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ABSTRACT OF THE DISSERTATION

Reliable GPS Integer Ambiguity Resolution

by

Anning Chen

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2011

Dr. Jay A. Farrell , Chairperson

To operate, guide and control vehicles in low visibility conditions, it is critical that

the states of the vehicle are accurately estimated, which includes the three dimensional

position, velocity, and attitude. This can be accomplished by GPS (Global Positioning

System) aided encoder or GPS aided inertial approaches. The overall positioning accuracy

of either approach will be determined by the GPS performance. Real-time centimeter

accuracy GPS positioning can be achieved using carrier phase measurements. This requires

fast and reliable on-the-fly integer ambiguity resolution.

In this dissertation, we focus on resolving GPS ambiguity problem, including both

integer ambiguity estimation and integer ambiguity validation. For integer ambiguity esti-

mation, a brief overview of pervious work on integer ambiguity resolution is first presented.

Then, an improved integer ambiguity resolution method is proposed. Subsequently, simu-

lations and real-world data are presented to demonstrate the effectiveness of the method.

We also present integer ambiguity algorithms with auxiliary measurements and algorithms

with multiple epoch measurements, both of which are useful in GPS challenging areas. For

integer ambiguity validation, a brief overview is first presented, and then analytic discussion
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and test results on several popular validations methods are studied. Finally we discuss GPS

modernization and its effect on integer estimation and validation.
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Chapter 1

Introduction

1.1 Motivation

To operate, guide and control vehicles in low visibility conditions, it is critical that the

states of the vehicle are accurately estimated, which includes the three dimensional position,

velocity, and attitude. This can be accomplished by GPS (Global Positioning System) aided

encoder or GPS aided inertial approaches [14]. The overall positioning accuracy of either

approach is determined by the GPS performance.

The GPS is based on time-of-arrival ranging. The GPS offers two kinds of signals that

can be used to estimate antenna position: code measurement, which is also referred to as

pseudorange, and the carrier phase measurement. The pseudorange is calculated from the

apparent transit time of the signal from a satellite to the receiver, which is determined

by the receiver clock and the transmission time at the satellite marked in the signal code.

This measurement is biased due to the fact that the satellite and receiver clocks are not

synchronized, and therefore is referred as pseudorange.
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A measurement much more precise than that of code is the phase of the carrier received

from a satellite, which is the difference between the phase of the receiver-generated carrier

signal and the carrier received from a satellite at the instant of the measurement. In case

that a satellite is locked-on, the receiver will measure the initial fractional phase difference

between the received and receiver-generated signals and from then on tracks the change in

this measurement counting full carrier cycles and keeping track of the fractional cycle at

each epoch. It does not require the actual information being transmitted, but the fractional

part phase of the carrier signal. As long as the connection between the receiver and the

satellite is not broken, the number of full carrier cycles remains constant while the fractional

beat phase changes over time. The loss of signal lock between a GPS satellite and the

receiver is referred to as “cycle slip”. If the signal lock is re-established, a new ambiguity

will exist and must be solved for separately from the original ambiguity. In carrier phase

measurement, the number of full carrier cycles is typically not known and varies for every

receiver-satellite combination. Because of its ambiguous nature, this number of full carrier

cycles is referred to as the integer ambiguity and need to be estimated before we can use

carrier phase measurement for position estimate.

By using different kind of GPS signals, GPS can work in three modes: for civilian non-

differential GPS, the position estimation accuracy will be in the order of 10 meters; with

differential GPS (DGPS), which will be introduced in Chapter 2, the positioning accuracy

will be of few meters; and for carrier phase DGPS (CPDGPS), the accuracy will be in the

order of centimeters. This CPDGPS accuracy enables various lane level vehicle control and

guidance applications. The comparison is shown in Fig. 1.1, in which : non-differential

GPS is presented on the left, DGPS is presented in the center and CPDGPS is presented
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Figure 1.1: Position estimate uncertainty with different GPS modes.

on the right. In each subplot, the gray box represents a vehicle in a lane, the ‘x’ represents

the estimated vehicle center position, the ellipse represents the estimate uncertainty.

A key issue for CPDGPS is to solve the integer ambiguities in the GPS carrier phase

measurements efficiently and reliably. Such solutions draw much interest both in theoretical

study and practical implementation.

1.2 Thesis Outline

The thesis is organized as follows: In Chapter 2, we review the background of GPS car-

rier phase signals, propose the GPS integer ambiguity problem, review existing algorithms

and introduce a new integer ambiguity estimation algorithm by combing the advantages

of two of the leading algorithms, GPS integer ambiguity searching strategies are also dis-

cussed. In chapter 3, we study GPS integer ambiguity estimation algorithms with auxiliary

measurements from INS, and in chapter 4, we investigate ambiguity estimation method

by using GPS measurements from multiple epoches. In Chapter 5, GPS integer ambigu-

ity validation problem is studied, various methods are reviewed and analytically discussed,
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and the effect of GPS modernization, specifically, the launch of L5 signals, to GPS integer

ambiguity validation problem is presented.
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Chapter 2

Integer Ambiguity Resolution

2.1 GPS Measurements

2.1.1 Single GPS Measurements

The GPS code and carrier phase measurements for satellite i can be modeled as

ρ(i) = R(i) + cδtr − cδt(i) + I(i) + T (i) + E(i) + MP (i) + ε(i) (2.1)

λφ(i) = R(i) + cδtr − cδt(i) − I(i) + T (i) + E(i) + λN (i) + mp(i) + η(i) (2.2)

where R(i) = ‖p(i) − p‖ is the geometric distance between the satellite i position p(i) and

receiver antenna position p. The symbol cδtr is the receiver clock bias and cδt(i) is the error

caused by satellite clock error of satellite i. The symbol I(i) represents the ionospheric error

of satellite i. The symbol E(i) represents the error caused by satellite ephemeris error. The

symbol T (i) represents the tropospheric error of satellite i. The symbols MP (i) and mp(i)

represents the error caused by multipath effects in the code and phase measurements. The

symbols ε(i) and η(i) represents the error caused by receiver noise in the code and phase

5



measurements. The symbol λ represents the signal wavelength. The symbol N (i) represents

the unknown integer ambiguity to be determined. The index i = 1, · · · ,K, for K satellite

measurements.

2.1.2 Differential GPS

Several of the error terms (satellite ephemeris error, satellite clock bias, ionospheric

error and tropospheric error) in Eqns. (2.1) and (2.2), referred as common mode errors, are

highly spatially correlated. Therefore, if we have a base station at known position pb, then

the errors can be estimated and broadcast to other roving receivers in the local area (at

the range of about 20 miles). By doing this, the GPS positioning accuracy at each of these

roving receivers could be highly improved.

The ideal correction for code and phase measurements would be

C(i)
ρ = −

(
−cδt(i) + I(i) + T (i) + E(i)

)
(2.3)

C
(i)
φ = −

(
−cδt(i) − I(i) + T (i) + E(i)

) 1
λ

(2.4)

We should note that the multipath and receiver noise directly affect the computed

corrections. The corrections will also be affected by the residual of ionospheric error and

tropospheric error between the base and roving receivers. Assume the code and phase

measurements of the base station are ρ
(i)
b and λφ

(i)
b , respectively, then the common mode

6



errors estimated as

Ĉ(i)
ρ = R

(i)
b + cδt̂

(i)
b − ρ

(i)
b

= −
(
−cδt(i) + I

(i)
b + T

(i)
b + E(i)

)
− cδt̃

(i)
b −MP

(i)
b − ε

(i)
b , (2.5)

Ĉ
(i)
φ =

1
λ

(
R

(i)
b + cδt̂

(i)
b + λN

(i)
b

)
− φ

(i)
b

= −
(
−cδt(i) − I

(i)
b + T

(i)
b + E(i)

)
− cδt̃

(i)
b −mp

(i)
b − η

(i)
b , (2.6)

where R
(i)
b = ‖p(i) − pb‖ is the geometric distance between the satellite i position p(i) and

receiver antenna position p. The symbol cδt̂
(i)
b denotes an estimate of the base receiver bias.

The symbol I
(i)
b represents the ionospheric error of satellite i at the base. The symbol T

(i)
b

represents the tropospheric error at the base. The symbol cδt̃
(i)
b = cδt

(i)
b − cδt̂

(i)
b represents

the residual of the base receiver clock bias. The symbol N
(i)
b represents the integer ambiguity

at the base. The symbol MP (i) and mp(i) represents the error caused by multipath effects

in the code and phase measurements at the base. The symbols ε
(i)
b and η

(i)
b represents the

error caused by the base receiver noise in the code and phase measurements.

The differential GPS measurement is computed as

∆ρ(i) = ρ(i) + C(i)
ρ

= R(i) + cδtr − cδt̃
(i)
b + δI(i) + δT (i) + MP (i) + ε(i) + MP

(i)
b + ε

(i)
b

= R(i) + cδt̄r + ε̄(i), (2.7)

λ∆φ(i) = λ
(
φ(i) + C

(i)
φ

)

= R(i) + cδtr − cδt̃
(i)
b − δI(i) + δT (i) + λN (i) + mp(i) + η(i) + mp

(i)
b + η

(i)
b

= R(i) + cδt̄r + λN (i) + η̄(i) (2.8)

where δI(i) = I(i)−I
(i)
b , δT (i) = T (i)−T

(i)
b , cδt̄r = cδtr−cδt̃

(i)
b , ε̄(i) = δI(i) +δT (i) +MP (i) +

7



ε(i) +MP
(i)
b + ε

(i)
b and η̄(i) = −δI(i) + δT (i) +λN (i) +mp(i) +η(i) +mp

(i)
b +η

(i)
b . Throughout

the thesis, δI(i) and δT (i) are assumed to be small enough so that they can be neglected.

2.1.3 Residual Measurements

This thesis will work with residual measurements computed relative to a position p0

which is assumed to be sufficiently accurate to the roving receiver so that the high order

terms (i.e., h.o.ts) are neglectable after linearization. The residual measurements are

δ∆ρ(i) = ∆ρ(i) − ‖p(i) − p0‖ (2.9)

λδ∆φ(i) = λ∆φ(i) − ‖p(i) − p0‖. (2.10)

The linearized residual measurements are modeled as

δ∆ρ(i) = h(i)δp + cδt̄r + ε̄(i) (2.11)

λδ∆φ(i) = h(i)δp + cδt̄r + λN (i) + η̄(i) (2.12)

where δp = (p − p0)> ∈ R3 and h(i) = p−p0
‖p−p0‖ ∈ R

3. We assume that ε̄(i) ∼ N (
0, σ2

ρi

)

and η̄(i) ∼ N (
0, σ2

Φi

)
. In typical GPS applications, the magnitude of σρi is in the order

of meters and the magnitude of σΦi is in the order of centimeters. All the noise terms are

uncorrelated with each other.

Assuming that there are K satellites in view, the phase residual measurements from

these K satellites can be put in matrix form as

λδ∆φ = Hx + λN + η̄ (2.13)
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where δ∆φ =
[

δ∆φ(1) · · · δ∆φ(K)

]>
∈ RK , x =

[
δp> cδt̄r

]> ∈ Rn, n = 4, H =



h(1) 1

...
...

h(K) 1



∈ RK×n, η̄ =

[
η̄(1) · · · η̄(K)

]>
∈ RK , and N =

[
N (1) · · · N (K)

]>
∈

ZK is the integer ambiguity vector that is to be determined.

2.2 Problem Proposition

Eqn. (2.13) can be rewritten as follows:

y = G · x + N + v (2.14)

where y = δ∆φ is the double differenced measurement, G = λ−1H is the observation

matrix characterizing the satellite-user geometry and v = η̄ ∈ RK is the vector of phase

measurement errors. The covariance matrix of the measurement error is Σvv = cov(v̄).

GPS integer ambiguity problem can be solved as a Maximum Likelihood (ML) esti-

mation problem. That is, given GPS measurements, we would like to find the estimates

of N and x that maximize the conditional probability f (y|N,x). This problem can be

formulated as follows:

(
N̂, x̂

)
= arg max

N∈ZK ,x∈Rn
f (y|N,x)

= arg max
N∈ZK ,x∈Rn

ln f (y|N,x)

= arg max
N∈ZK ,x∈Rn

ln

(
e−

1
2
(y−Gx−N)T Σ−1(y−Gx−N)

(2π)K/2 |Σvv|1/2

)

= arg min
N∈ZK ,x∈Rn

(y−Gx−N)T Σ−1
vv (y−Gx−N). (2.15)

Therefore, the GPS integer ambiguity problem is also an Integer Weighted Least-Square
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(IWLS) problem [33]. Our objective is to find N ∈ ZK , x ∈ RK that minimize the cost

function

c (x,N) = ‖y−G · x−N‖2
Σvv

= (y−Gx−N)T Σ−1
vv (y−Gx−N). (2.16)

In practice, the determination of the integer vector N is usually separated into two

steps: integer estimation and integer validation. In the remainder of this chapter, we will

discuss integer estimation problem, in which we tend to find the best integer vector that

minimize the cost function. The step of integer validation, which will be discussed in

Chapter 5, we decide whether this estimate is acceptable or not.

2.3 Literature Review

The problem of GPS integer ambiguity estimation has drawn much interest both in

theoretical study and practical implementation [26]. In the following, we review some of

the leading algorithms.

2.3.1 LMS

One of the leading algorithms in integer ambiguity problem is LMS (Local Minima

Search) [30], inspired by a very useful insight [20]: although Eqn. (2.14) contains (K + n)

unknown variables, there are only n degrees of freedom. Given any x, all the integer

ambiguities can be resolved; on the other hand, given any n integers, the states x can

be computed accurately. These remarks show that not all combinations of integers are

admissible and the challenge is to reformulate Eqn. (2.14) properly to find admissible integer
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vectors efficiently.

The basic idea of LMS is to search only over the admissible combinations of integer

candidates so that the searching space can be decreased. In LMS, the integer vector N is

divided into two subvectors NC and ND, where ND contains n integers and NC contains the

remaining (K−n) integers. The integers in ND are searched exhaustively over some range of

d integers and for each candidate of ND, the remaining integers are computed as real value

estimates and are rounded to an optimally selected integer (described below) to get the

estimate of NC . This yields dn integer vectors in ZK . By evaluating the cost function for

each integer vector candidate, LMS can select the best of the dn integer vector candidates.

