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ABSTRACT OF THE DISSERTATION 

 

An improved event-driven model of presynaptic dynamics for large-scale simulations of 

biophysically realistic and diverse synapses 

 

by 

 

Jonathan William Garcia 

 

Doctor of Philosophy in 

Neurosciences, with a specialization in Computational Neurosciences 

 

University of California, San Diego, 2017 

 

Professor Terrence Sejnowski, Chair 

 

Chemical synapses exhibit a diverse array of internal mechanisms that affect the 

dynamics of transmission efficacy. Many of these processes, such as release of 

neurotransmitter and vesicle recycling, depend strongly on activity-dependent influx and 

accumulation of Ca
2+

. To model how each of these processes may affect the processing of 

information in neural circuits, and how their dysfunction may lead to disease states, requires 



 
 

xiv 
 

a computationally efficient modelling framework, capable of generating accurate 

phenomenology without incurring a heavy computational cost per synapse. In this 

dissertation, I derive physically grounded mathematical models of the instantaneous rate of 

Ca
2+

-triggered neurotransmitter release. The Ca
2+

 traces that drive these dynamics come 

from simulations in MCell of spike-evoked Ca
2+

 influx and buffered diffusion through the 

presynaptic space, an approach that overcomes observational limitations of physiological 

experiments. With these Ca
2+

 traces, I drive a validated kinetic model of the SNARE 

complex, which mediates spike-triggered vesicle fusion for both synchronous and 

asynchronous release. The profiles of the resulting release rate histograms inform the 

parameters of the phenomenological release models, including the time scales and the 

facilitation of release probability. Based on these results, I construct an event-driven model of 

presynaptic dynamics, treating all Ca
2+

-sensitive processes, not just vesicle release, as 

Poisson processes with decaying rate parameters that may undergo activity-dependent 

facilitation. This approach provides a unified framework for modelling both spontaneous and 

spike-evoked presynaptic vesicle dynamics, for an arbitrary number of processes that define 

interaction between an arbitrary number of vesicle pools and recycling pathways. I validate 

the model against MCell and demonstrate a runtime complexity that bridges the gap between 

full molecular simulations and abstract synaptic models. Furthermore, I verify that Ca
2+

-

dependent recycling mechanisms are essential for maintaining transmission fidelity during 

high-frequency stimuli. Finally, the versatility of the framework enables one both to model 

diverse types of synapses and to perform test and control modelling experiments by 

including different sets of features and controlling their rates and responsiveness. I present 

this model as a highly extensible tool for future investigations into the functional impact of 

different synaptic mechanisms on information processing and dysfunction in model networks.
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1 Introduction 

Chemical synapses constitute the primary means of direct communication 

between neurons throughout the nervous system, and throughout the brain in particular 

(Abbott & Regehr, 2004; Alabi & Tsien, 2012; Gross & von Gersdorff, 2016). When the 

action potential (AP) of the presynaptic neuron reaches the axon terminal, it triggers a 

sudden influx of Ca2+ that leads probabilistically to the fusion of synaptic vesicles with 

the plasma membrane and the release of neurotransmitter across the synaptic cleft 

(Branco & Staras, 2009; Edwards, 2007; Körber & Kuner, 2016). The neurotransmitter 

then binds to receptors on the membrane of the next neuron that initiate a post-synaptic 

current (PSC), which propagates the signal further (Dobrunz, Huang, & Stevens, 1997; K 

M Franks, Stevens, & Sejnowski, 2003; J. Y. Sun & Wu, 2001). How neurons integrate 

their inputs and generate signals in the context of larger neural circuits largely 

determines the sorts of computations that the network can perform (Scott, Cowan, & 

Stricker, 2012; M. Tsodyks, Pawelzik, & Markram, 1998). 

Very often, discussion of the activity in a network tends to focus on the APs 

(spikes) and subthreshold fluctuations in membrane potential (Buzsáki, Anastassiou, & 

Koch, 2012; Hahnloser, Kozhevnikov, & Fee, 2002; Morrison, Straube, Plesser, & 

Diesmann, 2007). These features are readily measured, either directly or indirectly, 

through patch-clamp recordings, microelectrodes, local field potentials, fluorescent Ca2+ 

reporters, and other methods (Kitamura, Judkewitz, Kano, Denk, & Häusser, 2008; 

Knöpfel, 2012; Scanziani & Häusser, 2009; Shew, Bellay, & Plenz, 2010; Spira & Hai, 

2013), which can be recorded in vivo, even in awake, behaving animals. Intracortical 

brain-computer interfaces (BCIs) that record live neural activity from the motor cortex of 

paralytics and amputees have even been used in recent years to train machine learning 
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models to control prosthetic limbs (Collinger et al., 2013; Hochberg et al., 2006; Klaes et 

al., 2014). The utility of these measurements, however, depends on the relevance of the 

spike code to neural information processing. Biological neural networks need to 

represent information in a way that confers behavioral utility, quite unlike computers, 

which store and process all the information they receive, regardless of its usefulness. 

Since so much of the information in the environment is irrelevant to survival, synapses 

may not be optimized to transmit all information faithfully, but rather selectively. 

Significantly, neurons do not directly see the spiking activity of their neighbors at 

chemical synapses, but only detect presynaptic activation upon the release of 

neurotransmitter, which is a stochastic process (Branco & Staras, 2009). Synapses form 

the basis for learning and information processing, and short-term plasticity (STP) defines 

a transformation from a spiking code to a neurotransmitter release code. All spiking 

activity is filtered through the dynamics of probabilistic synaptic release before the rest of 

the network can see it. This implies that one must first have an accurate model of 

release dynamics in order to understand the true nature of information processing of 

brain circuits. Such a model  could, for instance, provide a crucial preprocessing step of 

motor cortex for training BCI-based prosthetics, or it could enable more accurate 

computation of the information capacity of sensory cortex by studying the “language” 

that neurons actually receive rather than simply the output that they generate 

(Rosenbaum, Rubin, & Doiron, 2012; Rotman, Deng, & Klyachko, 2011; Salmasi, 

Stemmler, Glasauer, & Loebel, 2017; Scott et al., 2012; Veletić, Floor, Chahibi, & 

Balasingham, 2016). 

Synaptic dysfunction has been implicated in numerous psychological disorders, 

including schizophrenia (Crabtree & Gogos, 2014; Vawter et al., 2002), bipolar disorder 

(Vawter et al., 2002), ASD (Giovedi, Corradi, Fassio, & Benfenati, 2014), and fragile X 
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syndrome (Deng, Soika, & Klyachko, 2011). To ascertain exactly what role synapses 

play and what specific mechanisms might be causing or exacerbating these diseases, 

controlled experiments would need to be performed on the brain circuits of interest, 

testing which changes to synaptic function might push the network into a pathological 

state. Doing this in humans would pose significant problems, both technical and ethical. 

However, with a computational model that exhibits sufficient realism and scalability, such 

experiments become possible in large simulated networks, which could provide 

important insight into what sorts of targeted therapies to explore for treating or curing 

these diseases. 

Current synaptic models either lack the necessary complexity and flexibility to 

represent realistic release dynamics accurately or they have so high a computational 

cost that it severely limits scalability for simulating sizable networks. Simple multiplicative 

weights, which represent synaptic strength in many models (Chapeau-Blondeau & 

Chambet, 1995), have no short-term dynamics and cannot act as temporal filters of 

presynaptic activity. More complex models include features such as stochastic release, 

short-term facilitation, and short-term depression (Kandaswamy, Deng, Stevens, & 

Klyachko, 2010; Maass & Zador, 1999; M. V. Tsodyks & Markram, 1997), but their 

phenomenology is often too abstract for studying how internal synaptic mechanisms 

affect the network level (see Discussion 4.4 for more). On the other hand, highly detailed 

models like MCell, which tracks the kinetics and interactions of thousands of molecular 

and ionic species in a three-dimensional model of presynaptic space (R. A. Kerr et al., 

2008; Nadkarni, Bartol, Sejnowski, & Levine, 2010; Stiles & Bartol, 2001; Stiles, van 

Helden, Bartol, Salpeter, & Salpeter, 1996), can achieve a high degree of realism and 

provide useful insights into how biomolecular systems function in the absence of 

scientific interventions (Bartol et al., 2015). Such models, when properly constrained by 
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experimental data, automatically reproduce observed features such as the facilitation 

and depression of probabilistic release and the release that occurs asynchronously 

relative to spike times (Nadkarni et al., 2010). However, it quickly becomes too 

computationally expensive, in terms of both memory requirements and number of 

processing steps, to scale up to the many synapses that exist even in relatively simple 

neural circuits. As mentioned previously, several psychological disorders may be due to 

dysfunction in mechanisms of short-term plasticity (Crabtree & Gogos, 2014; Deng et al., 

2011; Giovedi et al., 2014; Vawter et al., 2002), but modeling is necessary to understand 

the nature of the effect. Efficient, simple models are unable to capture realistic dynamics 

and cannot be easily applied to study disease states in networks. On the other end, 

realistic molecular models like MCell may require hours to simulate a few hundred 

milliseconds of a single synapse and are thus unsuitable for network simulations. 

