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Delay-based Traffic Signal Control for Throughput
Optimality and Fairness at an Isolated Intersection

Jian Wu, Dipak Ghosal, Member, IEEE, H. Michael Zhang, Senior Member, IEEE, and
Chen-Nee Chuah, Fellow, IEEE

Abstract—With the attractive feature of guaranteeing maxi-
mum network throughput, backpressure routing has been widely
used in wireless communication networks. Motivated by the
backpressure routing, in this paper, we propose a delay-based
traffic signal control algorithm in transportation networks. We
prove that this delay-based control achieves optimal throughput
performance, same to the queue-based traffic signal control in
literature. However, a vehicle at a lane whose queue length
remains very small may be excessively delayed under queue-
based signal control. Our delay-based backpressure control can
deal with the excessive delays, and achieve better fairness with
respect to delay, while still guaranteeing throughput optimality.
Moreover, a general weighted control scheme combining the
queue-based and delay-based schemes is also investigated, to
provide a more flexible control according to the quality of service
requirements. Numerical results explore their performance under
both homogeneous and heterogeneous traffic scenarios.

Index Terms—Traffic signal control, backpressure control,
throughput optimality, fairness

I. INTRODUCTION

Traffic signal control at signalized intersections is indis-
pensable for urban traffic networks. Current adaptive signal
control system relies mostly on data from infrastructure-based
sensors, including in-pavement or video based loop detectors,
which need to be installed and maintained properly. Moreover,
the rapid development of technologies on connected vehicles
(CVs) and vehicular networks introduces great opportunities
of reforming the conventional traffic signal operation [1].
Millions of roadside units and vehicles equipped with com-
munication and positioning devices will be connected, and
vehicles are able to communicate with each other (V2V) and
with the infrastructure (V2I) through IEEE 802.11p and ded-
icated short-range communication technologies, which allows
finer data transmission [2], [3]. The data will provide real-
time vehicle location, speed, acceleration and other vehicle
information, based on which traffic controllers should be able
to make “smarter” decisions [4]–[6]. With all the support, the
efficient traffic signal control systems will focus on improving
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network throughput, reducing vehicle delays, avoiding network
congestion (guaranteeing stability), and so on.

A. Related work

With the help of the current loop detectors and the upcoming
connected vehicle technologies mentioned above, real-time
traffic information, such as vehicle queue lengths and vehicle
waiting times, can be estimated [7]–[9]. Based on this, various
adaptive signal control methods have been studied.

A longest queue first maximal weight matching algorithm
is presented in [10] for scheduling the signal to minimize the
queue sizes at each approach. It derives the stability conditions
using Lyapunov function-based analysis, and considers scenar-
ios in which differentiated services are offered to vehicle class-
es with different priorities. An oldest arrival first algorithm is
proposed in [11] to minimize the delay across the intersection,
which needs to group vehicles into approximately equal-sized
platoons for its implementation. However, the longest queue
scheduling may be unfair for vehicles in a short queue which
cannot accumulate long enough to be scheduled. On the other
hand, the oldest arrival scheduling cannot guarantee optimal
throughput and has limitations in its implementation.

With the aim to guarantee optimal throughput, the “back-
pressure control” has been introduced into the traffic sig-
nal scheduling. The backpressure routing was first studied
in [12], which considers a multi-hop radio network with
random arrivals, and controls the system through link selection
and job assignment. It has been mainly applied to wireless
communication networks [13]–[16]. The idea of backpressure
routing was first adapted to traffic signal control systems
in [17]. For a network of intersections, it determines the
phase for each junction to be activated during each time slot
in a distributed manner using the queue length information.
Based on this work, the capacity-aware backpresssure control
is proposed in [18], where the finite capacity constraint is
considered and a normalized pressure is utilized to mitigate
congestion propagation. Feedback based traffic signal control
has been studied considering deterministic arrivals in [19]
and stochastic arrivals in [20]. For the latter case, the queue-
length based backpressure control is studied using “network
calculus”, which is called “max-pressure controller” therein.
Fixed-cycle backpressure control is studied in [21], where its
throughput-optimal property can still be guaranteed. All these
works study the backpressure traffic control using only queue
length information.
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B. Our contributions

The queue-based backpressure traffic signal control does not
consider explicit delays of waiting vehicles and is completely
based on the queue length, and thus it also suffers from the
“last packet problem”, which is well-known for the queue-
based backpressure scheduling in wireless networks [15]. A
vehicle at a queue whose queue length remains very small may
be starved for a long time and delayed excessively, because
the queue-based scheme gives a higher priority to lanes with
larger queue lengths. To deal with the critical fairness issue is
one of the main concerns in our work.

In this work, we build on the backpressure traffic signal con-
trol, and aim to not only guarantee optimal throughput, but also
take into account the fairness with respect to delay. Similar to
existing studies, we assume that certain vehicle information is
available due to the V2V, V2I and CV technologies. To the best
of our knowledge, the delay-based backpressure control, which
potentially could deal with the excessive delay in queue-based
backpressure control due to lack of subsequent vehicle arrivals,
has not yet been explored in the traffic signal scheduling
literature. In this paper, we start with the isolated intersection
scenario, and study the delay-based backpressure traffic signal
control which uses Head-Of-Line (HOL) delay information
instead of queue lengths. Then we generalize it to a weighted
backpressure control considering both HOL delays and queue
lengths. We explore whether they are throughput optimal,
check their stability regions, and evaluate the fairness with
respect to mean delay as well as tail delay performance.

Our scheduling discipline is a rule that chooses the active
phase at each time slot based on the network environment,
e.g., road capacity, and the state of the vehicle traffic. The
key challenge is to determine if the throughput optimality
can still be guaranteed under this delay-based control. This
requires that the vehicle queues are stable as long as the
traffic arrival falls into the system maximum stability region.
We use the fluid limit technique similar to that in [15], [22]
to investigate this. Roughly speaking, the key idea to show
throughput optimality of the delay-based backpressure traffic
signal control is to exploit that, in the “fluid limit” and after
some initial period of time, there exists a linear relation
between queue lengths and HOL delays. Based on this, we can
prove that the delay-based control achieves optimal throughput
performance, same as the queue-based traffic signal control in
literature. For the generalized weighted backpressure control,
it allows for a more flexible control of queue lengths and
delay distributions, to satisfy a variety of quality of service
requirements.

The main contributions of this paper include the following.

• We propose the delay-based backpressure traffic signal
control scheme at isolated intersections, with the aim to
provide better fairness experience regarding delay while
still guaranteeing maximum network throughput.

• We explore the properties of the delay-based control
scheme, by adopting the fluid limit model from [15],
[22]. We obtain several key results: (i) The delay-based
backpressure traffic signal control scheme is throughput
optimal, i.e., it makes all queues stable as long as the

traffic arrival rates are within the system stability region.
(ii) The delay-based control scheme shares the same sta-
bility region with that of the queue-based control scheme
in literature. However, it achieves better fairness due to
the ability in dealing with excessive delays, experienced
by vehicles whose queue length remains very small under
queue-based signal control. (iii) In most traffic cases,
the delay-based and queue-based controls share almost
the same average queue lengths. However, the average
queue length of the delay-based scheme may be higher
when there is high burstiness and/or heterogeneity in the
traffic.

