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ABSTRACT OF THE THESIS

Expertise Location Approaches and Systems in Software Engineering

By

Zhendong Wang

Master of Science in Software Engineering

University of California, Irvine, 2018

Professor David Redmiles, Chair

Successful software engineering activities require qualified software developers with proper

expertise. Although expertise has been studied for many years and various expertise lo-

cation approaches have been postulated, new approaches and opportunities are emerging

today because of the rise of code hosting and knowledge sharing sites. As a step towards

understanding the past work and the present opportunities in the context of today’s software

engineering practice, we perform a systematic literature survey. In analyzing the literature,

we identify two broad categories of expertise research: 1) identifying the characteristics of

experts, and 2) locating experts. The studies in the latter category can be further classified

into three subcategories, which are: i) locating expertise by leveraging the organizational

setting; ii) by mining historical artifacts; and iii) by knowledge sharing. Our analysis also

identifies the major limitations of existing work, including a disconnect between early exper-

tise studies and current location approaches; an over reliance on the experience-based model

to measure expertise; a neglect on the constraints for coordination; and a lack of empirical

evaluation in the real-world context, among others. Finally, we highlight research trends and

promising directions for future research.
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Chapter 1

Introduction

Thriving with automation, the fields of artificial intelligence and machine learning techniques

have been fundamentally changing software and traditional industries. The advance of these

fields is transforming the way that we work and live. Machines and algorithms replace human

labor in automated routine tasks, but in other cases, automation is amplifying human labor,

including in Software Engineering.

Since Software Engineering is a human centered activity [33], effectively managing human

resource may significantly enhance the project productivity and collaboration quality [15].

Moreover, successful software engineering activities require qualified developers with proper

expertise to complete the task efficiently with higher than average performance.

A crucial aspect of managing human resource is locating expertise. Experts are able to recall

their previous experience in similar work [11, 30] with outstanding information process ability

[77]. Various tasks in professional software development, such as employees training and

hiring, locating the best person to perform product maintenance, and collaboration among

teammates, all may benefit from effective expertise location [10]. However, there is still a lack

of general understanding on expertise location approaches and techniques from a systematic
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review perspective. To further investigate this issue, we also intend to explore how to evaluate

the effectiveness of these location techniques in software engineering practices. To address

the above practical problem, this survey study reviews related literature on expertise location

approaches and systems within the field of Software Engineering and Computer Supported

Collaborative Work.

We take a systematic review strategy for this literature survey study. We compile a literature

repository of 120 studies by querying four major online digital libraries (ACM Digital Library,

Elsevier ScienceDirect, IEEE Xplore, Springer Link). We perform our literature review

analysis through a six-step process, including steps of citation searching (snowball sampling),

and manual literature addition based on expert suggestions, and so on. After applying our

review protocol and examining studies within our literature repository, 48 are identified as

primary based on their research focuses (corresponding to the research question of this study)

and impact to the field.

By summarizing a view of the developing history of expertise location approaches and sys-

tems, we found that the granularity of the expertise location approaches has been becoming

smaller, which are from performing a general job to finishing a specific task. According to the

analysis on our literature repository, we identified two board categories of expertise research.

The first category expertise research identifies the characteristics of expertise [30, 58, 78].

These studies conducted field observation [56] to explore how experts communicate and

solve problems in the real-world context. Further other studies employed lab experiments

to empirically compare the difference between expert and novice based on their behavior

while completing programming tasks [10, 58]. The second category aims to locate expertise

through various approaches. This category can be further classified into three subcategories,

locating expertise by leveraging the organizational setting manually [90]; mining historical

artifacts [7, 35, 60, 72, 74]; and analyzing the social network and the content for knowledge

sharing [50, 61]. As the automated location techniques developing, and the emergence of
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new collaborative models such as the pull request model in open source community, more

specific types of expertise have been identified for open source collaboration [16, 22, 93]. We

found recent studies have shifted their focuses mostly to mining historical artifacts. Also,

as the knowledge sharing platforms emerging particularly for software engineering, there is

a lack of observational study to determine the role of knowledge sharing sites in expertise

location activities.

Our review also identifies the major limitations of existing research. First, there is a discon-

nect between early expertise studies and current location approaches. Our analysis suggests

that mining historical artifacts is common practice in Software Engineering, and current

automated location studies tend to focus mining historical data of expert’s activity and arti-

facts which indicates their experience [22, 74, 93]. However, early cognitive studies identify

the expertise based on monitoring the performance of experts [58, 64, 78]. Thus, the over-

reliance on predicting a subject’s performance on her experience with code artifacts may

be a threat to locate expertise precisely. Second, current location approaches neglect the

constraints for experts to coordinate such as neglecting time availability and geographical

distance [62]. Finally, there is a lack of empirical evaluation in real-world context, and a few

studies build the ground truth of expertise to evaluate their approaches by cross-validation

[7, 88].

Based on our review, we provide and discuss following guidelines for future studies in exper-

tise location. Particularly, we suggest to bridge the gap between early cognitive studies and

location approaches, i.e., include supporting data of experts performance rather than only

considering their activity record. Supporting data includes feedback from other peers and

the organization or community since these sources have watched or collaborated with the

expert when performing their tasks. Besides, while designing the expertise location systems,

the designer needs to beware of the paradox of expertise [27], i.e., experts may be biased by

their ability and their previous experience. Depending on the nature of the task, such as

3



training and expertise sharing, the candidate with highest expertise may not always be best

choice.

The remainder of the paper is organized as follows. Based on several studies in cognitive psy-

chology and neuroscience, Chapter 2 introduces the background on the nature of expertise.

The protocol for conducting the survey and the evaluation matrices that we applied for all

the studies in our literature repository are presented in Chapter 3. In Chapter 4, we present

the result of our survey includes the major findings we mentioned above and comparison

between the same type of expertise research. We provide a discussion of future expertise

research direction and limitation of this work in Chapter 5. Chapter 6 concludes our study.
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Chapter 2

Background

Lew Platt once commented in the 1980s:“If only HP (Hewlett-Packard1) knew what HP

knows, we would be three times more productive,” His words indicate that the problem of

fully utilizing all expertise within an organization is desirable but hard to achieve for large

organizations. For a software development organization, failing to identify and select proper

expertise is a threat which lowers productivity, and further overburden central individuals

(expertise escalation[56]), e.g., core product managers. As software industry growing, soft-

ware engineering is vital for human beings’ daily activities, and the failure of software may

further threat the quality of our lives, which may lead to hazard at society level [87]. Lo-

cating and then utilizing an organization’s own intangible human resources is a challenging

two-steps (location and utilization) process for all software organizations and communities

[13]. Extracting specific domain expertise from individual talent among these organizations

is the critical first step.

1https://www.hp.com
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2.1 Nature of Expertise and Expert

To locate expertise precisely, first, we need to have a clear understanding of the nature of

expertise and the characteristics of who have them. According to the view of a psycholo-

gist, Ericsson et al. define expertise as the “characteristics, skills and knowledge” based on

comparison between experts to novices and less experienced people [30]. Their definition

indicates that people with related expertise would display better performance than those

without it on a regular basis.

“Expert: one who is very skillful and well-informed in some special field.” -

Webster’s New World Dictionary

“Experts are people who produce clearly above average (outstanding) perfor-

mance on a regular basis.” -Cambridge handbook of Expertise and Expert Per-

formance

The above two definitions of expert are from Webster’s New World Dictionary [40], and

Cambridge handbook of Expertise and Expert Performance [30] respectively. Both of them

suggest a relative approach to define expert by comparing experts performance with novices.

However, as previous research suggests, there is another approach to identify experts by

studying genuinely exceptional people, with the goal of understanding how they perform

[20].

In addition to Ericsson et al.’s view, from a neuroscience perspective in Bilalić’s research

on explaining the nature of expertise [11], Bilalić classifies the expertise into categories.

There are three major types of expertise when human beings are referring to the skills and

specialties that expert masters:

• Perceptual Expertise: This type of expertise that predominantly rely on the information

6



directly come from human biological senses. For instance, the radiologist example

mentioned in Bilalić, who could enable her visual expertise while detecting the problem

of the patient through an X-ray photo.

• Cognitive Expertise: The second type of expertise focuses on the memory engagement

and mental simulation, rather than information gathering process in the perceptual

expertise, such as mathematical calculation skills. Particularly, the state-of-the-art

research on software engineering expertise (for example, [7, 22, 35, 57, 60, 93]) focuses

on this type of expertise when looking for programming experts.

• Motor Expertise: the last type of expertise is the muscle and body control ability, such

as dancing, sports, playing music and other general movements. An example expert

of this type is a professional basketball player who can hit shots from long range in a

higher chance than an ordinary novice.

In addition, if we look at a definition of expertise by software engineering researcher by

Mockus and Herbsleb [60]:

Expertise is defined as the skill of an expert, and, if interpreted quantitatively,

reflects the degree of the ability of a person to perform certain task.

The concept of expertise can be interpreted as a quantitative value, but in reality it is very

complicated to measure, for example, early studies in cognitive science employed eyeball

movement tracking to measure the information processing ability [37].

Another general expectation of experts is that they utilize their expertise and previous

experience to handle any unexpected situation and outcome [30]. Since experts have already

acquired enough knowledge as a structured system in their long-term memory, they would

quickly adopt the situation in their field, and they also would be able to automatically

provide and recognize reasonable solutions rather than figure them out.
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Figure 2.1: The different memory sections, and the process of transferring and retrieving
relation between sensory store, short-term memory and long-term memory

In this study, we would cover basic approaches to locate expertise (absolute and relative),

comparing their measurement of expertise, and finally evaluate these expertise location stud-

ies. Moreover, we attempt to summarize literature that considers the above two factors of

experts, i.e., information processing ability, and previous experience.

2.2 Memory Engagement and Expertise

As this study particularly focuses the expertise and expert location in the field of program-

ming and software engineering, the most critical type of expertise is the cognitive expertise,

though the other two types could also be involved in the software production. The connection

between memory and expertise is very tight due to our memory storage system. Many stud-

ies have been conducted on the structural model of human memory, and memory/expertise

retrieval mechanism. The most related ones are the Chess Experiment for Chunking Theory

[17, 25, 37] and the Amnesia Patient Experiment [21].