The goal of this dissertation, therefore, is to develop a presynaptic model that 

captures realistic phenomenology while maintaining computational scalability. To that 

end, I first uncover a mathematical model that describes the phenomenology of 

presynaptic dynamics, using MCell as ground truth. Second, I build an asynchronous, 

event-driven model that captures this same phenomenology at a small fraction of the 

computational cost. The model fills a gap in the spectrum between highly efficient but 

unrealistic synaptic models on the one hand and highly realistic but non-scalable models 

on the other. Additionally, the structure of the model presented here permits a high 

degree of flexibility, allowing one to add or remove synaptic components and processes 

with ease. This can be useful both for representing numerous synaptic types with a 

single framework and for uncovering the synaptic processes important in information 

processing and in disease states through controlled manipulation of synaptic features. I 

produced the model using object-oriented programming in MATLAB (see 
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github.com/soiens24/Presynaptic_Framework for source code), but it can easily be 

adapted to any programming language. The various classes comprise a software 

package that gives computational neuroscientists a tool to model virtually any kind of 

synapse with an almost arbitrary degree of abstraction. 
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2 Characterizing the Dynamics of Position- 

and Stimulus-Dependent Synaptic Release 

Rate at High Temporal Resolution from 

Molecular Simulations 

Constructing a phenomenologically realistic model requires the precise 

characterization of the timing and probability of neurotransmitter release. Difficulties 

arise in that functional forms of instantaneous release rate can be difficult to extract from 

noisy data without running many thousands of trials, and in biophysical synapses, 

facilitation of per-vesicle release probability is confounded by depletion. To overcome 

this, we obtained traces of free Ca2+ concentration in response to various action potential 

stimulus trains from an MCell model of a hippocampal mossy fiber axon. Ca2+ sensors 

were placed at varying distance from a voltage-dependent calcium channel (VDCC) 

cluster, and Ca2+ was buffered by calbindin. Then, using the calcium traces to drive 

deterministic state vector models of synaptotagmin 1 and 7 (Syt-1/7), which respectively 

mediate synchronous and asynchronous release in excitatory hippocampal synapses, I 

obtained high-resolution profiles of instantaneous release rate, to which I applied 

functional fits. Synchronous vesicle release occurred predominantly within half a micron 

of the source of spike-evoked Ca2+ influx, while asynchronous release occurred more 

consistently at all distances. Both fast and slow mechanisms exhibited multi-exponential 

release rate curves, whose magnitudes decayed exponentially with distance from the 

Ca2+ source. Profile parameters facilitate on different time scales according to a single, 

general facilitation function. These functional descriptions lay the groundwork for efficient 

modelling of vesicular release dynamics. 
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2.1 Methods 

2.1.1 MCell as Ground Truth 

Basing the new model on MCell has distinct advantages over biological experiments in 

terms of both flexibility and precision when it comes to model validation. As an example, 

estimates of [Ca2+]i in neurons obtained from fluorescent reporters in physiological 

experiments may provide accurate estimates of slow (tens of milliseconds) Ca2+ 

transients (Grewe & Helmchen, 2014; Grienberger & Konnerth, 2012), but the buffering 

kinetics of the calcium reporters can act as a low-pass filter, obscuring the faster (0-5 

milliseconds) components of Ca2+ dynamics (Bartol et al., 2015). Molecular simulations 

like MCell, on the other hand, can capture these fast transients, since they track every 

particle, which may be crucial for correctly modeling fast, Ca2+-dependent synaptic 

processes like synchronous vesicular release of neurotransmitter (Kaeser & Regehr, 

2014) (see Figure 6 from (Bartol et al., 2015)). 

Furthermore, neurotransmitter release may occur asynchronously with respect to 

the arrival time of action potentials, following some time-dependent distribution (Kaeser 

& Regehr, 2014). Experimental methods for determining release rate would offer far less 

control of presynaptic conditions over the number of trials that would be required to 

tease out the same resolution of detail as is possible with controlled simulations. 

Therefore, we choose to constrain ourselves to validating the current model of 

presynaptic release to MCell, which has itself been validated already against 

hippocampal Schaffer collateral synapses (Nadkarni et al., 2010). 

2.1.1.1 Spike-Evoked Ca
2+

 Kinetics 

The MCell model used as a basis for the current model’s design and validation comes 

from Nadkarni et al. (2010). It includes mechanisms for voltage-sensitive Ca2+ influx and 
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for Ca2+ buffering in the presynaptic space, with pumps and channels in the membranes 

to maintain a steady-state average free Ca2+ concentration of100 nM (Simons, 1988). 

When an action potential arrives at the presynaptic membrane, voltage-

dependent Ca2+ channels (VDCCs) open stochastically, traversing through four 

unopened states via voltage-dependent state transition rates (Bischofberger, Geiger, & 

Jonas, 2002) (see Figure 2.1A), producing a huge Ca2+ influx due to the sharp 

electrochemical gradient (Figure 2.1C) (Simons, 1988). The VDCCs very quickly shut off 

after the membrane potential returns to baseline (see Figure 2.5B in Results 2.2.1), and 

the newly introduced Ca2+ ions diffuse randomly in the presynaptic space. Vesicle fusion 

occurs when a sufficient number of Ca2+ ions have diffused over and bound to the 

release machinery associated with the SNARE complex of a docked vesicle (Nadkarni et 

al., 2010; J. Sun et al., 2007; Südhof, 2013a) (see Methods 2.2.1.3). A 45-μM buffer of 

calbindin (CB; Figure 2.2B) controls the magnitude and duration of the free Ca2+ (Nägerl, 

Novo, Mody, & Vergara, 2000), and plasma membrane Ca2+-ATPase (PMCA; Figure 

2.2A) pumps actively remove Ca2+ ions over a time course of seconds (Sneyd et al., 

2003) to the baseline [Ca2+]i of 100 nM (Nadkarni et al., 2010; Simons, 1988). Parameter 

values are given in Table 2.1. 
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Figure 2.1: Voltage-Dependent Ca2+ Channel Kinetics. 

VDCC model adapted from Bischofberger et al.(2002). (A) State transition diagram for 

VDCCs, reused with permission from Nadkarni et al. (2010); transition rates 𝛼𝑖𝑗 and 𝛽𝑗𝑖 

depend on membrane potential 𝑣. (B) Tail current of Ca2+ ions through VDCCs as a 

function of membrane potential. (C) VDCCs mediate Ca2+ influx down a sharp 

electrochemical gradient from a relatively high extracellular concentration to a very low 

intracellular concentration. 
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Figure 2.2: State Diagrams for PMCA and Calbindin. 

Reproduced with permission from Nadkarni et al. (2010). (A) PMCA pump state diagram 

with Ca2+ interactions depicted on the relative side of the membrane. Ca2+ leakage 

occurs only in state 𝑃𝑀𝐶𝐴0. Association rate 𝑘𝑝𝑚1 is proportional to [Ca2+]i. (B) State 

transitions for calbindin (CB) at high-affinity (H) and medium-affinity (M) Ca2+-binding 

sites. On rates (𝑘ℎ+ and 𝑘𝑚+) are proportional to [Ca2+]i. 
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Table 2.1: Parameter Values for VDCC, PMCA, and Calbindin. 

Table adapted from (Nadkarni et al., 2010). VDCC rates follow 𝛼𝑖(𝑣) = 𝛼𝑖0 exp(𝑣 𝑣𝑖⁄ ) and 

𝛽𝑖(𝑣) = 𝛽𝑖0 exp(−𝑣 𝑣𝑖⁄ ). VDCC parameters values adapted from (Bischofberger et al., 

2002). PMCA parameter values adapted from (Sneyd et al., 2003). Calbindin parameter 

values adapted from (Nägerl et al., 2000). 

Parameter Value 

VDCC - (Bischofberger et al., 2002) 

𝛼10, 𝛼20, 𝛼30, 𝛼40 4.04, 6.70, 4.39, 17.33 ms−1 

𝛽10, 𝛽20, 𝛽30, 𝛽40 2.88, 6.30, 8.16, 1.84 ms−1 

𝑣1, 𝑣2, 𝑣3, 𝑣4 49.14, 42.08, 55.31, 26.55 mV 

PMCA - (Sneyd et al., 2003) 

𝑘𝑝𝑚1 1.5 × 108  M−1s−1 

𝑘𝑝𝑚2 20 s−1 

𝑘𝑝𝑚3 100 s−1 

𝑘𝑝𝑚4 1.0 × 105 s−1 

𝑘𝑝𝑚𝑙𝑒𝑎𝑘 12.264 s−1 

Calbindin-D28k - (Nägerl et al., 2000) 

𝑘ℎ+ 5.5 × 106  M−1s−1 

𝑘ℎ− 2.6 s−1 

𝑘𝑚+ 4.35 × 107 M−1s−1 

𝑘𝑚− 35.8 s−1 
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2.1.1.2 Estimating [Ca
2+

]i from Collision Events 

Because of the quantized nature and low concentration of Ca2+ ions in the presynaptic 

space, calculating the instantaneous local calcium concentration just around the SNARE 

complex of a single docked vesicle is nontrivial in MCell. Instead, we use effector tiles, 

small virtual surfaces in the presynaptic space of the MCell environment, to estimate 

local concentration from the frequency of calcium ions passing through them. This 

section provides a derivation of average [Ca2+]i from the number of “hits”, 𝑁𝐻, of calcium 

ions through the effector tile surface. 

For a particle diffusing by Brownian motion in 𝑑 dimensions, the probability 

density function 𝜌 of the particle’s displacement 𝑟 from its initial position after a time Δ𝑡 is 

equal to 

 𝜌(𝑟, Δ𝑡) =
1

𝜋𝑑 2⁄ 𝜆𝑑
e−𝑟

2 𝜆2⁄ , 
(2.1) 

where 𝜆 is a diffusion length parameter that depends on the diffusion constant and time 

step. Since we are dealing with calcium, we use 

 𝜆𝐶𝑎 = √4𝐷𝐶𝑎Δ𝑡, (2.2) 

where 𝐷𝐶𝑎 = 220 μm
2/sec is the calcium diffusion constant (Nadkarni et al., 2010). More 

directly useful, though, is the average step length along any given axis, in particular, 

along the component perpendicular to the calcium-detecting surface: 

 𝑙⊥̅ =
𝜆𝐶𝑎

√𝜋
= √

4𝐷𝐶𝑎Δ𝑡

𝜋
. 

(2.3) 

Thinking about the effective volume near the effector tile, the expected number of hits of 

particles through the surface from either side during the interval Δ𝑡 becomes 

 𝑁𝐻 = 𝑁𝐴𝑙⊥̅𝐴𝐸𝑇[Ca
2+]𝑖, (2.4) 
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where 𝑁𝐴 is Avogadro’s number and 𝐴𝐸𝑇 is the area of the effector tile. Solving for 

concentration, 

 [Ca2+]𝑖 =
𝑁𝐻

𝑁𝐴𝑙⊥̅𝐴𝐸𝑇
. 

