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Background: Brain metastases are associated with poor survival. Molecular genetic

testing informs on targeted therapy and survival. The purpose of this study was to

perform a MR imaging-based radiomic analysis of brain metastases from non-small cell

lung cancer (NSCLC) to identify radiomic features that were important for predicting

survival duration.

Methods: We retrospectively identified our study cohort via an institutional

database search for patients with brain metastases from EGFR, ALK, and/or KRAS

mutation-positive NSCLC. We segmented the brain metastatic tumors on the brain

MR images, extracted radiomic features, constructed radiomic scores from significant

radiomic features based on multivariate Cox regression analysis (p < 0.05), and built

predictive models for survival duration.

Result: Of the 110 patients in the cohort (mean age 57.51 ± 12.32 years; range:

22–85 years, M:F = 37:73), 75, 26, and 15 had NSCLC with EGFR, ALK, and KRAS

mutations, respectively. Predictive modeling of survival duration using both clinical and

radiomic features yielded areas under the receiver operative characteristic curve of

0.977, 0.905, and 0.947 for the EGFR, ALK, and KRAS mutation-positive groups,

respectively. Radiomic scores enabled the separation of each mutation-positive group

into two subgroups with significantly different survival durations, i.e., shorter vs. longer

duration when comparing to the median survival duration of the group.

Conclusion: Our data supports the use of radiomic scores, based on MR imaging of

brain metastases from NSCLC, as non-invasive biomarkers for survival duration. Future

research with a larger sample size and external cohorts is needed to validate our results.
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INTRODUCTION

Lung cancer is the second most commonly diagnosed cancer
(1). Non-small cell lung cancer (NSCLC) makes up ∼85–
90% of all lung cancer cases, and 30–50% of patients with
NSCLC develop brain metastases (2, 3). Despite advancements
in treatment, the survival duration of patients with lung cancer
brain metastases remains short, with a poor median survival of
4–8 months after diagnosis (4). Molecular characteristics help to
determine whether patients with cancer will respond to targeted
therapies thus prolong survival (5). The molecular testing of
lung cancer usually screens for genes encoding epidermal growth
factor receptor (EGFR), anaplastic lymphoma kinase (ALK)
and Kirsten rat sarcoma viral oncogene homolog (KRAS) (6–
8). Molecularly targeted medications that can penetrate the
central nervous system have improved outcomes in patients with
brain metastases from lung cancers with actionable mutations.
For example, tyrosine kinase inhibitors, such as erlotinib,
have been effective in treating brain metastases in NSCLC
patients with EGFR mutations (9). Therefore, the knowledge of
molecular mutation status is essential for planning individualized
treatments and for predicting survival.

Pathological tissue confirmation and molecular
characterization of brain metastases through invasive biopsy
or surgical resection are not always possible or practical.
In contrast, neuroimaging methods, such as brain magnetic
resonance imaging (MRI), are commonly used to non-invasively
assess the entire brain to diagnose and to plan treatments for
patients with brain metastases. In addition, brain metastases
may present with various imaging features depending on the
mutation status of the primary NSCLC (10). However, little
is known about the relationship between the neuroimaging
features of brain metastases and the NSCLC mutation subtypes
for survival prediction. There is an unmet need to identify
non-invasive neuroimaging biomarkers to predict survival
duration for NSCLC patients with brain metastases who may
have one of the three most common mutations, i.e., EGFR, ALK,
or KRAS.

Radiomics is a computerized method to extract high-
dimensional data from non-invasive standard-of-care medical
images (11). It can provide a detailed characterization of tumors,
in terms of tumor heterogeneity in relation to aggressiveness,
which are not perceptible to the human eye (12, 13). In
addition, linking imaging features with molecular and immune
characteristics will contribute valuable information that is critical
for cancer treatment and prognosis (14). Furthermore, the
radiomic approach allows the non-invasive analysis of treatment
response and prognosis at multiple time points, which is not
feasible or practical using invasive biopsies. Radiomic scores,
which incorporate information about key imaging features, have
shown potential as biomarkers for predicting survival in patients
with lung cancer and breast cancers (13, 15, 16). However,
to the best of our knowledge, no published studies have used
radiomic analysis of brain metastases to predict survival duration
of patients with NSCLC according to their mutation status.

Here, we performed a MRI radiomic analysis of brain
metastases for survival duration in patients with NSCLC. We

hypothesize that MRI radiomics of brain metastases could be
used to predict survival duration in patients with NSCLC. Our
objective was to use radiomic features extracted fromMR images
of the brain metastases to build machine learning models for
predicting survival durations of patients with NSCLC according
to the specific mutation status of their primary NSCLC, i.e.,
EGFR, ALK, or KRAS. In addition, we constructed a radiomic
score for each mutation-positive group to predict whether the
patients survived longer or shorter than the median survival
duration for each group.