Human beings receive raw information and store it at the sensory store, but only if the

information got human attention, the information would be processed to the short-term
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memory, which is not everlasting and typical only stay for about 18 seconds without rehearsal

[68]. Further, through several iterations of rehearsal, information in short-term memory

would be transferred to Long-term Memory which is the Synaptic Consolidation process

[28], and the information is hard to forget through a forgetting process. Therefore, the

Long-term memory reflection is an essential indicator of having the expertise, and cognitive

literature has also supported it:

Hence we can say that one part of the grandmaster’s chess skill resides in the

50,000 chunks stored in memory, and in the index (in the form of a structure of

feature tests) that allows him to recognize any one of these chunks on the chess

board and to access the information in long-term memory that is associated with

it. The information associated with familiar patterns may include knowledge

about what to do when the pattern is encountered. Thus the experienced chess

player who recognizes the feature called an open file thinks immediately of the

possibility of moving a rook to that file. The move may or may not be the best

one, but it is one that should be considered whenever an open file is present. The

expert recognizes not only the situation in which he finds himself, but also what

action might be appropriate for dealing with it.

As mentioned by Simon in his masterpiece, the Science of the Artificial (pp. 89), when

referring to experts, we expected that they could retrieve their similar experience or expertise

to solve the problem at hand [77], and De Groot lead studies on the expertise retrieval from

long-term memory and purposed the chunking theory [17, 25, 37]. Early in 1965, De Groot

conducted the chess experiment to explore the performance difference between chess experts

and novices. Each participant had 5 seconds of viewing and remembering a chess board with

positioned pieces and then trying to re-position all pieces on the board later. However, in

short, experienced expert chess players could recall more pieces and make fewer mistakes. As

the progress made in neurobiology, researchers realize that information is stored in memory

9



Long-term Memory

Declarative: Fact Procedural: Skill

Skills Priming Conditioning

Figure 2.2: Knowing that (declarative) vs. Knowing how (procedural): the long-term
memory model from Cohen and Squire [21]

as chunks [17]. Chase and Simon in their following study of chess experiment, they explain

the superior performance of experts with the better functioning ability of chunks. Experts

could retrieve more and larger chunks from their memory of specialized field. In addition,

a later study [69] suggests that once experts encounter a new/unexpected situation in their

specific domain, and then experts would automatically active their domain-specific expertise

in their long-term memory, which evinces the second expectation for expert in section 2.1.

Further, it is worth noticing that, according to empirical results, there is a difference between

“knowing what” and “knowing how” in human long-term memory. In 1980, Cohen and Squire

conduct the study on Amnesia patients to identify which part of patient’s memory or confirm

whether totally had been impaired [21]. However, the result suggested a detached structural

model of long-term memory. The performance of patients suggests that Amnesia patients’

“knowing what” ability is impaired, but their ability to acquire or recall (“knowing how”)

skills still remain. For example, they could learn or recall how to ride a bicycle. Their study

creates an initial structural model for long-term memory, and our study would refer this

series of model to analyze long-term memory reflection from surveyed literature.

10



Figure 2.3: The Radiologist Example [11]. It Shows the Difference Between Experts and
Novices When Processing Visual Information

2.3 Expertise Location in Software Engineering

Chunking theory can also be supported by the expert developer’s performance in software

engineering activities based on empirical results. McKeithen et al. have conducted a study

on the different performance between programming novices and experts [58], and it empir-

ically confirmed that experts have superior performance throughout experiments, and also

they confirmed that chunking theory still holds for programming performance, as experts can

recall more programming semantic concepts while solving the task. In addition to informa-

tion processing ability, McKeithen et al. also mentioned that the organization of computer

programming knowledge in experts mind are remarkably similar, but not identical. However,

following up studies on expert performance fail to apply this conclusion, which utilize expert

similarity to locate experts.

A software system is an artifact that requires tremendous effort to develop due to its complex

nature, and there is no one for all solution to increase software productivity [14]. Due to the

complexity of software engineering, there are several sub-domains of expertise. Moveover,

FOSS are increasingly used as components in other software artifacts. Hence, identification

of the specific domains experts is particularly hard in the context of freely formed OSS teams.

11



It is a long discussed question to define and measure expertise in a quantitative approach

systematically. A quantitative approach to measure the expertise level of chess players

is tracking their eyeball movement, since expert has the ability to automatically exclude

irrelevant information, i.e., chess master has the capacity to focus on the most critical part

of board for wining the game, but novice is not able to focus on the relevant part for planning

wining strategy. Similarly, expert radiologist only needs a few glances to understand an X-

ray with very few eye focus movement, but novices such as medical students require move

time and more effort for a same process [11]. There are several pioneer studies for locating

experts in software developing process [56, 57, 60, 67]. As McDonald and Ackerman found in

their studies [56, 57], one of the most effective way in engineering practice identifies expert

according to developer’s previous experience, which could be reflected by two indicators: a

developer’s historical artifacts, and people who she have worked with (her professional social

network). Their work has been followed up by other researchers in software engineering, and

most of their work focus on extracting the higher precise and accurate expertise identification

over historical artifacts such as code [7, 60, 73].

Nevertheless, these expertise location systems are considered biased due to only enabling

public information, and user reputation could be easily manipulated by faking data, or op-

erating multiple accounts. However, data provided through these user-generated content

enables more data sources than previous methods, and as the open source software is in-

creasingly involved in other software engineering process, either in academia or commercial

industry. The transparency provided by OSS collaboration sites could afford more activity

information while locating expertise [23], and distributed collaboration approach also benefit

from an automated expertise identification when the team is not familiar with each other.

On the other hand, precisely locating the best knowledge providers on knowledge sharing

can also smooth the process with a higher performance.

However, in addition to mining historical artifacts, there is emerging emphasis on social

12



networking functions for online software collaboration sites [23] and Q&A knowledge sharing

sites [84]. To encourage participation and reward contributors, these platforms provide

endorsements, ratings, stars, reputation point and other rewarding systems to acknowledge

the achievement of a software developer. This type of acknowledgement is certified by

peers of the contributor who use the same platform such as the questions acceptance in

Stackoverflow, or the system automatically generate the certification based on the records

such as Coderwall badges.

There are a few studies [70] that enable these various data generated by other users. The

qualitative results have suggested it is promising in hiring software developer occupations

even though interviews are necessary. We will present our detailed systematic survey results

in the chapter 4.
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Chapter 3

Approach

After reviewing early cognitive studies on expert performance, we present this study of

systematic literature review which explores the current practice of expertise location in

Software Engineering. First, we illustrate the approach and protocol to conduct the review.

This review is based on guidelines provided by Kitchenham and Brereton [46]. In following

sections, we specify the goals for each research question, and then provide the six-step-

process in details for our review, the keywords and domains for literature searching queries:

the list of literature searching engines, the standard for conference filtering, and finally the

evaluation matrices for literature.

3.1 Research Questions

There are different types of experts in the field of software engineering practices. When or-

ganizers or managers intend to maximize the benefit of specific domain experts for the team

goals, they need to understand the expertise of each member in the group. To understand the

capability of an organization, one of the most intuitive and efficient way is locating experts

14



from their previous experience [57]. Due to the popularity of online open source commu-

nities, we expect to employ more data sources to generate suggestion for locating different

types of experts through rich public activity data. In this study, we survey the nature of

expertise in the field of software engineering, and another goal is to review approaches from

state-of-the-art expertise location research. Therefore, we purpose the following two main

research questions:

RQ1: In the field of Software Engineering, what are the measurable characteristics that

distinguish experts from novices or less-experienced subjects?

By answering the first research question, we target to conclude the characteristics that differ-

entiate experts from less-experienced and novice developers. In addition to studies included

in the background section, we also expect to learn through surveyed studies to find if there

were other criteria to identify expert developer.

RQ2: How do state-of-the-art expertise/expert location approaches and systems compile

these characteristics and then locate expertise?

From the second the research question, we intend to investigate data sources and exper-

tise models that each study adopted to determine their experts under various sub-domains.

However, there are various and complex sub-domains under software engineering. When

searching for various expertise location methods, we intend to examine if the model can be

applied to OSS community, or if OSS public data could contribute to improve the locating

quality (e.g., precision and recall) while including additional public data.

Through answering these two research questions, we expect to summarize the approaches for

locating different types of expertise/experts in software engineering, and provide directions

to design future expertise location systems which leverage large public datasets from OSS and

knowledge sharing sites. Further, use these experts as role models to guide novice software
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developer for their careers [81].

3.2 Literature Survey Framework

Our literature search approach is inspired by following literature survey studies in software

[31, 81]. Before starting the research process, we set up the targeted publication venues. In

order to ensure the focus and quality of the literature that we are studying for constructing

the initial sample, we filter out the conferences and journals other than A-ranks according to

ERA1, Qualis2 and CCF3, these three rankings systems. In addition to the initial searching

process, we performed one round of citation searching (snowball sampling) after we con-

structed the initial sample. Further, at the end of sample construction, we manually added

several pieces of relevant literature to our literature repository.

The overall literature selection process is as follows:

1. Searching digital libraries: we query digital libraries, and then store the query result

at a local paper repository which is managed by a free and open sour-source reference

management tool, Zotero4, and it manages bibliographic data of the paper and also

related copies of the paper, such as PDF files. Moreover, we employ its chrome ex-

tension, Zotero Connector5 to transfer the search result from web to the local paper

repository.

2. Title, abstract and keywords filtering: since our query contains several generic terms

in the domain of software engineering, the searching result is not promising in the

recall. We perform a first level of filtering on title, abstract and keywords to check if

1http://libguides.newcastle.edu.au/researchimpact/eralist
2http://www.capes.gov.br/
3http://history.ccf.org.cn/sites/paiming/2015ccfmulu.pdf
4https://www.zotero.org
5https://chrome.google.com/webstore/detail/zotero-connector/ekhagklcjbdpajgpjgmbionohlpdbjgc?hl=en
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the studies are relevant to our major objectives based on meta-data. From this step,

we exclude most irrelevant papers to our research questions, which reduces the cost of

the study.

3. Introduction and conclusion analysis: then we analyze the starting and ending sections

of the literature to identify their primary research goals and contribution. This part

of analysis could enable us to one step further to validate whether the purpose of the

subject is relevant to our research questions.

