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Phasor-based image segmentation: machine
learning clustering techniques

ALEX VALLMITJANA, BELÉN TORRADO, AND ENRICO GRATTON*

Laboratory for Fluorescence Dynamics, Biomedical Engineering, University of California, Irvine, CA
92697, USA
*egratton22@gmail.com

Abstract: The phasor approach is a well-established method for data visualization and image
analysis in spectral and lifetime fluorescence microscopy. Nevertheless, it is typically applied in
a user-dependent manner by manually selecting regions of interest on the phasor space to find
distinct regions in the fluorescence images. In this paper we present our work on using machine
learning clustering techniques to establish an unsupervised and automatic method that can be
used for identifying populations of fluorescent species in spectral and lifetime imaging. We
demonstrate our method using both synthetic data, created by sampling photon arrival times
and plotting the distributions on the phasor plot, and real live cells samples, by staining cellular
organelles with a selection of commercial probes.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Phasor plots applied to fluorescence arise from the frequency domain measurements of fluo-
rescence lifetime in the 1970s. The earliest hints to a two-dimensional polar decomposition
of lifetime measurements can be seen in the mathematical formalization developed by Weber
in 1981 [1] and soon after the first graphical representation in the work by Jameson et.al. [2].
Some 20 years later we see a resurgence in the use of this graphical method [3,4] and the actual
term is coined in 2008 [5]. The first realization of the analogy between lifetime and spectral
measurements and the application of the phasor transform to spectral data instead of lifetime
measurements can be found in the works by Fereidouni and Gerritsen in 2012 [6].

The phasor transform applied to the photon histogram computes two quantities, namely S and
G, which are mapped to a two-dimensional space, the phasor space. The two quantities are the
normalized Fourier sine and cosine transforms at a particular frequency of the photon histogram
curve [5]. Since these quantities are normalized to the total number of photon counts, they are
independent of the intensity and carry information only on the shape and position of such a curve.
Additionally, due to the orthonormality of the two basis functions, sine and cosine, there are a
series of useful vectorial algebra properties that can be used in this phasor space. Here arises one
of the main reasons for using the phasor approach; if there are two or more species contributing
to a photon histogram curve, the phasor position of this combination is found at a geometrical
linear combination of the phasor position of the pure species, i.e. they follow the vector addition
rule [7]. This property alone has allowed many applications such as metabolism characterization
[8] or FRET quantification [9,10]. Another very important characteristic of the phasor transform
is that it is a fit-free technique which does not require any a priori knowledge on the nature of the
photon distribution curve one has acquired.

Whichever the application, lifetime or spectra, the phasor plot consists in transforming an
acquired distribution of photon measurements to a new space that enhances certain properties and
facilitates handling and quantification. In general, the measurement device provides a sequence
of photon detection counts together with their arrival times (for the lifetime case) or wavelengths
(for the spectral case). This data can then be plotted as a histogram of photon counts, as a
function of time or wavelength. In the first case, it is the lifetime decay curve, that is, the number
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of photons that are detected at a particular time after the latest excitation pulse or the number of
photons that arrive at a particular phase shift with respect to the modulated excitation source. In
the second case, the histogram depicts the number of photons collected in a particular spectral
band i.e. the emission spectra. See Fig. 1. Note that, in general, these are two completely
independent magnitudes; two fluorophores can have the same spectrum but different lifetimes
(for example by quenching) or different spectra but the same lifetime.

Fig. 1. Spectral and lifetime phasor transform analogy. A) The intensity image depicts the
number of photons collected at each pixel. If we can in addition measure the wavelength
and/or the lifetime we add extra dimensions to our data. At each pixel, symbolized by the red
square, we can construct a photon histogram distribution (B), which by means of the phasor
transform (C), maps to a position on the phasor plot (D). The phasor space representation of
the image can be used for instance to color-code the original image (E). The two transforms
are analogous to one another, top row corresponds to spectral and bottom row corresponds
to lifetime.