(2.5) 

Now, the average concentration from the start of the simulation until time 𝑡 becomes 

 𝑐(𝑡) =
𝑁𝐻(𝑡)

𝑁𝐴𝑙⊥̅𝐴𝐸𝑇
⋅
Δ𝑡

𝑡
, 

(2.6) 

where 𝑁𝐻(𝑡) is the running total number of hits. To find the average Ca2+ concentration 

over an arbitrary interval [𝑡𝑖, 𝑡𝑗]: 

 〈[Ca2+]𝑖([𝑡𝑖, 𝑡𝑗])〉 =
𝑡𝑗𝑐(𝑡𝑗) − 𝑡𝑖𝑐(𝑡𝑖)

𝑡𝑗 − 𝑡𝑖
 

(2.7) 

For each spike train used as input to the simulation, we averaged the instantaneous 

local active zone calcium concentration over 2000 trials in time steps of 0.1 ms. 

2.1.1.3 State Transitions of Ca
2+

-Sensitive Release Mechanism 

Most directly relevant to the characterization of the phenomenological model, though, 

are the Ca2+-dependent dynamics of vesicle fusion mediated by the SNARE complex. 

Soluble N-ethylmaieimide-sensitive factor attachment protein receptors (SNAREs), 

including the vesicle-membrane-bound synaptobrevin (v-SNARE) and the target-

membrane-bound syntaxin and SNAP-25 (t-SNAREs), bind synaptic vesicles to the 

plasma membrane, forming energetic SNAREpin complexes where the α-helices of the 

v-SNAREs entwine with those of the t-SNAREs (F. Li et al., 2007; Pobbati, Stein, & 

Fasshauer, 2006; Sutton, Fasshauer, Jahn, & Brunger, 1998). Synaptotagmin (Syt) 

proteins embedded in the membrane associate with the SNARE complex and act as 

Ca2+-sensitive triggers for vesicle fusion. When a sufficient number Ca2+ ions binds to 

the C2 domains of synaptotagmin, it undergoes a conformational change that triggers the 
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associated SNAREpin to zipper completely, causing the vesicle to fuse with the 

membrane and to release its neurotransmitter through the newly opened fusion pore 

(Fernandez et al., 2001; F. Li et al., 2014; Ubach et al., 2001; Ubach, Zhang, Shao, 

Südhof, & Rizo, 1998; Zhu & Stevens, 2008) (see Figure 2.3). 

 

 

Figure 2.3: SNARE Complex Structure and Dynamics. 

(A) SNAREpins prior to vesicle fusion. (B) Binding of Ca2+ to synaptotagmin (Syt-1 here, 

Syt-7 attaches to target membrane (Schiavo, Stenbeck, Rothman, & Söllner, 1997; 

Sugita et al., 2001)) triggers full zippering of SNARE complex and, in turn, vesicle fusion 

(Südhof, 2013a, 2013b). 

 

Although many more proteins are involved in coordinating release kinetics at 

active zones (Imig et al., 2014; J. S. Lee, Ho, Neher, & Lee, 2013; Sudhof, 2004; 

Südhof, 2013a, 2013b; Südhof & Rothman, 2009; Tang et al., 2006; Varoqueaux et al., 

2002), for validation purposes we restrict the scope of this chapter to the function of 

synaptotagmins. The model of release used by MCell follows the dual Ca2+-sensor 

model of Sun et al. (2007), which includes mechanisms for both fast/synchronous and 

slow/asynchronous release. In excitatory hippocampal synapses, these synchronous 

and asynchronous modes of release may correspond to the roles of synaptotagmin-1 
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(Syt-1) and synaptotagmin-7 (Syt-7), respectively (Bacaj et al., 2015; Bacaj et al., 2013; 

Kochubey, Lou, & Schneggenburger, 2011; Luo, Bacaj, & Südhof, 2015; Maximov et al., 

2008; Schonn, Maximov, Lao, Südhof, & Sørensen, 2008). The model incorporates 

cooperative binding of Ca2+ to multiple sites on the sensor, requiring five Ca2+ ions 

before triggering synchronous release and two Ca2+ ions for asynchronous release (see 

Figure 2.4). Because both binding and unbinding rates for the synchronous mechanism 

are substantially higher than those for the asynchronous mechanism, Syt-1 produces 

rapid release over a very narrow window relative to spike arrival time, while Syt-7 

produces slow release over a much more extended window (see Results 2.2.3). Table 

2.2 contains the values used in this model for Ca2+-binding and unbinding rates with 

each release mechanism, along with the rates of vesicle fusion from the fully bound 

states (𝛾𝑆 and 𝛾𝐴) and the time constant for the post-release refractory period (𝜀) 

(Dobrunz et al., 1997; Stevens & Wang, 1995), which features in the Nadkarni et al. 

(2010) MCell model. 
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Figure 2.4: Synaptotagmin-Mediated Neurotransmitter Release State Diagram. 

Model adapted from Sun et al. (2007). (A) Ca2+-bound states for Syt-1 (synchronous 

release); 𝑆𝑛 indicates 𝑛 Ca2+ ions bound to the synchronous release mechanism. (B) 

Ca2+-bound states for Syt-7 (asynchronous release); 𝐴𝑛 indicates 𝑛 Ca2+ ions bound to 

the asynchronous release mechanism. (A, B) 𝛾𝑆 and 𝛾𝐴 represent rates of vesicle fusion 

from the releasable states of the synchronous and asynchronous mechanisms, 

respectively. 

 

Table 2.2: SNARE Release State Transition Parameters. 

Values taken from Nadkarni et al. (2010), adapted from Sun et al. (2007). 

synchronous asynchronous other parameters 

𝒌𝑺+ 6.12 × 107  M−1s−1 𝒌𝑨+ 3.82 × 106  M−1s−1 𝒃 0.25 

𝒌𝑺− 2.32 × 103  s−1 𝒌𝑨− 13 s−1 𝜺 6.34 ms 

𝜸𝑺 6.0 × 103 s−1 𝜸𝑨 50 s−1   
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2.1.2 Deterministic Simulations of State Probabilities 

With the Ca2+ profiles obtained for each spike-evoked simulation in MCell and with the 

state transitions for the release mechanisms defined above, the corresponding vesicle 

release-rate profiles become computable. While MCell does generate its own set of 

release times, they lack the desired level of precision for fitting phenomenological 

functions to the release histograms without running an infeasibly large number of 

simulations. Furthermore, vesicle depletion following release events confounds the 

representation of release rate, its functional form, and its facilitation dynamics. 

Therefore, instead of running millions of trials of MCell (or more) to produce temporally 

precise single-vesicle release rate histograms, we used the averaged calcium profiles 

from 2000 trials to drive a deterministic simulation of the SNARE complex, in particular, 

of the probabilities of being in each state as functions of time. This approach, in effect, 

produced the average release histograms equivalent to an infinite number of trials acting 

on the averaged calcium traces. 

This simulation tracked the probabilities of a particular release mechanism being 

in each possible state at every time step. That is, each state represents the number of 

Ca2+ ions bound to the release molecule (0 through 5 for Syt-1 (synchronous) and 0 

through 2 for Syt-7 (asynchronous)). State probabilities add to unity, and they update on 

each time step according to a Ca2+-dependent state transition matrix. Specifically, for 

mechanism 𝑋 with 𝑁𝑋 calcium ions needed for release to occur, the binding rate is 

 𝑇𝑛+1,𝑛 = (𝑁𝑋 − 𝑛) ⋅ 𝑘𝑋+ ⋅ [Ca
2+]𝑖 , (2.8) 

and the unbinding rate is 

 𝑇𝑛−1,𝑛 = 𝑛 ⋅ 𝑏
𝑛−1 ⋅ 𝑘𝑋− (2.9) 

for 𝑛 ∈ {0… 𝑁𝑋} ions currently bound, where 𝑏 = 0.25 acts as a binding cooperativity 

factor (see Figure 2.4 for state diagram and Table 2.2 for values). 
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The state transition matrix is thus a tridiagonal (𝑁𝑋 + 1) × (𝑁𝑋 + 1) matrix 𝐓 

whose superdiagonal terms are the unbinding rates, moving from a higher to a lower 

state, and whose subdiagonal terms are the binding rates, moving from a lower to a 

higher state. To maintain a constant sum for the state probability vector 𝐬(𝑡) (an 

(𝑁𝑋 + 1) × 1 column vector), the diagonal terms must follow the combined rate of leaving 

the current state (through binding or unbinding): 

 

𝑇𝑛,𝑛 = −(𝑇𝑛+1,𝑛 + 𝑇𝑛−1,𝑛) 

         = −((𝑁𝑋 − 𝑛) ⋅ 𝑘𝑋+ ⋅ [Ca
2+]𝑖 + 𝑛 ⋅ 𝑏

𝑛−1 ⋅ 𝑘𝑋−). (2.10) 

With a time step of Δ𝑡, the state vector on the next time step will be 

 𝐬(𝑡 + Δ𝑡) = [𝐈 + Δ𝑡 ⋅ 𝐓([Ca2+]𝑖(𝑡))]𝐬(𝑡). (2.11) 

The above description, however, does not take into account vesicle fusion. Each 

mechanism 𝑋 induces neurotransmitter release at a certain rate 𝛾𝑋 (see Table 2.2) from 

its releasable state (all Ca2+ ions bound). When release occurs, the vesicle can no 

longer participate in further activity. Therefore, before applying the transition matrix, the 

occupancy of the releasable state decreases by the probability of a release occurring 

during the time step: 

 𝑠𝑁𝑋 ← 𝑠𝑁𝑋 ⋅ (1 − 𝛾𝑋Δ𝑡). (2.12) 

However, this still leaves the same problem as before, where depletion obscures the 

single-vesicle probabilistic release rate. To account for this, we then normalize the state 

vector at each time step by the probability of no release event having occurred, such that 

the occupancies in each state again add to one: 

 𝐬(𝑡) ←
𝐬(𝑡)

‖𝐬(𝑡)‖
. 