4. Citation search: for studies found relevant after all previous steps, we search on Google

Scholar which aggregates literature across different resources. Then we perform the

same analysis on meta-data, introduction, and conclusion to decide whether to include

these studies. At this step, we dismiss the filter of Rank A conferences but include

literature from all other publication venues as long as the paper is relevant to the

objective.

5. Manual addition: we also include a few studies that have solid contribution to this

field, especially answering our research question but not covered by the query result at

the end of the study.

6. Full literature reading: at last, if a paper is included after all previous steps, we perform

a comprehensive reading throughout the paper, but also decide whether to exclude the

literature in the last step.

According to our research questions, we restrict our studying fields with the range of Software

Engineering, Human-Computer Interaction, and Computer Supported Collaborative Work.

By limiting the conferences that we are studying, we not only limited our research focuses

based on RQs, but also exclude papers that are not in English or not published in a peer-

reviewed venue. As a result, based three publication venue ranking systems that we referred,
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Figure 3.1: Literature Selection Process
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Item Keyword
Domain I software, system, program
Domain II development, develop, engineer
Expertise expertise, expert, skill, knowledge

Table 3.1: Keywords for Constructing the Searching Query

{

("software" OR "system" OR "program")

AND

("development" OR "develop" OR "engineer")

AND

("expertise" OR "expert" OR "skill" OR "knowledge" OR "ability" OR

"talent")

}

Figure 3.2: Query Performed for Searching Literature

the rank A conferences under these categories are: ICSE, FSE, ASE, CSCW and CHI; the

rank A journals are: IJHCS, TOCHI, TOSEM, TSE, and CSCW.

We determine keywords that we would include to perform the literature search (see Table

3.1) upon RQ1 and RQ2. The keyword list has two major fields that we are interested in

this study: domain of software engineering, and expertise location. The first set of keywords

(Domain I) indicates software artifact is the subject that we concern and its synonyms. The

second the set of keywords (Domain II) indicates that we are interested in expertise involved

in the production procedure of software. The last set of the keywords contain the main

subject of this study, expertise, and its synonyms.

The query based textual search expression is an effective mechanism to retrieve literature

through digital libraries. Based on the keywords in the Table 3.1, we constructed a searching

query connected by binary operators, which is supported by most literature search engines

(see Figure 3.2).

After determining the query, we select digital libraries to conduct the search. Our selec-

tion criteria are based on following: It should include major publication venue in Software
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Conference Searching Results
CSCW 278
ICSE 1451
CHI 2224
ASE 84
FSE 70

Table 3.2: Searching Result of Conference Publications

Journal Searching Results
CSCW 505
IJHCS 811
TOCHI 69
TOSEM 92
TSE 41

Table 3.3: Searching Result of Journal Publications

Engineering, HCI, and CSCW in English, support binary operators in queries, and provide

full paper access. Therefore, we selected four digital libraries to conduct our search: ACM

Digital Library 6, IEEE Digital Library 7, Scopus 8, and Springer 9.

3.3 Literature Sampling

Searching Digital Libraries: We used the query presented in Section 3.1 to retrieve an

initial sample of papers, which was executed on Mar 19, 2018 across four digital libraries,

and results are ordered by relevance according to each digital library. We also used the Rank

A conferences in Section 3.1 as a filter to limit result amount. All queries are performed on

meta-data indexing of the literature for consistency (The meta-data of a paper includes its

title, abstract, and keywords). See Table 3.2 and 3.3 for initial sample by publication venue

from aggregated searching result. Noticeably, since we employs a reference management

6https://dl.acm.org/
7https://ieeexplore.ieee.org/
8https://www.scopus.com/
9https://link.springer.com/
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Conference Initial Sample
CSCW 12
ICSE 39
CHI 15
ASE 10
FSE 6

Table 3.4: Amount of Papers for Each Conference Venue in the Initial Sample

Journal Initial Sample
CSCW 10
IJHCS 15
TOCHI 1
TOSEM 4
TSE 8

Table 3.5: Amount of Papers for Each Journal Venue in the Initial Sample

software to manage our paper repository and bibliographic data, it automatically to filter the

duplicates of papers as we transfer the searching results into the repository in the software.

Thus, there is no such a phase in our approach that removes the duplicates.

Meta-data Filtering: Then based on the searching result, a researcher manually inspects

the meta-data of each result to determine whether the literature is relevant to the topic.

At this phase, we exclude papers that not focus on software, e.g., expertise sharing over a

medical team, papers on expert systems, papers of keynote speeches and presentation notes,

and also duplication. As a result, we generate an initial sample of 120 candidate papers from

5 conference venues and also 5 journal venues. See Table 3.4 and 3.5 for numerical details

by venues.

Introduction and Conclusion Analysis: In this step, we focus on the research method,

the contributions, and the application scenarios of studies include. We exclude 53 papers

which are not fitting our objectives in the research questions, for reasons such as an obser-

vational study without purposing a locating approach or system.

Citation Search: After the previous step, we conduct one level of citation search (snowball
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sampling) on papers in the repository. We mainly focus on studies conducted by authors

already in the repositories and researches with high impact (high volume of citation count

provided by Google Scholar). We initially relied on the citation counts from the original

digital library where paper was found, but the result is not promising as the original library

may be in lack of counting citations from publication venues are not included in this library.

Therefore, we apply Google Scholar to search the paper again and employ the citation count

to determine our initial and very brief assessment on research impact. From this step, we

include another 6 studies into our paper repository, and also we do not filter papers from

publication venue standard that we used at the second step.

Manual Addition: There are a few important studies that are not covered by our searching

query, neither could not be reflected through snowball sampling. These studies either are not

covered by our query since it is published in a small conference, or are indirectly related to

our research focus in this study. Therefore at the end of the sample construction process, we

manually add a few studies based on expert recommendation that have promising research

objectives, or provide future directions in the field of recommending expertise. These studies

are most aggregating data across multiple collaboration sites. We will provide a detailed

analysis in the result section.

Full Paper Reading: In the last step of the sampling process, we start our analysis process

while still be open to exclude studies that not focus on our research questions. As a result,

we did not exclude any papers at this stage. In the following section, we will provide the

evaluation matrices that we adopted during the full paper reading process.
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Item Purpose Definition
Title Overview What is the title of the literature?
Year Overview When did the literature publish?
Publication Venue Overview Where did the literature publish?
Publication Type Overview What is the type of the literature (journal, conference, demo, or book)?
Authors Overview Who are the authors of the literature?
Research Type Overview What is the research approach of the literature (empirical, case study or conceptual)?
Expertise Domain RQ1, RQ2 Which domain can the expertise being apply to? Software coding/testing/design etc?
Expertise Model RQ1, RQ2 What is the mathematics or theoretical model of the expertise?
Theory base RQ1 Are there any theoretical background for this model (e.g., from cognitive science/engineering/novel)?
Memory Engagement RQ1 Does the expertise model reflect any memory engagement associating with expertise?
Application of Studies RQ2 How does the expertise/expert location system improve the field of software engineering?
Granularity RQ1, RQ2 What is the granularity of the expertise model (element/method/file/project)?
Future Work Direction What is future work of this study, particularly on expertise location?

Table 3.6: Evaluation Matrices for Reviewing Papers

3.4 Evaluation Matrices

While conducting the full paper reading, we set up the evaluation matrices to collect items

that we are concerned according to our research question. We listed the following 13 items

extracted from each literature in our paper repository (See Table 3.6).

Research overview: There are 6 items in this category. We included the meta-data of the

publication in this category such as title, year, publication venue, publication type, authors

and research type, especially authors of research which used for extracting primary studies in

later sections. In addition to meta-data, we also identify the research types (e.g., conceptual,

empirical, case study, ethnographic etc.) for each paper that we reviewed. Therefore, we

could summarize the suitable research methods for specific research questions in expertise

studies.

Expertise Domain: As we mentioned in the background section 2.3, software engineering

is a complex subject with multiple sub-domains. Through collecting expertise domain, we

intend to investigate the status of expertise location techniques in a specific area, for example,

bug report assignment, merging conflict resolution, and software fault location.

Expertise Model: We use this item to capture the conceptual or mathematical model

for locating expertise. For example, Servant and Jones [74] use a mathematical model of
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speciousness of a fault and recency of changes on a specific line of code to determine the

expertise of a developer to fix a bug. Further, an expertise model can also be represented by

a very high-level conceptual model such as [92] uses a four-layer model to classify knowledge

and expertise of functionality in an application. We intend to summarize the model that

locates, or even quantifies expertise for software engineers in a specific domain respectively.

Theory Base: We also intend to collect any theory base behind the expertise model that

each study adopted. The theory can be purposed within the study based on author’s sug-

gestion, or a field study conducted before, or referred from engineering or management

literature. Theory bases evince the expertise model that adopted by these studies, and are

applicable for a larger scale.

Memory Engagement: Based on many studies that were referred to in the background

chapter, the cognitive expertise for software engineering task is rooted in a developer’s long-

term memory. From this item, we intend to investigate the long-term memory reflection of

expertise models, i.e., whether an expert determined by an expertise model was capable of

reflecting information processing ability such as being able to recall more related memory

for the subject.

Application: This item focuses on the application and contribution of this study. We collect

this item mostly according to authors suggestion and proposal in their paper, which are

usually represented in the introduction, discussion, and conclusion sections. By summarizing

this item, we intend to explore our views on implications for expertise location techniques

in software engineering, such as in hiring, training, and so on.

Granularity: The granularity of the study mainly focuses on the scale of expertise could

be reflected by the model. If an expertise model utilizes the methods level coding behavior

to assign developer for implementing a program method, then this model would be not

applicable to determine this developer’s overall knowledge on the project which contains the
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method.

Future work: Suggestions for future work or directions can usually be found in discussion

and conclusion sections. Although each study has its own very different purpose, from

this survey, we aim to analyze and summarize the suggestions from each sub-domains, and

overlook a high-level future direction of expertise location approaches.

We analyze papers in our literature repository based on the evaluation matrices listed above

but not limited to. There are several cases that some of the item are not applicable to a

particular study, but the overall the evaluation matrices is actionable for the majority of the

studies in the paper repository.
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Chapter 4

Results

In this chapter, we present the results of the literature survey based on the literature reposi-

tory that we constructed in Chapter 3. The literature repository is stored in a local computer

of the author and managed by a reference management software, Zotero. We extract and

organize the results based on our evaluation , and we summarize five main different cate-

gories of expertise studies. In the following subsections, we first present the overview and

comparison of the literature in our paper repository, and then we summarize and highlight

the most impact research in each category. Finally, we summarize findings from our review.