The original LMS procedure of LMS is introduced in [30]. Alternative implementations are

presented in [14, 29, 43].

LMS decreases the search dimension from K to n, which decreases the number of

integer vector candidates from dK to dn. However, because the integer estimation error

vector can be highly correlated, which renders that the level curves of the cost function

are tilted and elongated hyper-ellipsoids, the rounding in the standard LMS approach may

yield incorrect integer estimates and cause a significant cost increase.

2.3.2 LAMBDA

LAMBDA (Least-squares Ambiguity Decorrelation Adjustment) is designed to address

the correlation of the integer estimate error vector. It is based on ideas from [17], and

systematically developed the idea of decorrelation in a series of well cited papers [33, 35, 36].

In LAMBDA, an invertible, integer-to-integer transformation, denoted by Z, is derived such

that the correlation matrix for the transformed integer vector is nearly diagonal.
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In this circumstance, it has been proven that under certain conditions, the real-valued

estimates from a least square solution can be rounded to achieve the optimal vector integer

estimate [37]. However, computation of the decorrelation transformation Z involves an iter-

ative process whose computational complexity grows exponentially with the integer vector

dimension.

2.3.3 Lattice Theory and Integer Ambiguity Problem

In [19], GPS integer ambiguity problem (or integer parameter estimation problem in

general) was interpreted as a “nearest lattice vector problem”. The technique of LLL

(Lenstra, Lenstra, and Lovász) algorithm [28], which is based on integer Gram-Schmidt

orthogonalization, was brought into the field of integer parameter estimation for integer

decorrelation. An algorithm was proposed use LLL algorithm for lattice base reduction and

decorrelation so that the bases are “almost orthogonal” and the integer estimate can be

rounded from float solutions.

The algorithm is suboptimal, but reduce the computation time from NP-hard [39]

to polynomial time. In [42], it has been shown that the decorrelation technique in this

algorithm equivalent to the concept of decorrelation proposed by Teunissen [34].

2.3.4 Others

In the history of research on GPS integer ambiguity problems, there has been a wide

collection of literature discussing the problem from different point of views. Some of the

widely used algorithms in the research history will be presented here.

Some of the early work focuses on linear combinations of measurements at different
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frequencies [1], proper weighting of measurements from different satellites [9] and smoothing

observations over time [25]. Based on smoothed measurements, the integers can be directly

calculated from float estimation [1, 25], or the searching space can be reduced [6, 15].

Some other work, known as AFM (Ambiguity Function Method) [11] proposed an

ambiguity function, the value of which was not affected by the whole-cycle changes so that

the baseline can be accurately estimated without knowing the exact value of the integer

ambiguity. This algorithm was later improved in [18].

In [17], GPS integer ambiguity estimation are formed as an integer programming prob-

lem. This method can be improved and leads to the LLL algorithm [28].

2.3.5 Summary

In early days, the research on integer ambiguity focuses on improving the computational

efficiency of the searching process. Most of the algorithms proposed in early times are rarely

used nowadays but of some historical interest.

In early 1990’s, some significant progress was made in this area. With the improvement

of modern computers, many algorithms proposed at that time computational sufficient

enough for most practical applications. After that, trends of the research are switched onto

the performance. LAMBDA [33, 35, 36] has been the leading algorithm in this area, and

several variations are proposed [2, 22]. Some of the good reviews of different ambiguity

estimation approaches can be found in [18, 21, 24, 26], and the references therein.

More recently, with the process of GPS modernization, people started to work on more

challenging situations, like more reliable real-time result and long baseline applications.

For these applications, multi-frequency measurements and the incorporation of other GNSS
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sources (GALILIEO, GLONASS, COMPASS, etc.) are usually involved [23].

2.4 Improved Integer Ambiguity Resolution by Combining

LMS and LAMBDA

In this section, we present a new integer ambiguity resolution method that combines

the advantages of LMS and LAMBDA. The proposed method follows the idea of the LMS

method to reduce the search space to get the float esitmate and employs the LAMBDA

Z-transformation prior to rounding. In this manner, rounding achieves the optimal integer

estimate derived from the float solution and the dimension of the Z transformation matrix

is decreased from K to (K − n) (e.g., from 7 to 4 in typical GPS applications).

Therefore, the proposed method has lower computation complexity compared to LAMBDA

and higher success rate compared to LMS. The derivation of the method is presented as

follow.

2.4.1 Generating Searching Candidates

Given Eqn. (2.14), for a given integer ambiguity N, the weighted least square estimate

of x would be:

x̂ =
(
GTΣ−1

vvG
)−1

GTΣ−1
vv (y−N) (2.17)
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and the residual vector is

ε̂ = y−G · x̂−N

=
(
I−G

(
GTΣ−1

vvG
)−1

GTΣ−1
vv

)
(y−N)

= QΣ (y−N) . (2.18)

where

QΣ = I−PΣ, (2.19)

PΣ = G
(
GTΣ−1

vvG
)−1

GTΣ−1
vv . (2.20)

Proposition 1 Both PΣ and QΣ are idempotent. Rank(P) = n, rank(Q) = (K − n).

Proof. It is trivial to prove that

PΣPΣ = PΣ

QΣQΣ = QΣ

Thus, both PΣ and QΣ are idempotent.

Because Σvv > 0 is a covariance matrix, Σ−1
vv is symmetric and positive definite. Thus,

it can be factored as

Σ−1
vv = W>M>MW, (2.21)

and

Σvv = W>M−>M−1W, (2.22)

where W ∈ RK×K is a unitary matrix (i.e., WW> = W>W = I) and M> = M is

a diagonal matrix with positive elements on the diagonal. Substituting Eqn. (2.21) into
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Eqn. (2.20), we have

PΣ = G(G>Σ−1
vv G)−1G>Σ−1

vv

= G(G>W>M>MWG)−1G>W>M>MW

= G(A>A)−1A>MW

= W>M−1A(A>A)−1A>MW

= W>M−1PMW, (2.23)

where P = A(A>A)−1A> and A = MWG. Eqn. (2.23) shows that PΣ is similar to

P where P is a projection matrix onto the range of A; therefore, rank(P) = rank(A).

Because M and W are both nonsingular, rank(A) = rank(G) = n. Hence, rank(PΣ) =

rank(P) = n.

Let Q = I − P, then Q is a projection matrix onto the subspace orthogonal to the

range space of A, and has rank (K − n). The following analysis shows that QΣ is similar

to Q:

QΣ = I−PΣ

= I−W>M−1PMW

= W>M−1(I−P)MW

= W>M−1QMW. (2.24)

Therefore, QΣ also has rank (K − n).
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From Eqn. (2.16), the cost function evaluated from candidate N is

c(N) = ‖y−Gx−N‖2
Σvv

= ‖QΣ(y−N)‖2
Σvv

= (y−N)>Q>
ΣΣ−1

vvQΣ (y−N)

= (y−N)>Q0 (y−N) (2.25)

where

Q0 = Q>
ΣΣ−1

vvQΣ

= (I−PΣ)>Σ−1
vv (I−PΣ)

= Σ−1
vv −Σ−1

vvPΣ −P>
ΣΣ−1

vv + P>
ΣΣ−1

vvPΣ

= Σ−1
vv − 2Σ−1

vvG(G>Σ−1
vvG)−1G>Σ−1

vv

+Σ−1
vvG(G>Σ−1

vvG)−1G>Σ−1
vvG(G>Σ−1

vvG)−1G>Σ−1
vv

= Σ−1
vv −Σ−1

vvG(G>Σ−1
vvG)−1G>Σ−1

vv

= Σ−1
vv (I−PΣ)

= Σ−1
vvQΣ (2.26)

Proposition 2 Rank(Q0) = (K − n).
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Proof. First, we should notice that by using Eqns. (2.22) and (2.24), Q0 can be written

as:

Q0 = Q>
ΣΣ−1

vvQΣ

= (W>M−1QMW)>

(W>M>MW)(W>M−1QMW)

= W>M>QM−TWW>M>MWW>M−1QMW

= W>M>QMW. (2.27)

Following Eqn. (2.23), we stated that Q is a projection matrix with rank (K −n). Because

M and W are nonsingular, Q0 is similar to Q; therefore, rank(Q0) = (K − n).

Let the SVD (single value decomposition) of Q0 be

Q0 = US2U>,

where U is unitary and S is diagonal with diag(S) = [s1, . . . , s(K−n), 0, . . . , 0] with all si > 0

for i = 1, . . . , (K − n).

Define B = SU> such that

Q0 = B>B (2.28)

where the last n rows of B are zero.

Given the above analysis, the cost function of Eqn. (2.25) can be rewritten as

c(N) = (y−N)>B>B (y−N)

= ‖B (y−N) ‖2. (2.29)
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Because B does not have full rank, the null space of B is not empty. Therefore, there

exists (non-unique) N̂ ∈ Rm such that (y−N) is in the null space of B:

B
(
y− N̂

)
= 0, (2.30)

By = BN̂. (2.31)

As the last n rows of B are all zeros, the matrix B can be represent as

B =




C D

0 0


 ,

where C ∈ R(K−n)×(K−n) and D ∈ R(K−n)×n .

Decompose the vector N̂ into two subvectors N̂ =
[

N̂
>
C N̂

>
D

]>
with N̂C ∈ Rm−n

and N̂D ∈ Rn. Similarly, decompose y as y =
[

y>C y>D

]>
with yC ∈ R(m−n) and

yD ∈ Rn. This decomposition allows Eqn. (2.31), to be manipulated as follows:



C D

0 0







yC

yD


 =




C D

0 0







N̂C

N̂D


 ,




C

0


 N̂C =




C D

0 0







yC

yD


−




D

0


 N̂D,

CN̂C = CyC + DyD + DN̂D.

Therefore, given a hypothesized vector ND ∈ Zn, the real-valued estimate of N̂C is

given by:

N̂C = yC + C−1D(yD −ND) (2.32)

The integer candidates N̂D can be searched exhaustively over some finite range of

integers using n “for” loops as shown in Figure 2.1. This requires (2d + 1)n iterations of

Eqn. (2.32) and associated logic for keeping the best integer vector candidate.
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A = C−1D
for i = −d : d

for j = −d : d
for k = −d : d

ND = [i, j, k, 0]>

N̂C = yC + A (yD −ND)
. . . use N̂C to compute NC minimizing J(NC)
N> = [NC ,ND]>, if c(N) < current minimum

Save N
current minimum = c(N)

...

Figure 2.1: Triple ‘for’ loop to compute N̂C .

For any hypothesized integer vector ND, Eqn. (2.32) calculates the unique N̂C ∈

R(K−n) such that c(N̂) = 0. The next step will be to use N̂C to find an integer NC such

that c(N) is minimum.

2.4.2 Rounding N̂C

Given N̂C , in order to get the optimal integer estimate of NC , we would like to find an

integer vector ŇC which is close to N̂C . As discussed in [36, 37], as the integer estimation

error vector can be highly correlated, visualized by the level curves of the cost function

being tilted and elongated ellipses, directly rounding N̂C to ŇC may yield incorrect integer

estimates and cause a significant cost increase.

Consider the cost function

J(NC) = ‖NC − N̂C‖2
ΣN̂C

= (NC − N̂C)>Σ−1

N̂C
(NC − N̂C), (2.33)
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where the covariance of N̂C

ΣN̂C
= ΣCC + C−1DΣDDD>C−T , (2.34)

ΣCC = cov(yC), ΣCC = cov(yD).

The purpose of this section is to show that the cost functions c(N) defined in Eqn. (2.25)

and J(NC) defined in Eqn. (2.33) are both minimized by the same integer estimate NC .

Proposition 3 The cost functions c(N) defined in Eqn. (2.25) and J(NC) defined in

Eqn. (2.33) are both minimized by the same integer estimate NC .

Proof. Let

QΣ =




QCC QCD

QDC QDD


 (2.35)

where QCC ∈ R(K−n)×(K−n), QDD ∈ Rn×n and QCD,Q>
DC ∈ R(K−n)×n.

Similarly, denote the covariance matrix as the covariance matrix Σvv as

Σvv =




ΣCC ΣCD

ΣDC ΣDD


 ,

where ΣCC ∈ R(K−n)×(K−n), ΣDD ∈ Rn×n, ΣCD,Σ>
DC ∈ R(K−n)×n. Let the inverse of

Σvv be

Σ−1
vv = Υ =




ΥCC ΥCD

ΥDC ΥDD


 (2.36)

where ΥCC ∈ R(K−n)×(K−n), ΥDD ∈ Rn×n, ΥCD,Υ>
DC ∈ R(K−n)×n. We can also obtain

ΥCC = (ΣCC −ΣCDΣ−1
DDΣDC)−1 (2.37)

ΥCD = −ΥCCΣCDΣ−1
DD. (2.38)
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Substitute Eqns. (2.36) and (2.35) into Eqn. (2.26), we have

Q0 = Σ−1
vvQΣ

=




ΥCC ΥCD

ΥDC ΥDD







QCC QCD

QDC QDD




=




ΥCCQCC + ΥCDQDC ΥCCQCD + ΥCDQDD

ΥDCQCC + ΥDDQDC ΥDCQCD + ΥDDQDD


 . (2.39)

From Eqn. (2.29), for any N ∈ ZK ,

c(N) = (y−N)>B>B(y−N)

= (y− N̂−N + N̂)>B>B(y− N̂−N + N̂)

= ‖B(y− N̂)‖2 − 2(N− N̂)>B>B(y− N̂) + ‖B(N− N̂)‖2 (2.40)

where N̂ is the optimal real-valued estimate of N, which satisfies B(y − N̂) = 0. Also,

because the vector candidates N are generated as shown in Fig. 2.1, N̂D is an integer

vector that satisfies N̂D = ND. Hence, the cost function can be written as

c(N) = ‖B(N− N̂)‖2

=
(
N− N̂

)>
B>B

(
N− N̂

)

=
(
N− N̂

)>
Q0

(
N− N̂

)

=




NC − N̂C

0







ΥCCQCC + ΥCDQDC ΥCCQCD + ΥCDQDD

ΥDCQCC + ΥDDQDC ΥDCQCD + ΥDDQDD







NC − N̂C

0




=
(
NC − N̂C

)>
(ΥCCQCC + ΥCDQDC)

(
NC − N̂C

)
. (2.41)

Comparison of Eqns. (2.33) and (2.41) shows that if we can prove Σ−1

N̂C
= (ΥCCQCC + ΥCDQDC),

then these two cost functions are equivalent.
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From Eqn. (2.31), we know that

BN̂ = By,

multiplying on the left by B> yields

B>BN = B>By,

which provides the following constraint on the covariance

B>BΣNNB>B = B>BΣvvB>B

Q0ΣNNQ>
0 = Q0ΣvvQ>

0

Σ−1
vvQΣΣNNQ>

ΣΣ−T
vv = Σ−1

vvQΣΣvvQ>
ΣΣ−T

vv (2.42)

where

ΣNN =




ΣN̂C
0

0 0




as there is no uncertainty in ND.