• We investigate a weighted backpressure scheme com-
bining the delay-based and queue-based controls, which
is proved also to be throughout optimal. The weighted
control scheme allows a tradeoff between delay-based
control and queue-based control. We can achieve mod-
erate fairness and average queue length performance by
choosing appropriate weighting parameters, especially
when dealing with bursty or heterogeneous traffic.

• We compare the performance of different schemes under
both homogeneous and heterogeneous random traffic ar-
rivals, regarding the stability region, Jain’s fairness index
of delay, average queue length, as well as the delay tail
distribution. Particularly, for the heterogeneous vehicle
arrivals, the tail of the delay distribution under delay-
based control vanishes much faster than that of queue-
based control.

The remainder of this paper is organized as follows. Sec. II
gives the system model. The fluid limit model is discussed
in Sec. III. The delay-based traffic signal control, as well as
the weighted control scheme, are proposed in Sec. IV. The
throughput optimality is proved in Sec. V. Sec. VI provides the
numerical results. The conclusion and future work are given
in Sec. VII.

II. SYSTEM MODEL

We model an isolated intersection using a queueing network
with nodes and links. Consider a directed graph G = (V,M).
V denotes the set of nodes which correspond to different
roads/lanes, and M denotes the set of links which correspond
to traffic movements/transfers between nodes.

Ai(t) denotes the amount of traffic that exogenously arrives
to the network at node i during time slot t. With probability
one, it satisfies

lim
t→∞

1

t

t−1∑
τ=0

E{Ai(τ)} = λi, (1)

where λi is the average arrival rate at node i. The arrival rate
vector of the network is λ⃗ = {λ1, λ2, · · · , λ|V|}. (For road
i w/o arrivals, λi = 0.) Let Qi,j(t) denote the number of
vehicles on lane i (or at node i) at the beginning of slot t
waiting to leave lane i for lane j (or node j). For notational
ease, we also use Qi,j to denote the queue itself. We let Q⃗(t) ,
[Qi,j(t), (i, j) ∈ M] denote the queue length vector at slot t,
and use ∥·∥ to denote the L1-norm of a vector, e.g., ∥Q⃗(t)∥ =
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(a) (c)

(b) (d)

Fig. 1. The four phases, |V| = 24 lanes and |M| = 12 movements at an
isolated intersection.

∑
(i,j)∈M Qi,j(t). Let Πi,j(t) represent the number of vehicles

transferred from lane i to lane j during slot t.
Let Fi,j(t) denote the total number of vehicles that arrive at

lane i for lane j until time slot t ≥ 0, including those present at
slot 0, and let F̂i,j(t) denote the total number of vehicles that
are served at Qi,j until time slot t ≥ 0. Obviously, F̂i,j(0) = 0
for all (i, j) ∈ M. We have

Qi,j(t) = Fi,j(t)− F̂i,j(t) (2)

hold based on their definitions.
Let Ti,j,k(t) denote the sojourn time of the k-th vehicle

of Qi,j in the network at slot t, where the time is measured
from the time when the vehicle arrives in the network. Wi,j(t)
denotes the sojourn time of the Head-Of-Line (HOL) vehicle
of Qi,j in the network at slot t, and thus Wi,j(t) , Ti,j,1(t).
Furthermore, Wi,j(t) = 0 if Qi,j(t) = 0. Similarly, W⃗ (t) ,
[Wi,j(t), (i, j) ∈ M] denote the HOL sojourn time vector at
slot t. Let us denote

Ui,j(t) , t−Wi,j(t), (3)

which is the time when the HOL vehicle of Qi,j arrives in the
network. With the definition of Ui,j(t), for t ≥ 0, we have

Ui,j(t) = inf{τ ≤ t : Fi,j(τ) > F̂i,j(t)}. (4)

A schedule is a set of movements that can be active at the
same time, which is denoted as p⃗ ∈ {0, 1}|M|. We will use the
term “schedule” and “phase” interchangeable. Let SP denote
the set of all feasible schedules, and Co(SP ) denote its convex
hull. For example, if pi,j(t) = 1, the vehicle transfer from
lane i to lane j is active at slot t; otherwise, if pi,j(t) = 0,
the transfer from lane i to lane j is inactive at slot t. We use
µi,j(p⃗) to denote the rate at which vehicles can go from lane i
to lane j under schedule p⃗. Here we omit t for simplicity. Fig. 1
gives an example of four phases at an isolated intersection. In
this paper, we assume that vehicles have fixed routing and all
the routing information is known beforehand.

Similar to [15], [17], [22], the closed region Λ of arrival rate
vectors λ⃗ is defined with the following properties: (1) λ⃗ ∈ Λ
is a necessary condition for network stability; (2) λ⃗ ∈ int(Λ),
which means the inequalities in (5) are all strict, is a sufficient
condition for the network stability.

Λ =
{
λ⃗ | ∃ ϕ⃗ ∈ Co(SP ) s.t. λi ≤ ϕi,j ,∀(i, j) ∈ M

}
. (5)

The set of all arrival rates strictly inside Λ, λ⃗ ∈ int(Λ), is
usually called the system maximum stability region, or just
stability region. A scheduling algorithm is said to maximize
the network throughput, or to be throughput optimal, if
it stabilizes the network for all arrival rates strictly inside Λ,
λ⃗ ∈ int(Λ), i.e., if it ensures all queues are stable as long as
the arrival rates are within the system stability region.

The summary of notations is listed in Table I.

TABLE I
SUMMARY OF NOTATIONS

Symbol Definition

V set of nodes (different lanes)
M set of links (traffic movements/transfers between nodes)
p⃗ a schedule (movements that can be active simultaneously)
SP set of feasible schedules
Co(SP ) convex hull of SP

µi,j(p⃗) rate at which vehicles go from lane i to lane j under
schedule p⃗

Λ optimal throughput region (stability region)
Ai(t) # of vehicles arrive to the network for node i at time slot t
λi average arrival rate for lane i
Fi,j(t) total # of vehicles arrive at lane i for lane j until time slot t
F̂i,j(t) total # of vehicles served at Qi,j until time slot t
Πi,j(t) # of vehicles served at Qi,j during time slot t
Qi,j(t) queue length of Qi,j at time slot t
Ti,j,k(t) sojourn time of the k-th vehicle of Qi,j in the network at

time slot t
Wi,j(t) sojourn time of the HOL vehicle of Qi,j in the network at

time slot t, i.e., Ti,j,1(t)
Ui,j(t) time when the HOL vehicle of Qi,j arrives in the network,

i.e., t−Wi,j(t)

III. FLUID LIMIT MODEL

Define the process describing the behavior of the system as
X = (X (t), t = 0, 1, 2, · · · ), where

X (t) ,
(
(Ti,j,1(t), · · · , Ti,j,Qi,j(t)(t)), (i, j) ∈ M

)
, (6)

whose norm is defined as

∥X (t)∥ , ∥Q⃗(t)∥+ ∥W⃗ (t)∥. (7)

Let X (x) denote a process X with an initial condition such
that ∥X (x)(0) = x∥. In the following, all variables associated
with a process X (x) will be marked with the upper index (x).
As in [22] and [15], we extend the definition of F (x)

i,j (t) to the
negative interval t ∈ [−x, 0) by assuming that the vehicles
present in the system in its initial state X (x)(0) arrived in the
past at some of the time instants −(x− 1),−(x− 2), · · · , 0,
according to their delays in the state X (x)(0). By this con-
vention F

(x)
i,j (−x) = 0 for all (i, j) ∈ M and x, and∑

(i,j)∈M F
(x)
i,j (0) = x.