4.1 Overview

Year Distribution: Earlier research on expertise focus the cognitive science of how experts

think and act. Though several directional studies [56, 57, 60] emerged around 2000, most

follow-up studies of automated location systems were published in the following decade.

To the best our knowledge, after the first study [7] applied machine learning techniques in

locating expertise for bug report assignment, there are more studies that apply the statistical
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Figure 4.1: Publication Year Distribution of Papers in Literature Repository

models to analyze human factors in software engineering [88, 91]. In our paper repository,

most studies were published in 2010s (See Figure 4.1).

There are 20 journal publications and 28 conference publications respectively in venues of

CSCW, Software Engineering and a few in HCI. Software Engineering has the most published

papers in this repository (28 out of 48).

Impact/Citation Count: The average citation count of these studies is 99.4, and there are

10 studies have over one hundred citations. Hence, we argue that studies in our literature

repository represent the research on expertise locations and automating this process.

Research Type: There are 23 empirical studies, 18 case studies, and 7 conceptual studies.

Noticeably, one study conducted observation in the field to build a ground theory for exper-

tise location approaches in software engineering practice [56]. Among these studies, 23 of

them only use quantitative approaches to analyze their collected data, and 11 studies only

apply qualitative approaches in their studies. Further, 7 studies apply the mixed method

to evidence their conclusions. According to our literature repository, we found there is a

variety of research methods based on their research focuses. Studies that mine historical
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Year Reference Year Reference
1981 McKeithen et al. [58] 2012 Dabbish et al. [23]
1984 Soloway and Ehrlich [78] 2012 Hanrahan et al. [42]
1988 Pinto and Soloway [64] 2012 Servant and Jones [74]
1991 Koenemann and Robertson [48] 2013 Maalej and Robillard [53]
1994 Davies [24] 2013 Ackerman et al. [3]
1994 Stanislaw et al. [80] 2013 Yarosh et al. [90]
1997 Waterson et al. [86] 2014 Fritz et al. [36]
1998 McDonald and Ackerman [56] 2014 Vasilescu et al. [84]
2000 McDonald and Ackerman [57] 2014 Maalej et al. [54]
2002 Mockus and Herbsleb [60] 2014 Ye et al. [91]
2002 Nardi et al. [61] 2014 Ley et al. [49]
2003 Chevalier and Ivory [19] 2014 Bergersen et al. [10]
2006 Anvik et al. [7] 2016 Chan et al. [16]
2007 Minto and Murphy [59] 2016 Xu et al. [88]
2007 Anvik and Murphy [6] 2016 Thongtanunam et al. [82]
2007 Reichling et al. [67] 2016 Yu et al. [93]
2008 Yang and Chen [89] 2016 Costa et al. [22]
2008 Schuler and Zimmermann [72] 2016 Rahman et al. [66]
2009 Lin et al. [50] 2016 Hannebauer et al. [41]
2010 Kläs et al. [47] 2016 Sarma et al. [70]
2010 Fritz et al. [35] 2016 Greene and Fischer [39]
2011 Gottipati et al. [38] 2017 Lin et al. [51]
2012 Pipek et al. [65] 2017 Saxena and Pedanekar [71]
2012 Bednarik [8] 2017 Wang et al. [85]

Table 4.1: Primary Studies in the Literature Repository

artifacts usually apply quantitative method to model expertise [7, 59, 60, 84], and studies

explore the expert characteristics and commonalities in sharing expertise activities usually

adopt qualitative research method [18, 48, 49, 86].

4.2 Primary Studies

In the final literature repository, we read the paper in full and then extract necessary data

from each paper. Therefore, in the end, we identified these studies as primary (see Table

4.1) based on their focused expertise domains and correspondence to our research questions.
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Figure 4.2: Publication Category Distribution of Papers in Literature Repository

In our literature repository, we identify two board categories of expertise research: 1) identify

the characteristics of experts, 2) locating experts.

There are several early studies and few recent studies intend to empirically identify the

characteristics of experts in software engineering by monitoring their performance, see Table

4.2. There are studies explore the information processing ability of experts [58], the strate-

gies that experts adopted in programming comprehension [48], and validation expertise via

monitoring experts performance [10, 24].

There are several research investigated the practice of expertise location in software engineer-

ing. These studies focus on the common practice that manually locates experts (see Table

4.3). There is a study identifies the expertise sharing network structure in software devel-

opment organizations [86]. Moreover, there is a study identifies a set of practical strategies

for locating expertise, which provides heuristics for automated expertise location systems

[56]. Finally, there is a recent study that revisited the practices of expertise location in soft-

ware organizations but found asking colleague is the most common practice, and automated

location tools are hardly used [90].

29



Year Reference Approach Findings
1981 McK-

eithen
et al.[58]

Empirical
Study

Experts in programming perform better in retrieving and recall-
ing related information; experts’ knowledge representations are
similar.

1984 Soloway
and
Ehrlich[78]

Empirical
Study

Empirically identified two types of knowledge in programming:
plans and rules, which are heavily related to mind simulation and
information processing.

1991 Koene-
mann and
Robert-
son[48]

Empirical
Study

When understanding the program, experts search for relevant
information in the code, and only employ a bottom-up strategy
for entire program comprehension when their hypothesis failed.

1994 Davies[24] Empirical
Study

As the expertise growth for programming developers from lower
to higher, when given a programming task, their reaction time
and the number of errors made tend to be lower comparing to
novices.

1994 Stanislaw
et al.[80]

Empirical
Study

Employ time factor, time of complete the programming task, and
multitasking ability, the variety of programming skills such as
the number of programming language known, to quantitatively
measure expertise.

2014 Maalej
et al.[54]

Case
Study

Programmers comprehension strategies depends on the context,
and they would avoid to understand whenever possible, similar to
work of Koenemann and Robertson.

2014 Bergersen
et al.[10]

Empirical
Study

Bergersen et al. build testing model to systematically measure
and valid the expertise level of programmers in Java. It validates
expertise the quality of answers and responsive time in series of
programming tests, and also self-reported data of the experience
and programming motivation.

Table 4.2: Primary Studies for Expert Characteristics
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Year Reference Approach Findings Future Work
1997 Waterson

et al.[86]
Case study which
visited an IT com-
pany several times
and conduct inter-
view based qualita-
tive research with
key personnel in the
organization

They identified the man-
ual knowledge sharing
network structure in a
software development
team

Technology can be ap-
plied to knowledge shar-
ing process in the soft-
ware development. Pur-
pose a need of conduct-
ing case studies upon
different size of organi-
zations to validate their
structure.

1998 McDonald
and Acker-
man[56]

Conducted a field
study in midsize IT
company.

They found three major
heuristics to locate ex-
pertise in software devel-
opment practice: every-
day experts, through an
expertise concierge and
mining historical artifacts.

Automated systems are
needed to support situ-
ations in expertise loca-
tion process such as the
escalation behavior.

2012 Pipek
et al.[65]

Longitudinal case
studies in three orga-
nizations and sum-
marize the frame-
works for designing
technologies for sup-
porting expertise and
knowledge manage-
ment.

In expertise sharing of or-
ganizations, practice leads
to technologies innova-
tion. While integrating
new tech, the new design
should not disrupt the
current ecosystem.

Follow the heuristics
and carefully design new
technologies for support-
ing expertise location
and sharing activities.

2013 Yarosh
et al.[90]

They conducted a
diary and then in-
terview study on
professional software
developers

They explore the exper-
tise location practice, and
they found in most cases
(76%) asking a colleague
is the common practice to
solve a problem, and tools
are not helpful.

Time issue in the ex-
pertise (help) location
activity. They found 15%
of the tasks involved in
help-finding remained
unsolved for longer than
two weeks.

2016 Thong-
tanunam
et al.[82]

Observe the code re-
views of six software
systems in the field

Majority of reviewers only
contribute to one mod-
ule on the system, and
code reviewers with more
reviewing experience are
more significant in re-
ducing the defects rather
than with code author-
ship.

Future studies should
majorly rely on using
code review experience
to determine best experts
for reviewing the code.

Table 4.3: Primary Studies for Manual Location Approaches
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The majority of studies that automated locates expertise are designed by following the

heuristic of mining historical artifacts (see Table 4.4). The domain of these studies are :

Software problem solution, bug reports, code review, and code artifacts implementation and

comprehension, among others. New techniques have been employed as they become popular

in software engineering, such as machine learning and natural language processing. The

most adopted method to evaluate these expertise research is precision and recall, which is

well-known method for information retrieval [32]. Most studies mentioned a lack of empirical

validation of their approach and purpose to aggregate more data source to improve the ex-

pertise model. There is study adopts the learning curve theory to measure the skill/expertise

increases [85], but it still lacks evaluation validate the approach. We are not able to identify

other expertise models that measure expertise based on early theory or empirical results

based on expert performance [48, 58, 78].

Knowledge sharing sites are transforming the way of expertise sharing activities. Instead of

locating the expert, within these platforms, finding the relevant answer which is somewhere

online. Providing incentives for knowledge providers is a more focused and needed research

topic, e.g., Vasilescu et al. claimed the gamification features made the success of popular

knowledge sharing site as StackExchange [84]. Further, the keyword-based search engines

are not able to precisely locate the best matching question, and therefore, techniques such as

semantic searching and neural networks are introduced to help the online knowledge sharing

activities [38, 88].

A few studies are visualizing the social network of personnel in the organization. These

studies support the awareness of the social network of each in it and hence support the

communication among teammates. However, these studies usually do not provide evaluations

of their tools, and particularly in the real-world context. Further, we are not able to find

recent follow-up studies in this category.

There are other studies of expertise in our literature repository, such as exploring the im-
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Year Reference Approach Findings Future Work
2008 Yang and

Chen[89]
Case Study with a
mixmethod analysis. Use
Bloom Taxonomy Matrix
to represent a person’s
expertise.

A p2p network system can
support knowledge activity to
effectively share knowledge,
and need to locate relevant
collaborators effectively.

Investigate the dynam-
ics for different social
network, and also sup-
port collaboration.

2011 Gottipati
et al.[38]

Semantic search engine
for finding answers, and
empirical study on preci-
sion and recall, and finaly
user study comparing
with conventional tools.