METHODS

Patient Selection and Imaging Acquisition
We retrospectively identified consecutive patients for this study
by searching the Thoracic Oncology Registry for all lung cancer
patients treated at City of HopeNationalMedical Center (Duarte,
CA, USA) between 2009 and 2017. Eligibility criteria included
the following: diagnosis of NSCLC; confirmation via genotype
testing of an EGFR, ALK, and/or KRAS mutation in the primary
NSCLC tumors; and having brain MRI scans performed to
diagnose brain metastases but before initiating treatment for the
brain metastases. Patient demographic data, survival information
including date of death or last follow-up, and mutation status
were abstracted from electronic medical records (Table 1). The
Institutional Review Board at City of Hope National Medical
Center approved this study and waived informed consent due to
its retrospective nature. The study was conducted in accordance
with the Declaration of Helsinki.

Brain MR images including both the T1-weighted contrast-
enhanced (T1C) and T2-weighted fluid-attenuated inversion
recovery (FLAIR) sequences were retrieved from our Picture
Archiving and Communication System. Brain MR scans were
obtained from the same in-house 3T VERIO Siemens scanner

TABLE 1 | Demographic information for the study cohort.

EGFR (+) ALK (+) KRAS (+) p-value

N = 75 N = 21 N = 15

Age

Mean ± SD 57.43 ± 12.09 53.81 ± 14.79 63.67 ± 6.40 0.09

Race

Caucasian 34 (45.33%) 13(61.90%) 11 (73.33%)

Asian 35 (46.67%) 7 (33.33%) 1 (6.67%) 0.016

Other1 6 (8%) 1 (0.04%) 3 (20%)

Gender

Male 24 (32%) 8 (38.10%) 5 (33.33%) 0.83

Female 51 (68%) 13 (61.90%) 10 (66.67%)

History of Smoking

Yes 20 (26.67%) 5 (23.80%) 12 (80%) <0.001

No 55 (73.33%) 16 (76.19%) 3 (20%)

1American Indian or Alaska Native, African American, Native Hawaiian, or Pacific Islander.

EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; KRAS,

Kirsten rat sarcoma viral oncogene homolog.
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(Siemens, Erlangen, Germany). T1C sequence was acquired
with axial T1-weighted three-dimensional (3D) magnetization
prepared rapid gradient echo (MPRAGE) imaging after
intravenous administration of MultiHance R© (gadobenate
dimeglumine) at 0.1 mmol/Kg. The FLAIR sequence for the
peritumoral edema was acquired with routine imaging protocol.
Detailed scanning parameters have been reported in our previous
study (10).

Brain Tumor Segmentation
For image segmentation, we co-registered T1C and FLAIR
images into the same geometric space under an affine
transformation as established by the elastix toolbox (17). We
segmented the T1C and FLAIR images for enhancing tumor
and peritumoral edema, respectively. We performed image
transformation and re-slicing with FSL scripts (https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/).

Subsequently, we used ITK-SNAP, an open-source 3D image
analysis software (www.itksnap.org) to contour the tumor
boundaries of both T1C (for the enhancing tumor) and FLAIR
(for the peritumoral edema) images in a semi-automated fashion
on a slice-by-slice basis (18). This semi-automated method
consisted of the two steps. First, the ITK-SNAP software
automatically placed a region of interest box around the tumors.
Second, the tumor boundaries were manually drawn slice-by-
slice by our trained research personnel (NY, TW, and BC). One
researcher (NY) was a neuroimaging researcher with 2 years of
experience in tracing tumors for radiomic research. The other
two researchers (TW and BC) were neuroradiologists with a
combined 20 years of experience in neuroimaging. Discrepancy
during tumor segmentation was resolved by consensus of
the research group. We have reported the details of brain
tumor segmentation previously (10). The imaging delineation
(mask) of the two segmented phenotypes (enhancing tumor and
peritumoral edema) were exported for radiomic analysis. Our
analysis included up to 10 of the largest tumors from each patient,
limited to tumors >5mm in diameter because smaller tumors
could not be reliably segmented for 3D analysis. Our dataset
consisted of 452 lesions from 110 patients. Figure 1 presents
the schema for brain tumor segmentation, radiomic feature
extraction, and predictive modeling for survival duration.