We follow the techniques in [15], [22] to estab-
lish the fluid limit model. Define the process X(x) =
(F (x), F̂ (x),Π(x), Q(x),W (x), U (x)), a sample of which u-
niquely defines the sample path of X (x). Next, we adopt the
convention Y (t) , Y (⌊t⌋) for Y = F (x) with t ≥ −x, and
for Y = F̂ (x),Π(x), Q(x),W (x), U (x) with t ≥ 0, making
them as continuous time processes. Then using the techniques
in the proof for [17, Lemma 1], we can show that with
probability one, for any sequence of processes {X(x), x ∈ N},
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there exists a subsequence {X(k), k ∈ K ⊆ N}, such
that as k → ∞, the scaled subsequence {x(k), k ∈ K},
which is defined as x(k)(t) = 1

kX
(k)(kt), has the following

convergence properties hold uniformly over compact (u.o.c.)
intervals:

1
kF

(k)
i,j (kt) → fi,j(t), (8)

1
k F̂

(k)
i,j (kt) → f̂i,j(t), (9)

1
kQ

(k)
i,j (kt) → qi,j(t), (10)

1
k

∫ kt

0
Π

(k)
i,j (τ)dτ →

∫ t

0
πi,j(τ)dτ, (11)

and has the following hold at every continuous point of the
corresponding limit functions:

1
kW

(k)
i,j (kt) ⇒ wi,j(t), (12)

1
kU

(k)
i,j (kt) ⇒ ui,j(t). (13)

The functions (f, f̂ , π, q, w, u) are “fluid” limits of the
corresponding scaled subsequences. These functions can be
explained as follows. fi,j(t) is the amount of fluid from lane
i to lane j that arrived into the system by the (scaled) time
t. f̂i,j(t) is the amount of fluid from lane i to lane j served
by the system by the (scaled) time t. qi,j(t) is the amount of
unserved fluid from lane i to lane j at the (scaled) time t.
πi,j(t) is the amount of fluid transferred from lane i to lane
j, wi,j(t) is the “head-of-the-line” fluid delay, and ui,j(t) is
the “head-of-the-line” fluid arrival time at the (scaled) time t.

Definition 1. The fluid model equations of the system are as
follows: ∑

(i,j)∈M

fi,j(0) ≤ 1; (14)

qi,j(t) = fi,j(t)− f̂i,j(t), t ≥ 0; (15)
fi,j(t) = fi,j(0) + λit, t ≥ 0; (16)
ui,j(t) = t− wi,j(t); (17)

d

dt
qi,j(t) = λi − πi,j(t), qi,j(t) > 0. (18)

Remark: In Eq. (15), the amount of unserved fluid qi,j(t)
from lane i to lane j at the (scaled) time t follows from Eq. (2).
Eq. (16) means that after time 0 the fluid from lane i to lane
j arrives at constant rate λi. Eq. (17) follows from Eq. (3),
and Eq. (18) is based on Eqs. (15)-(16).

Lemma 1. For any fixed t1 > 0, the two conditions ui,j(t1) >
0 and f̂i,j(t1) > fi,j(0) are equivalent for every movement
(i, j) ∈ M. Furthermore, if they hold, then we have

λiwi,j(t) = qi,j(t), (19)

for all t ≥ t1 with probability 1.

Proof: Based on Eq. (4), we have Ui,j(t) = inf{τ ≤
t : Fi,j(τ) > F̂i,j(t)} for all t ≥ 0. Combining this with the
definition of fluid limits, the equivalence of the two conditions
can be obtained. When f̂i,j(t1) > fi,j(0), by the definition of
ui,j(t), we have f̂i,j(t) = fi,j(ui,j(t)) for t ≥ t1, since all

vehicles arrive before the HOL vehicles have already been
served. Then we have

qi,j(t)
(a)
= fi,j(t)− f̂i,j(t)

= fi,j(t)− fi,j(ui,j(t))
(b)
= [fi,j(0) + λit]− [fi,j(0) + λiui,j(t)]

= λi(t− ui,j(t))
(c)
= λiwi,j(t)

where (a), (b) and (c) are based on Eq. (15), Eq. (16) and
Eq. (17), respectively.

Remark: Similar to that in [22], property (19) states that
if by some fixed (scaled) time t1, the amount of served fluid
from lane i to lane j is greater than its initial amount, i.e.,
f̂i,j(t1) > fi,j(0), (or, equivalently, if by time t1, the “head-
of-the-line” fluid arrival time is larger than 0, i.e., ui,j(t1) >
0), which means all the “initial fluid” is “gone” by time t1,
then for all t > t1, the linear relationship λiwi,j(t) = qi,j(t)
exists between the amount of fluid qi,j(t) and the “head-of-
the-line” fluid delay wi,j(t). This is important for the proof
of throughput optimality later.

IV. DELAY-BASED BACKPRESSURE TRAFFIC SIGNAL
CONTROL AT AN ISOLATED INTERSECTION

A. Delay-based Traffic Signal Control

For the signal control at isolated intersections, since the
traffic backlog/delay at the downstream is considered zero,
the backpressure control can be simplified and modeled using
a general maximum weight problem.

The delay-based traffic signal control is given in Algorithm
1, where the optimal phase at slot t is chosen as follows:

p⃗ ∗(t) ∈ argmax
p⃗∈SP

∑
pi,j=1

γi,j ·Wi,j(t) · µi,j(p⃗). (20)

Algorithm 1 Delay-based backpressure traffic signal control
(DBPC).
Input:

Set of feasible phases SP , HOL vehicle sojourn time
Wi,j(t) for all (i, j) ∈ M.

Output:
Phase p⃗ ∗ ∈ SP to be activated during slot t.

1: Set O∗
p⃗ = −∞, p⃗ ∗ = ∅;

2: for each phase p⃗ ∈ SP do
3: Op⃗ =

∑
pi,j=1

γi,j ·Wi,j(t) · µi,j(p⃗);

4: if Op⃗ > O∗
p⃗ then

5: O∗
p⃗ = Op⃗;

6: p⃗ ∗ = p⃗;
7: end if
8: end for

Here for the total pressure release Op⃗ =
∑

pi,j=1 γi,j ·
Wi,j(t) · µi,j(p⃗) allowed by p⃗ in line 3 of Algorithm 1, it
is the sum of HOL vehicle sojourn time weighted by the flow
of vehicles that can be transferred through the corresponding
link when phase p⃗ is activated. We could further use positive
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constants γi,j , (i, j) ∈ M, to give more emphasis to certain
movements, and γi,j is for the vehicles from lane i to lane j1.
Finally, the returned phase is the one that maximizes the total
pressure release, as shown in lines 4-7.