Because Σvv is nonsingular, Eqn. (2.42) reduces to

QΣΣNNQ>
Σ = QΣΣvvQ>

Σ

= QΣΣvv, (2.43)

as

QΣΣvvQ>
Σ =

(
W>M−1QMW

)(
W>M−1M−TW

) (
W>M>Q>M−TW

)

= W>M>QQ>M−TW

=
(
W>M−1QMW

)(
W>M−1M−TW

)

= QΣΣvv,
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according to Eqns. (2.24) and (2.22).

Therefore,

QΣ

(
ΣNNQ>

Σ −Σvv

)
= 0. (2.44)

From Sylvesters rank inequality: “If A is a m− by−n matrix and B is n− by−k, then

rank(A) + rank(B)− n ≤ rank(AB).”

As QΣ ∈ RK×K ,
(
ΣNNQ>

Σ −Σvv

) ∈ RK×K and rank(QΣ) = (K − n). Therefore,

rank
(
ΣNNQ>

Σ −Σvv

) ≤ n.

Referring to Eqn. (2.35),

(
ΣNNQ>

Σ −Σvv

)
=




ΣN̂C
Q>

CC −ΣCC ΣN̂C
Q>

DC −ΣCD

−ΣDC −ΣDD


 .

As the block −ΣDDj has rank n, to make rank
(
ΣNNQ>

Σ −Σvv

) ≤ n, the first (K − n)

columns are the linear combination of the later n ones. As

−ΣDC = −ΣDDΣ−1
DDΣDC ,

we have

(
ΣN̂C

Q>
CC −ΣCC

)
=

(
ΣN̂C

Q>
DC −ΣCD

)
Σ−1

DDΣDC

ΣN̂C
Q>

CC −ΣCC = ΣN̂C
Q>

DCΣ−1
DDΣDC −ΣCDΣ−1

DDΣDC

ΣN̂C

(
Q>

CC −Q>
DCΣ−1

DDΣDC

)
= ΣCC −ΣCDΣ−1

DDΣDC

= Υ−1
CC .

Therefore,

Σ−1

N̂C
=

(
Q>

CC −Q>
DCΣ−1

DDΣDC

)
ΥCC
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As ΣN̂C
is symmetric,

Σ−1

N̂C
= Σ−T

N̂C

= ΥCC

(
QCC −ΣCDΣ−1

DDQDC

)

= ΥCCQCC −ΥCCΣCDΣ−1
DDQDC (2.45)

by substituting Eqn. (2.38) into Eqn. (2.45), we have

Σ−1

N̂C
= ΥCCQCC −ΥCDQDC . (2.46)

Hence we finished the proof by comparing Eqns. (2.33) and (2.41).

To find the integer vector that minimizes Eqn. (2.33), we follow the idea of LAMBDA

to employ a Z-transform Z which decorrelates ΣN̂C
. Here, the Z transform should have

the following properties:

• Z is an integer-to-integer transformation, thus every element of Z and Z−1 is an

integer. In other words, Z is a unimodular matrix with determinate being 1.

• To decorrelate ΣN̂C
, we would like find Z that

(
ZΣNCZT

)−1 to be nearly diagonal.

The procedure to find the Z-transformation was described in detail in [12].

Let M̂C = ZN̂C , then the cost function written in terms of MC is

J(MC) = (MC − M̂C)>Σ−1

M̂C
(MC − M̂C), (2.47)

where ΣM̂C
= ZΣN̂C

Z>. Because Σ−1

M̂C
is nearly diagonal, J(MC) can be minimized by

rounding M̂C to the nearest integer; therefore, the integer-valued estimate of NC can be
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computed as:

M̂C = ZN̂C (2.48)

M̌C = [M̂C ]roundoff (2.49)

ŇC = Z−1M̌C . (2.50)

At this point we have an integer vector candidate
[
Ň>

C N>
D

]>
. One such candidate will be

generated for each iteration of the ‘for’ loop in Fig. 2.1. We can compare each integer vector

candidate using Eqn. (2.25). Selecting the candidate vector with the lowest value (subject

to validity tests) as the best. In this manner, by rounding off the float estimate N̂C in a

decorrelated domain, i.e. MC , we have a better chance to achieve optimal integer estimate

ŇC and therefore have higher success rate than the original LMS. Moreover, comparing

to the original LAMBDA, the decorrelation is computed for the subvector NC rather than

the whole vector N, therefore, the Z transformation dimension is reduced from RK×K

to R(K−n)×(K−n) (e.g., from R7×7 to R4×4 in typical GPS applications). Therefore, the

proposed method has less computational complexity compared to LAMBDA.

The decorrelation of N̂C is one of the key steps in the proposed method. An example

of the level curves of the correlation matrix in terms of correlated integer vector NC and

decorrelated integer vector MC are show in Fig. 2.2 and Fig. 2.3. Here, we follow the

algorithm described in [12] to find the Z-transform.

The level curves for the vector NC form hyper-ellipsoids. In both figures, we plot each

section of the hyper-ellipsoid and NC . In this case, K = 9, n = 4 and NC ∈ Z5. In Fig.

2.2, the ‘x’ denotes the float estimate of N̂C , the ‘*’denotes the nearest integer vector to the

float estimate, and the ‘o’ denotes the integer vector with lowest cost. The ellipses denote
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Figure 2.2: Sections of the level curves of the cost function for NC (see Eqn. (2.33))

27



0 1

−2

−1

M
C

(1)

M
C

(2
)

−2 −1

1

M
C

(2)

M
C

(3
)

0 1 2
2

3

4

M
C

(3)

M
C

(4
)

2 3 4

0

1

M
C

(4)

M
C

(5
)
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the section of the level curves of the cost function J(NC) = ‖NC − N̂C‖2
ΣN

, the larger the

ellipse is, the larger J(NC) is. The float estimate N̂C ≈ [1.92 1.39 1.07 1.26 2.74]T and

its nearest integer vector is N̄C = [2 1 1 1 3]T . As the level curves J(NC) are elongated,

tilted hyper-ellipsoids, ŇC is not the optimal estimate as the vector ŇC = [1 1 2 1 1]T

has smaller cost J(NC).

In Fig. 2.3, the transformed float and integer estimates are plotted. After applying the

Z-transformation

Z =




1 0 0 2 0

−1 0 −1 1 0

0 −2 1 0 1

1 0 1 0 0

0 1 0 −1 0




,

the float and integer estimate in M-domain will be:

M̂C =
[

0.59 −1.74 1.028 3.00 0.13

]T

M̌C =
[

1 −2 1 3 0

]T

ŇC = Z−1M̌C =
[

1 1 2 1 1

]

The covariance matrix for the transformed integer vector ΣMC is nearly diagonal, the

level curves of J(MC) = ‖MC −M̂C‖2
ΣMC

which pass the closest and second closest integer

vectors to M̂C are plotted. As the shape of the level curve sections are round ellipses,

rounding off M̂C to M̌C does give the least J(MC) increase, and NC can be determined.
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2.5 Integer Ambiguity Estimation Strategies

To implement GPS integer ambiguity estimation algorithm, various strategies are pos-

sible. In deciding an estimation strategy, we would like to have minimum volume to search

and maximum number of measurements. In this section, we will first discuss the linear com-

bination of GPS dual frequency measurements, based on which we can discuss two most

popular integer estimation strategies: bootstrapping and batch.

2.5.1 Linear Combinations of Dual Frequency Measurements

Currently GPS signals are broadcasted in two frequencies: the primary frequencies L1

at f1 = 1575.42MHz and the L2 at f2 = 1227.6MHz. Here we consider the differential

code and phase measurements at both frequencies. We rewrite the differential code and

phase measurements described in eqns. (2.7) and (2.8) in L1 and L2 as:

∆ρ
(i)
L1 = R(i) + cδt̄r + ε̄

(i)
L1, (2.51)

λ1∆φ
(i)
L1 = R(i) + cδt̄r + λN

(i)
L1 + η̄

(i)
L1 (2.52)

∆ρ
(i)
L2 = R(i) + cδt̄r + ε̄

(i)
L2, (2.53)

λ2∆φ
(i)
L2 = R(i) + cδt̄r + λN

(i)
L2 + η̄

(i)
L2 (2.54)

Where λ1 =
c

f1
≈ 19.0cm and λ2 =

c

f2
≈ 24.4cm. As discussed in Chapter 2, ε̄(i) ∼

N (
0, σ2

ρi

)
and η̄(i) ∼ N (

0, σ2
Φi

)
. In typical GPS applications, σρi is at the meter level and

σΦi is at the centimeter level and all the noise terms are uncorrelated with each other.

Various other quantities can be computed as linear combinations of the phase measure-

ments. Of particular interest are those that maintain the integer nature of the offset due to
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the integer ambiguities. Linear combinations from L1 and L2 can be represent in forms of

∆ρ
(i)
α,β = λα,β

(
α

∆ρ
(i)
L1

λ1
+ β

∆ρ
(i)
L2

λ2

)

= λα,β

(
α

λ1
+

β

λ2

) (
R(i) + cδt̄r

)
+ λα,β

(
α

ε̄
(i)
L1

λ1
+ β

ε̄
(i)
L2

λ2

)
(2.55)

λα,β∆φ
(i)
α,β = λα,β

(
α∆φ

(i)
L1 + β∆φ

(i)
L2

)

= λα,β

(
α

λ1
+

β

λ2

) (
R(i) + cδt̄r

)
+ λα,βN

(i)
α,β + λα,β

(
α

η̄
(i)
L1

λ1
+ β

η̄
(i)
L2

λ2

)
(2.56)

To preserve the unit scale factor for R(i), the wavelength λα,β is defined as

λα,β =
λ1λ2

αλ1 + βλ2
=

c

αf1 + βf2
, (2.57)

where c is the speed of light. The integer ambiguity for the linear combination measurement

is defined as N
(i)
α,β = αN

(i)
l1 + βN

(i)
L2 .

The standard deviation of the measurement noise is:

σ2

ρ
(i)
α,β

= λ2
α,β

(
α2

σ2
ρi

λ2
1

+ β
σ2

ρi

λ2
2

)

=
α2λ2

2 + β2λ2
1

(αλ2 + βλ1)
2 σ2

ρi
, (2.58)

By the same token, the covariance of the linear combination phase measurement noise is:

σ2

φ
(i)
α,β

=
α2λ2

2 + β2λ2
1

(αλ2 + βλ1)
2 σ2

φi
. (2.59)

Some commonly chosen value for α and β are:

• α = 1, β = 1. This is referred to as narrow lane measurement. Narrow lane code and
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phase measurement which can be computed as:

∆ρ
(i)
NR = λn

(
∆ρ

(i)
L1

λ1
+

∆ρ
(i)
L2

λ2

)

= R(i) + cδt̄r + ε̄
(i)
NR, (2.60)

λn∆φ
(i)
NR = λn

(
∆φ

(i)
L1 + ∆φ

(i)
L2

)

= R(i) + cδt̄r + λN
(i)
NR + η̄

(i)
NR (2.61)

where λn =
λ1λ2

λ1 + λ2
≈ 0.107m and N

(i)
NR = N

(i)
L1 + N

(i)
L2 . The measurement noise

for narrow lane code and measurement are ε̄
(i)
NR = λn

(
ε̄
(i)
L1

λ1
+

ε̄
(i)
L2

λ2

)
and η̄

(i)
NR =

λn

(
η̄

(i)
L1

λ1
+

η̄
(i)
L2

λ2

)
, separately. Narrow lane measurement has short wavelength, but

the standard deviation of the measurement noise is decreased to about 0.707 of L1 or

L2 measurements.

• α = 1, β = −1. This is referred to as wide lane measurement. Narrow lane code and

phase measurement which can be computed as:

∆ρ
(i)
WD = λw

(
∆ρ

(i)
L1

λ1
− ∆ρ

(i)
L2

λ2

)

= R(i) + cδt̄r + ε̄
(i)
WD, (2.62)

λw∆φ
(i)
WD = λw

(
∆φ

(i)
L1 −∆φ

(i)
L2

)

= R(i) + cδt̄r + λN
(i)
WD + η̄

(i)
WD (2.63)

where λw =
λ1λ2

λ1 − λ2
≈ 0.862m and N

(i)
WD = N

(i)
L1 −N

(i)
L2 . The measurement noise for

wide lane code and measurement are ε̄
(i)
WD = λw

(
ε̄
(i)
L1

λ1
− ε̄

(i)
L2

λ2

)
and η̄

(i)
WD = λw

(
η̄

(i)
L1

λ1
− η̄

(i)
L2

λ2

)
,

separately. Wide lane measurements feature in long wavelength, but the measurement

noises are also been amplified about 5.7 times.
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2.5.2 Bootstrapping

In this approach, the narrow lane pseudorange measurements are used to initialize the

estimate of widelane integers N
(i)
WD. With the wide lane integers, the wide lane phase range

can then be used to initialize the estimation of L1 integers N
(i)
L1 . At this point the L2 and

narrow integers can be directly computed.

Differentiating the narrow lane code measurement and wide lane phase measurement

yields a float number estimate of the wide lane integer

N̄
(i)
WD =

∆ρ
(i)
NR − λw∆φ

(i)
WD

λw

= N
(i)
WD +

ε̄
(i)
NR − η̄

(i)
WD

λw
. (2.64)

This initial float estimate of wide lane integer estimate N̄
(i)
WD ∼ N

(
N

(i)
WD, σ2

Ñ
(i)
WD

)
, where

σ
Ñ

(i)
WD

≈ 0.837 cycle2. If we search ±1 integers around the N̄
(i)
WD, the probability that N

(i)
WD

being included in the searching space is only 72.9%. If we increase the searching space to be

±2 around N̄
(i)
WD, the probability increases to 97.2%, which gives us 5 candidates to search

per satellite.