To assess the consistency of image segmentation and the
stability of radiomic features extracted for modeling, two
researchers (NY and TW) independently performed tumor
segmentation on the brain images from 20 randomly selected
patients with the results being blinded to each other. We
then used their segmentation results to test the inter-observer
variability. In addition, one researcher (NY) repeated the brain
tumor segmentation twice with 1 month apart for testing the
intra-observer variability. We used the interclass correlation
coefficient (ICC) test to assess the consistency of the radiomic
features for both inter-observer and intra-observer variability.
An inter-observer and intra-observer ICC > 0.80 was considered
stable for tumor segmentation and radiomic feature extraction.
The inter-observer ICC between the two researchers (NY and
TW) for tumor segmentation achieved at 0.96 ± 0.04 in a range
from 0.87 to 0.99 and for edema segmentation achieved at 0.95

± 0.05 in a range from 0.80 to 0.99. The intra-observer ICC
between the two measurements by the same researcher (NY)
achieved 0.99± 0.006 (range from 0.97 to 1.00), and 0.99± 0.007
(range from 0.97 to 1.00) for segmentation of tumor and edema,
respectively. The results indicated favorable inter- and intra-
observer reproducibility and stability for tumor segmentation
and subsequent radiomic feature extraction.

Radiomic Feature Extraction and Selection
The image preprocessing and radiomic feature extraction have
been previously reported by our group (10). Briefly, we
preprocessed each of the T1C or FLAIR images using a pipeline
consisting of three steps: (i) skull-stripping using the Brain
Extraction Tool (BET; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET)
and Free Surfer (https://surfer.nmr.mgh.harvard.edu/); (ii) bias
field correction using the routine N4ITKBiasFieldCorrection
of nipype (https://nipype.readthedocs.io/en/0.12.0/users/index.
html); (iii) image intensity normalization using an algorithm
to standardize the intensity scales across MR images of the
same contrast (19). Subsequently, we applied six different
filters (Wavelet, Laplacian of Gaussian, Square, Square Root,
Logarithm, or Exponential) to each of the preprocessed
images, generating six derived images. Therefore, there were
12 derived images associated with each brain lesion, 6 for
each of the two original (T1C and FLAIR) images. Finally, we
performed radiomic feature extraction using an open-source
python package PyRadiomics (https://pyradiomics.readthedocs.
io/en/latest/) (20) on each derived image by applying a tumor or
edema mask based on the modality of the original image, i.e.,
applying the tumor mask on the six images derived from the
original T1C image, and applying the edema mask on the six
images derived from the original FLAIR image. We extracted
three types of radiomic features from each image including: (i)
textural features, including Gray Level Co-occurrence Matrix
(GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level
Size Zone Matrix (GLSZM), Neighboring Gray Tone Difference
Matrix (NGTDM), and Gray Level Dependence Matrix (GLDM);
(ii) shape-based features, including Volume, Surface Area, and
Sphericity; and (iii) intensity-based features, such as Minimum,
Maximum, and Mean. We extracted a total of 2,786 radiomic
features from the 12 derived images for each lesion.

We performed feature selection in two steps. First, we selected
2,520 stable features from the total of 2,786 features based on the
inter-observer ICC test with a threshold of 0.8 (corrected p <

0.05). Second, from those 2,520, the 50 most relevant features for
model building were selected using a minimum redundancy and
maximum relevance (MRMR) algorithm (21).

Building Predictive Models for Survival
Duration
We dichotomized the patients in each mutation-positive group
into two subgroups, i.e., shorter and longer survival subgroups,
by assigning the patients with survival duration shorter than
the median of the mutation-positive group to the shorter
survival subgroup and the remaining patients to the longer
survival subgroup. Subsequently we built independent machine
learning models for each mutation-positive group to predict
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FIGURE 1 | Schema for brain tumor segmentation, radiomic feature extraction, and predictive modeling. (A) Representative tumor segmentation images from

post-contrast T1-weighted (T1C) and T2-weighted fluid-attenuated inversion recovery (FLAIR) data. (B) Illustrations of radiomic features extracted from the brain

tumor images, including texture, shape, and intensity. GLCM, Gray Level Co-occurrence Matrix; GLRLM, Gray Level Run Length Matrix; GLSZM, Gray Level Size

Zone Matrix; NGTDM, Neighboring Gray Tone Difference Matrix. (C) Receiver operating characteristic (ROC) curves for the models predicting the survival durations of

patients in each of the three mutation-positive groups (EGFR, ALK, and KRAS mutation-positive groups) and representative survival duration analysis.
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whether a patient survived longer than the median survival
duration of the group. We evaluated the predictive performance
of the machine learning models through leave one out cross
validation (LOOCV) using four commonly used performance
metrics including the area under the curve (AUC) of the
receiver operating characteristic curves (ROC), the specificity,
sensitivity and the prediction accuracy (22). We used an open
source software scikit-learn for the machine learning model
training and evaluation (23). Model training and prediction were
tumor-based rather than patient-based, meaning each tumor was
treated as an independent instance. The synthetic minority over-
sampling technique (SMOTE) was used to improve learning
using imbalanced datasets (24).