(2.13) 

If one considers the deterministic simulation to represent a state histogram 

averaged over an infinite number of trials, this normalization step effectively “zooms in” 
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on the fraction of trials at each time step for which no release occurred. Thus, the model 

tracks the instantaneous Ca2+-dependent rate of release for each mechanism, given that 

no release has yet occurred since the start of the simulation. This permits the 

calculation, for example, of the equilibrium probabilistic state vector for a docked vesicle, 

which is necessary for initializing all other simulations, using the steady-state Ca2+ 

concentration (100 nM in MCell: (Nadkarni et al., 2010)) as input to the simulation. From 

these, it is possible to determine the steady-state release rates for each mechanism, 

even though they are very small (see Table 2.2 in Methods 2.1.1.3). 

A similar approach was used for calculating the states of the well-mixed models, 

and the resulting Ca2+ traces, as functions of time. For these simulations, diffusion was 

assumed to occur instantaneously, effectively eliminating space from consideration, but 

all other mechanisms from the original MCell model were included (see Figures 2.1, 2.2, 

2.4 and Tables 2.1, 2.2 in Methods 2.1.1). 

2.1.3 Stimulus Protocols for Exploring Facilitation 

Whereas simulations with single action potentials (APs) can elucidate the functional form 

of synchronous and asynchronous release, stimulus trains of multiple spikes can reveal 

the dynamics of facilitation in release probability, which is well documented 

experimentally (Neher & Sakaba, 2008; Rosahl et al., 1993; Stevens & Wang, 1995; 

Thomson & Bannister, 1999; M. Tsodyks et al., 1998; Varela et al., 1997; Zucker & 

Regehr, 2002). Short-term facilitation in release probability is more pronounced for 

spikes closer together in time than for those separated by long intervals. To investigate 

how delay affects probability of release, we studied paired-pulse facilitation (PPF) for 

interspike intervals (ISIs) of exponentially increasing delay. Specifically, we stimulated 

the MCell model with paired pulses of AP-like waveforms separated by 2, 5, 10, 20, 50, 
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100, and 200 ms and measured the local [Ca2+]i at a point within the axon, as described 

in Methods 2.1.1.2. These Ca2+ traces then drove deterministic simulations of 

synchronous and asynchronous release rate, as described in Methods 2.1.2. This 

permitted me to determine a functional form to describe PPF (see Results 2.2.5). 

Realistic spike trains, however, involve patterns much more complex than paired 

pulses, and the recent history of presynaptic activity can have a strong effect on future 

changes in release probability. To see how facilitation evolves in more complex trains of 

APs, we designed a protocol to explore the full space of possible facilitated states, 

assuming that the level of facilitation experienced on one spike depends exclusively on 

the delay since the previous spike (the interspike interval, or ISI) and on the state of 

some internal facilitation parameter from the previous spike. The spike trains generally 

consist of two phases: a spiking ramp and a probe spike. The ramp phase explores how 

facilitation develops with multiple spikes at fixed ISIs and having anywhere from one to 

five spikes with an ISI of 2, 5, 10, or 20 ms (time prevented the exploration of ramps with 

more spikes). The probe phase explores how facilitation wears off with increasing delay 

between spikes and consists of a single spike at 2, 5, 10, 20, 50, 100, or 200 ms after 

the end of the ramp, as in the PPF protocol above. All these combinations of ramps and 

probes add up to 5 × 4 × (7 + 1) = 160 cases (including those cases without a probe 

spike) or 136 unique spike trains (discounting the repeats with one spike in the ramp at 

different ISIs). 

2.1.4 Algorithms for Fitting Parameters and Metaparameters 

Fitting parameter values to the shapes of the release-rate histograms involved two 

steps: first, obtaining an initial guess, and second, optimizing the parameter values to a 

best-fit set. For the first step, the time constants for rate decay (see Equations 2.17, 
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2.18, etc. in Results 2.2.3) were found from the slopes of the logarithms of the profiles 

(see Equation 2.16 and Figure 2.9 in Results 2.2.2) in response to both Ca2+ impulse 

and the Ca2+ traces derived from MCell (see Results 2.2.1, 2.2.2). Other parameters 

were initialized through trial and error. For the second step, I applied the Nelder-Mead 

simplex method of function optimization (McKinnon, 1998; Nelder & Mead, 1965) to 

minimize the error function over the parameters. This method does not require a 

measure of the error gradient, which was not exactly computable. The error function was 

computed as the fraction of the variance unexplained (FVU) by the model, as in 

 FVU(𝑦(𝑡), 𝑓(𝑡)) =
∑ (𝑦(𝑡𝑛) − 𝑓(𝑡𝑛))

2𝑁𝑡
𝑛=1

∑ (𝑦(𝑡𝑛) − 𝑦̅)
2𝑁𝑡

𝑛=1

, 
(2.14) 

where 𝑦̅ is the mean release rate, 𝑦(𝑡) is the true release histogram shape, and 𝑓(𝑡) is 

the model profile at the same 𝑁𝑡 time points. More precisely, the error function 𝜖 is a 

linear combination of the FVU for the function and for the logarithm of the function: 

 𝜖(𝑦(𝑡), 𝑓(𝑡)) = 𝛼 ⋅ FVU(𝑦(𝑡), 𝑓(𝑡)) + 𝛽 ⋅ FVU(log(𝑦(𝑡)) , log(𝑓(𝑡))), (2.15) 

where 𝛼 and 𝛽 are constants. The metaparameters of the facilitation functions (see 

Results 2.2.5.1) were fitted after the parameters were fitted to the release profiles in 

response to each spike of the trains described in Methods 2.1.3. The fitted parameters 

were taken as true, and the space of the logarithms of the metaparameters 𝜏, 𝑁, and 

𝐿 = 𝑁𝜉 (see Results 2.2.5.1) was explored, using the same error function and 

optimization as above. 

2.2 Results 

2.2.1 MCell and Deterministic Simulations 

In response to an action potential (AP) stimulus, voltage-dependent Ca2+ channels 

(VDCCs) transition stochastically to an open state, through which Ca2+ ions may enter 
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the axon down a sharp electrochemical gradient (Bischofberger et al., 2002; Körber & 

Kuner, 2016). Because this process does not depend on diffusion, a deterministic 

simulation of state probabilities can perfectly capture the shape of the histogram of Ca2+ 

influx rate averaged over infinite trials, as in Figure 2.5. Notice that the rate of influx rises 

to a peak and returns completely to baseline within a span of about 2 ms, so any spike-

evoked vesicle fusion after this initial influx is due entirely to internal dynamics as Ca2+ 

diffuses, interacts with the buffer and Ca2+ sensors, and vacates through the pumps. 

Most neurotransmitter release occurs within a sharp window after an AP stimulus 

(Sakaba, 2006; Schneggenburger & Neher, 2000; Wölfel, Lou, & Schneggenburger, 

2007; Xu, Pang, Shin, & Südhof, 2009). The presence of the Ca2+ buffer calbindin plays 

an instrumental role in this by rapidly removing most of the free Ca2+ and then slowly 

releasing it over an extended period at a rate that the active PMCA pumps can handle. 

This action significantly tightens the window for Syt-1-mediated synchronous release 

(Delvendahl et al., 2015; Fioravante & Regehr, 2011) while also extending the time 

window for Syt-7-mediated asynchronous release. Without a buffer, however, the free 

[Ca2+]i does not drop off immediately but decays linearly toward baseline over a few tens 

of milliseconds, saturating the capacity of the PMCA pumps to remove the ions (Figure 

2.6A,B). Thus, removing calbindin from the simulations both amplifies synchronous 

release in a time window near the spike and suppresses asynchronous release long 

after the stimulus (Figure 2.6C,D). This agrees with experimental evidence that 

endogenous Ca2+ buffers limit the rate of synchronous synaptic release (Delvendahl et 

al., 2015). 
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Figure 2.5: Action-Potential-Evoked Ca2+ Current. 

(A) AP-like waveform applied to axon. (B) Probability of a single VDCC being in the open 

state in response to the AP in (A) increases from about 10−5 to around 96% during the 

spike before quickly shutting off; computed from deterministic simulation of state 

probabilities (see Methods 2.1.1.1, 2.1.2). (C) Rate of Ca2+ influx through a single, 

pathologically open channel (red) and through a typical channel (blue), whose probability 

of being open follows (B).  
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Figure 2.6: Effect of Calbindin Buffer on Spike-Evoked Ca2+ Profile and Release 

Rates. 

AP-like stimulus delivered to model axon starting at 0 ms. Diffusion is assumed to be 

instantaneous, and molecular state probabilities are tracked deterministically over time 

(see Methods 2.1.1.3, 2.1.2). (A) Free [Ca2+]i with no calbindin buffer decays linearly with 

time due to saturation of PMCA pumps. (B) Syt-1/7-mediated release rates are large but 

short-lived in response to unbuffered Ca2+. (C) Free [Ca2+]i with calbindin added to the 

axon has much smaller magnitude and much narrower peak but has much longer tail. 

(D) Vesicle release in response to buffered Ca2+ is much less pronounced. The calbindin 

buffer reduces the rate of synchronous transmission but extends the window for 

pronounced asynchronous transmission. 
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Diffusion plays a key role in all of these processes. Simplified models of Ca2+-

dependent presynaptic dynamics may assume that the synapse is locally well mixed, 

equivalent to saying that diffusion happens infinitely fast, at least relative to the spatial 

and temporal scales being studied. However, MCell allows one to add a spatial 

component to molecular simulations, which can account for certain phenomena that well 

mixed molecular kinetics models cannot capture (Rex A Kerr et al., 2008; Stiles & Bartol, 

2001; Stiles et al., 1996). In this case, diffusion of the Ca2+ and calbindin through the 

axonal volume reveals how distance from the Ca2+ source affects both the timing and the 

probability of spike-evoked vesicle release. Figure 2.7 compares the deterministic 

simulation without diffusion to the equivalent MCell simulations performed at multiple 

distances from the VDCC Ca2+ source. The shape of the Ca2+ transient measured in 

MCell displays marked qualitative differences from that obtained without diffusion: Ca2+ 

sensors near the VDCC source see a much higher peak concentration with an extra 

component of decay immediately following the peak; those farther away progressively 

lose the fast peak until nothing is left but an extremely small distance-independent 

component. The extra component of the proximal Ca2+ curve, which does not appear in 

the well-mixed model, likely arises from local saturation in the nanodomains near the 

VDCC cluster, where the very high free [Ca2+]i temporarily saturates both the calbindin 

buffer and the PMCA pumps (Fioravante & Regehr, 2011). Farther out, the MCell model 

qualitatively matches the well-mixed model more closely, until at very large distances, 

the fast components almost completely disappear. The distance-independent 

components represent a sustained global elevation in [Ca2+]i that persists due to the 

excess Ca2+ that has yet to unbind from the calbindin buffer. The slowest component has 

a magnitude comparable to resting [Ca2+]i and a time constant of around 1 second.  
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Figure 2.7: Spatial Modeling Important for Capturing Fine-Grain Features of Ca2+ 

Transients. 