For the performance comparison later, the queue-based
backpressure control in literature [17], [18] is also given in
Algorithm 2, and the optimal phase is chosen as follows:

p⃗ ∗(t) ∈ argmax
p⃗∈SP

∑
pi,j=1

γi,j ·Qi,j(t) · µi,j(p⃗). (21)

For the total pressure release allowed by p⃗ in line 3 of
Algorithm 2, it is the sum of queue length weighted by the flow
of vehicles that can be transferred through the corresponding
link when phase p⃗ is activated, which is further weighted
using positive constants γi,j to give different emphases of
movements.

Algorithm 2 Queue-based backpressure traffic signal con-
trol [17], [18] (QBPC).
Input:

Set of feasible phases SP , queue length Qi,j(t) for all
(i, j) ∈ M.

Output:
Phase p⃗ ∗ ∈ SP to be activated during slot t.

1: Set O∗
p⃗ = −∞, p⃗ ∗ = ∅;

2: for each phase p⃗ ∈ SP do
3: Op⃗ =

∑
pi,j=1

γi,j ·Qi,j(t) · µi,j(p⃗);

4: if Op⃗ > O∗
p⃗ then

5: O∗
p⃗ = Op⃗;

6: p⃗ ∗ = p⃗;
7: end if
8: end for

B. Weighted Backpressure Traffic Signal Control

Besides the delay-based and queue-based traffic control
schemes, a weighted backpressure traffic signal control scheme
is proposed in Algorithm 3, which uses both the queue length
and delay information. Its optimal phase at slot t is chosen as
follows:

p⃗ ∗(t) ∈ argmax
p⃗∈SP

∑
pi,j=1

γi,j · [η(W )
i,j Wi,j(t)+η

(Q)
i,j Qi,j(t)] ·µi,j(p⃗).

(22)
Such joint design with parameters η

(W )
i,j , η

(Q)
i,j ∈ [0, 1]

allows a more flexible control of queue lengths and delay
distributions, which can be modified according to the relative
importance between queue length and fairness of delay. For
example, when lane i has a low vehicle arrival rate heading
for lane j and we need to guarantee fair delay performance,
we can set η(W )

i,j to be large relative to η
(Q)
i,j ; conversely, when

the vehicle arrival rate is high and we want to bound its queue
length, η(Q)

i,j should be large relative to η
(W )
i,j . The throughput

1In the simulation of Sec. VI we make γi,j = 1. However, we will prove the
optimal throughput for the general case of γi,j . The performance exploration
for traffic with different emphases, e.g., multiple types of traffic with different
priorities, will be left for the future work.

optimality of this weighted control will be discussed in the
end of Sec. V.

Algorithm 3 Weighted backpressure traffic signal control
(WBPC).
Input:

Set of feasible phases SP , queue length Qi,j(t) and HOL
vehicle sojourn time Wi,j(t) for all (i, j) ∈ M.

Output:
Phase p⃗ ∗ ∈ SP to be activated during slot t.

1: Set O∗
p⃗ = −∞, p⃗ ∗ = ∅;

2: for each phase p⃗ ∈ SP do
3: Op⃗ =

∑
pi,j=1

γi,j · [η(W )
i,j Wi,j(t) + η

(Q)
i,j Qi,j(t)] · µi,j(p⃗);

4: if Op⃗ > O∗
p⃗ then

5: O∗
p⃗ = Op⃗;

6: p⃗ ∗ = p⃗;
7: end if
8: end for

V. THROUGHPUT OPTIMALITY OF DELAY-BASED TRAFFIC
SIGNAL CONTROL

In this section we prove that the delay-based traffic sig-
nal control achieves optimal throughput performance. First,
through Lemma 2 we provide the linear relation between
queue lengths and delays in the fluid limits, which follows
from Eq. (19) of Lemma 1. Then from this linear relation, we
prove the throughput optimality in Proposition 3.

Lemma 2. Consider the delay-based backpressure traffic
signal control. For λ⃗ strictly inside Λ, there exists T > 0
such that the fluid limits satisfy the following property with
probability 1

f̂i,j(T ) > fi,j(0). (23)

for all (i, j) ∈ M.

Proof: The proof is in Appendix A.
Remark: This lemma states that under the delay-based

backpressure traffic signal control, by some fixed time T , the
amount of fluid served from lane i to lane j, i.e., f̂i,j(T ),
will be larger than its initial amount fi,j(0), which means all
the “initial fluid” will be gone by time T . Therefore, with
Lemma 1, the linear relationship λiwi,j(t) = qi,j(t) exists
between the amount of fluid qi,j(t) and the “head-of-the-line”
fluid delay wi,j(t) for all t > T . We prove this by induction
following the techniques described in [17, Lemma 7], and the
detail is in Appendix A.

The throughput optimality of the delay-based backpressure
control is then presented in the following proposition, where
we prove the stability using fluid limits and standard Lyapunov
techniques.

Proposition 3. The traffic signal control with delay-based
backpressure scheduling can support any traffic with arrival
rate vector that is strictly inside Λ.

Proof: Based on Lemma 2 and Lemma 1, we know that
Eq. (19) holds for the delay-based traffic signal control. Let
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L(q⃗(t)) denote the Lyapunov function as

L(q⃗(t)) =
1

2

∑
(i,j)∈M

γi,j
(qi,j(t))

2

λi
. (24)

Assume λ⃗ is strictly inside Λ, and then there exists a vector
ϕ⃗ ∈ Co(SP ) such that λ⃗ < ϕ⃗, i.e. λi < ϕi,j for all (i, j) ∈ M.

d

dt
L(q⃗(t)) =

∑
(i,j)∈M

γi,j
λi

qi,j(t)
d

dt
qi,j(t)

=
∑

(i,j)∈M

γi,j
λi

qi,j(t)(λi − πi,j(t))

=
∑

(i,j)∈M

γi,j
λi

qi,j(t)(λi − ϕi,j(t))

+
∑

(i,j)∈M

γi,j
qi,j(t)

λi
(ϕi,j(t)− πi,j(t)).(25)

Let us choose δ3 > 0 such that L(q⃗(t)) ≥ δ1 > 0 implies
max(i,j)∈M qi,j(t) ≥ δ3. Based on the fact that the sum of
non-negative elements must be no less than each element, we
have ∑

(i,j)∈M

γi,j
λi

qi,j(t)(ϕi,j(t)− λi)

≥ γi′,j′

λi′
[ max
(i,j)∈M

qi,j(t)](ϕi′,j′(t)− λi′)
∣∣∣
(i′,j′)=argmax

(i,j)∈M
qi,j(t)

≥ ( min
(i,j)∈M

γi,j
λi

) max
(i,j)∈M

qi,j(t) min
(i,j)∈M

(ϕi,j(t)− λi)

≥ ( min
(i,j)∈M

γi,j
λi

)δ3 min
(i,j)∈M

(ϕi,j(t)− λi). (26)

Then the first sum in Eq. (25) is bounded as follows:∑
(i,j)∈M

γi,j
λi

qi,j(t)(λi − ϕi,j(t))

≤ −( min
(i,j)∈M

γi,j
λi

)δ3 min
(i,j)∈M

(ϕi,j(t)− λi)

, −δ2 < 0. (27)