Since measurements usually involve whole images, each spatial location in the sample (each
pixel) has its own photon histogram and therefore maps to a different location on the phasor space.
This results in a reciprocal relationship (meaning one-to-one) between the pixels in the image
space and the points in the phasor space. In the phasor space, the points appear scattered about
some distribution, which may present clustered populations, corresponding to regions of distinct
lifetime or spectra in the sample. The most straight-forward approach to connect the two spaces
is to assign a color surface to the underlying phasor space which then maps to individual pixels
in the image [11]. This allows using color to visualize the relationship between the image space
and the phasor space but it is not image segmentation per se, it is simply a qualitative approach
in which one color-codes the intensity image (see Fig. 1(E)). The additional segmentation step
requires discretizing the image space into N groups by assigning a label to each pixel to associate
it into one of the N groups. In this paper we concentrate on exactly this problem, how to segment
the content of the image space, based on identifying clusters in the phasor space.

Up until now, identifying these regions in the phasor space in order to segment the corresponding
regions on the image space has been done manually and very little attempts have been made
towards an automated, unsupervised and reproducible segmentation method. In the current
biological applications of phasor plots, the user manually selects points or regions on the phasor
plot and then color-codes them back on the original image space [12,13]. Other techniques
characterize concentration of species by means of trajectories on the phasor plot, by either
drawing lines or areas on the phasor space and mapping color gradients to depict transitions
which symbolize the variations in concentration of particular fluorescent species [14,15].

Enter our clustering problem; there is a need for a unified method that exploits the current
available algorithms in machine learning to automatically identify and divide phasor plot data
into regions in order to assign each data point to a particular cluster or assign a probability of
belonging to a particular cluster.
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Pattern recognition and machine learning has previously been applied to lifetime data but
very little on phasor analysis. One can find examples of feature extraction and dimensionality
reduction from the decay curves to compose a so-called lifetime image or for classification and
clustering, but again based on the time domain decay curve [16,17]. A recent review on the
different uses of machine learning in lifetime imaging can be found in the paper by Mannam et. al.
[18], where one can corroborate what we previously mentioned, that the use of machine learning
to the fit-free phasor analysis is currently very limited. Automated characterization of shape and
size of phasor distributions has previously been done by extracting a set of features that are then
used to train a classifier in order to distinguish between classes of cells (e.g. healthy vs unhealthy)
based on the phasor transform [19,20]. Nevertheless, blind clustering of phasor plot data, to
the best of our knowledge, has only been attempted using K-means based algorithms [21–23].
K-means, as we will show, is suboptimal because it tends to divide the space into Voronoi cells
around the means and therefore is only useful in clearly separable cases that do not overlap.

Clustering is a family of machine learning and methods that are used in situations in which one
disposes of a collection of N-dimensional points but has no labels assigned to them. The goal in
this type of problems is to discover groups within the data that have similar characteristics in
terms of the N-dimensional coordinates, usually named the set of features for each point. The
ultimate output of such algorithms is a single label assigned to each of the points although in
some situations one can obtain, for each point, a probability value of belonging to each group.
There exist several broad families of clustering algorithms, each of which with many sub-families
within them, with their own advantages and disadvantages. In an attempt to explore the range of
possible clustering methods we simulated lifetime phasor data and compared the performance
at clustering this data with a subset of some of the most established (k-means, hierarchical
clustering, dbscan etc.).

In this paper we propose using Gaussian Mixture Models (GMM) [24]. The initial intuition
behind using GMM comes from the experience of observing phasor plots in a variety of
experimental conditions and realizing that the populations tend to spread in a normal fashion, but
there is a rational justification on top of that, which is that phasor distributions do in fact have a
normal component in the noise; the presence of noise in the measurement can have a variety of
sources, but under the phasor transform this noise tends to translate into a normally distributed
spreading of the phasor coordinates [25]. In this work we show the results using simulations and
real data of lifetime fluorescence measurements but the same set of clustering techniques can be
equally applied on data in the spectral phasor transform.