[Ca2+]i measured over time in MCell (colored) and in the deterministic well-mixed model 

(maroon). Color transitions from yellow for vesicles proximal to the VDCC Ca2+ source to 

blue for vesicles far away (see Figure 2.15 in Results 2.2.4). Proximally (distally) 

measured [Ca2+]i displays more (fewer) components of decay than are evident in the 

deterministic model. 

The MCell model, because it tracks thousands of individual particles through 

Markov chain Monte Carlo simulations (Rex A Kerr et al., 2008; Stiles & Bartol, 2001; 

Stiles et al., 1996), can both capture very realistic synaptic dynamics and uncover their 

underlying molecular causes, which would be difficult to obtain through other methods. 

Unfortunately, this realism can also obscure the patterns necessary for building 

simplified models. First, many processes, such as asynchronous or “mini” release events 

(Kato, Sekino, Takahashi, Yasuda, & Shirao, 2007; Malgaroli & Tsien, 1992; Nanou, 

Sullivan, Scheuer, & Catterall, 2016), occur slowly enough that many thousands or 

millions of simulated trials would be required to uncover precise functional descriptions, 

which could become computationally prohibitive. For instance, the histograms of 

synchronous release obtained from 2000 trials of MCell in Figure 2.8 offer little 

information on spontaneous release from the Syt-1 mechanism between APs, and 
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synchronous release far from the VDCC cluster (blue) hardly occurs at all. Second, the 

fact that vesicles deplete upon release hides how the instantaneous single-vesicle 

release rate actually changes with time. The tails of the release distributions fall off too 

quickly as vesicles are removed from the simulation over time, and any paired-pulse 

facilitation (PPF) in single-vesicle release probability is countered by the release-

dependent depletion in the model (Figure 2.8). The only way to avoid these depletion 

effects in MCell would be to run many millions of trials with a single vesicle to track how 

the vesicle’s alacrity for release fluctuates with the Ca2+ history detected at its position. 

For these reasons, I decided not to depend on the release histograms generated by 

many trials of MCell for building a phenomenological model. Instead, I used the Ca2+ 

traces generated by MCell, which do not suffer from the aforementioned problems, to 

drive deterministic simulations of the SNARE dynamics (as described in Methods 2.1.2), 

effectively producing what an infinite number of trials would produce in MCell with the 

name Ca2+ data. Thus, using the deterministic release rates driven by the stochastic 

MCell Ca2+ data balances the necessary realism of MCell with the smoothness and 

insights required for designing a versatile phenomenological model. 
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Figure 2.8: Synchronous and Asynchronous Release in MCell. 

Color indicates distance from VDCC source, with yellow representing a nearby Ca2+ 

sensor and dark blue a distant one. AP-like stimulus delivered at 0 ms (left), followed by 

another at 20 ms (center) and 100 ms (right). (A) AP-evoked Ca2+ traces that drive 

release. (B) Synchronous release raster. (C) Synchronous release stacked histogram; 

most releases happen close to the Ca2+ source. (D) Asynchronous release raster. (E) 

Asynchronous release stacked histogram; releases distributed across all distances. 
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2.2.2 Baseline and Impulse-Response Release Rate Functions 

Most of the Ca2+ that enters the axon following an AP quickly binds with the calbindin 

buffer, causing a narrow spike in the free [Ca2+]i. Therefore, most of the spike-evoked 

release occurs in response to this narrow window of influx. To test how each release 

mechanism responds to transient Ca2+ spikes, I supplied an instantaneous burst of Ca2+ 

to a single time step of the deterministic model, allowing me to measure the impulse-

response function. These simulations were repeated for various resting Ca2+ levels 

([Ca2+]i0), ranging from 0 to 100 μM to see how the presence of Ca2+ at rest affects the 

response to spike-evoked transients. As Figure 2.9 shows, when there is no resting 

[Ca2+]i, the rate of release for both synchronous and asynchronous mechanisms rises 

quickly in response to a sudden influx before dropping exponentially with a single 

exponential component (black). However, when the [Ca2+]i0 settles at some level greater 

than zero, an extra exponential component emerges for both mechanisms (blue and red 

lines). The exponential decay time constants seem to be mostly independent of resting 

[Ca2+]i0 at low levels, but they drop off more quickly as spontaneous release rates begin 

to overtake the spike-evoked rates at high concentrations. The extra component 

emerges as a result of the back-and-forth Ca2+-binding and unbinding processes, where 

finite baseline [Ca2+]i0 likely provides a “floor” to “bounce off of” in terms of the number of 

Ca2+ ions bound to the release mechanism. Note, however, that even though it depends 

on equilibrium [Ca2+]i0, this secondary release component is still purely spike-evoked and 

arises due to the nonlinearity of the system. To calculate the time constants of 

exponential decay, I used the slope of the logarithm of the release rate curve according 

to 

 𝜏(𝑡) = −(
d

d𝑡
[ln(𝑟(𝑡) − 𝑟(0))])

−1

, 
(2.16) 
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where 𝜏(𝑡) is the instantaneous time constant and 𝑟(𝑡) is the instantaneous release rate. 

The baseline rate 𝑟(0) was subtracted off to ensure that the function approached zero 

prior to taking the logarithm. 

Of course, the existence of a nonzero [Ca2+]i0 implies that the Ca2+-sensors of the 

SNARE complex will induce vesicle fusion at some finite, if extremely slow, rate. At very 

low concentrations, this would require anywhere from many thousands to many trillions 

of trials to build up sufficiently informative release histograms. Instead, I reran the 

deterministic model at constant values of [Ca2+]i with no Ca2+ spike and measured the 

steady-state release rates after 10 seconds of simulated time (Figure 2.10). Perhaps 

unsurprisingly, the spontaneous release rates grow in proportion to the 5th (2nd) power of 

[Ca2+]i0 for synchronous (asynchronous) release, according to the number of Ca2+ ions 

needed to bind before the synaptotagmin can initiate fusion. At very high [Ca2+]i0, though, 

the release rates saturate to 𝛾𝑆 and 𝛾𝐴 (see Table 2.2 in Methods 2.1.1.3) as the 

probability of being in the releasable state approaches one. 
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Figure 2.9: Synchronous and Asynchronous Release Rates in Response to Ca2+ 

Impulse at Different Resting Concentrations. 

Instantaneous impulse of Ca2+ delivered at 10 ms. Solid lines represent true release 

rate; dotted lines have spontaneous rates subtracted off to show secondary exponential 

components. Black lines show release rate decaying with a single exponential 

component with no baseline [Ca2+]i. For other curves, [Ca2+]i0 ranges from 0.001 μM to 

100 μM. (A) Synchronous release rate over time: 𝑆(𝑡). (B) Asynchronous release rate 

over time: 𝐴(𝑡). (C) Instantaneous release rate decay time constants for synchronous 

and asynchronous mechanisms. Fast components (lower blue and red lines) determined 

from profiles with [Ca2+]𝑖0 = 0 (black lines in A and B). Slower components (upper blue 

and red curves) determined from cases with small [Ca2+]i0. 
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Figure 2.10: Spontaneous Rates of Vesicle Fusion Increase with [Ca2+]i0. 

For small [Ca2+]i0, 𝑆0 = 𝑘𝑆 ⋅ ([Ca
2+]𝑖0)

5 and 𝐴0 = 𝑘𝐴 ⋅ ([Ca
2+]𝑖0)

2, where 𝑘𝑆 ≈ 6 ×

10−4 ms−1 ⋅ μM−5  and 𝑘𝐴 ≈ 2 × 10
−3 ms−1 ⋅ μM−2. As [Ca2+]𝑖0⟶∞, 𝑆0 → 𝛾𝑆 and 

𝐴0 → 𝛾𝐴. Values for 𝑆0 and 𝐴0 at [Ca2+]𝑖0 = 100 nM, which is used throughout most of 

the chapter, are pointed out for reference. 

 

From the above, it would seem that each mechanism should have three 

components to its release histogram: a constant spontaneous rate that increases with 

[Ca2+]i, a fast exponential component that acts in response to an impulse of spike-

evoked Ca2+, and a slower spike-evoked component that results from a “rebound” 

interaction with the Ca2+ floor. However, the profiles of the release rate histograms 

display more complexity than this, which will be discussed in more detail in the following 

section. Significantly, [Ca2+]i does not drop instantly to baseline after the initial influx, but 

some leftover Ca2+ continues to have a small effect over a long time window as it slowly 

unbinds from the calbindin buffer (see Figure 2.6 in Results 2.2.1). This allows a small 

but noticeably enhanced rate of release efficacy to continue out to hundreds or 

thousands of milliseconds before returning fully to baseline (within noise). Figure 2.11 



33 

 

shows the effect that this latent Ca2+ has on the producing longer time constants in the 

decay of the release rate profiles, using the smooth curves obtained from the well-mixed 

model. 

 

 

Figure 2.11: Slow Un-buffering of Latent Ca2+ Leads to Longer Time Constants for 

Synchronous and Asynchronous Release. 