The second term in Eq. (25) is non-positive if

π⃗(t) ∈ argmax
ϕ⃗∈Co(SP )

∑
(i,j)∈M

γi,j ·
qi,j(t)

λi
· ϕi,j(t), (28)

which means∑
(i,j)∈M

γi,j
qi,j(t)

λi
ϕi,j(t) ≤

∑
(i,j)∈M

γi,j
qi,j(t)

λi
πi,j(t). (29)

We know that (28) holds because that the underlying delay-
based scheduler indeed maximizes

∑
(i,j)∈M γi,j

qi,j(t)
λi

ϕi,j(t)

due to the linear relationship wi,j(t) =
qi,j(t)
λi

for t ≥ T .
As a result, for any δ1 > 0, there exists δ2 > 0 and a finite

time T > 0 such that L(q⃗(t)) ≥ δ1 implies d
dtL(q⃗(t)) ≤ −δ2

for any regular time t ≥ T . Then it follows that for any ζ > 0,
there exists a large enough integer T1 > 0 such that for any
fluid limit with ∥q⃗(0)∥ ≤ 1, there is

∥q⃗(t)∥ ≤ ζ (30)

for any time t ≥ T1. Then

f̂i,j(T1) = fi,j(T1)− qi,j(T1) > fi,j(0) (31)

for all (i, j) ∈ M, and we have wi,j(t) =
qi,j(t)
λi

from
Lemma 1. As a result,

∥q⃗(t)∥+ ∥w⃗(t)∥ ≤ ∥q⃗(t)∥+ 1

min
i

λi
∥q⃗(t)∥

≤
(
1 +

1

min
i

λi

)
ζ

, 1− ϵ < 1, (32)

and therefore, with probability 1,

lim sup
x→∞

1

x
∥X (x)(xT )∥ ≤ 1− ϵ. (33)

We can make 1−ϵ arbitrarily small by choosing small enough
ζ. Since it is easy to show that the sequence { 1

x∥X
(x)(xT )∥}

is uniformly integrable, along with Eq. (33), it verifies the
following condition

lim sup
x→∞

E

[
1

x
∥X (x)(xT )∥

]
≤ 1− ϵ. (34)

Then we introduce Theorem 4 in [22], which states that
suppose there exist ϵ > 0 and an integer T > 0 such that
for any sequence of processes {X (x), x = 1, 2, · · · }, we have
lim supx→∞ E

[
1
x∥X

(x)(xT )∥
]
≤ 1− ϵ, then X is stable. As

a result, based on the condition in (34), the proof is complete.

For the queue-based backpressure traffic signal control, its
throughput optimality has already been proved in [17]. We
can revisit its throughput optimality using the fluid limit
techniques, similar to the proof of Proposition 3, by defining
the Lyapunov function to be 1

2

∑
(i,j)∈M γi,j(qi,j(t))

2.

Proposition 4. The traffic signal control with weighted
backpressure scheduling can support any traffic with arrival
rate vector that is strictly inside Λ.

Proof: The proof is in Appendix B.
Remark: Since we have already proved that under the

delay-based backpressure traffic signal control, after some
fixed time T , the linear relationship λiwi,j(t) = qi,j(t) holds
for all t > T . For the weighted backpressure control, which
is a linear weighted combination between the queue-based
control and the delay-based control, it’s intuitive that, after
a finite time, this linear relationship between the queue length
and the delay in the fluid limit model still holds. Actually, a
slightly adjusted proof of Lemma 2 allows us to prove (23) for
the weighted backpressure traffic signal control, which means
λiwi,j(t) = qi,j(t), and the detailed proof is omitted here.

VI. NUMERICAL RESULTS

We simulated a single intersection with 4 phases as shown
in Fig. 2. The slot length is denoted with Ts. Assume that all
lanes have infinite queue capacity.

Based on [17], [23], [24], the number of passing vehicles
during slot t on each lane is Rm(1 − e−

Q(t)+Ia(t)
Rm ), where
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Fig. 2. A 4-phase intersection with 8 links in the simulation.

Rm = µsTs is the maximum number of passing vehicles per
slot. Here µs is the saturation flow rate. Q(t) is the queue
length of this lane at the beginning of this slot, and Ia(t) is
the number of vehicles arriving at this lane during time slot
t. In the following simulation, we set µs = 0.5 vehicles per
second per lane (v/s/l) and Ts = 5s unless there is specific
explanation. Therefor for the 8 lanes in Fig. 2, we have µ⃗s =
[1, 1, 1, 1, 1, 1, 1, 1] ∗ 0.5 v/s/l.

We will first compare the performance of Queue-based
BackPressure Control (QBPC) and Delay-based BackPressure
Control (DBPC) in terms of maximum stability region (i.e.,
stability region, or optimal throughput region)2, fairness, as
well as tail delay, under different traffic patterns and network
settings. Then taking into account the Weighted BackPressure
Control (WBPC), we compare these three schemes together,
and explore how this weighted scheme plays its tradeoff role.

A. Maximum stability region, fairness and tail delay

It is hard to find a closed form expression for the boundary
of the stability region (i.e., the optimal throughput region) for
each control scheme. As a result, similar to the method in [15],
we probe the boundary by scaling the traffic load. After we
choose the average arrival rate vector λ⃗ of the 8 lanes, we
run the simulations with traffic load αλ⃗ changing α, which
scales the load. So the actual arrival rate vector αλ⃗ is adjusted
through the parameter α. When α increases, the traffic load of
the system increases. Since the optimal throughput region is
defined as the set of arrival rates under which the queue lengths
remain finite, we consider the traffic load, under which the
queue length increases rapidly, as the boundary of the optimal
throughput region. Note that when we study the fairness and
tail delay performance later, we only use traffic load within
this stability region.

One potential advantage of the delay-based control is to
resolve the large delay that the queue-based control may suffer
from. To explore the fairness of each scheme regarding delay
performance, we first use the Jain’s fairness index [25]. Denote
di to be the delay of vehicle i, and M is the total number of
vehicles. Then the Jain’s fairness index is given by

f(d⃗ = [d1, d2, ..., dM ]) =

(∑M
i=1 di

)2

M
∑M

i=1(di
2)
. (35)

If all vehicles experience the same delay, the fairness index is
1, and the system is 100% fair in terms of delay. The fairness

2These three terms: maximum stability region, stability region, and optimal
throughput region, will be used interchangeably.

decreases as the disparity in the delay faced by different
vehicles increases.

Besides the fairness index, we also study the tail per-
formance of the delay distribution. Specifically, we use the
probability that the delay suffered by the vehicles is greater
than a threshold (i.e., the tail distribution of the delay) as a
metric.

B. Homogeneous arrivals

First, we study the case that vehicles arrive at each lane
following Poisson process, with homogeneous average arrival
rates. We set λ⃗ = [1, 1, 1, 1, 1, 1, 1, 1] ∗ 0.125 v/s/l.

The average queue length under different traffic loads is
illustrated in Fig. 3(a) to examine the performance limits of the
backpressure control schemes. As stated above, we consider
the traffic load, under which the queue length increases rapidly,
as the boundary of the optimal throughput region. Fig. 3(a)
shows that DBPC achieves the same stability region as QBPC.
Moreover, QBPC and DBPC perform similarly in terms of the
average queue length per lane, which also means they perform
almost the same regarding the average delay due to the Little’s
Law.