2. Materials and methods

2.1. Simulated phasor data

There are many benchmark sets available for testing clustering algorithms, but they tend to
include extreme situations, e.g. the smiley face or the concentric circles [26], which are cases
specifically designed to force some of the classical methods to fail, but have no relevance for us
in the lifetime/spectral phasor transform data. For this reason, we have created our own set of
synthetic test data attempting to emulate the different situations in which the clustering problem
in the phasor space may become hard. These are: situations in which clusters have different shape
(maybe in FRET or STED experiments where the data is pulled), situations in which the clusters
have different size or density (noise, low counts or presence of autofluorescence) and situations
in which the clusters have a different total number of points (experiments where different probes
have different relative brightness or simply are tagging structures of different size).

We wrote a script that draws photon arrival times out of a distribution obtained as the
convolution of an exponential decay by an impulse response function. The fluorescence decay of
a single fluorophore is modelled as a single exponential decay with a single parameter being
the characteristic lifetime. The impulse response function is modelled as a normal distribution
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of standard deviation 1ns. Once the photon arrival histogram curve is calculated from the
convolution of the exponential by the gaussian, the photon arrival times are drawn from that
distribution using a Montecarlo approach. This is done by dropping random coordinates in the
cartesian plane and taking those that fall below the desired curve.

The simulations were done assuming a pulsed stimulation frequency of 80MHz and in every
case we generated pixels belonging to one of three different lifetime populations. The first cluster
is composed of pixels containing photons with a lifetime of 2.5ns, the second cluster a decay
lifetime of 3.5ns and the third cluster is composed of the sum of two distributions; 80% of the
photons belong to a distribution with a lifetime of 3.5ns and the remaining 20% belong to a
distribution with a lifetime of 0.5ns. This allowed us to create three clusters forming a triangle
with which we can tune the size and shape applying additional constraints (see the results section
for details on the ground truth generation).

2.2. Gaussian mixture models

Gaussian mixture models [24] is a clustering technique that is based on fitting a linear combination
of Gaussian distributions to the data points. The probability density of the model is therefore a
sum of terms with the number of terms, K, being the number of clusters: p(x) =

∑︁K
i=1 fiN( µi, Σi).

Each cluster is defined by its fraction f i and the multivariate normal distribution N(µi, Σ i) with
mean coordinates µi and covariance matrix Σ i which characterizes the data belonging to the
cluster. The typical implementation for computing the set of parameters uses the Expectation-
Maximization algorithm [27]. It is an iterative procedure in which one starts with some values
for the parameters and, at each iteration, the data points are evaluated under the current model to
obtain the likelihood of belonging to each cluster (expectation). Then this likelihood is used to
weigh the points to obtain the mean position µ⃗i of each cluster –and subsequently its covariance
matrix- towards the next iteration (maximization). This method always converges to some
solution and the only assumption that one must make is that the data can be modeled by a (quasi-)
normal distribution.

We have omitted an important detail which is how to estimate the number of clusters K with
which to model the data. This is, in general, one of the main drawbacks of using GMM, together
with many of the other clustering methods, and there are several approaches around this issue
[28–31]. In this paper we intentionally omit this step because we assume that we always know
beforehand the number of components that exist in our data. This is in general true because the
components are fluorescent probes with which we have labelled our samples or because we can
make certain assumptions on the nature of the sample. Additionally, we have to assume that our
probes are spatially resolved, i.e. that the different species in the sample do not share a pixel,
otherwise the distributions will lose their normality.

2.3. Cell culture and staining

NIH3T3 (ATCC) cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM, Gibco)
supplemented with 10% Fetal Bovine Serum (FBS, Sigma-Aldrich), streptomycin (100µg/ml)
and penicillin (100U/ml), at 37°C in a 5% CO2 incubator. Cells were seeded on fibronectin
(Sigma-Aldrich) covered glass bottom dishes (Mattek). Multiple staining of the cells was done
sequentially. Dilutions of each dye were prepared in DEMEM phenol-free, high glucose, HEPES
medium (Gibco).