Instantaneous time constants for Ca2+, synchronous, and asynchronous curves. Long 

release rate time constants (around 80 ms and 1000 ms; dashed lines) follow Ca2+ 

curve. Asynchronous starts high because fast and slow components have comparable 

magnitude and become conflated; it goes up to infinity where additive effects cause the 

curve to flatten. 
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2.2.3 Release Rate Functions from Ca
2+

 Dynamics 

By driving a deterministic simulation of SNARE dynamics (see Methods 2.1.2) with the 

[Ca2+]i waveform obtained from MCell (see Methods 2.1.1), one can see that each 

release mechanism induces vesicle fusion with a histogram (Figure 2.12) that essentially 

follows a multi-exponential form. The release rate profiles (𝑟(𝑡), where 𝑟 ∈ {𝑆, 𝐴} may 

refer to synchronous or asynchronous release rate) rise quickly from baseline after the 

AP and decay with several exponential components, approximated as 

 𝑟(𝑡) = 𝑟0 +∑
𝑃𝑗

𝜏𝑗
(e−𝑡 𝜏𝑗⁄ u(𝑡))

𝑛

𝑗=1

, 
(2.17) 

where 𝑟0 is the spontaneous release rate (related to “mini”-EPSCs (Kaeser & Regehr, 

2014; Kato et al., 2007; Malgaroli & Tsien, 1992)), 𝑡 is the time since the last spike, u(𝑡) 

is the Heaviside step function (so that release occurs only for 𝑡 ≥ 0), 𝜏𝑗 are the time 

constants of exponential decay, and 𝑃𝑗 are the expected number of releases from each 

component for a single vesicle. Note that because the release rate profile is not a 

probability distribution, but rather it represents the instantaneous rate of release 

conditioned on having not released yet (see Methods 2.1.2), its integral 𝑃𝑗 can potentially 

exceed one. The probability that the exponential component causes release at any point 

in time is 𝑝𝑟𝑗 = 1 − exp(−𝑃𝑗) 
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Figure 2.12: Multi-Exponential Shape of Ca2+-Driven Vesicle Release Rate. 

All plots given as semi-log to highlight exponential decay components (straight line 

segments of profiles). (A) A single, spike-evoked [Ca2+]i transient, which drives (B) the 

synchronous release rate and (C) the asynchronous release rate. 
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2.2.3.1 Temporal Filter of Release Rate Histograms 

Of course, release of neurotransmitter cannot begin at exactly the moment of the spike, 

both because the AP itself is not entirely an instantaneous process and because it takes 

finite time for Ca2+ to diffuse from the VDCC source, through the buffer, to the Ca2+ 

sensor in the SNARE complex. MCell represents this complex process with a Markov 

chain Monte Carlo simulation (MCMC). Because of this, the release process, wherein 

sufficient Ca2+ must accumulate on the synaptotagmin to initiate fusion, cannot begin 

until the spike-evoked Ca2+ arrives, which time may vary randomly relative to the timing 

of the AP. Thus, the MCMC process acts as a temporal filter on the release dynamics, 

transforming the equation of release to 

 𝑟(𝑡) = 𝑟0 +∑
𝑃𝑗

𝜏𝑗
(e−𝑡 𝜏𝑗⁄ u(𝑡))

𝑛

𝑗=1

∗ 𝑎(𝑡; 𝑘𝑗 , 𝜇𝑗, 𝜎𝑗), 
(2.18) 

where 𝑎(⋅) is the temporal filter and 𝑘𝑗, 𝜇𝑗, and 𝜎𝑗 are parameters to be discussed below. 

The convolution operation effectively smears the release profile over time to account for 

random temporal shifts across trials. 

Importantly, the release-start-time filter 𝑎(⋅) must integrate to one over all real 

numbers. That way, it does not affect the probability of release, only its timing. The 

temporal filter chosen is an ex-Gaussian distribution, resulting from the convolution of an 

exponential distribution of rate 𝑘 with a normal distribution of mean 𝜇 and standard 

deviation 𝜎: 
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𝑎(𝑡; 𝑘, 𝜇, 𝜎) = (𝑘e−𝑘𝑡u(𝑡)) ∗ (
1

𝜎√2𝜋
𝑒
−
(𝑡−𝜇)2

2𝜎2 ) 

                       = ∫ 𝑘e−𝑘(𝑡−𝑡
′)

1

𝜎√2𝜋
𝑒
−
(𝑡′−𝜇)

2

2𝜎2 d𝑡′
𝑡

−∞

 

                       = 𝑘e
−𝑘(𝑡−(𝜇+

𝜎2

2 𝑘))Φ(
𝑡 − (𝜇 + 𝜎2𝑘)

𝜎
), 

(2.19) 

where Φ(⋅) represents the CDF of the zero-mean, unit-variance normal distribution. In 

the limit where 𝜎 → 0, this CDF simply becomes the shifted step function u(𝑡 − 𝜇), and 

𝑎(𝑡; 𝑘, 𝜇, 𝜎) → 𝑘e−𝑘(𝑡−𝜇)u(𝑡 − 𝜇), which is just a rightward shift of the exponential 

distribution by 𝜇. The values of 𝜇 and 𝜎 result from the sum of the delays caused by 

numerous random processes, including the timing of Ca2+ entry relative to the AP, the 

accumulation of collision events during Brownian motion, and the binding/unbinding 

events with the calbindin buffer. Assuming that the individual events of the buffered 

diffusion process are numerous and similar enough for a given spike, the central limit 

theorem states that the sum of their delays should approximate a normal distribution 

(DasGupta, 2010). The value of 𝑘 represents the rate of some limiting step in the 

process of buffered diffusion, and it slows with increasing distance between the VDCC 

source and the Ca2+ sensor in the SNARE complex (see Methods 2.1.1.1). Keep in mind 

that these parameters constitute only a phenomenological approximation to the exact 

filter, but they work well enough for the purposes of this chapter. 

Applying this filter in Equation 2.18, focusing on a single component and 

removing subscripts for simplicity, yields 
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𝑟(𝑡) =
𝑃

𝜏
(e−𝑡 𝜏⁄ u(𝑡)) ∗ 𝑎(𝑡; 𝑘, 𝜇, 𝜎) 

          =
𝑃

𝜏
(e−𝑡 𝜏⁄ u(𝑡)) ∗ (𝑘e−𝑘𝑡u(𝑡)) ∗ (

1

𝜎√2𝜋
𝑒
−
(𝑡−𝜇)2

2𝜎2 ) 

          = (𝑃
𝑘

𝑘𝜏 − 1
(e−𝑡 𝜏⁄ − e−𝑘𝑡)u(𝑡)) ∗ (

1

𝜎√2𝜋
𝑒
−
(𝑡−𝜇)2

2𝜎2 ). 
(2.20) 

Stopping here and replacing the Gaussian with a delta function by letting 𝜎 → 0 yields 

 𝑟(𝑡) = 𝑃
𝑘

𝑘𝜏 − 1
(e−(𝑡−𝜇) 𝜏⁄ − e−𝑘(𝑡−𝜇))u(𝑡 − 𝜇), 

(2.21) 

which includes both an initial phase where release rate ramps up after 𝑡 = 𝜇 and a decay 

phase where release rate falls off exponentially. Note that the area under the curve, and 

thus the probability of release, remains the same. For 𝜎 > 0, the final form of the release 

component looks like 

 

𝑟(𝑡) = 𝑃
𝑘

𝑘𝜏 − 1
(e

−(𝑡−(𝜇+
𝜎2

2𝜏)) 𝜏⁄ Φ(
𝑡 − (𝜇 + 𝜎2 𝜏⁄ )

𝜎
)    

− e
−𝑘(𝑡−(𝜇+

𝜎2

2 𝑘))Φ(
𝑡 − (𝜇 + 𝜎2𝑘)

𝜎
)), 

(2.22) 

which basically just adds a little extra rightward temporal shift and smooths out the 

corner in the profile shape. Figure 2.13A-C shows how this filter affects the shape of a 

release profile component. 
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Figure 2.13: Convolutional Filter Applied to a Component of a Release Rate 

Function. 

Toy model with 𝑃 = 5, 𝜏 = 10 ms, 𝑘 = 0.5 ms−1, 𝜇 = 5 ms, and 𝜎 = 1 ms. (A) Unfiltered 

release rate component. (B) MCMC ex-Gaussian filter shape. (C) Filtered release profile 

produced by convolving the release rate profile with the temporal filter. (D) Release 

profile component in response to one spike, (E) two spikes, (F) and to multiple spikes. 

Dotted lines show how the histogram of response to one AP falls off with interference 

from the response to the following AP (see Equation 2.21). Spike times at 0, 15, 20, 30, 

and 50 ms. 
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When a second AP arrives at the release site, the VDCCs produce another influx 

of Ca2+ that can again propagate to the SNARE complex. The buffered diffusion again 

involves an ex-Gaussian-distributed delay, after which the release mechanism starts 

responding to the second spike, whose Ca2+ builds on the Ca2+ from the first. The 

probability 𝐷(𝑡) that the Ca2+ sensor has begun responding to the Ca2+ from the latest 

AP (assumed to arrive at 𝑡 = 0) by initiating the release profile is simply the cumulative 

distribution of the temporal delay filter: 

 

𝐷(𝑡) = ∫ 𝑎(𝑡; 𝑘, 𝜇, 𝜎)d𝑡
𝑡

−∞

 

          = Φ(
𝑡 − 𝜇

𝜎
) − e

−𝑘(𝑡−(𝜇+
𝜎2

2 𝑘))Φ(
𝑡 − (𝜇 + 𝜎2𝑘)

𝜎
). 

(2.23) 

More intuitively, by letting 𝜎 → 0, the Gaussian component becomes a delta function, 

and the first-release distribution function above becomes much more simply 

 𝐷(𝑡) = (1 − e−𝑘(𝑡−𝜇))u(𝑡 − 𝜇). (2.24) 

Thus, after the second spike, the histogram of releases from the first spike drops off 

exponentially, while those due to the second spike rise and fall as for the first spike. For 

two spike times, 𝑡𝑠1 < 𝑡𝑠2, the net release profile that results is then 

 𝑟(𝑡; {𝑡𝑠1, 𝑡𝑠2}) = 𝑟(𝑡 − 𝑡𝑠1)(1 − 𝐷(𝑡 − 𝑡𝑠2))
𝑁𝑣
+ 𝑟(𝑡 − 𝑡𝑠2), (2.25) 

where 𝑁𝑣 is the number of vesicles awaiting Ca2+ to trigger release. In other words, the 

response to the first spike is cut short by 𝐷(⋅) to give way to the response to the second 

spike. And every time another spike arrives, it decreases the probability of release 

relative to the first spike multiplicatively, such that 
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 𝑟(𝑡; 𝐒) = ∑

(

 
 
𝑟(𝑡 − 𝑡𝑠1) ∏ (1 − 𝐷(𝑡 − 𝑡𝑠2))

𝑁𝑣

𝑡𝑠2∈𝐒
𝑡𝑠2>𝑡𝑠1 )

 
 

𝑡𝑠1∈𝐒

, 

(2.26) 

where 𝐒 = {𝑡𝑠1, 𝑡𝑠2, … } is the set of all spike times. When 𝜎 is small relative to the median 

interspike interval, however, third spikes have an almost imperceptible effect at cutting 

the first profile short relative to the second spike’s effect. Figure 2.13D-F shows what 

these profiles should look like for a certain set of parameters in response to various 

spike trains. 