Based on the evaluation met-
rics of precision and recall, and
the nDCG@2 score, their ap-
proach significantly improve
the answer finding experience.

Automated approach
that cluster similar
questions to help seek-
ers to find relevant an-
swers, and conduct
study with other soft-
ware forum.

2012 Hanrahan
et al.[42]

Case Study on Stackover-
flow data

They have not yet found a
strong correlation between
average expertise of involved
users and the duration of the
time, but it is an initial at-
tempt to model difficult of
question

Conduct studies on
other expert community,
and use AI systems to
capture critical factors
of problem difficulties.

2014 Vasilescu
et al.[84]

Empirical study with
r-Help mailing list and
StackExchange data

Participants from both com-
munities are more active than
those participated one, and
participants from StackEx-
change response faster because
of the gamification.

Interview studies with
participants from differ-
ent communities.

2016 Xu
et al.[88]

Apply neural networks to
find similarity between
different questions in
software engineering

Based on precision and recall
(both lager than 0.8), their
approach effectively link similar
knowledge units together.

Support more data type
such as code snippet
and image.

Table 4.5: Primary Studies for Knowing Sharing Sites

Year Reference Domain Application Visualization
2002 Nardi

et al.[61]
Contact In-
formation

Support communication, and
awareness of social network

Map-based visualization which clusters
the people under same organization
network (see Figure 4.7).

2009 Lin
et al.[50]

Profes-
sional
Social
Network

Support awareness of social
network, and visualize the
expertise domain of each
person. Highlight key person
in the social network.

Multiple view of visualization depend-
ing on its purpose. Node tree based
visualization for social network, geo-
graphic visualization for distance and
availability (see Figure 4.8).

Table 4.6: Primary Studies for Expertise Network
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Year Reference Type Approach Findings
1988 Pinto and

Soloway[64]
Documen-
tation for
Novice

Case Study with novices
and their usage of pro-
gram documentation

Novice without requisite knowledge of the
program needs support of documentation,
and also the presentation of the documen-
tation matters.

2003 Cheva-
lier and
Ivory[19]

Implication
of Exper-
tise Study

Empirical study with web
designer at different ex-
pertise level

Web design tool should support different
design strategies and remind the guideline
of design for different levels of expertise
respectively.

2010 Kläs
et al.[47]

Implication
of Exper-
tise Study

Case Study with industry Expertise measurement can be applied to
defects prediction in software product.

2016 Chan
et al.[16]

Implication
of Exper-
tise Study

Empirical Study with
crowd workers

Correctly facilitation experts into the
crowd can help innovation and creativity
in their work.

2016 Han-
nebauer
et al.[41]

Empirical
study on
location
techniques

Empirical Study for com-
paring different auto-
mated code review assign-
ment techniques

Automated approaches based on review
experience generate better performance.

2016 Sarma
et al.[70]

Profile Ag-
gregation

Activity Data Visualiza-
tion and case study with
hiring personnel

Profiles from online platforms (GitHub
and Stackoverflow) are effective to under-
stand a candidate’s past, but interview is
still needed.

2017 Sax-
ena and
Pedanekar[71]

Profile Ag-
gregation

Activity Data Visualiza-
tion

Treemap visualization based on the tags
provided GitHub and Stackoverflow.

Table 4.7: Other Primary Studies
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plications of identifying expertise level [16, 19, 47], empirical studies on the performance of

location techniques [41], and expertise profile aggregation [70, 71]. These studies are not

typical expertise location approaches but we believe they benefit this study while we build

the our knowledge on expertise in software.

In the following sections, we summarize several most influential studies based on their citation

counts and contributions to the area of expertise location. We also report these studies in

a perspective of the historical view for the development of expertise location systems and

approaches.

4.2.1 Expert Characteristics in Software Engineering

McKeithen et al. 1981

In earlier studies, researchers confirmed that experts are generally performing better than

average in their mastered fields [17, 25, 37, 77]. From a cogitative perspective, they found the

reason is that experts can retrieve more chunks from their related memory while working on

their expertise domain, which gives experts a higher information processing ability in their

expert domain.

In 1981, McKeithen et al. conducted two experiments in their study. First, they tested

the performance between experts and novices in computer programming tasks by letting

participants to view coherent or scrambled computer programs for a 3-min recall period for

5 trials, and then participants were asked to recall everything after each trial.

The result suggests that subjects with higher expertise in computer programming, they can

recall more lines of the program in either standard or scrambled versions (See Figure 4.3).

Their conclusion from this experiment suggested that in the field of computer program-

ming, experts are also superior in information processing, including gathering or recalling
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Figure 4.3: Performance Differences between Experts, Intermediates and Beginners in
Experiment 1 (Recalling Lines of Programs) [58]

information which is similar to other fields.

In their second experiment, each subject was asked to organize the programming concepts

in the form of a hierarchical representations for keywords in computer language such as,

true, false, if, while and for, and so on. Then they aggregated the result into a

multidimensional scaling configuration for computing the distance between each subject.

Their result suggested that experts are more cohesive to each other as a group, whose

knowledge construction, i.e., the semantic representation [12] are particularly alike, but

intermediates and beginners are not cohesive as experts (See Figure 4.4).

This study has two major contribution: first, it confirmed the fact that in programming,

experts are faster and precisely in processing information of computer programs which is a

familiar result as in other field. Second, it found that experts are more similar while orga-

nizing their semantic knowledge structures about programming. Besides, expert subjects’

knowledge structures have clustered a cohesive group.
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Figure 4.4: Coherence between Groups of Experts, Intermediates and Beginners. Measured
by Multidimensional Scaling Configuration of Distance [58]

There are a few studies later on expert characteristics and performance, such as exploring

expert problem-solving strategies [24, 48], quantifying programmer’s skills [80].

4.2.2 Manual Expertise Location

McDonald and Ackerman 1998

In early days, practitioners locate expertise to solve problems that they could not solve

alone, but over manual approaches without the assistance of automated software. In 1998,

McDonald and Ackerman conducted a five-month field study in a medium-sized software firm

to observe practitioner’s behavior in manually locating expertise within their organizational

settings [56].

According to their observation, three expertise identification approaches were summarized

in the industrial practice. First, as they purposed the terminology in the paper, senior

practitioners have difficulties in articulating how they know who knows a certain area, for
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example, a quote from their study says:

“You learn who’s [the] most experienced in what areas. ...You just know.” -

Sherry

This expertise identification approach is the Everyday Expertise. However, this approach

is not applicable to newcomers and sometime even to the senior member when they were

unable to track everyone. The second type of expertise identification is Historical Ar-

tifacts. The general philosophy of this approach is finding the person who has the latest

authorship (change the artifact) of the artifact that related to solve the problem. However,

this approach of identifying expertise is limited by the purpose or size of the change, which

may falsely identify the expert.

The last approach is asking help from an Expertise Concierge. In an organization, the

expertise concierge is the key personnel who has very elaborated social networks and mediates

many requests for information including locating expertise. Other management studies use

the term of information gatekeeper [4], information mediator [29], and information broker

[63] to refer to the same role in an organization. An expertise concierge usually lead people

who were looking for information and expertise to those who may have them.

After the identification process and if there were multiple choices, the practitioners would

start the process of expertise selection. During this process, they tend to choose a person

from their local social network and avoid routing to another department. Finally, the expert

whom they chose to look for help might not always be the person who could offer the help

due to series reasons, and this is when escalation happens.

This study is critically important to other studies of expertise location. It purposed three

main strategies to identify experts, and two of them (historical artifacts and expertise

concierge) are directing the later studies for automated expertise identification. However,
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this study’s research setting is a mid-size company, which did not capture the collaboration

model in larger or smaller companies, especially for distributed teams. Besides, due to the

age of this study and the development of knowledge sharing/transferring platforms, we argue

that we need to re-evaluate our expertise location practice in the organizational settings.

4.2.3 Automated Expertise Location Techniques and Systems

Since in 2000, researchers start designing approaches and systems for locating the expertise

based on specific needs. Notably, these studies inherit the Historical Artifacts heuristics

purposed by McDonald and Ackerman [56]. Also, these approaches aim to measure and

quantify expertise of a person while mining historical artifacts.

Mining Historical Artifacts

McDonald and Ackerman 2000

Two years later, McDonald and Ackerman published an automated expert recommendation

system for solving problems in software organizations called Expertise Recommender (ER)

[57]. This expertise location system attempt to decrease the workload of expertise concierge

and provide alternative options. They employed their expertise locating heuristics from their

previous field study, and their main strategy is based on mining the historical artifacts.

There are two basic heuristics for expertise location in ER. The first one is Change History

heuristic which adopted from the “Line 10 Rule” from their field study [56]. The ER system

checks for the last change of the software module in the version control system, and the

developer who made the last modification would be the best candidate to ask for help.

The second heuristic is inherited from the Tech Support. It enhances the routine behavior
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Figure 4.5: The Expertise Request Dialog of Expertise Recommender [57]. Topic Area:
Selecting the Heuristic; Filter: Strategy for Expertise Selection

of a technical support when she faced an unfamiliar problem and starting to find a similar

experience or problem in the past. Therefore, ER creates a local database for querying

similar problems that happened before and associated with the person who solved them.

A user can pick the basic heuristic based on which one fits their need of the current problem,

and then choose the mechanism while selecting the expert (see Figure 4.5).

The two heuristics applied in this study are very inspiring and lead the future studies for

expertise locations. Most future studies applied, integrated or combined these two heuristics

for their design heuristics. For example, mine version control systems for changing history

[60, 72] or look for the similarity of unsolved and solved problems [7, 88]. This applies two

data sources, changing history from the version control system and also the database of

previous tech support problems. However, this system lacks a systematic evaluation on the

performance of the system.

Mockus and Herbsleb 2002

Mockus and Herbsleb designed another expertise location system called Expertise Browser

(ExB) [60]. Their main purpose of this study is to locate relevant expertise for collabora-

tion in geographically distributed development. The major contribution of their work is to

start quantifying a developer’s expertise on specific code module based on activities, and

distinguish developer who have only brief worked on a module and who have extensively

worked.
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Figure 4.6: The User Interface of ExB [60]

In this study, they purposed a quantitative measurement of expertise without professional

licensing. They defined the concept of Experience Atoms (EAs) as the smallest unit of

experience, and in practice, EAs refer to “the smallest meaningful unit of such change,” and

the “change” is the direct result of a developer’s activity on the product. By applying this

concept, ExB summarizes a developer’s expertise on changing files.