In the final experiment shown in the results section, we used a total of six dyes (Table 1). Cells
were incubated with LysoTracker Deep Red (1µM, Invitrogen), ER Tracker Red (BODIPY TR
Glibenclamide; 500nM, Invitrogen), BODIPY FL C5-Ceramide (500nM, Invitrogen), MitoTracker
Green FM (167µM, Invitrogen) and UltraPure Ethidium Bromide (10 µg/mL, Invitrogen), for 40
min at 37°C. Cells were then washed three times with 1X Dulbecco’s Phosphate Buffer Solution
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(DPBS). In the final step, cells were incubated MemBrite Fix Cell Surface Staining Kit 640/660
(Biotium) following the manufacturer’s instructions.

Table 1. Commercially available dyes used to test the system. a

Lifetime(ns)
Spectrum(nm)

Organelle Manufacturer
Catalogue Numberλexc Λem

LysoTracker deep Red 3,0 647 668 Lysosomes Invitrogen L12492

MembriteRed Fix 640/660 2,4 640 660 Membrane Biotium 30097-T

ER tracker red (BODIPY TR Glibenclamide) 5,0 587 615 ER Invitrogen E34250

UltraPure Ethidium Bromide 12,0 521 605 Nucleus Invitrogen 15585011

MitoTracker Green FM 0,7 492 514 Mitochondria Invitrogen M7514

BODIPY FL C5 4,8 502 510 Golgi Invitrogen D7540

aLive cells were stained individually with each dye and its lifetime was measured using the phasor approach. The
reported peak excitation (λexc) and emission (λem) is provided by the manufacturer.

Preliminary rounds of imaging were done with cells incubated with a single dye in order to
measure its lifetime in vivo (list of final used dyes in Table 1, and an extended version with the
complete list of tested dyes in supplementary table1). Subsequent rounds of incubation were
performed each gradually increasing the number of dyes in the sample. This allowed to adjust
the incubation time and dye concentration such that the fluorescence of each of the probes was in
the same order of magnitude.

2.4. Imaging

Images were acquired using a two-channel ISS-ALBA5 confocal microscope equipped with a
white laser source and acusto-optic tunable filter (NKT SuperK EXTREME, SuperK SELECT),
avalanche photo-diodes (Excelitas Technologies) and an ISS A320 FastFLIM acquisition unit for
lifetime measurement. The repetition frequency of the laser is of 78MHz. We used this system
because it is a highly tunable confocal microscope but our experiments can be reproduced with
any microscope with lifetime capabilities.

The probes were excited with three laser lines selected from the white laser (490, 560 and
640nm) and the emission of the six probes was collected in three spectral bands using band-
pass filters 520/35, 605/55 and 679/41. The images were acquired in three sequential rounds of
imaging in order to minimize the bleed through of the spectral channels, but in principle with a
three-channel detector, the experiment could be reproduced in a single shot. The example shown
in Fig. 2 was taken in a single channel, collecting the emission of three probes using the 679/41
filter and exciting simultaneously with two laser lines (560nm and 640nm).

There exists somewhat of a misconception around the concept of a lifetime image. In each
pixel of an image, there are always many fluorescence processes contributing to its intensity,
never a single species with a single lifetime decay. When taking lifetime measurements, there
are many approaches to dealing with this; usually involving reporting an ensemble or average
value. If there is a clear predominant fluorescent species, the value reported will be close to that
of the predominant species, but that is not necessarily the case. For this reason, the lifetimes for
the individual probes we report (Table 1) are phasor-based and they are the mean two values,
tau modulation and tau phase [32]. These two values are the corresponding lifetimes of the two
points on the universal circle where one projects the data point that is inside the universal circle.
One projection is finding the point on the universal circle that has the same phase as the data
point and the other is finding the one that has the same modulation.
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Fig. 2. Example of phasor space GMM clustering. A) Intensity image of a live cells sample,
scale bar is 10µm. B) Lifetime phasor plot of the image. Gaussian mixture model for 3
clusters is run on the phasor coordinates and for each of them the posterior probabilities of
belonging to each cluster are obtained. C) The probabilities are used to divide the data with
hard borders. D) The probabilities (P) are used to assign a color as a linear combination
of the three chosen colors: yellow, red and cyan. E) The image is colored using the colors
drawn from the probabilities.