2.2.3.2 Release Profile Parameters 

With the mathematical description of the release histograms in mind, I ran a fitting 

algorithm (see Methods 2.1.4) to determine the values of the parameters for each profile. 

Initially, I used release profiles driven by Ca2+ measured at 400 nm from the cluster of 

100 VDCCs, which provides a physiologically realistic probability of release for a single 

vesicle (around 0.04) (Kandaswamy et al., 2010). The synchronous release mechanism 

exhibits more exponential decay components in its release rate histogram than does the 

asynchronous mechanism (4 versus 3), likely because it has more Ca2+ binding sites (5 

versus 2) and because it operates on a faster time scale. 
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Figure 2.14: Fitted Release Rate Histogram Profile Parameters. 

Parameter values given in Table 2.3. (A) Synchronous release rate: true histogram 

(black) with estimated histogram (green). (B) Asynchronous release rate: true histogram 

(black) with estimated histogram (dark red). 

 

Table 2.3: Spike-Evoked Release Rate Parameters. 

Parameter values calculated for a single spike following a period of low activity. Valid for 

Ca2+-sensitive synchronous and asynchronous release mechanisms located 400 nm 

from a cluster of 100 VDCCs. 

component 𝑷 𝝉 𝒌 𝝁 𝝈 

𝑺𝟏 0.0175 0.163 ms 1.79 ms-1 3.41 ms 0.168 ms 

𝑺𝟐 0.0220 6.50 ms 18.0 ms-1 3.56 ms 0.0977 ms 

𝑺𝟑 1.70×10-5 80.0 ms 0.526 ms-1 10.0 ms 4.44 ms 

𝑺𝟒 1.10×10-5 1000 ms 0.142 ms-1 50.0 ms 11.5 ms 

𝑨𝟏 3.72×10-3 17.7 ms 1.60 ms-1 3.05 ms 0.243 ms 

𝑨𝟐 0.0111 76.9 ms 0.0759 ms-1 4.00 ms 1.14 ms 

𝑨𝟑 0.0136 1000 ms 0.0337 ms-1 76.5 ms 21.9 ms 
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Keep in mind that the 𝜇 values are somewhat arbitrary in that they depend on 

exactly when during the AP that the spike time is taken to occur. Action potential 

waveforms last a couple of milliseconds (see Figure 2.5 in Results 2.2.1) (Bischofberger 

et al., 2002); the values for 𝜇 above used a point on the AP waveform before the rising 

phase as the spike time. Using the peak of the AP would take away about 2 ms from all 

values of 𝜇. Again, the time point along the AP where the spike is counted is arbitrary, 

but it must be consistent across all components. 

2.2.4 Distance-Dependence of Ca
2+

 Sensor 

One would expect the strength of spike-evoked neurotransmitter release to diminish with 

increasing distance from the Ca2+ source, where Ca2+ has more time to diffuse and bind 

to buffer molecules before reaching the sensor. In fact, numerous studies have found 

that vesicles of the readily releasable pool (RRP) fall into one of two subpopulations, 

depending on their physical location of vesicles within the synapse: vesicles located very 

near Ca2+ channels release quickly in response to spikes, while those farther away are 

more reluctant (J. S. Lee, Ho, & Lee, 2012; J. S. Lee et al., 2013; Moulder & Mennerick, 

2005; Sakaba & Neher, 2001). To explore how the release rate profiles vary with 

distance, we established a linear array of Ca2+ sensors along the length of the model 

axon, with a cluster of 50 VDCCs arranged in a half-disk at one end (Figure 2.15A). 

Reflective boundaries on the ends of a 2-μm tube effectively simulated the effects of 

having one cluster of 100 VDCCs every 4 μm, consistent with previous models of the 

Schaffer collateral axon (Nadkarni et al., 2010). Running the model again for 2000 trials, 

with a single action potential stimulus applied at the beginning, we obtained Ca2+ traces 

measured at each point along the axon. For the first 1.4 μm, free Ca2+ from the initial 

influx dominated, and the peak concentration declined exponentially with distance 
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(length constant 0.204 μm; Figure 2.15C). Farther out, global accumulation and 

depletion of Ca2+ dominates, which, although spike-evoked, does not vary in magnitude 

with distance and acts over a much longer time scale and at a much lower level than 

most of the AP-triggered Ca2+. 

 

 

Figure 2.15: Peak [Ca2+]i Drops Off Exponentially with Distance from VDCC 

Cluster. 

(A) Ca2+ sensors (dark yellow through dark blue filled circles) at vesicle cluster centers, 

displaced linearly from cluster of Ca2+ channels (blue half-disk on the left); distance in 

μm, 𝑑𝑛 = 0.160 + 0.105𝑛 for 𝑛 ∈ {0,… ,16}. (B) Profiles of [Ca2+]i averaged from 2000 

trials of MCell simulations with Δ𝑡 = 0.1 ms; color corresponds to distance from VDCC 

cluster (yellow proximal to blue distal). (C) Logarithmic plots of peak [Ca2+]i (blue) and 

peak time (red) as a function of distance from Ca2+ source; latent Ca2+ component 

dominates over the initial action-potential-evoked influx after 1.4 μm. 
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Running these simulations in MCell, rather than as a much simpler well-mixed 

model, was essential for capturing both distance-dependent effects and temporal 

features of the Ca2+ waveform. The well-mixed assumption, which ignores diffusion and 

treats all chemical processes as occurring at the same point in space, does not hold at 

the spatial and temporal scales of interest in the synapse (K. M. Franks & Sejnowski, 

2002; Warren, Mackay, Webster, & Arnot, 2009). As seen in Figure 2.15C, peak Ca2+ 

drops precipitously even over fractions of a micron away from the VDCC cluster, and the 

shape of the response changes dramatically over this same scale, transitioning from a 

predominantly synchronous to a predominantly asynchronous profile, even before the 

Ca2+ sensors start responding. These trends, elucidated by the spatial MCell model, are 

completely absent in the space-less well-mixed simulation (Figure 2.16A), even when all 

other aspects of the model remain the same, such as the number of VDCCs, calbindin 

buffer molecules, and PMCA pumps and the set of all state transitions for each 

molecular species (see Methods 2.1.1.1 for details). Note also from Figure 2.16A that 

the transition in time from the fast synchronous component to the extended 

asynchronous component is much sharper in the case without space. The extra Ca2+ 

decay component arises from local saturation effects. After the initial rapid influx, the 

calbindin buffer immediately around the VDCC cluster becomes saturated, causing the 

high free Ca2+ that remains to overwhelm the PMCA pumps’ ability to evacuate it from 

the area. The pumps remove it at a constant maximum rate, leading to a short linear 

decay only evident very near the VDCCs (yellow traces, Figure 2.16A) or when all 

calbindin is removed from the simulation (Figure 2.16B). Such effects do not appear in 

the well-mixed case because all buffer molecules and pumps are simultaneously 

available to all the free Ca2+, preventing any local saturation from occurring. Thus, in 
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light of all these effects, the spatial MCell model is crucial for the task of properly 

characterizing the Ca2+ transient in the synapse. 

 

 

Figure 2.16: Spatial Modeling Important for Capturing Fine-Grain Features of Ca2+ 

Transients. 

[Ca2+]i measured over time in MCell (colored) and in the deterministic well-mixed model 

(maroon). Color transitions from yellow for vesicles proximal to the VDCC Ca2+ source to 

blue for vesicles far away (see Figure 2.15). Proximally (distally) measured [Ca2+]i 

displays more (fewer) components of decay than are evident in the deterministic model. 
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After obtaining the distance-dependent Ca2+ traces, we could use them to see 

how the rate of release changes with distance. Using the above-measured Ca2+ traces 

as input to the deterministic Markov model of Syt-1/7, we once again calculated the 

instantaneous rates of spike-evoked release for single vesicles at increasing distances. 

As expected, the single-vesicle probability of release decays with distance until it 

reaches a distance-independent baseline level (Figure 2.17), although this occurs 

differently for the synchronous and asynchronous mechanisms.  
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Figure 2.17: Synchronous and Asynchronous Release Rates Decrease with 

Distance from the Ca2+ Source. 

Color scheme identical to that used in Figure 2.15: yellow to blue represent proximal to 

distal Ca2+ sensors. (A) Synchronous release rate. (B) Integrated probability of 

synchronous release falls off nearly exponentially with distance to a baseline level. (C) 

Asynchronous release rates. (D) Integrated probability of asynchronous release also 

decays with distance to some baseline, but not exponentially. 
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To account for the change in release profiles mathematically, I ran a fitting 

algorithm (see Methods 2.1.4) on each profile, exploring the space of values both for the 

magnitude of each component of release (𝑃𝑗 in Equations 2.17, 2.18) and for the 

temporal filter parameters (𝑘𝑗, 𝜇𝑗, and 𝜎𝑗 in Equations 2.18-2.23). I assumed that the 

time constants of release rate decay (𝜏𝑗) remained the same for the release histograms 

at all distances and that any changes in the size or shape in the histograms are due to 

depleted levels of [Ca2+]i and to increasing delays for Ca2+ ions to reach the sensors. 