We built the predictive models using the 50 radiomic
features alone or together with 18 additional features including
demographic, clinical, and tumor information. Demographic
information included gender (male, female), race (Caucasian,
Asian, and other), and smoking history (yes, no). Clinical
information included the presence or absence of extracranial
metastases at 11 sites (bone, lymph, liver, lung, kidney, pancreas,
breast, spinal cord, mediastinum, pericardium, and pleura).
Tumor information included the number of tumors, the volume
of the enhancing tumor core, and the edema/tumor volume ratio.
TheMRMR-based feature selection was performed in each round
of LOOCV process, i.e., 50 most relevant radiomic features were
selected using the MRMR algorithm using the training dataset
(sample size equalsN−1 for aN sample dataset) after leaving one
sample out as the test dataset.

Selection of Machine Learning Algorithm
We used the gradient boosting classifier to build the machine
learning models for predicting the survival durations of all
three mutation groups. We selected this algorithm using a
model selection process that has been previously described (10).
Briefly, (a) we tested 30 classifiers implemented in Scikit-Learn
software (23) and evaluated their performance using leave-one-
out cross validation (LOOCV), (b) we subsequently ranked their
performances according to the area under the curve (AUC) of
the receiver operating characteristic curve (ROC) of each model,
and (c) we selected the algorithm, Gradient boosting classifier,
because it was the only one ranked among top three algorithms
for modeling each of the three patient groups.

Table 2 presents the performance data for the top three
algorithms for each of the three mutation groups. The
performance metrics include accuracy, AUC, sensitivity, and
specificity. A total of five classifiers (ada boosting, random forest,
extra tree, bagging, and gradient boosting) ranked among the top
three classifiers for modeling at least one of the three mutation
groups. Gradient boosting classifier was the only classifier ranked
among top three for all threemutation-positive groups, therefore,
we used this algorithm to build the predictive models for all three
mutation groups.

Statistical Analysis and Radiomic Score
Demographic Data
We used analysis of variance (ANOVA) to determine the
statistical significance of group differences in age. The normality

TABLE 2 | Performance metrics for the top three machine learning algorithms for

predicting whether patients survive longer than the group median in the EGFR,

ALK, and KRAS mutation-positive groups using radiomic features only.

Mutation Classifier Accuracy AUC* Sensitivity Specificity

EGFR Ada Boost Classifier 84.30% 0.905 86.00% 82.00%

Bagging Classifier 84.00% 0.915 90.00% 79.00%

Gradient Boosting

Classifier

88.10% 0.95 90.00% 87.00%

ALK Gradient Boosting

Classifier

85.70% 0.92 88.00% 83.00%

Random Forest

Classifier

77.80% 0.93 95.00% 68.00%

Extra Trees Classifier 85.70% 0.936 90.00% 81.00%

KRAS Extra Trees Classifier 78.70% 0.913 84.00% 75.00%

Gradient Boosting

Classifier

85.10% 0.955 83.00% 87.00%

Ada Boost Classifier 95.70% 0.957 100.00% 92.00%

*AUC, area under the receiver operating characteristic curve. EGFR, epidermal growth

factor receptor; ALK, anaplastic lymphoma kinase; KRAS, Kirsten rat sarcoma viral

oncogene homolog.

of the distribution was tested using the Shapiro-Wilk test, and
the homoscedasticity (the three groups have equal variance)
was tested using Bartlett’s test implemented in SciPy. We used
Fisher’s exact test to determine the statistical significance of
group differences in the distributions of the categorical variables,
including gender, race, smoking history, histology, and other
metastatic sites. P < 0.05 were considered statistically significant.
We used the statistical analysis package in the SciPy: open source
scientific tools for Python library (https://www.scipy.org/) for the
analysis described above.