2.5. Image processing

Image processing scripts were written in MATLAB. As a brief itemization of the processing
pipeline; lifetime files were decoded, individual photons assigned to each pixel, pixel arrival time
photon distributions were phasor-transformed and GMM was applied to phasor coordinates to
obtain the pixel probability of belonging to each cluster. We wrote our own GMM routine fitting
function using the expectation-maximization algorithm, although MATLAB already implements
its own version fitgmdist.m. All functions written for the simulations and for the processing of
the live cell data (also included) are available in a public repository (Dataset 1 [33]).

One of the advantages of using the phasor plot is that one can obtain the lifetime characterization
at each pixel with a relatively low number of counts. In our case the images contained at most
500photons per pixel, but the bulk of the points in the images contained much fewer than 100.
For the clustering step we set a threshold of 40photons. Although in terms of single photon
counting 40 may seem a lot, it is actually very little in terms of modeling a lifetime decay curve
in the time domain. For the phasor approach 40 is probably double the minimum amount [25].
The thresholding step was done for two main reasons: first to reduce the computational load by
feeding less points to the model, but most importantly to reduce the spreading in the phasor space
and therefore ease the performance of the GMM fitting. The outcome is that the GMM routine
only uses the pixels with more than 40 photon counts to find the best mixture of Gaussians, but
once the model is estimated it is used to obtain the likelihood of all the pixels in the image,
including those with lower than 40 counts. This provides a probability estimate of each pixel to
belong to each cluster and is the quantification of the segmentation.

Figure 2 shows the basis of the method, in which analysis is performed in an example image of
a large field of view of a sample tagged with the six probes in Table 1. The particular example
(Fig. 2(A)) shows the emission in the far red [660 700]nm, exciting with two laser lines (642nm
and 561nm). The expected emission collected in these conditions is mainly from three of the
probes (Lysotracker, Membrite and Ethidium Bromide), the rest are spectrally cropped by the
filter. The phasor plot is shown for the pixels above 40 counts (Fig. 2(B)). The standard way
of depicting a phasor plot is as a 2D histogram where color codes for density, that is, each
phasor-space bin is colored according to the number of pixels of the original image that fall in
the particular bin (in this case 256 bins to the phasor space unity distance). The other way one
can depict the phasor plot is as a scatter plot, i.e. a cloud of points, which although it carries the
real individual coordinate information of all pixels, the size of the points rapidly saturates the

https://doi.org/10.6084/m9.figshare.13232534.v1
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density and is therefore never used. This list of pixel phasor coordinates is the input data that the
GMM algorithm deals to assign a probability of each pixel to belong to each cluster.

With this list of probabilities one option is to simply cut hard edges, i.e. at each coordinate
choose the cluster with the higher probability and assign that cluster to the pixel. Figure 2(C)
shows the ellipses that contain 68% of the points that belong to each cluster using this hard-edge
method. The alternative is to plot the scatter plot of the points by color-coding the points using
the probabilities. Figure 2(D) shows this approach, overlayed with a set of 10 contour lines of the
resulting 3 component GMM fit to the data. In this method, a color is chosen for each cluster, and
the linear combination of the RGB coordinates of the colors is computed using the probabilities
as coefficients. This results in a color assignment for each pixel, and one can produce a color
image matching the original. The product of the normalized version of the original intensity
image with the probability obtained color image is shown in Fig. 2(E).

3. Results

3.1. Simulations

A total of 5 data sets were simulated to attempt to cover different possible situations, namely:
easy case, skewed distribution case, different sizes case, different number of elements case and
hard case. The first easy case consists of three compact distributions, 104 photons per pixel, 300
pixels, and exactly one third obtained from each of the three characteristic lifetimes described
above. The second case, skewed case, uses the same distributions but adds a number of photons
with uniformly sampled lifetimes, the number obtained from a normal distribution of mean 103
and standard deviation 800. This simulates the presence of unmodulated light which pulls the
data to the origin of the phasor plot. In the third case, size, the pixels from the first distribution
contain only 100 photons each, the other two distributions 3000 photons each, so that the first
is much more spread on the phasor plot. The fourth case, number, is again like the first, but
the number of photons is reduced to 103, and the number of pixels of the first cluster is 30 as
opposed to 150 each of the other two. The final hard case consists of a mixture of the others; the
first distribution is skewed using the unmodulated light, the second is compact as in the easy case
and the third is skewed using a similar approach but by drawing different fractions of the photons
belonging to the 3.5 and 0.5ns lifetimes, thus pulling the distribution along the line joining these
two lifetimes. This produces a hard case where the two elongated distributions overlap and one
of them ends where the compact appears.

