UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Localization of cognitive processes using Stroke patients and fMRI

Permalink

https://escholarship.org/uc/item/1qp7m0bp

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 26(26)

ISSN

1069-7977

Authors

Prabhakaran, V. Raman, S.P. Grunwald, M.R. et al.

Publication Date

2004

Peer reviewed

Localization of cognitive processes using Stroke patients and fMRI

V. Prabhakaran, S.P. Raman, M.R. Grunwald, A. Mahadevia, J.K. Werner, L. E. Philipose, N. Hussain, H.H.Alphs, P. Sun⁺, H. Lu⁺, B. Biswal*, B.Rypma*, P.C.M. van Zijl⁺, A.E. Hillis,

Johns Hopkins University School of Medicine, Rutgers University*, Kennedy Krieger Institute⁺

Localization of cognitive processes to brain regions have mainly utilized the location of infarcted brain regions in stroke patients or fMRI in normal subjects. The BOLD effect in fMRI studies may be difficult to interpret in stroke patients who have areas of hypoperfusion (with resultant reduction in hemodynamic response) due to arterial stenosis. This study was undertaken to examine the influence of hypoperfused regions, in addition to the area of infarct itself, on cognitive processes and fMRI in stroke patients.

Methods

Subjects with subcortical strokes in the left MCA or right-MCA territories, along with normal controls, were imaged while performing a verbal fluency task. The experiments were performed on a 1.5 T whole-body scanner (Philips Medical System, Best, The Netherlands). The study population included six normal participants (3M, 3F, ages 24-57) and six stroke patients (3M, 3F, ages 28-58) with MCA distribution subcortical infarcts. Patients were given a verbal fluency task of 1 min. in duration, compared to rest of 30 secs, organized in an alternating block design, while being scanned with a whole brain fMRI/Stroke MRI-Protocol that included perfusion weighted imaging (PWI) that reveals areas of hypoperfusion as well as structural scans (FLAIR, DWI, T2 sequences)

Results

While normal subjects displayed a left-lateralized frontotemporal and bilateral cingulo-striatal-thalamic-cerebellar network, the activation pattern of stroke patients was determined both by the hypoperfused regions and/or infarcted areas of the brain. Specifically, the left frontaltemporal network showed diminution of activity in our left MCA patients that had cortical hypoperfusion in the corresponding regions, although their infarcted areas were subcortical.

Table 1:

	Left Middle Cerebral Artery Stroke				Right Middle Cerebral Artery Stroke	
Patient	MS	SB	MZ	HS	TG	JH
Gender	Male	Female	Female	Female	Male	Male
Age,Race	58, W	34,AA	50, W	52, W	50, AA	28,W
Infarct Perfusion Defect Occurence FMRI test	Minimal left posterior temporo- parietal infarct Posterior temporo- parietal hypoperfusion 04/18/02 11/07/02	Minimal left frontal infarct Frontoparietal hypoperfusion 02/99 10/08/02	Left caudate and Centrum semiovale Fronto- temporo- parietal Hypoperfusion 08/18/01 12/12/03	Left basal ganglia and Centrum semiovale Frontal hypoperfusion 07/00 01/07/03	Right parietal watershed Fronto- temporo- parietal hypoperfusion 1990 02/05/04	Right anterior temporal lobe and basal ganglia Parietal Hypoperfusion 07/19/02 09/30/02
Signs and Symptoms	Impaired word retrieval Impaired sentence comprehension Right upper extremity tingling	Alexia, agraphia Minimal word retrieval difficulty Right-sided weakness	Impaired word retrieval Right upper extremity weakness	Impaired word retrieval Right upper extremity numbness Slurring of speech	Impaired word retrieval Right arm numbness Slurring of speech	Left-sided facial droop Slurring of speech Right temporal headache

Conclusions

The observation of a diminished BOLD signal in hypoperfused regions of cortex could either reflect reduced activation in these areas due to tissue dysfunction or reflect normal activation accompanied by increased oxygen extraction without a normal hemodynamic response. The results raise the possibility that localization studies should take into account brain regions that are hypoperfused, as well as infarcted brain regions, in trying to map cognitive processes to brain regions.

References:

Schlosser R, Hutchinson M, Joseffer S, Rusinek H, Saarimaki A, Stevenson J, Dewey SL, and Brodie JD (1998). Functional magnetic resonance imaging of human brain activity in a verbal fluency task. J Neurol Neurosurg Psychiatry, 64(4): 492-8.

Gaillard WD, Sachs BC, Whitnah JR, Ahmad Z, Balsamo LM, Petrella JR, Braniecki SH, McKinney CM, Hunter K, Xu B, Grandin CB (2003). Developmental aspects of language processing: fMRI of verbal fluency in children and adults. Hum Brain Mapp, 18(3):176-85.

Gaillard WD, Hertz-Pannier L, Mott SH, Barnett AS, LeBihan D, Theodore WH (2000). Functional anatomy of cognitive development: fMRI of verbal fluency in children and adults. Neurology, 54(1): 180-5.