Survival Analysis and Radiomic Score
We selected radiomic and clinical features that were important
for patients’ survival duration and subsequently computed
radiomic score for each patient by sequentially performing
univariate and multivariate Cox proportional hazard regression
through the following steps (Figure 2): (A) Selecting 20 radiomic
features potentially associated with patients’ survival duration.
In this step, we computed the feature importance of the 50
radiomic features used in the machine learning models using
scikit learn software as described in the Section: Building
Predictive Models for Survival Duration) and selected the
top 20 radiomic features according to the feature importance
value (Supplementary Table 1, Supplementary Material); (B)

Performing univariate Cox regression using each of the selected
top 20 radiomic features (one by one) and selected those with p<

0.05 in the analysis; (C) Performing multivariate Cox regression
using the above selected radiomic features together with the 18
clinical feature (described in Section Building Predictive Models
for Survival Duration) and chose those with p < 0.05 in the
analysis as the final selected radiomic and clinical features; (D)

Computing radiomic score for each patient in each mutation-
positive group using a linear combination of the features selected
in step C weighted by the coefficients determined by the
multivariate Cox regression. We divided each mutation group
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FIGURE 2 | Major steps of Cox proportional hazard regression analysis for determining the effects of radiomic features on survival durations of patients for each of the

three mutation-positive group (EGFR, ALK, and KRAS mutation-positive groups). The top 20 radiomic features (step A) were selected based on the feature

importance as determined by the multivariate Cox regression during classifier training.

into two subgroups according to the radiomic scores. In each
mutation group, those patients with higher radiomic scores than
the group median were assigned into the high radiomic score
subgroup, and the rest of the patients in the mutation-positive
group were assigned into the subgroup with lower radiomic
score. We tested the statistical significance of the differences in
the median survival durations between the two subgroups in
each mutation-positive group using log rank test. We used log
rank test to compare the median survival durations of patients
in the EGFR, ALK, and KRAS mutation-positive groups. We
used Lifelines, an open source software in Python (https://
lifelines.readthedocs.io/en/latest/), for the survival analysis and
presentation described in this section.

RESULTS

Patient Information
The 110 patients in this study cohort [mean age: 57.51 ± 12.32
years (range: 22 to 85 years), M:F = 37:73] were separated

into three groups according to mutation status of the three
oncogenes EGFR, ALK, and KRAS. In this cohort, 75 patients
had EGFR mutation, 21 had ALK mutation, and 15 had KRAS
mutation in their primary NSCLC, respectively (Table 1). There
was one patient who was positive for both ALK and EGFR
mutations. A detailed summary of the demographic and clinical
information for the cohort has been reported previously focusing
on classification of mutation status from lung cancer brain
metastases (10). Briefly, there were statistically significant group
differences for the two categorical variables, race (p < 0.05) and
smoking history (p< 0.001). There was a significant difference in
the racial distribution of the EGFR and KRAS groups (p= 0.005),
and the KRAS group had a higher percentage of smokers than the
EGFR (p= 0.0002) and ALK (p= 0.0036) groups.

We also compared the demographic data between the
mutation-positive group and the mutation-negative groups for
each gene mutation, i.e., EGFR (+) vs. EGFR (–), ALK (+) vs.
ALK (–), and KRAS (+) vs. KRAS (–). There was a significantly
greater percentage of Asian patients in the EGFR (+) group than
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FIGURE 3 | Receiver operating characteristic (ROC) curves for models predicting whether patients with mutations of (A) EGFR, (B) ALK, and (C) KRAS survived

longer than the median survival duration of the mutation-positive group. Curves are shown for models using clinical data only (green), radiomics features only (blue),

and a combination of both clinical data and radiomic features (red). The areas under the receiver operating characteristic curves (AUCs) are indicated in each panel.

KRAS mutation—positive group has too small a sample size to build the predictive model using clinical data alone.

the EGFR (–) group (p = 0.042). The KRAS (+) group was
significantly older than the KRAS (–) group (p = 0.002). There
was a higher percentage of smokers in the KRAS (+) group than
the KRAS (–) group (p= 0.0001).

The median survival durations for EGFR, ALK, and KRAS
mutation-positive groups were 12.7, 20.9, and 17.0 months,
respectively. The pair-wise log-rank test indicated that the
median survival duration of the ALK mutation-positive group
was significantly longer than that of the EGFR mutation-positive
group (p = 0.011), whereas the difference between the ALK and
KRAS mutation-positive groups was not significant (p > 0.05).

Prediction of Survival Duration
For all mutation-positive groups, the predictive performance of
models built with radiomic features alone was better than that
of models built with clinical data alone. Combining radiomic
features and clinical data resulted in the most accurate prediction
results (Figure 3). When using both clinical data and radiomic
features in the modeling, the AUCs for predicting whether
patients survived longer than the median survival duration of the
group was 0.977, 0.905, and 0.947 for EGFR, ALK, and KRAS,
respectively. Table 3 shows the accuracy, AUC, sensitivity, and
specificity of the survival duration predictions for the patients
in EGFR, ALK, or KRAS mutation-positive group, respectively.
Both radiomic features and clinical data were combined to
generate the performance data in Table 3. The accuracy was
94.9%, 84.1%, and 83.0% for the survival duration predictions for
EGFR, ALK, and KRAS mutation-positive group, respectively.
The sensitivity was 96.0, 88.0, and 83.0% for the survival duration
predictions of EGFR, ALK, and KRAS mutation-positive group,
respectively. The specificity was 94.0, 81.0, and 83.0% for the
survival duration predictions of the patients in the EGFR, ALK,
and KRAS mutation-positive groups, respectively.