However, as shown in Fig. 3(d), DBPC has a better fairness
performance than QBPC. This is because, even under homo-
geneous Poisson arrivals, for QBPC, the random arrivals may
lead to large delay for some vehicles due to lack of subsequent
vehicle arrivals.

Next, we want to study the case with bursty vehicle arrivals.
Here we consider that vehicles arrive at each lane following
Interrupted Poisson Process (IPP), whose burstiness can be
measured using the coefficient of variation C2. We still assume
homogeneous average arrival rates λ⃗ = [1, 1, 1, 1, 1, 1, 1, 1] ∗
0.125 v/s/l. The parameters of IPP can be found in [26]. We
can achieve different values of C2 while guaranteeing the
average arrival rate unchanged, by adjusting the parameters
of IPP. For the traffic of each lane, given the average arrival
rate, we observe the performance under different coefficients
of variance. The larger C2 is, the more bursty the traffic will
be.

From Fig. 3(b) and Fig. 3(c), DBPC still achieves the same
stability region as QBPC whatever the value of C2 is. In
Fig. 3(b) and Fig. 3(e) for IPP arrivals with C2 = 2, they
share similar performance with the Poisson arrivals. Compared
with Fig. 3(d), the fairness is a little worse in Fig. 3(e) for
both DBPC and QBPC, and the difference between DBPC
and QBPC is slightly larger. The impact of burstiness is more
obvious when C2 = 5. In Fig. 3(f), the gap between DBPC and
QBPC regarding fairness is greatly increased under these more
bursty traffic, with a maximum improvement of almost 0.5,
compared with the results in Fig. 3(d) and Fig. 3(e). However,
as shown in Fig. 3(c), for the more bursty arrivals, DBPC
experiences a slightly larger average queue length than QBPC.

C. Heterogeneous Arrivals

We study the case that the vehicles at each lane arrive
following Poisson process, with heterogeneous average arrival
rates. Specifically, we set λ⃗ = [0.2, 1, 1, 0.5, 0.2, 1, 1, 0.5] ∗
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(a) Stability region, Poisson.
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(b) Stability region, IPP, C2 = 2.
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(c) Stability region, IPP, C2 = 5.
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(e) Fairness, IPP, C2 = 2.
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Fig. 3. Performance comparison between QBPC and DBPC with homogeneous arrivals at all lanes. (λ⃗ = [1, 1, 1, 1, 1, 1, 1, 1] ∗ 0.125 v/s/l.)
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(c) Queue length of QBPC, α = 1.1.
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(d) Queue length of DBPC, α = 1.1.
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(e) Tail delay for 8 lanes, α = 1.1.
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(f) Tail delay for lane 1 & 5, α = 1.1.

Fig. 4. Performance comparison between QBPC and DBPC with heterogeneous Poisson arrivals. (λ⃗ = [0.2, 1, 1, 0.5, 0.2, 1, 1, 0.5] ∗ 0.125 v/s/l.)
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(c) Queue length of QBPC, α = 1.15.
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(d) Queue length of DBPC, α = 1.15.
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(e) Tail delay for 8 lanes, α = 1.15.
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(f) Tail delay for lane 1 & 5, α = 1.15.

Fig. 5. Performance comparison between QBPC and DBPC with heterogeneous IPP arrivals. (λ⃗ = [0.2, 1, 1, 0.5, 0.2, 1, 1, 0.5] ∗ 0.125 v/s/l, C2 = 2.)

0.125 v/s/l. The results are given in Fig. 4. Fig. 4(a) shows
that DBPC and QBPC have the same stability region, and the
average queue length of DBPC is a little larger than that of
QBPC. In Fig. 4(b), DBPC has much better fairness index than
QBPC, with a maximum improvement of over 0.3. Moreover,
compared with that in Fig. 3(d) under homogeneous arrivals,
the advantage of DBPC in the delay fairness is more obvious
under heterogeneous arrivals. We expect that for the vehicles
of lanes with low average arrival rates, they may experience
a very large delay under QBPC. Because the lanes with low
arrival rates may lack subsequent vehicle arrivals in a long
period of time compared with lanes with high arrival rates.
This does not make their queues to grow, and thus leads to a
large tail in the delay distribution. This is verified in Fig. 4(f)
for the vehicles of lane 1 and lane 5 with α = 1.1, where
the tail of the delay distribution under DBPC vanishes much
faster than that of QBPC. Taking α = 1.1 as an example, the
queue length variations of each lane are shown in Fig. 4(c)
and Fig. 4(d). Even for the total traffic, as shown in Fig. 4(e),
QBPC still has a much longer tail than that of DBPC.

Fig. 5 shows the performance of heterogeneous IPP arrivals
with λ⃗ = [0.2, 1, 1, 0.5, 0.2, 1, 1, 0.5] ∗ 0.125 v/s/l. The results
are similar to those in Fig. 4. The same stability region is
achieved for both DBPC and QBPC in Fig. 5(a), and the
average queue length of DBPC is a little larger. In Fig. 5(b),
DBPC has larger fairness index than QBPC, with a maximum
improvement of over 0.4. Still the advantage of DBPC in the
delay fairness is more obvious under heterogeneous arrivals

than homogeneous arrivals, comparing Fig. 5(b) and Fig. 3(e).
In Fig. 5(f), for the vehicles of lane 1 and lane 5 with relatively
less arrivals, the tail of the delay distribution under DBPC
vanishes much faster than that of QBPC. Moreover, even for
the total traffic in Fig. 5(e), DBPC still has a much shorter tail
than that of QBPC.

D. Comparison of three schemes

We compare the three control schemes in this section. Fig. 6
considers homogeneous Poisson arrivals, while Fig. 7 shows
the comparison under heterogeneous Poisson arrivals. For the
WBPC, we assume that η(W )

i,j = 1− η
(Q)
i,j and r = η

(Q)
i,j /η

(W )
i,j

for all (i, j) ∈ M. Note that r works as a performance tradeoff
parameter, where an increasing r means we value the queue
length more, while more emphasis is put on the fairness of
delay when r decreases. When r = 0, it is DBPC, and when
r → ∞, it becomes QBPC.

Fig. 6(a) shows that they share the same stability region,
and specifically, almost the same average queue length perfor-
mance. However, in Fig. 6(b), the delay-based control has the
best fairness performance, while the queue-based control has
the smallest values. The performance of the weighted control
varies among them with different values of r. For example,
when r is large, e.g., r = 1000, which means more emphasis
is put on the queue length, the index curve of WBPC is close
to that of QBPC; when r is small, e.g., r = 10, we value
the fairness of delay more, and the index curve of WBPC
is close to that of DBPC. Taking α = 0.2 and α = 0.3
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(c) Impact of tradeoff parameter r.

Fig. 6. Comparison under homogeneous Poisson arrivals at all lanes. (λ⃗ =
[1, 1, 1, 1, 1, 1, 1, 1] ∗ 0.125 v/s/l.)

as examples, Fig. 6(c) further shows how the fairness index
varies with r. We can see that as r decreases, the index
approaches the value of DBPC, and as r increases, the index
approaches the value of QBPC. Based on these, we can see
that, under homogeneous Poisson arrivals, it’s beneficial to
adopt the delay-based backpressure control, which not only

guarantees the same stability region, but also brings the best
delay fairness while still keeps almost the same average queue
length.