We used our simulated data described above against some of the best-known algorithms in the
literature. Figure 3 shows the results of the simulations. Each row corresponds to a different data
set, with the first column being the known ground truth and successive columns are the output of
each of the tested methods. The reported value J is the Jaccard index [34], which is computed as
a cluster-wise ratio between the intersection and the union of the ground truth and the result. The
one method that consistently stands out in our battery of tests is the Gaussian Mixture Model
(GMM) which systematically improves the Jaccard index compared to the others that may be
stronger in some situations and weaker in others.

K-means [35], and its many variants like k-medioids [36], are amongst the most well-known
of all the clustering techniques. They are elegant in terms of the simplicity by which they are
formalized; find the K mean locations that define clusters such that the sum of squared distances
of all the members within the K groups is minimal. These methods divide the space into areas
such that each point is classified according to the nearest center of a cluster, so they generally fail
when the clusters have irregular sizes and do not handle high covariance very well (examples in
Fig. 3, panels B2, B3, C2, C3, D2, D3). Other well-known methods are based on the connectivity
between the points by defining some kind of a metric. In the specific case of phasor data, the
points live in a two dimensional space, the two dimensions being S and G which obey the vector
addition rules of an Euclidean space, therefore it makes sense to establish an Euclidean distance
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Fig. 3. Example of clustering methods applied to simulated phasor data. Each row
corresponds to a situation where a different condition is tested, first column depicts the
known ground truth and successive columns show the results of the different algorithms.
The reported goodness-of-fit value is the Jaccard index.

metric between points. Hierarchical clustering [37] and affinity propagation [38] are examples
of such connectivity-based methods and there are many variations depending on the linking
criteria [35] within the connectivity map. Due to the fact that they use a cutoff in the metric,
they tend to fail when clusters present non-zero covariance and, like k-means, cannot overcome
overlapping (Fig. 3, B4, B5, B6, C4, D4). Mean shift [39] was included also in the examples, it
is a geometrical approach where a grid of points is laid on the space and each is shifted until
convergence using the data points in some close neighborhood. Its performance is best when the
data is similar to a smooth surface without any big gaps or regions of irregular density in the
clusters (Fig. 3(B7)) and will simply omit clusters with low number of members (Fig. 3(D7)).
Similarly, a more recent method, density-based spatial clustering (dbscan) [40], is also highly
dependent on the density of the points and tends to fail when there are conditions of sparse data
points (Fig. 3(C8 and D8)). These last two are powerful because they automatically find outliers
in the data and can handle situations with arbitrarily shaped distributions. Spectral clustering
[41,42], a generalized version of dbscan, equally overcomes arbitrarily shaped distributions, but
at the cost of finding somewhat arbitrary connections in the data (Fig. 3(E9)). Spectral clustering
is the only true contester to our proposed method GMM. We note here that the term ‘spectral’ in
the name ‘spectral clustering’ refers to the eigenvector decomposition of the data points, and not
to any sort of spectral imaging or spectral phasor transform.

As can be seen in Fig. 3, looking at the colors of the clustering results and at the quantification
using the Jaccard index, GMM systematically performs better than the rest of clustering algorithms.
The main reason for this is that phasor data tends to spread normally [25] and therefore GMM is
the best choice to model the scattered coordinates. On top of that, it is one of the few methods
that can robustly handle overlapping data (Fig. 3(C10 and 3E10)). Related to this, the other great
feature is that it provides a posterior likelihood of belonging to the clusters, so one can deal with
outliers or dubious cases.