To search the the L1 integer N
(i)
L1 , following the same methodology, we initialize the

float estimate N̄
(i)
L1 =

R̂
(i)
WD − λ1∆φ

(i)
L1

λ1
, it can be computed that the mean and covariance

of N̄
(i)
L1 are

µ
N̄

(i)
L1

= N
(i)
L1 cycle

σ2

N̄
(i)
L1

= [
1
λ1

,− 1
λ1

]




(0.11m)2 0

0 (0.02m)2







1
λ1

− 1
λ1


 = (0.588 cycle)2

If we search ±1 integers around the N̄
(i)
L1 , the probability that N

(i)
L1 being included in the

searching space is 91.1%. This gives us 3 candidates to search per satellite.
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Therefore, if we apply the integer estimate algorithm with bootstrapping, the usual

number of candidates to search is: 54 + 34 = 706. With K satellites in view, there will be

K measurements for each searching process.

2.5.3 Batch

In this approach, the various measurements are stacked as a column measurement and

the integer vector is jointly solved in a batch process. For typical L1/L2 receivers, the

narrow lane pseudorange measurements are used to initialize both the L1 and L2 integers.

The initialize the float estimate of L1 and L2 integers are:

N̄
(i)
L1 =

∆ρ
(i)
NR − λ1∆φ

(i)
L1

λ1

N̄
(i)
L2 =

∆ρ
(i)
NR − λ2∆φ

(i)
L2

λ1

, then the mean and covariance of N̄
(i)
L1 are

µ
N̄

(i)
L1

= N
(i)
L1 cycle

σ2

N̄
(i)
L1

= [
1
λ1

,− 1
λ1

]




(0.71m)2 0

0 (0.02m)2







1
λ1

− 1
λ1


 = (3.74 cycle)2

µ
N̄

(i)
L1

= N
(i)
L1 cycle

σ2

N̄
(i)
L1

= [
1
λ2

,− 1
λ2

]




(0.71m)2 0

0 (0.02m)2







1
λ2

− 1
λ2


 = (2.91 cycle)2

If we search ±6 integers around the
[
N̄

(i)
L1 N̄

(i)
L1

]>
, the probabilities that the correct L1 and

L2 integers being included in the searching space are 89.0% and 96.1%. This gives us 13

candidates to search per satellite.
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Therefore, if we apply the integer estimate algorithm with batch strategy, the usual

number of candidates to search is: 134 = 28561. However, with K satellites in view, there

will be 2K measurements the searching process, which will increase the chance to get the

correct integer estimate.

2.6 Test Results

Tests for the proposed method have been performed both in MATLAB simulations and

on GPS hardware.

2.6.1 Simulation Results

In the MATLAB simulations, the test is epoch-by-epoch with a set of double differ-

ence GPS carrier phase measurements. For each noise level, 1000 measurement epochs with

randomly picked satellite elevation and azimuth angles were generated. We use the LMS

algorithm, LAMBDA algorithm and the proposed algorithm to estimate the integer ambi-

guity and compare with the true one, and the success rates are calculated thereby. The

success rate of each method is plot versus different noise level in Fig. 2.4.

From the figure, we can see that with 8 double difference GPS measurement, the

proposed method has similar performance to the LAMBDA algorithm, which has a higher

success rate than LMS.

The computation time is also compared. The test is carried out using MATLAB in

a Laptop with Genuine Intel CPU with frequency 1.60GHz and 1GB of RAM, and the

computation for Z-transform follows the algorithm presented by Jonge et al. [12]. For each

number of measurements K, 1000 sets of data are generated and the average computation

35



10
−3

10
−2

10
−1

0

10

20

30

40

50

60

70

80

90

100

phase noise, σ, m

pe
rc

en
ta

ge
 c

or
re

ct
, %

 

 
LAMBDA Method
LMS Method
proposed Method

Figure 2.4: Rate of correct integer resolution vs. phase measurement noise

for each method are listed in Table 2.1.

2.6.2 Test Results with Real-world Data

Using real-world data, two sets of tests were performed over baselines of 6m and 5km.

Each test used each epoch of data separately. The data from each epoch included dual-

frequency, double-differenced data from eight satellites. For the 6m baseline, the test in-

cluded 6002 data epochs. Using LMS the success rate was 87.1% while for the proposed
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Table 2.1: Computation time of LMS, LAMBDA and the proposed method, in ms

K LMS LAMBDA Proposed Method
6 1.95 5.17 3.03
7 1.96 6.81 3.26
8 1.97 9.73 3.56
9 2.03 13.6 3.93
10 2.06 18.1 4.27
11 2.08 24.5 4.76

Table 2.2: Rate of correct integer resolution of LMS and proposed method, from real-world
data

Baseline Num of Epoches LMS Proposed Method
6m 6002 87.1% 90.6%

5Km 3005 66.1% 68.0%

algorithm the success rate was 90.6%. For the 5km baseline, 3005 data epochs was included

in the test data and the success rates were 66.1% for LMS and 68.0% for the proposed

algorithm, respectively. These results confirmed that the proposed method has a better

success rate than the LMS method and less computational complexity than the LAMBDA

method.

Two tests with real-world data with dual-frequency signal from 8 satellites were per-

formed over baselines of 6m and 5km. Each test used each epoch of data separately using

bootstrapping strategy. We compare the success rate of LMS and the proposed method and

show them in Table 2.2.

2.7 Chapter Summary

In this Chapter, we briefly introduced the model of GPS code and phase measurements,

and led to the proposal of the GPS integer ambiguity problem, which is the key challenge
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to high-precision GPS positioning. After a brief review of existing algorithms, we proposed

a new integer ambiguity estimation algorithm by combing two of the leading algorithms,

LMS and LAMBDA. The applicability and effectiveness of the the proposed algorithm were

shown by both simulations and real-world data.
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Chapter 3

GPS Integer Ambiguity Resolution

with Auxiliary Measurements

In many navigation applications, external sensors are available which can provide aux-

iliary measurements to improve integer ambiguity resolution achieved by only using GPS,

especially in GPS challenging conditions (e.g., few satellites available, high measurement

noise due to multipath). For example, in land vehicle control and guidance, the altitude

of the roadway as a function of arclength might be available. In [8], a fast and efficient

technique was proposed to solve GPS integer ambiguity with altitude aiding. The disad-

vantage of this method is that the accurate altitude information is only available in limited

trajectories.
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3.1 Introduction

Integrated GPS/INS (Inertial Navigation System) is a popular tool for localization [13,

14] and has been extensively studied over the last couple of decades. Localization accuracies

of a few centimeters can be achieved using carrier phase processing given rapid and accurate

on-the-fly integer ambiguity resolution. One of the main advantages of GPS/INS integration

over a stand-alone GPS system is the capability of the former to maintain the accuracy of

the position estimate during short GPS denied periods. This INS state estimate can be used

to facilitate GPS integer ambiguity resolution which is the topic of this chapter. This would

be helpful especially in GPS challenging areas (e.g. urban canyons, tunnels, thick canopy

etc.) where the GPS receiver may not be able to track a sufficient number of satellites to

resolve the integer ambiguities.

Incorporating INS measurements in GPS integer ambiguity resolution has been studied

in [31], in which the INS data were used to reduce integer searching space. However, in [31],

the closed form of the searching space was not derived, and the weighting factor between

GPS and INS measurements are based on experiences, both of which reduce the computation

efficiency and estimation performance of the algorithm.

In this chapter, we extend the approach in Chapter 2 with auxiliary position estimate

measurements from INS. We will introduce a fast and efficient method for GPS integer

ambiguity resolution as well as its theoretical derivation. Two sets of simulations will be

carried out to show the effectiveness of the proposed approach.
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3.2 Measurement Model

3.2.1 GPS Residual Measurements

The GPS phase residual measurement is as defined in Eqn. (2.14).

3.2.2 INS Measurements

In most navigation systems, GPS cooperates with other sensors to offer continuous

positioning information. A typical such application is GPS/INS systems [13, 14].

In GPS/INS systems, INS will keep propagating the navigation states and the covari-

ance matrix of the estimate error during GPS outage. Assuming that at some time, the

position estimate from INS is δp̂ with covariance Σp. This information from the INS can

be represent as

δp̂ = J x + n, (3.1)

where J ∈ Rp×n, and n ∈ Rp with cov(n) = Σp, x is as defined in Eqn. (2.13). In

typical GPS/INS systems, p = 3 and J =
[

I 0

]
, as the INS state keeps track of the 3

dimensional position but not the receiver clock bias. This prior knowledge of δp̂ from the

INS can facilitate GPS integer ambiguity resolution.

3.3 Problem Statement

INS aided GPS integer ambiguity problem can be modeled as a Bayesian problem,

which is, given the prior of GPS measurements y = Gx + N + v as in Eqn. (2.14) and INS
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measurements of J x ∼ N (δp̂,Σp), we would like to find the estimate of N and x that

(
N̂, x̂

)
= arg max

N∈Zm,x∈Rn
f (N,x|y).

According to Bayesian Rule,

(
N̂, x̂

)
= arg max

N∈Zm,x∈Rn

f (y|N,x) f (N|x) f (x)
f (y)

As there is no uncertainty in N given x and f (y) is independent of x and N,

(
N̂, x̂

)
= arg max

N∈Zm,x∈Rn
f (y|N,x) f (x)

= arg max
N∈Zm,x∈Rn

ln (f (y|N,x) f (x)) . (3.2)

As

f (y|N,x) =
e−

1
2
(y−Gx−N)T Σ−1

vv (y−Gx−N)

(2π)K/2 |Σ̄vv|1/2

and

f (x) = f (J x) =
e−

1
2
(Jx−δp̂)T Σ−1

p (Jx−δp̂)

(2π)p/2 |Σp|1/2
,

we have

(
N̂, x̂

)
= arg max

N∈Zm,x∈Rn
ln

(
e−

1
2
(y−Gx−N)T Σ−1

vv (y−Gx−N)

(2π)K/2 |Σ̄vv|1/2
· e−

1
2
(Jx−δp̂)T Σ−1

p (Jx−δp̂)

(2π)p/2 |Σp|1/2

)

= arg max
N∈Zm,x∈Rn

(
(y−Gx−N)T Σ−1

vv (y−Gx−N)

+ (Jx− δp̂)T Σ−1
p (Jx− δp̂)

)
(3.3)

We reformulate the measurements by stacking the INS prior with GPS only measure-

ments as

ȳ = Ḡx + LN + n̄ (3.4)
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where the new measurement vector ȳ> =
[

y> δp̂>
]
∈ RK+p, the new measurement

noise vector n̄> =
[

v> n>
]
∈ RK+p, and Ḡ> =

[
G> J>

]
∈ R(K+p)×n, L> =

[
I 0

]
∈ R(K+p)×K . For the simplicity of notation, let m = K + p.

As INS state uncertainty n is not correlated with GPS measurement noise v, the

covariance matrix of the whole measurement noise vector is

Σ̄ = cov







v

n





 =




Σ̄vv 0

0 Σp


 . (3.5)

Our objective is to find N ∈ ZK , x ∈ Rn that minimize the cost function

c (x,N) = (y−Gx− LN)T Σ−1
vv (y−Gx− LN) + (Jx− δp̂)T Σ−1

p (Jx− δp̂)

=
(
ȳ− Ḡ · x− LN

)> Σ̄−1
(
ȳ− Ḡ · x− LN

)

= ‖ȳ− Ḡ · x− LN‖2
Σ̄. (3.6)

3.4 Integer Ambiguity Resolution

3.4.1 Generating Searching Candidates

Implementing method described in Chapter 2 on Eqn. (3.4) yields the following deriva-

tion. For a given integer ambiguity N, the weighted least square estimate of x would be:

x̂ =
(
ḠT Σ̄−1Ḡ

)−1
ḠT Σ̄−1 (ȳ− LN) (3.7)

and the residual vector is

ε̂ = ȳ− Ḡx̂− LN

=
(
I− Ḡ

(
ḠT Ḡ

)−1
Σ̄−1ḠT Σ̄−1

)
(ȳ− LN)

= Q̄Σ (ȳ− LN) . (3.8)
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where

P̄Σ = Ḡ
(
ḠT Σ̄−1Ḡ

)−1
ḠT Σ̄−1, (3.9)

Q̄Σ = I− P̄Σ. (3.10)

Note that both P̄Σ and Q̄Σ are idempotent and that Rank(P̄) = n and Rank(Q̄) =

(m−n). This can be proved by the same token presented in Chapter 2. The detailed proof

is presented in [4].

From Eqn. (3.6), the cost function evaluated from candidate N is

c(N) = ‖ȳ− Ḡ · x− LN‖2
Σ̄

= ‖Q̄Σ(ȳ− LN)‖2
Σ̄

= (ȳ− LN)>Q̄>
ΣΣ̄−1Q̄Σ(ȳ− LN)

= (ȳ− LN)>Q̄0(ȳ− LN) (3.11)

where

Q̄0 = Q̄>
ΣΣ̄−1Q̄Σ

(3.12)

Then Q̄0 also has the rank (m− n).

Let the SVD (single value decomposition) of Q̄0 be

Q̄0 = ŪS̄2Ū>
,

where Ū is unitary and S̄ is diagonal with diag(S̄) = [s̄1, . . . , s̄m−n, 0, . . . , 0] with all s̄i > 0

for i = 1, . . . ,m− n.
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Define B̄ = S̄Ū> such that

Q̄0 = B̄>B̄ (3.13)

where the last n rows of B are zero.

As the last n rows of B̄ are zero, matrix B̄ can be represent as

B̄ =




Ā

0


 =




C̄ D̄ Ē

0 0 0


 ,

where Ā ∈ R(m−n)×m, C̄ ∈ R(m−n)×(K−n), D̄ ∈ R(m−n)×n and Ē ∈ R(m−n)×p.

