studied here exhibit similar performances in terms of

constraint satisfaction with CL-RMPC outperforming at higher

disturbance prediction error values. The CL-RMPC strategy

also outperforms the OL-RMPC strategy in terms of energy con-

sumption, leading to maximum of 36% reduction in energy index

at δ = 75% while resulting in an even lower discomfort index

than the OL-RMPC case.

We proposed a new uncertainty feedback parameterization

of the control input, TLDS, for the CL-RMPC which results in

the same energy and discomfort indices as the previous parame-

terization, LTS, with a lower number of decision variables, linear

in time horizon N, as opposed to quadratic, for the LTS as shown

in Table 1. The new TLDS parameterization results in an average

simulation time of 30% less than LTS.
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