All the cases shown in Fig. 3, that is every one of the 9 algorithms tested against every one of
the 5 datasets, was run 100 times and the best performance was kept. We are aware that there are
many possible implementations of each and that the parameters need to be tuned for each case,
we objectively attempted to obtain the best possible outcome in each algorithm. For each of the
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algorithms we then produced the mean Jaccard index over the 5 datasets. GMM outperformed
the rest obtaining a mean J=0.98, with the runners-up being hierarchical with Ward’s criteria,
spectral clustering and k-means (all around J=0.92). The loser in our implementation was mean
shift at J=0.83.

3.2. Live cell imaging

We present here as a proof of concept an example application in which GMM successfully
clusters data obtained with a fluorescence lifetime microscope. The sample consisted of live cells
stained with a collection of organelle-targeting dyes chosen to be spread out in the spectral and
lifetime dimensions. It is proven that the lifetime of a molecule changes with modifications of
the surrounding microenvironment [43], and therefore, the measured lifetime of dyes in solution
is different to when they are inside the cells. For this reason, we first measured the lifetimes of
the dyes individually in live cells (see Table 1, for a broader selection of tested dyes see Supp
Materials) and we adjusted the concentration of the dyes such that the fluorescence intensity was
approximately the same.

In the final experiment, we stained live cells with a total of six probes targeting different
cell organelles: lysosomes, plasma membrane, endoplasmic reticulum, nuclei, Golgi apparatus
and mitochondria (Fig. 4). We acquired 3 consecutive lifetime images in separate spectral
bands in order to resolve the dyes according to their spectra, as detailed in the methods section.
Roughly, the emission of two of the six dyes fall in each of the three spectral bands. The expected
per-channel organelle fluorescent emission was; lysosomes and plasma membrane in the first
channel (Fig. 4(A1)), endoplasmic reticulum and nucleus the second channel (Fig. 4(A2)), and
Golgi apparatus and mitochondria in the third channel (Fig. 4(A3)). Phasor plots containing
the lifetime representation for each channel present two populations as expected (figures in 4B).
GMM was run on the list of phasor coordinates, demanding 2 clusters in each channel, and
the outcome of the GMM clustering correctly clustered these populations (Figs. 4(C1-3)). As
described in the previous section, the original images are color-coded according to posterior
probabilities of the model (Figs. 4(D1-3)) and a final 6-plex image is shown as an overlay of the
three channels (Fig. 4(E)).

Fig. 4. Multichannel example of image segmentation using phasor-GMM clustering. A
live cell is stained using 6 probes targeting different cellular organelles. A) Three intensity
images of the same field of view are taken in three different spectral bands. B) The phasor
plot of each of the spectral bands is shown where we expect to find two populations in each.
C) GMM successfully models two gaussians in each of the phasor plots. D) Original images
are color-coded according to posterior probabilities of the model. E) A final 6 colored image
is shown as an overlay with a threshold to prevent overlapping of background. Scale bars are
5µm.
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We are fully aware that loading live samples with so many fluorophores may be interfering
with cellular function and even hindering the detection of the individual fluorophores due to
interactions amongst them. We consider that this handicap only strengthens the validity of the
method because it still succeeds in clustering the six individual cellular organelles despite the
overcrowding. We would like to point out that this is only a proof-of-concept experiment rather
than an attempt to solve any biological question. On top of that, during the short time of the
experiments (1h including incubation), we did not observe any cytotoxic effects in the cells such
as formation of vacuoles or onset of apoptosis.

In this final image, each pixel takes the color associated to the cluster with a higher posterior
probability multiplied by the normalized number of counts in the particular channel. Suppose
a pixel which in one channel has very low photon counts and one of the clusters results in a
relatively high probability, and in another channel, the same pixel shows the same probability
of one of the clusters, but with a very high number of counts. In that case, the pixel is colored
using the color associated with the cluster in the second channel. An example of this can be
seen in Fig. 4 where in the central region overlapping the nucleus, the first channel shows some
fluorescence belonging to the lysotracker probe (Fig. 4(D1) in red), and the third channel shows
fluorescence belonging to the Golgi Bodipy probe (Fig. 4(D3) in blue). In the final panel Fig. 4(E),
those pixels are colored in blue, meaning that the product of the posterior probabilities by the
photon counts was higher in the cluster associated to the Golgi than the one associated to the
lysosomes.