Given the above analysis, the cost function of Eqn. (3.11) can be rewritten as

c(N) = (ȳ− LN)>B̄>B̄(ȳ− LN)

= ‖B̄ (ȳ− LN) ‖2. (3.14)

Because B̄ does not have full rank, the null space of B is not empty. Therefore, there exists

(non-unique) N̂ ∈ Rm such that (ȳ− LN̂) is in the null space of B̄:

B̄(ȳ− LN̂) = 0. (3.15)

Let the last n elements of N̂ to be integers. We denote this subvector as N̂D. Our goal is

to find N̂ such that

B̄ȳ = B̄LN̂ (3.16)
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


Ā

0


 ȳ =




Ā

0







I

0


 N̂




Ā

0


 ȳ =




C̄ D̄ Ē

0 0 0







I

0







N̂C

N̂D







Ā

0


 ȳ =




C̄ D̄

0 0







N̂C

N̂D







Ā

0


 ȳ =




C̄N̂C + D̄N̂D

0




Āȳ = C̄N̂C + D̄N̂D,

Therefore, if we decompose y as y =
[

y>C y>D

]>
with yC ∈ R(K−n) and yD ∈ Rn and

given a hypothesized vector N̂D ∈ Zn, then the real-value estimate of N̂C is:

N̂C =
(
C̄>C̄

)−1
C̄> (

Āȳ− D̄N̂D

)

= yC +
(
C̄>C̄

)−1
C̄> (

Ēδp̂ + D̄
(
yD − N̂D

))
, (3.17)

In Eqn. (3.17), other than the information from GPS measurements, the information

from INS states is also involved in calculation, represented as the term Ēx̂a0.

From Eqn. (3.17), the integer candidates N̂D can be searched exhaustively over some

finite range of integers as described in Fig. 3.1.

3.4.2 Rounding N̂C

Having N̂C , to get the optimal integer estimate of NC , we would like to find an integer

vector ŇC which is close to N̂C . As discussed in Chapter 2, we would like to find ŇC to
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for i = −d : d
for j = −d : d

for k = −d : d
ND = [i, j, k, 0]>

N̂C = yC +
(
C̄>C̄

)−1
C̄> (

Ēx̂a0 + D̄
(
yD − N̂D

))

. . . use N̂C to compute ŇC minimizing J(NC)
N> =

[
ŇC ND

]>
if c(N) < current minimum

Save N
current minimum = c(N)

...

Figure 3.1: Triple ‘for’ loop to compute N̂C and N for the case where n = 4.

minimize the cost function

J(NC) = ‖NC − N̂C‖2
ΣN̂C

= (NC − N̂C)>Σ−1

N̂C
(NC − N̂C), (3.18)

where the covariance of N̂C

ΣN̂C
= ΣCC +

(
C̄>C̄

)−1
C̄

(
ĒP̄Ē> + D̄ΣDDD̄>)

C̄> (
C̄>C̄

)−>
, (3.19)

ΣCC = cov(yC),

ΣDD = cov(yD),

from Eqn. (3.17).

By the same token as in Chapter 2, we can prove that the cost function c(N) defined

in Eqn. (3.11) will be minimized by the same integer estimate that minimize J(NC) defined

in Eqn. (3.18) [4].
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To find the integer vector that minimizes Eqn. (3.18), we follow the idea of LAMBDA

to find a matrix Z ∈ Z(m−n)×(m−n), such that Z−1 ∈ Z(m−n)×(m−n), and (ZΣN̂C
Z>)−1 is

nearly diagonal. The procedure is the same as we discussed in Chapter 2.

The integer-valued estimate of NC can be computed as:

M̂C = ZN̂C (3.20)

M̌C = [M̂C ]roundoff (3.21)

ŇC = Z−1M̌C . (3.22)

At this point we have an integer vector candidate
[
Ň>

C N>
D

]>
. One such candidate will

be generated for each iteration of the ‘for’ loop in Fig. 3.1. We can compare each integer

vector candidate using Eqn. (3.11). The candidate vector with the lowest value (subject

to validity tests) is chosen as the best. By rounding off the float estimate N̂C in the

decorrelated domain of M̂C , we have a better chance to achieve optimal integer estimate

ŇC .

3.5 Test Results

Two sets of tests for the proposed method have been performed both via MATLAB

simulations.

3.5.1 Tests Over Different Noise Levels

In this set of MATLAB simulations, the tests are epoch-by-epoch with a set of single

difference GPS L1 (λ ≈ 0.19m) carrier phase measurements with K = 8 at different noise

levels. For each noise level, 1000 measurement epochs with randomly picked satellite eleva-
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tion and azimuth angles were generated. We compared the success rate of getting all the

integers correctly with GPS only and with INS aiding with different noise levels. The suc-

cess rates of GPS only resolution and GPS aided by INS with different level of covariances

are plotted versus different noise levels in Fig. 3.2.
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Figure 3.2: Rate of correct integer resolution vs. phase measurement noise

From the figure, we can see that the success rate with INS aiding is significantly im-

proved. Even when the standard deviation of INS position estimate is as big as 0.5m (which

is more than 2.5 times the wavelength), the success rate is still better than the GPS only

resolution.
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3.5.2 Tests Over Different Number of Satellites

The second set of tests is performed to show the performance of proposed approach

over different number of satellites. For each number of satellites, 1000 measurement epochs

with randomly picked satellite elevation and azimuth angles were generated with standard

deviation of each phase measurement be 0.01m and standard deviation of INS position

estimate be 0.1m. We compared the success rate of getting all the integers correctly in

single epoch. The success rate of each method is plotted versus the number of available

satellites in Fig. 3.3.

From the figure, we can see that INS aiding improved the chance to get correct GPS

integers, especially when the number of satellites is low. For example, with 5 satellites

in view, it’s unlikely to get a correct integer ambiguity with GPS only method while the

success rate has been improved to 67% with INS aiding.

3.6 Chapter Summary

In this Chapter, we considered GPS integer ambiguity estimation problem with aux-

iliary information from inertial sensors. We formed the measurement model so that the

problem can be solved by similar methodology proposed in Chapter 2. Simulation results

indicated that by incorporating the measurement from INS, we have better chances to

get the correct integer estimate, especially in GPS challenging areas where the number of

satellites are limited or has bigger measurement noise.
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Figure 3.3: Rate of correct integer resolution vs. number of available satellites
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Chapter 4

Integer Ambiguity Resolution with

Multiple Epoches

4.1 Introduction

In GPS challenging areas (e.g. urban canyons, tunnels, thick canopy etc.) the GPS

receiver may not be able to track a sufficient number of satellites to resolve the integer

ambiguities within one epoch. In this chapter, we would like to find the optimal solution

by combining the measurements from several epoches.

For example, if there are few satellites in view, it will be difficult to solve the integer

ambiguity with single epoch data. As we discussed in Chapter 2, under the assumption that

we have K (K > n) satellites in view each second, the single epoch GPS ambiguity problem

has n (n = 4 for single DGPS scenario) degrees of freedom. Taking into the account that

combining each additional epoch adds another n degrees of freedom but also adds K extra

measurements, we can conclude that combining GPS measurements from multiple epoches

52



will help with GPS integer ambiguity resolution.

In this chapter, we extend the approach presented in Chapter 2 to work with integer

ambiguity resolution problem with measurements from multiple epoches. We first present

its theoretical derivation and then introduce a fast and efficient method for GPS integer

ambiguity resolution. Two sets of simulations will be carried out to show the effectiveness

of the proposed approach.

4.2 Literature Review

In early study of GPS integer ambiguity resolution, many algorithms were based on

multiple epoches measurements [26]. Early papers utilize multiple epoches measurements

mainly for two purposes. First, the measurements are smoothed over long time period to

get more precise initial estimate, e.g., [25]. Second, the cost function is smoothed over time,

e.g. [27].

However, these algorithms require more than 6 satellites per epoch to achieve satisfying

performance, and the computational efficiencies are not guaranteed.

4.3 Measurement Model over Multi Epoches

The GPS phase residual measurements in single epoch is as defined in Eqn. (2.12).

For solving the problem for multi epoch scenario, in this Chapter, we rewrite the GPS

measurement at time tj as:

yj = Gjxj + Nj + vj (4.1)
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where yj = δφ ∈ RK represents the DGPS phase measurements at time tj , xj ∈ Rn and

Nj ∈ ZK are the parameters to be estimated, and n = 4. Gj = λ−1Hj ∈ RK×n is the

observation matrix characterizing the satellite-user geometry, the noise term vj = ηj/λ ∈

RK and vj ∼ N (
0,Σvvj

)
.

Assuming that from time t1 to time tM , the receiver maintains lock to the satellites,

i.e., N = N1 = · · · = NM , then the measurements from t1 to tM can be grouped as:

ý = ǴX + VN + v́ (4.2)

where the measurement ý> =
[

y>1 · · · y>M

]
∈ RMK ; the grouped state vector X> =

[
x>1 · · · x>M

]
∈ RMK ; the measurement noise v́> =

[
v>1 · · · v>M

]
∈ RMK with

cov(vj) = Σvvj ,

Ǵ =




G1 0

. . .

0 GM




,

V> =
[

I · · · I

]
,

where I represents K-by-K identity matrix, and Ǵ ∈ RMK×Mn and V ∈ RMK×K .

Assuming that the GPS carrier phase measurement noise is uncorrelated over time, the

covariance matrix of the noise vector v́ is

Σ́ =




Σvv1 0

. . .

0 ΣvvM




.
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4.4 Problem Statement

GPS integer ambiguity problem over multiple epoches can be solved as a Maximum

Likelihood (ML) estimation problem: given the GPS measurements, we would like to find

the estimate of N and X that maximize the conditional probability f (ý|N,X).

(
N̂, X̂

)
= arg max

N∈ZK ,X∈Rn
f (ý|N,X)

= arg max
N∈ZK ,X∈Rn

ln f (ý|N,X)

= arg max
N∈ZK ,X∈Rn

ln


e−

1
2(ý−ǴX−VN)T

Σ−1(ý−ǴX−VN)

(2π)MK/2 |Σ́|1/2




= arg min
N∈ZK ,X∈Rn

(
ý− ǴX−VN

)T
Σ́−1

(
ý− ǴX−VN

)
. (4.3)

Our objective is to find N ∈ ZK , X ∈ RMn that minimize the cost function

c (X,N) =
(
ý− ǴX−N

)T
Σ−1

(
ý− ǴX−N

)
. (4.4)

By forming the problem as Eqn. (4.2), we would solve the GPS integer ambiguity using

measurements over the interval from t1, · · · , tM . In practice, we will first attempt to solve

the integer ambiguity problem at t = t1, if we succeed, then we have a real time solution.

If we fail, then at t = t2, we attempt to solve the problem using y1 and y2, etc. If the

problem is solved at time t > t1, the answer is attained in near real time, etc.
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4.5 Integer Ambiguity Resolution

4.5.1 Generating Searching Candidates

Implementing method described in Chapter 2 on Eqn. (3.4) yields the following deriva-

tion. For a given integer ambiguity N, the weighted least square estimate of x would be:

x̂ =
(
Ǵ

T
Σ́−1Ǵ

)−1
Ǵ

T
Σ́−1 (ý−VN) (4.5)

and the residual vector is

ε̂ = ý− Ǵx̂−VN

=
(
I− Ǵ

(
Ǵ

T
Ǵ

)−1
Σ́−1Ǵ

T
Σ́−1

)
(ý−VN)

= Q́Σ (ý−VN) . (4.6)

where

ṔΣ = Ǵ
(
Ǵ

T
Σ́−1Ǵ

)−1
Ǵ

T
Σ́−1, (4.7)

Q́Σ = I− ṔΣ. (4.8)

Note that both ṔΣ and Q́Σ are idempotent and that Rank(Ṕ) = Mn and Rank(Q́) =

M(K − n). This can be proved by the same token as presented in Chapter 2. The detailed

proof is presented in [5].

From Eqn. (3.6), the cost function evaluated from candidate N is

c(N) = ‖ý− Ǵ · x−VN‖2
Σ́

= ‖Q́Σ(ý−VN)‖2
Σ́

= (ý−VN)>Q́
>
ΣΣ́−1Q́Σ(ý−VN)

= (ý−VN)>Q́0(ý−VN) (4.9)
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where

Q́0 = Q́
>
ΣΣ́−1Q́Σ.

Then Q́0 is symmetric and also has the rank M(K − n).

Let the SVD (single value decomposition) of Q́0 be

Q́0 = ÚŚ
2
Ú
>
,

where Ú is unitary and Ś is diagonal with diag(Ś) = [ś1, . . . , śMK − n, 0, . . . , 0] with all

śi > 0 for i = 1, . . . ,M(K − n).

Define B́ = ŚÚ
>

such that

Q́0 = B́
>
B́ (4.10)

where the last Mn rows of B are zero.

Given the above analysis, the cost function of Eqn. (4.9) can be rewritten as

c(N) = (ý−VN)>B́
>
B́(ý−VN)

= ‖B́ (ý−VN) ‖2. (4.11)

Because B́ does not have full rank, the null space of B is not empty. Therefore, there exists

(non-unique) N̂ ∈ Rm such that (ý−VN̂) is in the null space of B́:

B́(ý−VN̂) = 0,

B́ý = B́VN̂ (4.12)

The matrix B́ can be represent as

B́ =




Á

0


 ,
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where Á ∈ RM(K−n)×MK .

Our goal is to find an integer vector N̂ such that



Á

0


 ý =




Á

0


VN̂

Áý = ÁVN̂ (4.13)

Noting that ÁV ∈ RM(K−n)×K , we may let ÁV =
[

Ć D́

]
, where Ć ∈ RM(K−n)×(K−n)

and D́ ∈ RM(K−n)×n.

Let the last n elements of N̂ be integers. We denote this subvector as N̂D and the first

K − n elements of N̂ as N̂C . Then Eqn. (4.13) can be rewritten as

Áý =
[

Ć D́

]



N̂C

N̂D


 .

Therefore, if we decompose y as y =
[

y>C y>D

]>
with yC ∈ R(K−n) and yD ∈ Rn

and given a hypothesized vector N̂D ∈ Zn, then the real-value estimate of N̂C is:

N̂C =
(
Ć
>
Ć

)−1
Ć
> (

Áý− D́N̂D

)
. (4.14)

The integer candidates ND can be searched exhaustively over some finite range of

integers using n ‘for’ loops as shown in Fig. 4.1. For each integer vector ND, Eqn. (4.14)

provides a float estimate N̂C .

c(N) = (ý−VN)>B́
>
B́(ý−VN)

= ‖B́ (ý−VN) ‖2. (4.15)
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for i = −d : d
for j = −d : d

for k = −d : d
ND = [i, j, k, 0]>

N̂C =
(
Ć
>
Ć

)−1
Ć
> (

Áý− D́N̂D

)

. . . use N̂C to compute ŇC minimizing J(NC)
N> =

[
ŇC ND

]>
if c(N) < current minimum

Save N
current minimum = c(N)

...