Under heterogeneous Poisson arrivals, in Fig. 7(a), although
they share the same stability region, we can see that there
is a small gap between DBPC and QBPC for the average
queue length. However, for the weighted control scheme,
especially when α > 0.3, its average queue length is almost
the same with the best QBPC. Moreover, the fairness of
WBPC in Fig. 7(b) is much better than that of QBPC. The
impact of r is also given in Fig. 7(c). From Fig. 7, we can
see that as the heterogeneity of the traffic increases, while
still guaranteeing the best fairness performance, the DBPC
gradually shows its weakness in the average queue length
performance compared with QBPC. In this case, however, the
weighted control scheme plays a tradeoff role between DBPC
and QBPC, and we can achieve moderate fairness and average
queue length performance by choosing appropriate weighting
parameters.

VII. CONCLUSION AND FUTURE WORK

In this paper, we studied the delay-based backpressure traffic
signal control at isolated intersections. First, the throughput
optimality is proved for this delay-based control using the
fluid limits technique. Then the advantages of the delay-based
control in dealing with the potential excessive delays over the
queue-based control are explored under different traffic pat-
terns. Moreover, a weighed backpressure control is proposed
and proved to be throughput optimal. Simulation results show
that, while guaranteeing the same stability region as the queue-
based control, the delay-based control achieves better fairness
regarding the delay performance, and this improvement is
more obvious under bursty and heterogeneous traffic. Even
when there is a difference between the average queue length
of the delay-based and queue-based schemes, we can still use
the weighted scheme to achieve moderate fairness and average
queue length performance by choosing appropriate weighting
parameters.

However, since the delay-based backpressure traffic signal
control is quite a new approach, there are several directions
in which this work can be extended. First, it is important to
extend this control for multiple types of traffic, e.g., emergency
vehicles like fire truck and ambulance, bicycles, pedestrians
and so on, where a more elaborate priority-based structure
should be considered on the service of different traffic types.
Second, this work can be applied to different shapes of
intersection when certain conditions are satisfied, such as, sig-
nalized intersection with predefined phases composed of non-
conflicting movements. Last but not the least, it is interesting
to study this considering network of intersections. However,
since the delays of vehicles at neighboring intersections are
coupled together, this further complicates the problem. First,
the definition of pressure regarding delay needs to be enhanced
by incorporating the coupling. Moreover, due to the coupling,
a totally distributed design as proposed for the queue-based
control in [17] is no longer feasible for the delay-based
backpressure control, and it will be centralized over the whole
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Fig. 7. Comparison under heterogeneous Poisson arrivals. (λ⃗ =
[0.2, 1, 1, 0.5, 0.2, 1, 1, 0.5] ∗ 0.125 v/s/l.)

network. Therefore we need to find a way to “decentralize”
this for practice usage. For example, a potential approach is
to start with a centralized control, where the network can be
partitioned into small autonomous regions, and then design
heuristic distributed control algorithms.

APPENDIX A
PROOF OF LEMMA 2

We need to show that there exists a finite time T > 0 such
that the fluid limits f̂i,j(T ) > fi,j(0) hold for all movements
(i, j) ∈ M. This is proved by induction here. First, we show
the existence of a finite T that satisfies this condition for at
least one movement; then, we prove that for a given set of
movements satisfying this condition, at least one additional
movement will satisfy this condition by increasing T .

Let us fix an arbitrary ϵ1 > 0. In the fluid limit model, we
have

fi,j(ϵ1) = fi,j(0) + λiϵ1 > fi,j(0), ∀(i, j) ∈ M, (A.1)

and based on Eqs. (15) and (14), there is∑
(i,j)∈M

qi,j(ϵ1) ≤
∑

(i,j)∈M

fi,j(ϵ1)

=
∑

(i,j)∈M

fi,j(0) + ϵ1
∑

(i,j)∈M

λi

≤ 1 + ϵ1
∑

(i,j)∈M

λi

≤ K1. (A.2)

Here we define K1 , 1+ϵ1 max{
∑

(i,j)∈M λi} as a constant,
which is the value of 1 + ϵ1

∑
(i,j)∈M λi when the system is

at its maximum total arrival rates.
Based on (A.1), we will show by induction the existence of

T such that

f̂i,j(T ) ≥ fi,j(ϵ1), ∀(i, j) ∈ M. (A.3)

Base Case: There exists T1 > 0 such that for at least one
movement (i, j) ∈ M,

f̂i,j(T1) ≥ fi,j(ϵ1). (A.4)

Let T1 , ϵ1+K1. Suppose (A.4) does not hold, which means
there exists at least one vehicle that arrives before slot ⌊kϵ1⌋+
1 and does not leave the system by the end of slot ⌊kT1⌋.
Therefore, at each time slot in [⌊kϵ1⌋+1, ⌊kT1⌋], there exists at
least one schedule p⃗ that makes Op⃗ in Algorithm 1 positive. As
a result, for the delay-based traffic signal control, the schedule
determined by Algorithm 1 must serve at least one vehicle
each time slot. Then for sufficiently large k, we must have∑

(i,j)∈M

(
F̂

(k)
i,j (kT1)− F̂

(k)
i,j (kϵ1)

)
≥ ⌊kT1⌋ − ⌊kϵ1⌋. (A.5)

Dividing both sides of (A.5) by k and letting k → ∞, we
obtain ∑

(i,j)∈M

(
f̂i,j(T1)− f̂i,j(ϵ1)

)
≥ T1 − ϵ1 = K1. (A.6)

Based on (A.2) and Eq. (15), there is∑
(i,j)∈M

f̂i,j(T1) ≥
∑

(i,j)∈M

f̂i,j(ϵ1) +K1

≥
∑

(i,j)∈M

f̂i,j(ϵ1) +
∑

(i,j)∈M

qi,j(ϵ1)

=
∑

(i,j)∈M

fi,j(ϵ1). (A.7)
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Therefore, f̂i,j(T1) ≥ fi,j(ϵ1) needs to hold for at least
one movement (i, j) ∈ M, to make

∑
(i,j)∈M f̂i,j(T1) ≥∑

(i,j)∈M fi,j(ϵ1) hold. This contradiction proves the base
case.
Induction Step: Suppose that there exists Tl and a subset
Sl ⊆ M of cardinality l, such that for all (i, j) ∈ Sl we have

f̂i,j(Tl) ≥ fi,j(ϵ1). (A.8)

Then there exists Tl+1 ≥ Tl and a movement (i, j) ∈ M\Sl

such that
f̂i,j(Tl+1) ≥ fi,j(ϵ1). (A.9)

The subset Sl+1 of cardinality l + 1 is defined as Sl+1 =
Sl ∪ {(i, j)}. We prove the induction step for l = 1. The
generalization for arbitrary l > 1 is straightforward. Therefore,
we need to prove that given S1 and T1, there exists T2 ≥ T1

such that for at least two different movements (A.9) holds with
T2.