It is interesting to observe that the method can resolve relatively close phasor populations (see
Fig. 4(C1) and 4(C2)) and, as shown in the simulations, it can also deal with heavily skewed cases
(Fig. 4(C3)). Noticeable is also what is already reported in the literature [44]; lipids processed in
the Golgi after staining start to appear in the plasma membrane as can be seen by the presence of
a particular membrane region, where the segmentation algorithm assigned to the so called Golgi
cluster (top-right section of the membrane in blue, Fig. 4(D3) and 4(E)).

4. Discussion

In this paper we address the issue of automatic clustering of phasor transform data. The need for
such a method has become apparent because of the wide use of the phasor approach in order to
describe both spectral and lifetime properties in a sample. Automatic segmentation of images
through the phasor plot as opposed to manual region selection is crucial for the reproducibility of
experiments and for robustly extracting unbiased and quantitative data from lifetime or spectral
experiments. Furthermore, the automation provides high throughput in batch analyzing sets
of images. We envision the application as part of an automated pipeline in which for instance
large fields of view, e.g. tissue samples, can be analyzed to identify regions of interest with the
presence of particular targets are detected where one can subsequently perform a much higher
resolution image.

The error in the phasor transform of a photon histogram depends on the square root of the
number of counts, and the phasor data spreads out following a normal distribution [19]. For this
reason, we make use of Gaussian Mixture Models to describe phasor data and successfully cluster
the data points in the phasor space. In order to quantify the power of such method we simulated
several sets of data and attempted to cluster them using a battery of the most widely used methods
in the literature. The simulations were done on a photon-by-photon basis, drawing them out of
predefined distributions, and allowing us to generate data from virtually any combination of
lifetimes. We quantify the performance of each method under each set by means of the Jaccard
index and show that GMM outperforms the rest of methods. These simulations convincingly
establish GMM as the most appropriate machine learning clustering method considering the
morphology of the data that is obtained in spectral and/or lifetime fluorescence measurements.
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The one question that the reader may be asking is what resolution one can achieve on the
phasor plot i.e. how close can two populations be for the method to be capable of separating
them. The answer is that that depends on the number of photons one is collecting, theoretically if
one has enough photons the resolution can get as small as one wishes. In fact, in some of the
examples we provide, the distributions are so close that one would doubt there are actually two
populations present (Fig. 4(B1 and B3)).

We demonstrate the use of GMM on a particular segmentation problem in which live cells
have organelles stained with different probes, some overlapping in spectra, some overlapping in
lifetime. The method performs an automatic and unsupervised clustering in the phasor space
which translates to a segmentation in the image space where one can then label each cluster. We
show the results using colors as labels, but the method allows for a fully quantitative analysis
because it assigns a probability of each pixel to belong to each of the labels.

We show a simple example of the emission of three probes collected in a single spectral
channel and then we show a more complex example with six probes with the emission collected
in three spectral channels. These are good examples of application because each organelle is
spatially resolved, meaning that we should not find the many pixels containing more than one
fluorescent probes. A high proportion of these pixels will be a problem for the method; the pixels
that share the contribution of two probes, have phasor coordinates that fall in a linear combination
of the positions of the two pure species. The phasor plot of such a sample would have the two
normally distributed clusters where GMM could be successfully fit, but additionally a whole
range of points in between the two clusters, each of which corresponding to pixels with different
fractions of the components. This situation would skew the shape of the distributions away from
normality. The problem would become even worse if the probes were to interact with each other
for the same reason, the distributions would move away from normality.

This is the main caveat we must point out; the system will lack validity when combinations
of probes are present. In such situations, the method will tend to require additional clusters to
describe the combinations/interactions which, on one hand will hinder the automation of the
process requiring human input to determine how many additional clusters need to be used to
model the data, and on the other hand, these additional clusters are not representative of a real
physical fluorescent component.
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