Figure 4.1: Triple ‘for’ loop to compute N̂C and N for the case where n = 4.

Because B́ does not have full rank, the null space of B́ is not empty. Therefore, there exists

(non-unique) N̂ ∈ RK such that (ý−VN̂) is in the null space of B́:

B́(ý−VN̂) = 0. (4.16)

Let the last n elements of N̂ to be integers. We denote this subvector as N̂D. Our goal is

to find N̂ such that

B́ý = B́VN̂ (4.17)
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


Á

0


 ý =




Á

0







I

0


 N̂




Á

0


 ý =




Ć D́ É

0 0 0







I

0







N̂C

N̂D







Á

0


 ý =




Ć D́

0 0







N̂C

N̂D







Á

0


 ý =




ĆN̂C + D́N̂D

0




Áý = ĆN̂C + D́N̂D.

Therefore, if we decompose y as y =
[

y>C y>D

]>
with yC ∈ R(K−n) and yD ∈ Rn and

given a hypothesized vector N̂D ∈ Zn, then the real-value estimate of N̂C is:

N̂C =
(
Ć
>
Ć

)−1
Ć
> (

Áý− D́N̂D

)
. (4.18)

In Eqn. (4.18), other than the information from GPS measurements, the information

from INS states is also involved in calculation, represented by the term Éx̂a0.

From Eqn. (3.17), the integer candidates N̂D can be searched exhaustively over some

finite range of integers as described in Fig. 4.1.

4.5.2 Rounding N̂C

Given N̂C , in order to get the optimal integer estimate of NC , we would like to find an

integer vector ŇC which is close to N̂C . As discussed in Chapter 2, we would like to find
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ŇC to minimize the cost function

J(NC) = ‖NC − N̂C‖2
ΣN̂C

= (NC − N̂C)>Σ−1

N̂C
(NC − N̂C), (4.19)

where

ΣN̂C
= C−1AΣA>C−> (4.20)

which is derived from Eqn. (3.17).

By the same token as in Chapter 2, we can prove that the cost function c(N) defined in

Eqn. (4.9) will be minimized by the same integer estimate that minimize J(NC) as defined

in Eqn. (4.19). The details are discussed in [5].

To find the integer vector that minimizes Eqn. (4.19), we follow the idea of LAMBDA

to find a matrix Z ∈ Z(m−n)×(m−n), such that Z−1 ∈ Z(m−n)×(m−n), and (ZΣN̂C
Z>)−1 is

nearly diagonal. The procedure is the same as we discussed in Chapter 2.

The integer-valued estimate of NC can be computed as:

M̂C = ZN̂C (4.21)

M̌C = [M̂C ]roundoff (4.22)

ŇC = Z−1M̌C . (4.23)

At this point we have an integer vector candidate
[
Ň>

C N>
D

]>
. One such candidate will be

generated for each iteration of the ‘for’ loop in Fig. 4.1. We can compare each integer vector

candidate using Eqn. (4.9). Selecting the candidate vector with the lowest value (subject

to validity tests) as the best. By rounding off the float estimate N̂C in the decorrelated

domain of M̂C , we have a better chance to achieve optimal integer estimate ŇC .
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4.6 Test Results

Two sets of tests have been carried out to evaluate the effectiveness of the proposed

method both via MATLAB simulations.

4.6.1 Tests Over Different Noise Levels

In this set of MATLAB simulations, the tests are epoch-by-epoch with a set of 6 single

difference GPS L1 (λ ≈ 0.19m) carrier phase measurements at different noise levels. For

each noise level, 1000 measurement epochs with randomly picked satellite elevation and

azimuth angles were generated. We compared the success rate of getting all the integers

correctly with different number of GPS epoches. The success rates of GPS integer ambiguity

resolution by using different number of epoches with different level of covariance are plotted

versus different noise level in Fig. 4.2.

From Fig. 4.2, we see that by combing measurements from multiple epoches, we achieve

a higher success rate of estimating the correct integer vector at each covariance level.

4.6.2 Tests Over Different Number of Satellites

The second set of tests is performed to analyze the performance of the proposed ap-

proach as a function of the number of satellites. For each number of satellites, 1000 measure-

ment epochs with randomly picked satellite elevation and azimuth angles were generated

with the standard deviation of each phase measurement equal to 0.01m. We compared the

success rates of getting all the integers correctly in one, two and three epoches. The success

rate of each scenario is plotted in Fig. 4.3.

From Fig. 4.3, we can see that by combing measurements from multiple epoches, we
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Figure 4.2: Rate of correct integer resolution vs. phase measurement noise

achieve a substantially higher rate of getting the right integer vector, especially when there

are few satellites. We can see that with as few as 5 satellites, we have a 90% chance of

getting the right integer within 3 epoches if we combine the measurements over epoches.

With 6 or more satellites, we will get the right integer within 2 epoches with probability of

higher than 95%.
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Figure 4.3: Rate of correct integer resolution vs. number of satellites

4.7 Chapter Summary

In this chapter, we extended the approach presented in Chapter 2 to work with integer

ambiguity resolution problem with measurements from multiple epoches. Simulation results

indicate that by incorporating with the measurements from multiple epoches, we have better

chances to get the correct integer estimate, especially in GPS challenging areas where the

number of satellites are limited, or has bigger measurement noise.

64



Chapter 5

Integer Ambiguity Validation

5.1 Introduction

Once the integer ambiguity is estimated, it is important to decide whether the estimate

is acceptable or not. If the wrong integer estimates were accepted, they would corrupt

the navigation state estimate. Therefore, integer ambiguity validation is critical. Integer

validation methods can be divided into two categories. We can either validate the integers

for all the satellites as a whole vector or validate each estimated integer individually.

To validate the integers for all satellites, the advantage is that more information can be

achieved from more satellites to help with the decision. However, for DGPS systems where

the degree of freedom n = 4, we need at least 5 satellites to have redundant information

to perform the evaluation. The other disadvantage of methods in this category is that the

whole integer vector may be rejected even only a few integers are wrong.

The estimated integers from each satellite can also be validated separately. The ad-

vantage of this kind of methods is that the whole integer vector will not be rejected when
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few of the integers are wrong. This will be especially beneficial when there is some satellite

at low elevation and thus has big measurement noise and/or multipath. However, for each

integer estimate, the information can be used to perform evaluation is limited.

In this Chapter, we will discuss these two categories of methods separately.

5.2 Verify Each Integer Estimate Separately

The differential GPS measurement model is described in Eqns. (2.7) and (2.8). In this

chapter, we assume that integer estimates of N (i) is available (through other approaches)

and is denoted as N̂ (i). This section concerns about the detection of non-zero values for the

integer errors

δN (i) = N̂ (i) −N (i). (5.1)

5.2.1 Literature Review

To validate a single integer estimate, the most feasible information is from the mea-

surements from different frequencies. Typical approaches include:

• Comparing certain linear combinations of phase ranges on multiple frequencies with

linear combinations of code ranges on multiple frequencies [16].

• Comparing linear combinations of carrier phase ranges at different frequencies [7].

In this section, we will analytically discuss these two methods.
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5.2.2 Comparing Phase Measurements with Code Measurements

Considering the characteristic of wide lane and narrow lane measurements, one of the

techniques can be used for detecting wrong integer estimate is to compare wide lane phase

measurement with narrow lane code measurement, as defined in Eqns. (2.63) and (2.60).

Differentiating these two measurements yields a float number estimate of the wide lane

integer

N̄
(i)
WD =

∆ρ
(i)
NR − λw∆φ

(i)
WD

λw

= N
(i)
WD +

ε̄
(i)
NR − η̄

(i)
WD

λw
, (5.2)

For the residue between a given an integer estimate N̂
(i)
WD and N̄

(i)
WD is

Ñ
(i)
WD = N̂

(i)
WD − N̄

(i)
WD

= N
(i)
WD + δN

(i)
WD −

(
N

(i)
WD +

ε̄
(i)
NR − η̄

(i)
WD

λw

)

= δN
(i)
WD −

ε̄
(i)
NR − η̄

(i)
WD

λw
(5.3)

Assuming that σρi = 1m and σφi = 0.02m, the standard deviation in narrow code

measurement noise ε̄
(i)
NR and wide lane phase measurement noise η̄

(i)
WD will be approximately

0.71m and 0.11m, respectively. This implies that the mean and covariance of the residual

will be

µ
Ñ

(i)
WD

= δN
(i)
WD cycle (5.4)

σ2

Ñ
(i)
WD

= [
1

λw
,− 1

λw
]




(0.71m)2 0

0 (0.11m)2







1
λw

− 1
λw


 = 0.701 cycle2, (5.5)

under the assumption that the phase measurement noise at L1 and L2 are both 0.02m.
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Therefore, the residual Ñ
(i)
WD can be used as an indicator for wrong wide lane integer

estimate, which can be further used to detect integer error in either L1 or L2. Moreover,

considering the time correlation of GPS signals, a sudden change of Ñ
(i)
WD with amplitude

bigger than 1 usually indicates cycle slips (an integer change not reported by the receiver).

A set of data are presented in Figs. 5.1 and 5.2 to show the value of Ñ
(i)
WD. In Fig. 5.1,

no cycle slip happens during the presented interval, Ñ
(i)
WD remains around 0 and changes

smoothly. In Fig. 5.2, the residue was noisier from time 0− 66s while the receiver was still

able to track the signal with same integer ambiguity, and when cycle slip happened at 66s,

a clear jump in Ñ
(i)
WD was observed.

5.2.3 Comparing Phase Measurements at Different Frequencies

Comparing phase measurements at different frequencies is the criteria used in [7, 8],

in which the residual between L1 and L2 phase range, the residual between L1 and wide

lane phase range and the residual between L1 and narrow lane phase range are used to

determine the correctness of the integers. In this section, we will give analytic analysis and

extend the discussion to this criteria.

Given the L1 and L2 phase measurement in Eqn. (2.51) and (2.53), and let the integer

estimate for L1 and L2 be N̂
(i)
L1 = N

(i)
L1 +δN

(i)
L1 and N̂

(i)
L2 = N

(i)
L2 +δN

(i)
L2 , the predicted ranges
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WD over time, no cycle slip happened.
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can be calculated as follows:

R̂
(i)
L1 = λ1∆φ

(i)
L1 − λ1N̂

(i)
L1

= R(i) + cδt̄r − λ1δN
(i)
L1 + η̄

(i)
L1 (5.6)

R̂
(i)
L2 = λ2∆φ

(i)
L2 − λ2N̂

(i)
L2

= R(i) + cδt̄r + λ2δN
(i)
L2 + η̄

(i)
L2. (5.7)

Additional predicted ranges can be computed from wide lane and narrow lane phase

measurements and integer estimates:

R̂
(i)
WD = λ1∆φ

(i)
WD − λwN̂

(i)
WD

= R(i) + cδt̄r − λwδN
(i)
WD + η̄

(i)
WD

= R(i) + cδt̄r − λw

(
δN

(i)
L1 − δN

(i)
L2

)
+

(
η̄

(i)
L1 − η̄

(i)
L2

)
(5.8)

R̂
(i)
NR = λ1∆φ

(i)
NR − λnN̂

(i)
NR

= R(i) + cδt̄r − λwδN
(i)
NR + η̄

(i)
NR

= R(i) + cδt̄r − λn

(
δN

(i)
L1 + δN

(i)
L2

)
+

(
η̄

(i)
L1 + η̄

(i)
L2

)
(5.9)

Based on the above four range variables, six residual variables can be computed as:

r12 = R̂
(i)
L1 − R̂

(i)
L2, (5.10)

r1w = R̂
(i)
L1 − R̂

(i)
WD, (5.11)

r1n = R̂
(i)
L1 − R̂

(i)
NR, (5.12)

r2w = R̂
(i)
L2 − R̂

(i)
WD, (5.13)

r2n = R̂
(i)
L2 − R̂

(i)
NR, (5.14)

rnw = R̂
(i)
NR − R̂

(i)
WD, (5.15)
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where each is expressed in meters. The model of each residual error is

r12 = η̄
(i)
L1 − η̄

(i)
L2 + λ1δN1 − λ2δN2,

r1w =
(

1− λw

λ1

)
η̄

(i)
L1 +

λw

λ2
η̄

(i)
L2 + (λ1 − λw)δN1 + λwδN2,

r1n =
(

1− λn

λ1

)
η̄

(i)
L1 −

λn

λ2
η̄

(i)
L2 + (λ1 − λn)δN1 − λnδN2,

r2w = −λw

λ1
η̄

(i)
L1 +

(
1 +

λw

λ2

)
η̄

(i)
L2 − λwδN1 + (λ2 + λw)δN2,

r2n = −λn

λ1
η̄

(i)
L1 +

(
1− λn

λ2

)
η̄

(i)
L2 − λnδN1 + (λ2 − λn)δN2,

rnw =
(

λn

λ1
− λw

λ1

)
η̄

(i)
L1 +

(
λn

λ2
+

λw

λ2

)
η̄

(i)
L2

+(λn − λw)δN1 + (λn + λw)δN2.

These equations are more conveniently written in the vector form:

r = Gη + HδN (5.16)
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where r = [r12, r1w, r1n, r2w, r2n, rnw]>, η = [η̄(i)
L1, η̄

(i)
L2]

>, δN = [δN1, δN2]>,

G =




1 −1
(

λ1 − λw

λ1

)
λw

λ2(
λ1 − λn

λ1

)
−λn

λ2

−λw

λ1

(
λ2 + λw

λ2

)

−λn

λ1

(
λ2 − λn

λ2

)

(
λn − λw

λ1

) (
λn + λw

λ2

)




and

H =




λ1 −λ2

(λ1 − λw) λw

(λ1 − λn) −λn

−λw (λ2 + λw)

−λn (λ2 − λn)

(λn − λw) (λn + λw)




.

Let

ĝ =




1.000

−λ1

λ2 − λ1

λ1

λ2 + λ1

−λ2

λ2 − λ1

−λ2

λ2 + λ1

2λ1λ2

λ2
2 − λ2

1




=




1.000

−3.529

0.438

−4.529

−0.562

−3.967




,
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then it is trivial to show that

G = [ĝ,−ĝ] ,

H = [λ1ĝ,−λ2ĝ] .