Let (i′, j′) denote the movement that satisfies (A.8) with
T1, and we have

f̂i′,j′(t) ≥ fi′,j′(ϵ1), t ≥ T1, (A.10)

according to the base case. Based on (A.2), we observe that∑
(i,j) ̸=(i′,j′)

(
fi,j(ϵ1)− f̂i,j(T1)

)
≤ K1. (A.11)

Suppose that for all t ≥ T1, we have

f̂i,j(t) < fi,j(ϵ1), ∀(i, j) ̸= (i′, j′). (A.12)

In the following, we provide a choice of T2 > T1 such that
the assumption (A.12) leads to a contradiction.

We view each path X(k)(t) after time slot ⌈kT1⌉ as a
generalized system with movements in S1 = {(i′, j′)}, and
consider the time slots unavailable to S1 when vehicles of
movements (i, j) ∈ M\S1 are served. Based on (A.11) and
(A.12), we obtain

hS1(t) ≤
∑

(i,j) ̸=(i′,j′)

(
f̂i,j(t)− f̂i,j(T1)

)
<

∑
(i,j) ̸=(i′,j′)

(
fi,j(ϵ1)− f̂i,j(T1)

)
≤ K1. (A.13)

for t ≥ T1, where hS1(t) denotes the amount of time
unavailable to S1 in (T1, t] in the scaled system. Since the
time unavailable to S1 is bounded, there exists a sufficiently
large t ≥ T1 such that the time given to (i, j) ∈ M\S1 is
negligible. Therefore we can focus on S1. Based on Lemma 1,
we know that λi′wi′,j′(t) = qi′,j′(t) for t ≥ T1. Following
from Proposition 3, it is easy to prove that the movements in
S1 are stable under the delay-based backpressure control, and
thus qi′,j′(t) ≤ C1 for t ≥ T1. As a result,

wi′,j′(t) ≤
C1

λi′
, ∀t ≥ T1, (A.14)

where the constant C1 depends only on T1 and K1, but not
time t. Based on (A.12), we know that for each movement

(i, j) ∈ M\S1 there are vehicles that arrive at the system by
time ϵ1 and have not been served by time t, and thus

t− ϵ1 ≤ wi,j(t) ≤ t, ∀(i, j) ∈ M\S1. (A.15)

Note that wi′,j′(t) is bounded in (A.14), and wi,j(t) increases
linearly on the order of t for (i, j) ∈ M\S1 from (A.15).
As a result, there exists a large T ′

2 such that for t > T ′
2, the

movements in M\S1 will be scheduled at all the time slots
between [⌊kT ′

2⌋+1, ⌊kt⌋] under the delay-based backpressure
control. Then we can choose T2 > T ′

2 and make

hS1(T2) ≥ T2 − T ′
2 > K1. (A.16)

This contradicts with (A.13), and thus the assumption (A.12)
does not hold. As a result, there exists a large T2 such that

f̂i,j(T2) ≥ fi,j(ϵ1), (A.17)

for at least one movement (i, j) ∈ M\S1.

APPENDIX B
PROOF OF PROPOSITION 4

Let L(q⃗(t)) denote the Lyapunov function as

L(q⃗(t)) =
1

2

∑
(i,j)∈M

γi,j [η
(Q)
i,j (qi,j(t))

2 + η
(W )
i,j

(qi,j(t))
2

λi
].

(B.1)
Assume λ⃗ is strictly inside Λ, and then there exists a vector

ϕ⃗ ∈ Co(SP ) such that λ⃗ < ϕ⃗, i.e. λi < ϕi,j for all (i, j) ∈ M.

d

dt
L(q⃗(t))

=
∑

(i,j)∈M

γi,j [η
(Q)
i,j +

η
(W )
i,j

λi
]qi,j(t)

d

dt
qi,j(t)

=
∑

(i,j)∈M

γi,j [η
(Q)
i,j +

η
(W )
i,j

λi
]qi,j(t)(λi − πi,j(t))

=
∑

(i,j)∈M

γi,j [η
(Q)
i,j qi,j(t) + η

(W )
i,j

qi,j(t)

λi
](λi − ϕi,j(t))

+
∑

(i,j)∈M

γi,j [η
(Q)
i,j qi,j(t) + η

(W )
i,j

qi,j(t)

λi
](ϕi,j(t)− πi,j(t)).

(B.2)

Let us choose δ3 > 0 such that L(q⃗(t)) ≥ δ1 > 0 implies

max(i,j)∈M[η
(Q)
i,j +

η
(W )
i,j

λi
]qi,j(t) ≥ δ3. Based on the fact that

the sum of non-negative elements must be no less than each
element, we have∑
(i,j)∈M

γi,j [η
(Q)
i,j qi,j(t) + η

(W )
i,j

qi,j(t)

λi
](ϕi,j(t)− λi)

≥ γi′,j′
[

max
(i,j)∈M

[η
(Q)
i,j +

η
(W )
i,j

λi
]qi,j(t)

]
(ϕi′,j′(t)− λi′)

≥ min
(i,j)∈M

γi,j

[
max

(i,j)∈M
[η

(Q)
i,j +

η
(W )
i,j

λi
]qi,j(t)

]
min

(i,j)∈M
(ϕi,j(t)−λi)

≥ min
(i,j)∈M

γi,jδ3 min
(i,j)∈M

(ϕi,j(t)− λi). (B.3)
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We have (i′, j′) = argmax
(i,j)∈M

[η
(Q)
i,j qi,j(t) + η

(W )
i,j

qi,j(t)
λi

] in the

first inequality.
Then the first sum in Eq. (B.2) is bounded as follows:∑

(i,j)∈M

γi,j [η
(Q)
i,j qi,j(t) + η

(W )
i,j

qi,j(t)

λi
](λi − ϕi,j(t))

≤ − min
(i,j)∈M

γi,jδ3 min
(i,j)∈M

(ϕi,j(t)− λi)

, −δ2 < 0. (B.4)

The second term in Eq. (B.2) is non-positive if

π⃗(t) ∈ argmax
ϕ⃗∈Co(SP )

∑
(i,j)∈M

γi,j ·[η(Q)
i,j qi,j(t)+η

(W )
i,j

qi,j(t)

λi
]·ϕi,j(t),

(B.5)
which means∑

(i,j)∈M

γi,j [η
(Q)
i,j qi,j(t) + η

(W )
i,j

qi,j(t)

λi
]ϕi,j(t) ≤

∑
(i,j)∈M

γi,j [η
(Q)
i,j qi,j(t) + η

(W )
i,j

qi,j(t)

λi
]πi,j(t). (B.6)

We know that (B.6) holds because that the underly-
ing weighted backpressure scheduler indeed maximizes∑

(i,j)∈M γi,j [η
(Q)
i,j qi,j(t) + η

(W )
i,j

qi,j(t)
λi

]ϕi,j(t) due to the lin-

ear relationship wi,j(t) =
qi,j(t)
λi

for t ≥ T .
As a result, for any δ1 > 0, there exists δ2 > 0 and a finite

time T > 0 such that L(q⃗(t)) ≥ δ1 implies d
dtL(q⃗(t)) ≤ −δ2

for any regular time t ≥ T . Then the following proof will
be the same with that of Proposition 3, and we can finish the
proof of Proposition 4.
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