The user interface design of ExB is as follows (See Figure 4.6). For each software module,

a developer would have different amounts of EAs which contribute to different levels of

expertise on a specific model. In the right panel, the length of each bar on the module name,

represents the accumulated EAs for “Robert Wells” the example developer’s expertise based

on his activities. Intuitively, the bigger the bar represents, the higher expertise. Finally

Mockus and Herbsleb conducted a case study on distributed teams to evaluate the tool.

Noticeably, except this study first represents the expertise in software engineering practice

by the form of visualization (the area of bar charts), it gives two suggestions for future

studies. First, time of the change activity is also a critical factor to consider while building
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the quantitative model for expertise. In this study, the time factor is discussed to help the

model the difficulty of a Modification Requests. A longer time of MR interval may caused

by harder request. Time is a critical factor in modeling and quantifying expertise for various

aspects, and Mockus and Herbsleb were the first to include it in the context of software

engineering based on our survey.

In another discussion of the study, the authors were mapping experience to expertise. Though

experience is not the perfect measurement for expertise, which were not reflected by the

cognitive model of expertise, their discussion provides insights on what other information

can be considered in expertise measurement. Finally, they also discussed the possibility of

representing a developer’s expertise with visualizations.

However, this study also has its limitation. First, it only applies the single data source, which

only uses the changing log from version control system to determine the expertise. Moreover,

as it is a case study, it only tested ExB’s usability with participants, but it lacks user feedback

or evaluation on the precision (usefulness) of the experts that ExB recommended.

Expertise Concierge and Social Network Analysis

Nardi et al. 2002

Earlier in 2002, information digitization has been a trend even for our contact book. As

previous study mentioned, personnel such as expertise concierge plays an essential role in

locating expertise under the organization setting [56], but this type of role need to handle

more information of other members in the team such as their contact information. Thus,

Nardi et al. design and implement an assistant software named ContactMap [61] to not

only support expertise concierges to manage the contact information, and also visualize the

social network of each member.
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Figure 4.7: The User Interface of ContactMap [61]

As they claimed in the paper, the major user scenarios of their tool are reminding and

supporting the user. For example, reminding the user of others’ identities and connections

between people in their social network, particularly the contact information of these peo-

ple. In addition, ContactMap also provide awareness information for distributed team

members, such as their availability for phone calls [26].

This is an exploratory study of leveraging the social network of team members and support

collaboration and communication. Moreover, they were also the pioneers in visualizing

social networks In the future, they plan to address more detailed research questions such as

how people use this tool (evaluation of this work)?; How to support task-specific network?;

Whether to hide peripheral members of the task in ContactMap and so on. They lead the

discussion on this topic.
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Lin et al. 2009

As a follow-up study on the social network analysis, Lin et al. design a social network data

mining tool called Smallblue [50].

In this work, they pushed the research of social network one step further by analyzing the

social network and generating location of the key persons in it. They identify the key people,

”Key Hubs” in the network through graph analysis such as locating structural holes. Besides

the identification function, they also provide awareness information in their tool, such as

displaying the geographical information for each team member.

Comparing with previous work, their visualization of a social network is more detailed in

different perspectives and provide richer information on an individual team member. More-

over, it gives more personal information which is beyond contact information only. This tool

combines the social network attribute and expertise together. Finally, it was an online web

tool1 which is maintained by IBM, though it is no longer maintained and offline now.

4.2.4 Open Source and Knowledge Sharing Site

Empower Open Source

In 1983, Richard Stallman launched the GNU Project with free source code sharing online.

Later in 1991, Linux was released by Linus Torvalds with the license for freely modifiable

source code, which significantly promoted the movement of open source software. Until 2005,

the most popular decentralized version control system was created, and three years later,

GitHub was launched, which fundamentally changed the development process and collabo-

ration approach for open source projects. Later in 2010s, studies also suggests that open

source contribution is also a factor to consider in the software developer hiring process. The

1http://smallblue.research.ibm.com
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Figure 4.8: The User Interface of Social Network in Smallblue [50]
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publicity afforded by these open source projects, dramatically promotes the development of

software engineering research, particularly for empirical software engineering studies. More-

over, researchers can utilize valuable public historical data for locating expertise.

Anvik et al. 2006

As the emergence of machine learning technologies in software engineering, this study by

Anvik et al. started to assigning bug reports to developers based on their historical activities.

The main purpose of this study is to alleviate the burden of managing bug report repository

in large open source development teams.

As the first study to locate expertise by using machine learning techniques, their approach

trains the machine learning algorithm based on the historical experience of a developer.

Their algorithm models the types of the bug that a developer had solved before, and predicts

developers performance on an unsolved bug based on the type of the bug. Finally it generates

a list of developers in order to be considered as experts on solving such a bug. To empirically

validate their tool, they analyze 3426 bug reports for Eclipse.

To characterizing bug reports, they convert text in summary and description into feature

vectors which can be trained by machine learning. They applied a set of heuristics to identify

the expertise based on the bug resolving history. The basic four types of which they provided

in the paper are:

• If a report is resolved as FIXED, it was fixed by whoever submitted the last approved

patch. The person who solved it in the last approved patch has the expertise.

• If a report is resolved as FIXED, it was fixed by whoever marked the report as resolved.

The person who marked it as resolved has the expertise.

• If a report is resolved as DUPLICATE, it was resolved by whoever resolved the report

of which this report is a duplicate. The person who resolved the report as duplicate has
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the expertise.

• If a report is resolved as WORKSFORME, it was marked by the triager, and it is

unknown which developer would have been assigned the report. The report is thus

labeled as unclassifiable at the moment.

In their approach, they applied a systematic method to evaluate the recommendation of

the bug report resolving expertise based on the principle information retrieval technique,

Precision and Recall. They regard expertise location process as a process of information

retrieval, and the searching query is the description of an unsolved bug report. However, the

result is not promising at that time. They have only achieved 57% and 64% of precision for

two projects, and recall is not over 10% for either project. Noticeably, the ground truth for

evaluation on this machine learning technique is based on cross-validation. Therefore, the

developer who is identified as the expert for a bug report by this technique may not carry

the expected expertise.

Though this study’s result does not look so great regarding percentage numbers (especially

comparing to recent bug report assignment techniques), they lead a trend of research in

software engineering by applying machine learning techniques to locate expertise, and also

utilize the extensive data provided in online open source repositories.

Schuler and Zimmermann 2008

In this study, Schuler and Zimmermann refined the model of expertise on code artifacts

purposed in previous studies, especially the quantitative expertise model purposed by [60] in

2002 [60]. In addition to quantifying the expertise based on a developer’s modification on the

code artifact, they also introduce the concept of usage expertise which is more straightforward

to collect.

The usage expertise is the knowledge that developers would also accumulate while using
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Figure 4.9: An Example of Developers Usage Expertise in Their Social Network. These
Developers Mostly Use the the JDT Compiler [72]

other functionality such as calling APIs, which they did not implement. They argue that

while calling (using) methods, developers might not be aware of implementation details, but

these developers would gain expertise on how to use a method and when a method can be

used.

Including refining the model of expertise on code artifacts, this study also mentioned the

application of creating an expertise profile for a developer. However, due to the limitation

of mining techniques, it only provides low-level information on a developer’s expertise, and

still needs human interpretation to refine high-level expertise summary. Moreover, the social

network of developers is hard to extract information (see Figure 4.9).

This study did not provide an evaluation or plan for your methods. However, their contribu-

tion on the quantitative model of considering what is missing at that stage is valuable, and

it leads other studies to utilize the enormous data source of version control archives fully.

Fritz et al. 2010, 2014

In their journal publication in 2014, Frtiz et al. summarized their work modeling expertise for

code authorship and interaction. They purpose a model to capture the developer’s expertise
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on source code element, Degree-of-knowledge(DOK). This model utilizes the IDE to track

developer’s interaction with the code, and they empirically identified their results on two

sites (two software development teams).

This study introduces the DOK model which represents developer’s familiarity with code

element. In their model, DOK is the combination of degree of authorship and degree of

interest:

DOK = α ∗DOA+ β ∗DOI (4.1)

Particularly, the degree of authorship data is mined from version control achieves. Defined

in the paper, the degree of authorship data contains three factors (first authorship, deliveries

and acceptances). Further, Mylyn (used to be Mylar) [45], an IDE plugin in Eclipse collects

the . The degree of interest of an code element is accumulated with each interaction the

developer had with it, for example, clicking or selecting a variable name rather than editing

it.

For determining the weightings, α and β in the Equation 4.1, they collected the data from

developers in the team, and let developer themselves to rate their knowledge about code

elements as the ground truth of expertise, and then apply linear regression to decide weights

in Equation 4.1.

Servant and Jones 2012

This paper introduces a technique called WhoseFault which is automated to choose expert

developers to fix execution faults reflected by test cases. By applying this approach, the faulty

test case can be assigned to the developer who may have the expertise to resolve the failure.
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Figure 4.10: The approach of calculating recency based on the time of starting at the
beginning of software project [74]

Second, similar to the previous work of the second author, it provides a diagnosis of where

the lines of code may cause the fault.

Their approach does not only leverage the version control system to gather data but also

utilizes the test cases and the execution results to complementary the expertise model. This

technique extracts the history of source code with its test cases execution result to locate

the fault within the source code. It applied the same technique from their previous study

TARANTULA to automatically local buggy code by assigning the suspiciousness score to

each line of the code [43]. In this study, they moved one step forward to assign execution

fault to developers with expertise or responsibility based on the suspicious code.

Besides WhoseFault’s implications on reducing bug reports generation as they claimed

in the paper, this study also contributed to expertise location techniques, particularly on

interpret and evaluate the quality of developer’s previous working experience. Another

critical contribution is that in their quantitative expertise model, they specifically consider

the time factor and introduce the recency in expertise calculation see Figure 4.10. Though

early study [60] has mentioned time would be a factor donates to the expertise measurement,

but their emphasis was measurement on the difficulty of the task.