TABLE 3 | Performance metrics for predicting whether patients survive longer

than the group median in EGFR, ALK, and KRAS mutation-positive groups.

Mutation Accuracy AUC* Sensitivity Specificity

EGFR 94.90% 0.977 96.00% 94.00%

ALK 84.10% 0.905 88.00% 81.00%

KRAS 83.00% 0.947 83.00% 83.00%

*AUC, area under the receiver operating characteristic curve.

EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; KRAS,

Kirsten rat sarcoma viral oncogene homolog.

Both clinical data and radiomics features were used for predictive modeling.

Cox Regression Analysis and Radiomic
Score Calculation
Table 4 presents multivariate Cox regression results for the
three mutation-positive groups. The demographic and radiomic
features that were statistically significantly associated with
survival duration (p < 0.05) are listed in Table 4. The features
with positive coefficients were associated with shorter survival
duration while those with negative coefficients were associated
with longer survival duration. For the EGFR mutation-positive
group, the radiomic score consisted of age {[Coefficient (coef):
2.76]}, Caucasian race (coef: 0.961), male sex (coef: 0.89),
edema/tumor volume ratio (coef: −3.71), tumor number (coef:
1.78), an intensity feature exacted from edema area (coef:
1.37) and a textual feature exacted from tumor area (coef:
−1.41). For the ALK mutation-positive group, the radiomic
score consisted of the tumor number (coef: 3.05), and an
intensity feature exacted from edema area (coef: −1.76).
For the KRAS mutation-positive group, the radiomic score
consisted of the edema/tumor volume ratio (coef: −16.8) and
the tumor number (coef: −1.06). The feature names and
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TABLE 4 | Demographic and radiomic features significantly associated with survival duration for each mutation-positive group as determined by multivariate Cox

regression analysis.

Group Features coef se(coef) z p Lower 0.95 Upper 0.95

EGFR Age 2.76 0.42 6.56 <0.001 1.93 3.58

Race Caucasian 0.96 0.14 6.83 <0.001 0.69 1.24

Sex Male 0.89 0.14 6.34 <0.001 0.62 1.17

Edema/Tumor Ratio −3.71 0.99 −3.74 <0.001 −5.65 −1.76

Tumor Number 1.78 0.38 4.75 <0.001 1.05 2.52

Edema Median Intensity* 1.37 0.43 3.21 0.001 0.54 2.21

Tumor Texture** −1.41 0.59 −2.40 0.016 −2.56 −0.26

ALK Tumor Number 3.05 0.60 5.12 <0.001 1.88 4.21

Edema Median Intensity* −1.76 0.88 −2.00 0.045 −3.48 −0.04

KRAS Edema/Tumor Ratio −16.80 3.89 −4.33 <0.001 −24.50 −9.22

Tumor Number −1.06 0.45 −2.32 0.020 −1.95 −0.17

Coef, Cox regression coefficient; se(coef), standard error of the Cox regression coefficient; lower 0.95, the lower bound of the 95% confidence interval; upper 0.95, the upper

bound of the 95% confidence interval; *Edema Median Intensity, Edema_Intensity_squareroot_Intensity_Median; **Tumor Texture, Tumor Texture log_sigma_3-mm_3D GLRLM

LongRunHighGrayLevelEmphasis; EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; KRAS, Kirsten rat sarcoma viral oncogene homolog.

FIGURE 4 | Radiomic scores of survival durations for EGFR, ALK, and KRAS mutation-positive groups. Each column represents the components of the radiomic

score for survival prediction for each mutation-positive group, as indicated on the left end. The color indicates the z-score for each feature, based on multivariate Cox

regression analysis, according to the scale shown on the right end. The numerical value of each Wald statistics is indicated with imbedded texts. Features with

positive values (red) are associated with shorter survival duration, while those with negative values are associated with longer survival duration. The corresponding Cox

regression coefficients of the features are shown in Table 4. *Edema Median Intensity: Edema_Intensity_squareroot_Intensity_Median. **Tumor Texture: Tumor Texture

log-sigma-3-mm-3D GLRLM LongRunHighGrayLevelEmphasis.

the z score listed in Table 4 are graphically presented in
Figure 4.