We now want to consider each row of Eqn. (5.16). For this purpose, we define the k-th

item of r and the k-th row of g as rk and gk, separately. Then each residual, as computed

by Eqns. (5.10)–(5.15) could be used to test the validity of the integer candidates N̂1 and

N̂2. The residual test could have the form:

|rk| ≤ τk →
(
N̂1 and N̂2

)
are correct,

|rk| > τk →
(
N̂1 or N̂2

)
is incorrect.





(5.17)

The only parameter in this test is τk, which is selected by the designer to balance the risk of

false alarms versus that of missed detections. Given the structure of G and H, this section

further analyzes the above residual tests.

The k-th residual is equal to

rk = [gk,−gk]η + [gkλ1,−gkλ2]δN (i)

= gik
(
[1,−1]η + [λ1,−λ2]δN (i)

)

qk =
rk

gk
=

(
[1,−1]η + [λ1,−λ2]δN (i)

)
.

From this analysis, we see that each residual is in fact the same random variable. For a

given value of δN (i), the random variable qi has mean

µq = [λ1,−λ2]δN (i)
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with unit of meters and variance

σ2
q = [1,−1]




σ2
φi

0

0 σ2
φi







1

−1


 = (0.028m)2.

assuming that the standard deviation of phase measurement noise at L1 and L2 are both

0.02m. The mean value of each qi are shown in Table. 5.2.3.

Note that the magnitude of µq is determined in part by the relative directions between

h = [λ1,−λ2] ∈ <2 and n̂ ∈ I2. Let z denote a vector in <2. The equation hz = 0 defines

a hyperplane (or line) in <2. The normal to the plane is h and the distance from a point z

to the hyperplane d = hz. Therefore, a test such as

|qi| ≤ q̄ →
(
N̂1 and N̂2

)
are correct,

|qi| > q̄ →
(
N̂1 or N̂2

)
is incorrect.





(5.18)

will correctly detect incorrect integers that are at least a distance q̄ from the hyperplane, but

there is still a (potentially infinite) set of integer error vectors that will pass the threshold

test. Figure 5.3 shows the grid of integers (n1, n2) by asterisks. The figure also shows the

hyperplane hz = 0 as a blue line. The region between the two green lines contains the set

of integer vectors that would pass the detection test of Eqn. (5.18) when the threshold is

selected as q̄ = 0.015m.

It is clear from the above analysis that the first and third quadrants contain the trou-

blesome vectors and that the points that will be problematic in these two quadrants will be

related by a reflection through the origin. For the points in the first quadrant of Fig. 5.3,

expected value of q is given in the Table 5.2.3.

From Fig. 5.3, we can see that the incorrect integer vector δN = [4, 3], δN = [−4, −3],

δN = [5, 4], δN = [−5, − 4] still have chances to incorrectly pass the detection with
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Figure 5.3: Depiction of the hyperplane hn̂ = 0, the set of integer vectors and the 95%
ellipsoid. The region between two green dash lines would pass the error detection test for
q̄ = 0.015.
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5 -1.22 -1.03 0.84 -0.65 -0.46 -0.27
4 -0.98 -0.79 -0.60 -0.41 -0.22 -0.02
3 -0.73 -0.54 -0.35 -0.16 0.03 0.22
2 -0.49 -0.30 -0.11 0.08 0.28 0.46
1 -0.24 -0.06 0.14 0.33 0.52 0.71
0 0.00 0.19 0.38 0.57 0.76 0.95

0 1 2 3 4 5

Table 5.1: Expected value of q at integer vectors in the first quadrant. The variable n1

counts across the bottom of the table. The variable n2 counts up along the first column of
the table.

q̄ = 0.015. Assuming that any these incorrect integer estimate and the ones that are further

to the origin than to these points could be detected by comparing phase range with code

range, as discussed in Section 5.2.2, then the rate of miss detection will be less than 5%

and the rate of false alarm is also smaller than 5%.

This test has also been implemented in our real-time GPS/INS system. Real-world

data for q with correct integer estimates are shown in Fig. 5.4. In 969 epoches, for all the

wrong integer estimate, the absolute value of q are greater than 0.02 (ranges between 0.02

to 0.255). These value are not plotted in Fig. 5.4 to improve its readability.

5.3 GPS Modernization and its Effect on GPS Ambiguity

Validation

5.3.1 GPS Modernization

The GPS system has been fully functional since July 17, 1995. However, additional ad-

vances in technology and new demands on the existing system led to the effort to modernize

the GPS system.

The major components of GPS modernization includes: increased signal power at the
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Figure 5.4: Histogram of q of correct integer estimate, data from 8 satellites in 969 epoches.
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Earth’s surface and a set of new Navigation Signals, including Civilian L2 (L2C), New

Civilian L1 (L1C), the new “Safety of life” signal at L5, and the new Military code (M-

code).

Of all the modernization progress, the one that has biggest effect on integer ambiguity

resolution is the broadcasting of L5 signal. Users can incorporate the new “Safety of Life”

signal broadcast on the L5 (1176.45 MHz) with the traditional L1 and L2 measurements,

which will enable us with more linear combination of measurements at different frequencies.

In this chapter, we will focus on the beneficial of incorporation of L5 to the resolution of

integer ambiguity problem.

5.3.2 Linear Combination of GPS Code and Phase Measurements from

Three Frequencies

In this section, we consider the linear combination from all the 3 frequencies.

We rewrite the differential code and phase measurements described in Eqns. (2.7)

and (2.8) in L5 as:

∆ρ
(i)
L5 = R(i) + cδt̄r + ε̄

(i)
L5, (5.19)

λ1∆φ
(i)
L5 = R(i) + cδt̄r + λN

(i)
L1 + η̄

(i)
L5, (5.20)

where λ5 =
c

f5
≈ 25.5cm.

By doing linear combination of measurements in L5 with measurements in L1 and L2

(as defined in Eqns. (2.51) - (2.54)), new measurements are available as:

∆ρ
(i)
α,β,γ = λα,β,γ

(
α

∆ρ
(i)
L1

λ1
+ β

∆ρ
(i)
L2

λ2
+ γ

∆ρ
(i)
L3

λ5

)
, (5.21)

λα,β,γ∆φ
(i)
α,β,γ = λα,β,γ

(
α∆φ

(i)
L1 + β∆φ

(i)
L2 + γ∆φ

(i)
L5

)
. (5.22)
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The measurements can be modeled as:

∆ρ
(i)
α,β,γ = λα,β,γ

(
α

λ1
+

β

λ2
+

γ

λ5

)(
R(i) + cδtr

)

+λα,β

(
α

ε
(i)
1

λ1
+ β

ε
(i)
2

λ2
+ γ

ε
(i)
5

λ5

)
(5.23)

λα,β,γ∆φ
(i)
α,β,γ = λα,β,γ

(
α

λ1
+

β

λ2
+

γ

λ5

)(
R(i) + cδtr

)
+ λα,β,γ

(
αN

(i)
L1 + βN

(i)
L2 + γN

(i)
L5

)

+λα,β,γ

(
α

η
(i)
1

λ1
+ β

η
(i)
2

λ2
+ γ

η
(i)
5

λ5

)
(5.24)

To preserve the unit scale factor for R(i), the wavelength λα,β,γ is defined as

λα,β,γ =
λ1λ2λ5

αλ2λ5 + βλ1λ5 + γλ1λ2
=

c

αf1 + βf2 + γf5
(5.25)

and the covariance deviation of the receiver noise for code and phase measurements are

σ2

ρ
(i)
α,β,γ

= λ2
α,β,γ

(
α2 · σ2

ρ

λ2
1

+
β2 · σ2

ρ

λ2
2

+
γ2 · σ2

ρ

λ2
5

)

=
α2λ2

2λ
2
5 + β2λ2

1λ
2
5 + γ2λ2

1λ
2
2

(αλ2λ5 + βλ1λ5 + γλ1λ2)2
· σ2

ρ, (5.26)

σ2

Φ
(i)
α,β,γ

=
α2λ2

2λ
2
5 + β2λ2

1λ
2
5 + γ2λ2

1λ
2
2

(αλ2λ5 + βλ1λ5 + γλ1λ2)2
· σ2

Φ(i) . (5.27)

Assuming that the code and phase measurement standard deviation of L5 are the same

as L1 and L2 measurements (at 1m and 0.02m, separately), then the wavelength, standard

deviation of code and phase measurement noise are listed in Table 5.3.2.

5.3.3 Comparing Code and Phase Measurements From Triple Frequency

Measurements

From Table 5.3.2, we can see that by incorporating the measurement in L5, better

indicators can be obtained by comparing code and phase measurement. For example, ∆ρ
(i)
1,1,1
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Table 5.2: Wavelength and noise standard deviation of measurements from linear combina-
tion of measurements from different frequencies

f1 f2 f5 λ σρ σφ

1 1 0.107 m 0.713 m 0.014 m

1 -1 0.862 m 5.742 m 0.115 m

1 1 0.109 m 0.715 m 0.014 m

1 -1 0.751 m 4.928 m 0.099 m

1 1 0.125 m 0.707 m 0.141 m

1 -1 5.861 m 33.24 m 0.665 m

1 1 1 0.075 m 0.583 m 0.016 m

-1 1 1 0.362 m 2.797 m 0.056 m

1 -1 1 0.197 m 1.521 m 0.030 m

1 1 -1 0.184 m 1.425 m 0.029 m

has the noise standard deviation of only 0.583m, and ∆φ
(i)
0,1,−1 has the wavelength of 5.861m.

Comparing this two ranges we can have the float estimate of the integer N
(i)
0,1,−1 be

N̄ i
0,1,−1 =

∆ρ
(i)
1,1,1 −∆φ

(i)
0,1,−1

λ0,1,−1

= N
(i)
0,1,−1 −

(
N

(i)
0,1,−1 +

ε̄
(i)
1,1,1 − η̄

(i)
0,1,−1

λ0,1,−1

)

= N
(i)
0,1,−1 −

ε̄
(i)
1,1,1 − η̄

(i)
0,1,−1

λ0,1,−1
. (5.28)

Given an estimate of the integer N̂
(i)
0,1,−1, the residual can be formed as

Ñ
(i)
0,1,−1 = N̂

(i)
0,1,−1 − N̄

(i)
0,1,−1. (5.29)
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The mean and covariance of Ñ
(i)
0,1,−1 are:

µ
Ñ

(i)
0,1,−1

= δN
(i)
0,1,−1 cycle, (5.30)

σ2

Ñ
(i)
0,1,−1

= [
1

5.861 m
,− 1

5.861 m
]




(0.583m)2 0

0 (0.665m)2







1
5.861 m

− 1
5.861 m




= 0.0228 cycle2. (5.31)

Therefore, the standard deviation of Ñ
(i)
0,1,−1 is only 0.1509 cycle. If we choose τ0,1,−1 =

0.45 cycle(3× σ
Ñ

(i)
0,1,−1

) and the criteria to be:

|Ñ (i)
0,1,−1| ≤ τ0,1,−1 → N̂

(i)
0,1,−1 is correct,

|Ñ (i)
0,1,−1| > τ0,1,−1 → N̂

(i)
0,1,−1 is incorrect,





(5.32)

then we will be able to catch error in N̂
(i)
0,1,−1 with the chance of miss detection and false

alarm both less than 1%, and an error in N̄
(i)
0,1,−1 indicates integer estimate error in either

L2 or L5.

5.3.4 Comparing Phase Measurements from Triple Frequency Measure-

ments

Following the discussion in Section 5.2.3 and given the L5 phase measurement in

Eqn. (5.19) and the integer estimate for L5 be N̂
(i)
L5 , the predicted ranges are

R̂
(i)
L5 = λ5∆φ

(i)
L5 − λ5N̂

(i)
L5

= R(i) + cδt̄r − λ1δN
(i)
L5 + η̄

(i)
L5. (5.33)
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Residuals can be computed from calculated predicted ranges in L1, L2 and L5.

r =




r12

r15

r25




=




R̂
(i)
L1 − R̂

(i)
L2

R̂
(i)
L1 − R̂

(i)
L5

R̂
(i)
L2 − R̂

(i)
L5




=




λ1δN1 − λ2δN2 + η̄
(i)
L1 − η̄

(i)
L2

λ1δN1 − λ5δN5 + η̄
(i)
L1 − η̄

(i)
L5

λ2δN2 − λ5δN5 + η̄
(i)
L2 − η̄

(i)
L5




. (5.34)

The mean and covariance of r are:

µr =




res12

res15

res25




=




λ1δN1 − λ2δN2

λ1δN1 − λ5δN5

λ2δN2 − λ5δN5




meter, (5.35)

σ2
r =




1 −1 0

1 0 −1

0 1 −1







(0.02m)2 0 0

0 (0.02m)2 0

0 0 (0.02m)2







1 −1 0

1 0 −1

0 1 −1




>

=




0.0008 0.0004 0.0004

0.0004 0.0008 0.0004

0.0004 0.0004 0.0008




meter2. (5.36)

The three components of r can be visualized as the distances of an integer point z =

[δN1, δN2, δN5]> in the 3-D space of L1-L2-L5 to three hyper planes;

λ1δN1 = λ2δN2 (5.37)

λ1δN1 = λ5δN5 (5.38)

λ2δN2 = λ5δN5 (5.39)
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A test such as

‖r‖∞ ≤ τ →
(
N̂1 and N̂2 and N̂5

)
are correct,

‖r‖∞ > τ →
(
N̂1 or N̂2 or N̂5

)
is incorrect.





(5.40)

We can draw the 95% uncertainty ellipsoid around each integer point. The projection

of each corresponding hyperplane, the region satisfies ‖r‖∞ ≤ τ (if we choose τ = 0.015)

and the integer points with the 95% uncertainty ellipsoid on the plane of L1-L2, L1-L5 and

L2-L5 are shown in Fig. 5.5, Fig. 5.6 and Fig. 5.7, respectively.

We should note that, an integer points will pass the test if and only if the uncertainty

ellipse falls into the region between two green dash lines in all the three figures. Here, we

only With τ = 0.015, none incorrect integers will pass the test with probability greater than

5%. Further calculation indicates that of all the incorrect integer points that can pass the

test with a chance greater than 1%, the closest ones to the origin are δN = [4, 3, 3] and

δN = [−4, − 3, − 3], both of which (and any incorrect integers further to the origin than

them) could be easily detected by comparing phase range with code range, as discussed in

Section 5.3.3.

Therefore, with this criteria, the rate of false alarm is less than 5%, and the rate of

missed detection is less than 1%, detailed analysis will also been shown in [3].