In their evaluation, besides comparing to other similar expertise location techniques, their

ground truth of expert for fixing the fault is based on the actual developer who performed

the bug fixing action later. Therefore, the developer who fixed bug is the expert. Though
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this method has its limitation which raises challenges such as the bug fixer may not be the

best developer with the expertise, and so on. This method improves evaluation strategies

and it refers to the philosophy of evaluation approach for machine learning techniques.

Emergent Expert for Open Source

Yu et al. 2016

The pull-request model is a widely adopted method by distributed teams, especially open

source ones. However, conventionally a project owner manually assign the developer to

review the contribution, or the owner would review the code by herself. This manual process

is time-consuming and ineffective, and it usually overburdens some core team members.

As a part of expertise location research, determining several best candidates for the code

reviewing task is an emergent need as open source communities getting popular in software

production.

In Yu’s study in 2016, they purposed a method for pull-request code reviewer assignment,

which automatically recommends the expert for reviewing the source code contributed in

pull-request, they identification and selection procedure grounded by previous development

history. Particularly, they combine their expertise factors and common interests of developers

into their expertise location model.

On GitHub, core team members for a software repository may not always be available

to review the pull-request, and also because GitHub is social coding site, outsourcing the

expertise from external reviewers is usual. Outsources also play critical roles in helping and

affecting the code team members while determining whether to approve the pull-request

[83]. Therefore, the interaction history of the external reviewers by comments shows their

interests towards the repository, and also indirectly reflects their knowledge and expertise of

the repository.
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By combining this social interaction data to the experience based expertise model, they

leverage the social character of the open source platforms. Noticeably, they conduct a mix

method approach to evaluate their approaches. Like other recommend systems before, they

adopted precision and recall to assess the performance. Moreover, they conduct a qualitative

study to deeply explore the benefit of their expertise location approach which combines social

interaction data. Their results suggest that technical keyword in communication traces is

the most relevant factor to determine the expertise of a developer to the project, and for a

project has most reviews are insiders, a developer who becomes a dominant reviewer usually

leaves her communication traces in most of the pull-requests. For this type of collaboration

mode, one repository only has a few dominant reviewers.

Costa et al., 2016

Besides the pull-request model, merging is another important collaboration practice, as par-

allel development is beneficial to manage time to release the product either in open source

communities or commercial development. However, merging is not an easy task to perform

as it requires complex expertise in resolving conflicts [22].

Current techniques and tools only detect straightforward and direct conflict such as textual

conflict. However, these tools are not able to realize complex cases such as unseen dependency

modifications [76]. Therefore, it is very typical to assign a developer to manually resolve the

conflict or confirm if the merge is free from potential conflicts. However, it is not clear to

find the appropriate developer or locate a few experts to perform the merge action.

In their study, they purposed an automated approach called TIPMerge, a novel tool which

identifies a list of developers as the best candidates to perform the merge action. Similar

to other expertise location systems and approaches, it determines the expertise for perform-

ing the merge based on developer’s previous experience with the branch and the project,

particularly the interactions with key files for the merge and their dependencies (See Figure
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Figure 4.11: User Interface of Showing Rankings of Developers for Performing Merge in
TipMerge [22]

4.11).

Finally, they evaluate their system based on a mix-method approach similar to [93]. They

not only quantitatively compared their results with conventional methods, but also conduct

a qualitative study by interviewing team members for two projects. As they summarized,

there are couple reasons other than previous experience to decide a merger, such as, “Line 10

Rule” for merge (the developer who made the last commit would help the merge); knowledge

on the trick part of the code artifact; personal preference.

Knowledge Sharing Sites

Effective knowledge sharing platform has been emergent since late 2000s (Stackoverflow

launched since 2008). The free knowledge crowdsourcing practice has changed the way

how developers get basic knowledge on programming questions. It was a brilliant idea

for Stackoverflow to organize the documents for each programming language and API, but

the company has to end the project due to its enormous effort in management and low

profit for return2. However, a complete documentation or code examples is necessary and

affordable for private knowledge resources such as knowledge sharing repository for private

2Stackoverflow Meta, Sunsetting Documentation: https://meta.stackoverflow.com/questions/354217/sunsetting-
documentation
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companies and commercial project, for example, Software Engineer from Facebook, Satish

Chandra introduced the internal code repository of Facebook on 2018 ISR research Forum

at University of California, Irvine3. Properly utilize the knowledge sharing site to locate

expertise is critical but the current research has been struggling with the extracting relevant

information partially due to the ambiguity of natural language. Research on knowledge

sharing sites is still in the beginning and building infrastructure phase.

Hanrahan et al. 2012

It is intuitive that a person with high expertise on the domain could answer hard related

questions in software engineering, and novices in the domain could not. However, the diffi-

culty of questions is hard to model. In this study, Hanrahan et al. employ a straightforward

method to model the difficulty of a question on Stackoverflow by calculating the time dura-

tion between the problem is posted and the accepted answer is posted.

It is not a brand new idea to model the difficulties and expertise. Earlier in the study of [60],

they have already discussed the time issue of a task in software engineering, such as a hard

request or bug would take more time to complete since it was issued. However, they did

not include the time factor in their quantitative expertise model. In this study, the authors

only consider the solving time as a factor, but they missed the other factors such as the

popularity of the topic. However, they provide an initial attempt to model the expertise in

questions through time factor.

Xu et al. 2016

Due to the ambiguity of natural language, and different representation may refer to the same

semantic meaning, questions on Stackoverflow may be repeated or high related to each other.

Removing the redundancy and simplifying the variations are critical for modeling the users

expertise and avoid information overload for knowledge providers and receivers on knowledge

3https://isr.uci.edu/content/2018-isr-research-forum
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Figure 4.12: Word Representations Embedding Examples [88]

sharing sites. Unfortunately, Stackoverflow is not able to manage its enormous knowledge

base like Wikipedia4 which links keywords, i.e., knowledge unit, to its own explanations.

However, the failure of Stackoverflow Documentation suggests the complicity of programming

knowledge unit is not affordable for human labor to classify.

Therefore, Xu et al. employ the conventional neural network to model the knowledge unit

in questions and answers for expertise. Through the techniques and approach described in

their study, they can cluster different word representations into different high-level categories

4.12. Besides, noticeably they also use precision and recall as the primary evaluation metrics

for their approach.

Based on their study, it is possible to manage the knowledge unit, defined in their study,

and link them as Wikipedia. It enhances the usability of the site and also easier to mine

a knowledge unit related expertise for developers which is at a higher level than “tag” in

Stackoverflow.

4.2.5 Multi-Platform Data Aggregation

Sarma et al. 2016

4https://www.wikipedia.org/
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Figure 4.13: The Card Based User Interface for Comparing Expertise in the Hiring Proce-
dure [70]

As the emerging of online knowledge sharing platform, e.g., Stackoveflow and open source

platform e.g., GitHub, it is necessary to monitor and aggregate a developer’s activities all

over the internet for precisely measuring her expertise in software engineering for both “soft”

social skills and also technical skills.

Therefore, Sarma et al. design and implement a visualization tool, Visual Resume to

include a developer’s activities over the internet. Notably, other than the amount of the

contribution for a developer over his career (bar charts in the middle of each card in Figure

4.13), it also provides quality indicators of their contribution such as whether a pull-request is

accepted and whether their commit passed the test cases provided in the repository. Besides,

it employs a card-based user interface to allow easy comparison between developers, and

mainly they design this tool to extract expertise from historical contributions for hiring

purpose.

As for evaluation, they conduct the interview based usability test with management level of

personnel from industry, and let participants either use the web portals of developer’s pro-

file or use Visual Resume to evaluate job candidates based on job description, and then

select best candidates for the job. Particularly, other than finding Visual Resume is help-
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ing participants in making their decisions, participants also mentioned that the qualitative

interview phase is still necessary as a part of hiring new employees.

4.3 Findings Summary

In this section, we summarize the major findings from our survey review. First, we present a

historical view of expertise location systems and approaches in the development of software

engineering. Further, we argue that there is some limitations of the current trend of exper-

tise location systems, especially on their dataset to determine the expertise and evaluation

methods for the system. Finally, we provide some suggestions based on the current research

status.

4.3.1 Evolution of Automated Techniques: From Locating Exper-

tise of “Playing Chess” to “Moving Pawn”

In this study, we reviewed the studies of expertise location in a historical perspective. We

summarize the development of expertise location studies in the figure (see Figure 4.14).

Early expertise research, researchers were discovering the characteristics of experts and mas-

ters, and they found experts perform better in their expertise domain mainly due to their

higher information processing abilities, and this conclusion has been confirmed by a few

studies in software engineering which found senior expert programmers can also process

information of code faster and more precise.

Since the field study by McDonald and Ackerman in 1998 [56], they set up the heuristics

for expertise location systems and approaches later, mostly mining the historical artifacts

or through expertise concierge. By studying our paper repository, we found automated
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expertise location techniques inherit and employ these two heuristics when manually locating

experts. However, to the best of our knowledge, the research of expertise concierge has

mostly vanished since IBM Smallblue [50]. On the other hand, expertise research that

mines historical artifacts goes to a direction of similar granularity, and automated expertise

location research has a trend of going to the micro level of tasks. For example, recent research

[22, 93] focus on specific micro tasks in open source software engineering such as merging

different branches. We found that this trend is necessary for performing certain low-level

task (“moving pawn”). However, when stakeholders need to perform high-level task such as

locating the best candidate for training, or hiring new employees among candidates (“playing

chess”), low-level expertise indicators such as expertise in calling APIs is usually not intuitive

to help decide the best candidates for an engineer job.

4.3.2 Expertise and Time

Only very few studies consider that expertise is not a static attribute of developers. [70]

found the fact from their user study that practitioners in hiring committees of programming

jobs decide a job candidate’s expertise for programming task and their availability partial

based on their recent activities [70]. Servant and Jones also consider recency as factor in

their statistical model of measuring expertise for dealing with fault, i.e., with the same

amount of contribution if a developer submitted the code more recently then this developer

has the higher expertise in related issue. Early studies by [60] also mentioned the time issue

in measuring expertise, but they intend to use the time as a measure for quantifying the

difficulties and expertise required to perform the task which is under another topic. We argue

that developers’ expertise is continueously accumulating and diminishing. It is non-trivial

to consider the time factor when measuring expertise.
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4.3.3 Evaluation of Expertise Location Approaches and Systems

In this study, we found a variety of evaluation methods for expertise location approaches, but

generally, previous researchers were struggling in evaluating the expertise location research

and especially building the ground truth of their studies.