To assess the collective prognostic power of the features
that were statistically significantly associated with the patients’
survival, we constructed radiomic scores through a linear
combination of the significant radiomic features listed in Table 4

which were weighted by the coefficients. We then divided each
of the three patient groups into two subgroups based on the
radiomic scores, i.e., assigning those patients with the radiomic
scores lower than the median radiomic score of the group into a
lower score subgroup and assigning the rest of the patients in the
group into a higher score group. Figure 5 shows Kaplan–Meier
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FIGURE 5 | Kaplan–Meier plots for each mutation-positive group (A–C) separated into two subgroups by their radiomic scores (higher than or lower than the median

radiomic score for each mutation-positive group). The subgroup with radiomic score values higher than the median radiomic score of each mutation-positive group

had significantly shorter survival duration than the subgroup with values lower than the median radiomic score. The radiomic scores were computed as the weighted

average of the features shown in Table 4 (weighted by Cox regression coefficients).

plots of the two subgroups within each mutation-positive group
based on radiomic scores. In each of the three mutation-positive
groups, the subgroup with lower radiomic score had longer
median survival duration than that of the subgroup with higher
radiomic score.

DISCUSSION

In this study, we built machine learning models to predict
whether patients with EGFR, ALK, or KRAS mutation-positive
primary NSCLC survived longer than the median survival
duration for each specific mutation group. The final models of
our study used 50 radiomic features together with 18 clinical
features and achieved AUC of 0.977, 0.905, and 0.947 for the
three mutation-positive groups, i.e., EGFR, ALK, and KRAS
groups, respectively. Subsequently, we identified radiomic and
clinical features significantly associated with survival duration
for the patients in the three mutation-positive groups. Finally,
we constructed radiomic scores using linear combinations
of these features weighted with their coefficients in the
multivariate regression. After dividing each of the three mutation
groups into two subgroups according to radiomic scores, our
study showed that the subgroup with lower radiomic scores
had statistically significant longer median survival duration,
indicating strong association between radiomic scores and the
patients’ survival duration.

The performance of our predictive models compared
favorably to those of published predictive models based on the
computed tomography (CT) images of primary lung cancer
(25–28). Hosny et al. (29) used a 3D convolutional neural
network (CNN) to study prognostic stratification in a multi-
cohort radiomic study using the lung CT images of 1,194 patients
with NSCLC. Their models predicted whether patients could
survive longer than 2 years after treated either with radiotherapy
or surgery, and achieved AUC of 0.70 and 0.71, respectively. It
is challenging to compare our results, which were based on the
MRI radiomics of brain metastases, to the results of the deep
learning study which was based on lung CT images. Nevertheless,
judging by AUC values alone, the performance of our predictive

models was comparable to the work performed by deep learning
networks (29).

Our predictive models achieved reasonable performance as
compared to other studies using radiomic features from MR
images of brain metastases (30–33). For example, Béresová
et al. (33) demonstrated that using MR image-based textural
radiomic analysis could distinguish brain metastases originating
from lung cancer vs. breast cancer, achieving AUC of 0.70.
In another study, Ortiz-Ramon et al. (32) used radiomic
features extracted from MR images of brain metastases to
predict whether the primary cancer being lung cancer or
melanoma, achieving AUC of 0.95. Recently, Kniep et al., build
predictive models using radiomic features from MR images
to predict whether brain metastases originated from primary
breast cancer, small cell lung cancer, NSCLC, gastrointestinal
cancer, or melanoma. The AUC of their predictive
models were between 0.64 for NSCLC and 0.82 for breast
cancer (34).