We should note that, an integer points will pass the test if and only if the uncertainty

ellipse falls into the region between two green dash lines in all the three figures. Here, we

only With τ = 0.015, none incorrect integers will pass the test with probability greater than

5%. Further calculation indicates that of all the incorrect integer points that can pass the

test with a chance greater than 1%, the closest ones to the origin are δN = [4, 3, 3] and

δN = [−4, − 3, − 3], both of which (and any incorrect integers further to the origin than

84



−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

δ N
1

δ 
N

2

Figure 5.5: Depiction of the projection on plane L1-L2 of the integer vectors, the sections
of the 95% percent ellipsoid and region of acceptance (between two green dash lines) in
Eqn. (5.40) with τ = 0.015.
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Figure 5.6: Depiction of the projection on plane L1-L5 of the integer vectors, the sections
of the 95% percent ellipsoid and region of acceptance (between two green dash lines) in
Eqn. (5.40) with τ = 0.015.
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Figure 5.7: Depiction of the projection on plane L2-L5 of the integer vectors, the sections
of the 95% percent ellipsoid and region of acceptance (between two green dash lines) in
Eqn. (5.40) with τ = 0.015.
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them) could be easily detected by comparing phase range with code range, as discussed in

Section 5.3.3.

Therefore, with this criteria, the rate of false alarm is less than 5%, and the rate of

missed detection is less than 1%, detailed analysis will also been shown in [3].

5.4 Validation the Whole Integer Vector

The other category of integer validation validates the whole integer vector together

which attracted much more research interest in the past decades. Varieties of methods have

been proposed [40]. For most of the methods, the integers from all satellites are validated

as a whole vector, and are accepted or refused based on certain criteria.

In [19], the integer validation is visualized by presenting the integer parameter as

lattice, and the validation requires computing the integral of a Gaussian probability density

function over the Voronoi cell, which is very computationally intensive. Similar discussions

are given in [38, 40]. Despite all these theoretical contributions, integer validation is still

an open theoretical problem as none of the available algorithms are based on the correct

estimate distribution assumption or theoretical criteria [40].

However, there are some widely used tests for integer validation with satisfying perfor-

mance. The well-working test criteria include Q-test [29], F-ratio test [10] and W-ratio test

[41].

In this section, we will have some analytical discussion about these criteria, and present

the test criteria used in our GPS/INS system.
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5.4.1 Q-Test

Q-test is one of the most classical methods to decide the acceptance of integer estimates

[29], the criteria for both methods are depended on the whole estimation residual vector.

Referring to Eqn. (2.13), the measurement from all the satellites can be stack up as

λδ∆φ = Hx + λN + η̄

where H and x are also defined in the paragraph after Eqn. (2.13). As the measurements

were equally weighted in traditional Q-test, the state estimate is given as

x̂ =
(
HTH

)−1
HT

(
δ∆φ− λN̂

)
.

Assume N̂ = N + δN, the residual is formed as

r = λδ∆φ− λN̂−Hx̂

= λδ∆φ− λN̂−H
(
HTH

)−1
HT

(
λδ∆φ− λN̂

)

= (Hx + λN + η)−H
(
HTH

)−1
HT (Hx + λN + η̄ − λ (N + δN))− λ (N + δN)

=
(
I−H

(
HTH

)−1
HT

)
(η̄ − λδN)

= Q (η̄ − λδN) ,

where

Q = I−P,

P = H
(
HTH

)−1
HT .

Both P and Q are symmetric and idempotent.

Therefore, residual r ∼ N (−λQδN,Qσ2
)

can be used to detect δN, if δN 6∈ Null(Q).
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Let the singular value decomposition of H be H = UΣ̄VT , as H ∈ RK×4, Σ̄ =




Σ

0


,

where Σ ∈ R4×4 is a diagonal matrix and 0 ∈ R(K−4)×4. U =
[

U1 U2

]
, where

U1 ∈ RK×4 is a diagonal matrix and U2 ∈ RK×(K−4).

P = H
(
HTH

)−1
HT

= UΣ̄VT
(
VΣ̄TUTUΣ̄VT

)−1
VΣ̄UT

= UΣ̄VT
(
VΣ2VT

)−1
VΣ̄TUT

= U1ΣVT
(
VΣ−2VT

)
VΣTUT

1

= U1UT
1 (5.41)

As I = UUT =
[

U1 U2

]



UT
1

UT
2


 = U1UT

1 + U2UT
2 ,

Q = I−P = U2UT
2 (5.42)

Therefore, r ∼ N (−λU2UT
2 δN,U2UT

2 σ2
)
. Given the residual r, the integer errors for

which UT
2 δN are small will be difficult to detect. As U1 and U2 are orthogonal, these

integer errors will be within the column space of U1.

In Q-test, the testing criteria is

‖r>r‖ ≤ τ → N̂ is correct,

‖r>r‖ > τ → N̂ is incorrect.





From above discussion, the integer errors that are not in the column space of U1 would be

easily detected, but not the errors in the column space of U1. The matrix U1 is determined

by satellite-user geometry and can be evaluated.
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If we consider the weighting factor over satellites, the quantity we would use to deter-

mine estimate acceptance would be identical to the value of cost function c(N), as defined

in Eqn. (2.25). From the analysis in Chapter 2, the value of c(N) follows χ2 distribution

with correct integer estimate.

5.4.2 Ratio-test

Ratio-test is another widely used testing criteria to decide the acceptance of integer

estimate [29].

In ratio-test, the value of minimum cost c(N) and second minimum cost c(N) from

all integer vector candidates are compared. The integer vector with minimum c(N) will

be accepted if the ratio κ over these two costs is smaller than some threshold. For a very

long time, it has been used with satisfying performance without much theoretical discussion

until recently when some underlying principles of this test were presented in [32].

5.4.3 Leave-One-Out Cross Validation and RANSAC

In another group of test criteria, part of the measurements are evaluated from the

other part. Leave-one-out cross validation and RANSAC are two of the popular algorithms

in this category and can be applied to GPS integer validation problem. In these tests,

the measurements are put into two groups, primary group and secondary group, denoted

as δ∆φ =
[

δ∆φT
p δ∆φT

s

]T

, where δ∆φs ∈ RM and δ∆φp ∈ R(K−M), M ≥ 4. In

leave-one-out cross validation, M = K − 1; and in RANSAC, M = 4.

Let the corresponding part of H for these two groups be Hp and Hs, and the integer

estimate being N̂p and N̂s. The state estimate from the primary group of measurements
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be

x̂p =
(
HT

p Hp

)−1
HT

p

(
δ∆φp − λN̂p

)
(5.43)

Let N̂p = Np + δNp N̂s = Ns + δNs, then the residual for the whole measurement

vector is



rp

rs


 =




λδ∆φp

λδ∆φs


−




Hp

Hs


 x̂p − λ




N̂p

N̂s




=




λδ∆φp

λδ∆φs


−




Hp

Hs




(
HT

p Hp

)−1
HT

p (λδ∆φp − λNp − λδNp)− λ




N̂p

N̂s


(5.44)

=




(
I−Hp

(
HT

p Hp

)−1
HT

p

)
(η̄p − λδNp)

(η̄s − λδNs)−Hs

(
HT

p Hp

)−1
HT

p (η̄p − λδNp)


 (5.45)

=




(
I−Hp

(
HT

p Hp

)−1
HT

p

)
(η̄p − λδNp)

[
Hs

(
HT

p Hp

)−1
HT

p −I

]



λδNp − η̄p

λδNs − η̄s







(5.46)

Let the singular value decomposition of Hp be Hp = UpΣ̄pVT
p and Hs = UsΣ̄sVT

s . As

Hp ∈ RM×4 and M ≥ 4, Σ̄p =




Σp

0


, where Σp ∈ R4×4 is a diagonal matrix and

0 ∈ R(M−4)×4. U =
[

U1p U2

]
, where U1p ∈ RM×4 is a diagonal matrix and U2p ∈

RM×(M−4), which does not exist in RANSAC. Therefore,




rp

rs


 =




(
I−U1pUT

1p

)
(η̄p − λδNp)

[
HsVT

p ΣpUT
1p −I

]



λδNp − η̄p

λδNs − η̄s







.
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Similar to Q-test, certain estimation errors will not be detectable in either of these

tests.

5.5 Chapter Summary

In this chapter, we discussed the GPS integer ambiguity validation problem. First,

methods for validating single integer estimate were reviewed and analytically discussed.

After that, we presented the effect of GPS modernization, specifically, the launch of L5

signals, to GPS integer ambiguity validation problem. After that, we discussed methods to

validate the whole integer estimate vector.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

6.1.1 Conclusions

GPS integer ambiguity resolution is the key challenge for centimeter level GPS posi-

tioning. It has been a widely research problem for the past several decades.

In this dissertation, we focuses on GPS integer ambiguity problem. In Chapter 2,

we studied the integer ambiguity estimation problem, which was proposed as a Weighted-

Integer-least-square problem. A brief overview of pervious work on integer ambiguity resolu-

tion was presented and an improved integer ambiguity resolution method is proposed. Sim-

ulations and real-word data are presented to demonstrate the effectiveness of the method.

in Chapters 3 and 4, we presented integer ambiguity algorithms with auxiliary measure-

ments and algorithms with multiple epoch measurements, both of which are useful in GPS

challenging areas. For both problems, the measurement models were studied and reformed

so that the approached proposed in Chapter 2 can be applied to find the integer estimate.
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Integer ambiguity validation problem was studied in Chapter 5. We first presented

methods to validate each integer estimate separately. A brief overview was presented, and

then analytic discussion and test results were presented. We also presented the effect of

GPS modernization on integer validation. After that, we studied the methods to validate

the whole estimated integer vector. Several popular validations methods were studied, and

the method we use in our GPS/INS system were presented.

6.1.2 Publications Resulting from Ph.D. Study

Following is the list of publications resulting from my Ph.D. study.

• Anning Chen, Dongfang Zheng, Arvind Ramanandan, Jay A. Farrell, “GPS Integer

Ambiguity Validation with GPS Modernization”. Proceedings of the 24th Interna-

tional Technical Meeting of the Satellite Division of the Institute of Navigation (ION

GNSS 2011), In press

• Anning Chen, Dongfang Zheng, Arvind Ramanandan, Jay A. Farrell, “Near Real

Time Carrier Phase GPS Aided INS”. Submitted to CDC 2011

• Anning Chen, Dongfang Zheng, Arvind Ramanandan, Jay A. Farrell, “INS Aided

GPS Integer Ambiguity Resolution”. Proceedings of 2011 IEEE Multi-Conference on

Systems and Control (MSC 2011), In press

• Anning Chen, Arvind Ramanandan, Jay A. Farrell, “High-Precision Road Map Build-

ing for Vehicle Navigation: Nodal Approach”. IEEE/ION PLANS 2010, May 2010,

Indiana Wells, CA
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• Anning Chen, Arvind Ramanandan, Jay A. Farrell, “Improved integer ambiguity

resolution by combining LAMBDA and LMS”. Proceedings of the 22nd International

Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS

2009), Sept, 2009, Savannah, GA

• Anh Vu, Arvind Ramanandan, Anning Chen Jay A. Farrell and Matthew Barth,

“Real-Time Computer Vision/DGPS-Aided Inertial Navigation System for Lane-Level

Vehicle Navigation”. Submitted to IEEE Transactions on Intelligent Transportation

Systems

• Arvind Ramanandan, Anning Chen and Jay A. Farrell, “Inertial Navigation Aiding by

Stationary Updates”. submitted to IEEE Transactions on Intelligent Transportation

Systems

• Arvind Ramanandan, Anning Chen and Jay A. Farrell, “Observability Analysis of an

Inertial Navigation System with Stationary Updates”. American Control Conference,

In press

• Arvind Ramanandan, Anning Chen and Jay A. Farrell, “Inertial ”Detection of Sta-

tionarity in an Inertial Navigation System”. Proceedings of the 23rd International

Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS

2010), Sept, 2010, Portland, OR

• Arvind Ramanandan, Anning Chen and Jay A. Farrell, “Performance and Observabil-

ity Analysis of a Vision and CDGPS aided Inertial Navigation System”. IEEE/ION

PLANS2010, May 2010, Indiana Wells, CA
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6.2 Future Works

6.2.1 Integer Ambiguity Resolution for Near-Real-Time GPS/INS Sys-

tem

Following the discussion in Chapter 4, GPS phase measurements from multiple epoches

t1 to tM are used for additional information to estimate integer ambiguity, in which we use

GPS measurement on multiple epoches to estimate the unchanged integer and the receiver

positions on these times. However, in the by proposing the problem as in eqn. (4.2), we did

not consider is the correlation between the vehicle position over time, while, in GPS/INS

system, the INS maintain propagating the vehicle states (includes position). Near-real-time

GPS/INS system would jointly estimate the GPS integer ambiguity and INS states during

t1 to tM .

This research will be beneficial in two aspects. First, In GPS/INS system, the INS

maintain propagating the vehicle states (includes position). From time t1 to tM , if we con-

sider the initial INS estimate of the vehicle position and the correlation between position

at two adjacent epoch, we will have M more measurements. Having more measurements

will be beneficial to GPS integer ambiguity resolution. Second, When ambiguities in mea-

surements are resolved at time t = tM , we can update the states with measurement at

time t1 to tM−1 by maximizing the joint a-posteriori probability density, resulting in the

Maximum-A-Posteriori (MAP) estimate of the states at t1 through tM . Since the states at

time t1 through tM are correlated, we automatically obtain an improved estimate of the

state for the whole time interval. In effect, we have used a measurement from the past to

improve the state estimate.
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6.2.2 GPS Integer Ambiguity Estimation and GPS Modernization

In Chapter 5, we discussed the effect of GPS Modernization on integer validation. In

addition to that, GPS Modernization will also have significant effect on integer estimation.

Increased signal power at the Earth surface will decrease the measurement noises, and

will increase the chance of correct integer estimation. By incorporating the signals on

L5, we will have linearly combined measurements with long wavelength (5.861 meters),

which can potentially decrease integer searching space. The broadcasted signals on L5 also

allow civilian users with better ionospheric error estimation, which will be beneficial to

long baseline integer estimation resolution. Finally, by taking advantage of other GNSS

(Global Navigation Satellite System) like GLONASS, Compass and Galileo, we will have

more measurements to facilitate the integer ambiguity resolution, and this will be especially

beneficial in urban canyon areas.
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