Earlier expertise location research usually conduct a usability test with practitioners [60], or

even without an evaluation phase or plan [57, 61]. Later, Precision and Recall becomes one

of the most popular evaluation approaches to assess the effectiveness of an expertise location

tool [7, 88, 93]. However, it is still hard for researchers to build ground truth for the result

of expertise location, and cross-validation is the general solution. Mainly, slicing the history

at a certain point of time, uses the data before to create evidence data for locating expertise,

and then employ later data (e.g., the developer who actually fixed the bug) as ground truth

in evaluation. Though there are more factors lying between the best candidate for the task,

and the person who actually performs the task, such as availability of the expert. Besides,

the complex environment and significant turnover of developer in open source entail more

reasons of the person who performs the task. However, employing the historical data is the

most generic approach for building ground truth of expertise.

Due to the limitation in the evaluation of these studies, recent studies adopt a mix-method

approach to build and validate the ground truth for evaluating expertise location techniques

[22, 88, 93]. With a detailed qualitative study, these studies can reveal the expertise sharing

network inside actual teams and identify the experts among them, but since the cost of

these studies, researchers are not able to provide such detailed qualitative study for various

environment.
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4.3.4 Call for a Field Study

The last field study for locating expertise in the domain of software engineering is conducted

at 1998 [56], when software organizations were all private without open source communities,

and also developers activities and behaviors records were stored locally inside the company.

Therefore the earlier expertise location practice focus on the private data sources, including

organization staff who played as key roles like expertise concierges.

However, it has been 20 years since the early field study, and both the supporting techniques

and collaboration practice have changed. The emerging techniques such as machine learn-

ing techniques which support software engineering activities analysis, and natural language

processing techniques which classify textual description, are significantly improving the ex-

perience of software development. Recent collaboration practice such as widely using the

DVCS in parallel programming for saving time to the market. Moreover, the internal and

public knowledge sharing site is also changing the strategy of developers while transferring

expertise and solving problems.

We argue that there is a need of questionnaire surveys, observations, or field studies to ex-

plore the expertise location approaches and heuristics in the modern software engineering

practice. Moreover, there is a need to explore the role of open source communities, knowl-

edge sharing sites, professional social network and automated expertise location tools in the

modern practice. The future study shall be conducted for different purposes of expertise

location studies such as hiring, training, collaboration and performing task.
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Chapter 5

Discussion

In this section, we provide several points of discussion for this study, including identifying the

disconnection between discussions on the potential improvement of the expertise model, and

other data sources to include. We also discuss the critical problem about the gap between

early cognitive research on expert performance and current expertise location studies in

software engineering. Further, We provide our suggestions to bridge this gap.

5.1 “How Well Do They Perform” v.s. “What Have

They Done”

By reviewing our repository, we found that the quantitative expertise model has been evolv-

ing continuously, which adds new data sources, such as adding interaction data [35], and

including API usage data [72] into their expertise measurement model. However, these ex-

pertise models still have failed to measure the cognitive characteristics of experts, which were

identified by early cognitive studies [37, 58, 77]. Based on these previous researches, experts

process, i.e., receive and recall, their domain information faster and more precisely. This su-
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perior ability grants them with higher proficiency in their domains. The excellence of their

information processing ability helps them to realize the best solution and handle unexpected

situation [30] automatically. Conclusion from these cognitive studies is evidenced by empiri-

cal studies which monitoring the experts’ performance during the task (monitoring how well

expert perform). However, the heavy experience-based expertise models (measuring what

have expert done) fail to reflect developers ability in processing information in the field of

software engineering. We argue that there is a disconnect between early cognitive studies

on expert performance and the software engineering approaches and systems for locating

expertise, and over-rely on the experience-based expertise model may bias the assessment

of expertise. There is one study that aims at creating measurements for evaluating the ex-

pertise level of a developer [10], but to the best of our knowledge, we are not able to find a

location approach that assesses the information processing ability. Moreover, the automated

location systems mainly employ data of subject’s previous experience.

5.2 Community Feedback v.s. Automated Expertise

Location Techniques

Employing human judgment to assess the expertise of a developer is common practice in the

industry while locating expertise [56]. For example, the approaches of “everyday expertise”

and “expertise concierge” are employing human judgment to determine expertise [56]. This

approach relies a human, such as a peer, to assess the expertise of developers especially

considering acknowledgement from dignitaries in the community. There is a previous study

that also includes feedback data into the expertise database and creates individual expertise

profile partially based on the it [67]. As the emergence of business and employment-oriented

service sites such as LinkedIn, it certifies the users’ expertise based on the endorsement

from their peer in their connection circle and other LinkedIn users [2], and GitHub has
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Figure 5.1: The Endorsement System in LinkedIn. A list of User Profile Pictures on the
Right of Each “Skills & Expertise”, and Number on the Left Indicates How Many Connec-
tions in Their Social Network Have Certified This Item of Skill [1].

popular repositories and third-party sites which rank followers1 and stars2 received from the

community.

However, this type of evaluation of expertise can be very easily manipulated, similar to

Twitter where users can purchase followers by number. In a previous study [55], user study

participants have already mentioned that popularity is an indicator but not always enough

to evaluate the quality of work. We argue the endorsement on LinkedIn is also an indicator

based on popularity but specific about the skills and expertise of a developer.

In the future study, we purpose to carefully integrate the user rating and popularity based

expertise evaluation with the automated techniques which mostly retrieve the activity history

1Following People, https://help.github.com/articles/following-people/
2About Stars, https://help.github.com/articles/about-stars/
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of a developer. However, we need to find a balance between employing user feedback and

the historical data, but avoid over-reliance on either single data source.

5.3 Paradox of Expertise

The ultimate goal of locating expert is to find someone who is qualified to perform a job or

task. It is non-trivial to determine the high-level goal of locating expertise firstly. However,

even if experts have experienced adequate training in the past, when it comes to a specific

task that requires to share expertise, such as training and coaching new employers, the person

with highest expertise may not be the best candidate for performing these tasks due to the

paradox of expertise [27], since their own experience and capacity bias them [52].

Experts think differently from novices. Their above-average performance in information

processing often result from a pre-determined and routine mechanism. This mechanism is

highly effective but also restricts the flexibility and control while expressing and articulating

their specialties [27]. For example, one of the best basketball players in the history, Michael

Jordan, has never been a head coach of any basketball teams. It is determined by his

extremely high motion expertise in basketball. Therefore, performing skillful layups over a

defensive player for Michael is an easy routine which has his fixed mechanism. Michael is

capable of reacting to and avoiding blocks perfectly based on the environmental information

such as defender’s height and distance to him, but his mechanism of avoiding defense also

restricts his expression for his drills. [79].

In the study of Dror [27], the author claims that one of the major reasons causing this

paradox is the heavy amount of training that expert has received. Once they formed an

automated routine, their expertise is not easily accessible. However, spending effort for

accessing this effort degrades experts’ performance [34]. Therefore, expertise location studies
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need to consider this paradox of expert, and while locating expertise for expertise sharing

tasks, novices may help experts to avoid this paradox. For example, Arthur Andersen LLP3

allocates their new hires called “green beans”, into expert teams [5]. These “green beans”

ask basic questions such as definition of terminologies, which helps the experts access their

expertise when green beans asking questions [44].

5.4 Guiding Entry-level Novices

Conventional expertise location techniques are usually employed in recommending people

for performing specific software engineering task, and also in hiring, training and allocating

software talents [10]. As open source software is playing an essential role in the software

industry, and due to its voluntary attribute [75], it is non-trivial to guide and encourage

more participants to the community. As previous research suggested, newcomers of open

source projects are facing various heavy barriers to entering the community [81].

Steinmacher et al. has identified five main categories of these barriers [81]. The major

categories of these barriers are:

• Technical Hurdles : difficulties in understanding the code or setting up the workspace

and environment.

• Documentation: difficulties in understanding the project.

• Social interactions : communication issues with the previous contributors of the project.

• Newcomers previous knowledge and expertise: similar to technical hurdles, but more fo-

cusing on the newcomer’s technical expertise such as experience in software engineering

practice.

3Arthur Andersen LLP was one of the largest accounting firm in the US
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• Starting point : difficulties in finding a mentor or entry-level task to start.

Except the difficulty in social interaction, other barriers can be addressed or alleviated

by sophisticated expertise location systems, particularly in finding a mentor with required

expertise to guide or help the novice to perform the technical task [9]. Further, to support

newcomers to find the available expertise in the project and then enter the community for

contribution, it also shows the non-trivial requirement of the expertise location systems

which is including the constraints of the others such as their availability.

5.5 Limitations

In this study, we reviewed the expertise location approaches and systems in Software En-

gineering and Computer Supported Collaborative Work based on our research questions.

However, during our research procedure, we found early cognitive studies are not only fo-

cused on and limited in the field of Software Engineering. Though there are early studies

about the relation between the information processing ability and programming expertise in

the software engineering practice, we are not able to locate any studies that aimed to system-

atically build theories for measuring the expertise level for software engineering personnel.

Due to the scope of this study, we only focus the papers in the field of Software Engineering

and Computer Supported Collaborative Work; we may miss the progress in cognitive studies

which analyze expert behaviors and characteristics. In the future study, we also intend to

explore studies from other research subjects other than these two we have already reviewed

in this study, particularly for field in management, organizational and cognitive science. Be-

sides, we find related literature is not limited in the form of paper publications. There are

lots of valuable resources in books [30, 77], and we intend to include these resources as well.
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Chapter 6

Conclusion

In this study, we reviewed 48 primary studies about expertise location approaches and sys-

tems in the field of Software Engineering and Computer Supported Collaborative Work. We

found that the conclusions in software engineering are similar to early cognitive research

on expert performance. Moreover, we found several major categories of expertise location

approaches and systems measuring the expertise level based on the previous experience of de-

velopers which results a disconnect between early cognitive expertise research and automated

location techniques in Software Engineering practice. Further, we found the granularity of

model for measuring expertise in these location techniques trend to be more focused on micro

low level tasks over the years, and it is challenging to evaluate the measurement of exper-

tise and location approach in the real-world context. Finally, we conclude our findings, and

provide a series of discussions on future directions for expertise location studies in Software

Engineering.
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