Our approach using radiomic scores to predict survival
duration of NSCLC patients with brain metastases was novel.
We constructed radiomic scores with linear combinations
of 2–7 significant radiomic features for each mutation-
positive group, weighted by their Cox coefficients. Our
radiomic score calculations indicated that different sets of
radiomic features were significantly associated with survival
duration in different mutation groups. For example, an edema
feature, the Edema_Intensity_squareroot_Intensity_Median, was
significantly associated with survival duration of patients in
the EGFR and ALK mutation-positive groups, but not in
the KRAS mutation-positive group. Edema Tumor Volume
ratio on the other hand, was significantly associated with
survival duration in the EGFR and KRAS mutation-positive
groups, but not in ALK mutation-positive group. Our findings
indicated the potential mutation-specific association between
the radiomic features and survival durations. These results
were not unexpected since our radiomic scores were consisted
of features reflecting tumor heterogeneity such as edema
intensity and tumor texture which have been known to affect
survival (35).
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Our findings regarding the relationship between peritumoral
edema of brain metastases and the survival durations is generally
in line with published literature (35, 36). Spanberger et al.
studied the prognostic value of the extent of peritumoral brain
edema in the patients operated for single brain metastasis.
They reported a strong correlation between the extent of
peritumoral edema on brain MRI scans and overall survival,
i.e., patients with small peritumoral edema have longer survival
than patients with large peritumoral edema (35). Our current
study showed similar findings, i.e., lower edema/tumor ratio
in our radiomic scores indicated longer survival duration. In
addition, Berghoff et al. studied the role of tumor-infiltrating
lymphocytes (TIFs) in the immune microenvironment of 116
specimen of brain metastases originating from different primary
cancers including lung cancer, breast cancer, melanoma, and
renal cell carcinoma. They found that dense TIFs correlated
with peritumoral brain edema and the overall survival (36).
A recent study by Nardone et al. (37) has also shown that
the peritumoral edema and tumor volume of brain metastases
were correlated with overall survival in patients with NSCLC
undergoing radiosurgery. Taken together of the prior published
reports and our current study, there is supporting evidence
for incorporating brain tumor characteristics such as edema
and tumor volume into survival analysis of patients with
brain metastases.

The multivariate Cox regression in our study showed
that age at diagnosis, Caucasian race, and male gender,
were highly correlated with survival duration in the EGFR
mutation-positive group. This result was consistent with
literature indicating that age, active extracranial disease, and
EGFR mutation are independently associated with survival
(9). However, it is challenging to compare our analysis of
survival duration with others because of differences in study
cohorts, systemic disease status and treatment regimen for
both the primary cancers and brain metastases. Nevertheless,
it is reasonable to evaluate survival in terms of mutation
status since molecular targeted therapy based on mutation
information may improve prognosis and survival (38). For
instance, the progression-free and overall survival of patients
with EGFR and ALK mutations may be improved by treatment
with tyrosine kinase inhibitors and ALK inhibitors specifically
targeting these two mutations (38). Our study results provide
the pilot data supporting radiomic scores as non-invasive
biomarkers for assessment of survival duration in lung
cancer brain metastases according to the mutation status.
Nevertheless, independent validation is needed to substantiate
our results.

There were several limitations to this study. First, this was
a retrospective study focusing on NSCLC patients with brain
metastases who were treated at a single institution over a
9-year interval. Our study design was inherently limited by
various confounding variables, such as patient characteristics,
imaging parameters, and treatment regimens for the primary
NSCLC. Second, our sample size was modest, which might have
limited our ability to build more robust predictive models with
radiomic features. Third, the mutation status for this cohort
was obtained from the primary NSCLC. Since most patients

in our cohort did not undergo invasive biopsy or surgery of
the brain metastases, the brain metastases could not be directly
genotyped and we therefore assumed that brain metastases
having the same mutation status as the primary NSCLC. We
recognize this limitation with the understanding that mutation
status in the primary NSCLC and distant metastases may not
always be concordant (39). Lastly, this pilot study did not
evaluate or control for all the potential confounding factors
that might have contributed to survival duration, such as
primary tumor status, systematic disease status, neurological
deficits, and treatment regimen for the primary NSCLC and
brain metastases. This was because we did not have the
statistical power in this retrospective study with a modest
sample size to control for all the highly variable confounding
factors affecting survival. We recognize our approach for
building predictive models with the potential uncontrolled
variables may have affected our model performance. We will
consider those confounding factors in our future large-scale
multicenter research.

Despite these limitations, our study had strengths. First,
to the best of our knowledge, our study was the first to
use MRI radiomics of brain metastases and machine learning
algorithms to predict the survival durations of patients with
NSCLC, accounting for their mutation status. Second, we
used a 3D slice-by-slice approach to segment brain metastases
in their entirety, which we believe should have provided
a more detailed characterization of tumor heterogeneity
than what could be achieved using a 2D method (32).
Third, we constructed radiomic scores using both radiomic
features and clinical data, which improved predictive power
compared to the scores constructed using either clinical
data or radiomic data alone. Therefore, our study has merit
as an exploratory, proof-of-concept pilot study from which
to generate hypotheses for future large-scale, multicenter
studies using imaging biomarkers to predict survival durations
of patients with brain metastases from NSCLC and other
primary cancers.

In summary, our study showed that a MRI radiomic approach
capturing the critical radiological features of brain metastases
in patients with primary NSCLC may be used to predict
survival durations according to mutation status. Our data
supports the concept of using radiomic scores as non-invasive
imaging biomarkers for survival analysis, which is important
for personalized treatment and prognostic assessment for cancer
patients with metastatic disease.
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