Accordingly, I expected to see the 𝑃𝑗 values decay with distance as Ca2+ is dissipated, 

sequestered, and removed; the 𝑘𝑗 values to slow down as the limiting delay grows with 

distance; and the values of 𝜇𝑗 and 𝜎𝑗 to increase somewhat due to greater numbers of 

potential interactions before the Ca2+ ions complete their traversal. The fitting algorithm 

produced sets of parameters at each location in the synapse that generally followed 

these trends (Figure 2.18C,D), although the noise in the data and the very high 

dimensionality of the problem prevented smooth trends from being ascertained. 
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Figure 2.18: Parametric Fits to Release Histogram Profiles at Increasing Distance 

from the Ca2+ Source. 

(A-B) Fitted release profiles (black) imposed over the true histograms for synchronous 

(A, blue) and asynchronous (B, red). (C) Parameter values as a function of distance for 

synchronous release. (D) The same for asynchronous release. 
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2.2.5 Facilitation in Release Probability 

The discussion above has focused the release response of a single vesicle to a single 

action potential (AP). However, many synapses display a facilitation in release 

probability from one AP to another (Neher & Sakaba, 2008; Rosahl et al., 1993; Stevens 

& Wang, 1995; Thomson & Bannister, 1999; M. Tsodyks et al., 1998; Varela et al., 1997; 

Zucker & Regehr, 2002). This results both from an accumulation of Ca2+ in the 

presynaptic space (Neher & Sakaba, 2008) and from a stochastic accumulation of Ca2+ 

on the synaptotagmin sensor of the SNARE complex. In fact, simulations with this model 

suggest that nonlinear binding cooperativity in the calcium-sensitive synaptotagmins 

induces interspike facilitation even in lieu of cytoplasmic calcium buildup (data not 

shown). This happens because on some trials, Ca2+ accumulates on the sensor, not 

enough to trigger vesicle fusion on the first spike, but enough to increase the probability 

of reaching the releasable state after subsequent spikes. As can be seen in Figure 2.19, 

Ca2+ entry from one AP can predispose the distribution of bound states of the sensor to 

trigger release with greater alacrity on subsequent APs. 
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Figure 2.19: Change in the Balance of Binding Kinetics and Internal State 

Distribution of Ca2+ Sensor with Spike History. 

State diagrams the same as shown in Figure 2.4 in Methods 2.1.1.3. (A) Synchronous 

state diagrams. At baseline [Ca2+]i (first red dot), unbinding kinetics (left arrows) 

overpower binding (right arrows), biasing Syt-1 toward unbound state (𝑆0; top diagram), 

with almost no probability of having any Ca2+ ions bound before an AP (left pie chart). 

During peak Ca2+ influx (second red dot), binding rates (thicker right arrows) overpower 

unbinding, biasing Syt-1 toward its fully-bound releasable state (𝑆5; lower diagram), with 

much greater probability of having at least some Ca2+ bound (right pie chart). (B) The 

same for asynchronous release with Syt-7, whose releasable state requires two Ca2+ 

ions bound (𝐴2). Slower kinetics lead to only slight bias in favor of binding during an AP 

(slightly thicker right arrows in lower diagram), leading to miniscule increase in 

probability of being in the releasable state on later spikes (right pie chart). Release 

becomes more probable on subsequent spikes because previous activity has pushed 

synaptotagmin into higher-bound states, making reaching the releasable state easier. 
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Figure 2.20A shows how the combined release rate from synchronous and 

asynchronous release mechanisms (brown/gold) grows far more quickly than does 

spike-evoked [Ca2+]i (black/gray). Thus, the magnitude of facilitation may be nonlinear 

due to the internal binding kinetics of the synaptotagmin (see Methods 2.1.1.3). 

Furthermore, the level of facilitation depends to some extent on the full history of spiking 

activity in the synapse. In the simplest case, the probability of release on one spike 

should depend only on the probability for the previous spike and the time since the 

previous spike. Indeed, as Figure 2.20B shows, the integrated rate of release 𝑟(𝑡) 

increases from one AP to the next for short interspike intervals (ISIs) and decays back 

toward baseline for longer ISIs. However, the level of facilitation is not a simple function 

of the most recent activity but depends on the rate of stimulation prior to the last spike. 

To explore the space of facilitation dynamics as fully as possible, we applied 

spike trains with spike ramps of different rates and durations, to see how quickly 

facilitation builds up, followed by single probe spikes at increasing ISI, to see how 

quickly it decays back to baseline (see Methods 2.1.3). Figure 2.20B explores the 

history-dependence of the facilitation function that this stimulus protocol reveals. For 

examples of how these different spike trains affect the rates of synchronous and 

asynchronous release, see Figure 2.21. 
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Figure 2.20: Empirical Facilitation in Release Probability is a Nonlinear Function of 

Spike History and Ca2+ Buildup. 

(A) [Ca2+]i and release rate in response to a 5-spike ramp stimulus with a 10-ms ISI 

(black and brown), followed by a single probe spike at increasing delay from the end of 

the ramp (gray and gold; multiple cases overlaid on the same plot). Release rate grows 

much faster than Ca2+ buildup can account for. (B) Integrated release rate (related to 

release probability) for a given spike as a function of integrated release from the 

previous spike and of delay between spikes. Different colors distinguish facilitation 

functions with different spike histories 

.
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Figure 2.21: Empirical Facilitation in Synchronous and Asynchronous Release 

Rates. 

Synchronous release rate shown in blue; asynchronous shown in red. Dark colors 

represent initial spike ramp (common to all traces on a plot); light colors represent single 

probe spikes from different simulations. Associated Ca2+ traces omitted for clarity. (A) 

PPF decays with increasing ISI. (B) 5-spike ramp with a 5-ms ISI shows strong 

facilitation. (C) 5-spike ramp with a 20-ms ISI shows weaker facilitation. 
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2.2.5.1 Functional Model of Facilitation 

Facilitation results from a complex interplay of Ca2+ association and dissociation 

rates, where the stochastic accumulation of Ca2+ on the synaptotagmin from one AP to 

the next leads to an increase in the probability of neurotransmitter release. However, this 

increased alacrity does not affect all components of release equally. Therefore, I derived 

a general facilitation function 𝐹𝑗(⋅) that affects each component 𝑗 independently. The 

area under the curve of each component of the release histogram (see Equations 2.17, 

2.18) depends on the facilitation factor according to 

 𝑃𝑗(𝑛) = 𝑃𝑗0 ⋅ 𝐹𝑗(𝑛), (2.27) 

where 𝑃𝑗0 is the baseline value and 𝑛 is the index of the current spike. To ensure that the 

function works for arbitrary spike trains, the factor 𝐹𝑗(𝑛) needs both to grow somehow 

from spike to spike and to decay back toward one for large ISIs. This growth can happen 

in a highly nonlinear fashion, so to account for this, I take 𝐹𝑗(𝑛) to be a nonlinear 

combination of linear facilitation factors 𝑓𝑗𝑘(𝑛) such that 

 𝐹𝑗(𝑛) =∏ 𝑓𝑗𝑘(𝑛)
𝜉𝑗𝑘

𝑀𝑗

𝑘=1
, 

(2.28) 

where 𝑀𝑗𝑘 represents the number of facilitation components (either one or two for all 

functions explored below), and 𝜉𝑗𝑘 represents the nonlinearity applied to facilitation 

component 𝑘 of release component 𝑗. Each 𝑓𝑗𝑘(𝑛) accounts for some aspect of the 

internal state of the SNARE complex, in terms of how the expected number of Ca2+ ions 

bound changes with time, that helps determine the probability of release on subsequent 

APs. 

In the simplest case, each 𝑓𝑗𝑘(𝑛) would result from a simple convolution of spike 

times with an exponential decay function: 
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 𝑓𝑗𝑘(𝑡) = (e
−𝑡 𝜏𝑗𝑘⁄ u(𝑡)) ∗ (∑ 𝛿(𝑡 − 𝑡𝑠)

𝑡𝑠∈𝐒

). 

(2.29) 

Here, u(𝑡) is again the Heaviside step function, 𝜏𝑗𝑘 is the time constant for decay of 𝑓𝑗𝑘, 

and 𝐒 is the set of all spike times; 𝑓𝑗𝑘(𝑛) would then be the value of 𝑓𝑗𝑘(𝑡) sampled at the 

time of the 𝑛-th AP. This is equivalent to having the value of 𝑓𝑗𝑘(𝑛) decay exponentially 

from one spike to the next before incrementing by one: 

 𝑓𝑗𝑘(𝑛) = 1 + 𝑓𝑗𝑘(𝑛 − 1)e
−Δ𝑡 𝜏𝑗𝑘⁄ , (2.30) 

where Δ𝑡 is the delay from the previous AP to the current one. The increment of one is 

meant to account for the influx of about the same amount of Ca2+ during each AP. This 

formulation ensures that even after infinitely long intervals, the facilitation factor will 

equal a value no less than 𝐹𝑗(0) = 1, allowing the release components to return to their 

baseline values of 𝑃𝑗 = 𝑃𝑗,0 during periods of inactivity, as expected. 

However, this formula implies that for an infinitely fast rate of stimulation, 𝑓𝑗𝑘(𝑛) 

could grow toward infinity, producing an infinitely fast rate of release, all of which are 

impossible. More realistically, there should exist some finite saturation level 𝐿𝑗𝑘, such 

that the facilitation function could never theoretically exceed 

 𝐹𝑗(∞) =∏ 𝐿𝑗𝑘
𝑀𝑗

𝑘=1
. 

(2.31) 

When facilitation is still well below this level, it should continue to increment by 

approximately one on every spike, but this increment should fall to zero quickly enough 

that facilitation never exceeds saturation. Setting a maximum number of equal-sized 

steps to saturation for each component, 𝑁𝑗𝑘, the value of 𝑓𝑗𝑘(𝑛) becomes 

 𝑔𝑗𝑘(𝑛) = 𝑓𝑗𝑘(𝑛 − 1)e
−Δ𝑡 𝜏𝑗𝑘⁄ ,  
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 𝑓𝑗𝑘(𝑛) = 1 + 𝑔𝑗𝑘(𝑛) − (
𝑔𝑗𝑘(𝑛)

𝑁𝑗𝑘
)

𝑁𝑗𝑘

, 
(2.32) 

where 𝑔𝑗𝑘(𝑛) represents the amount of the facilitation parameter “left over” from the 

previous spike. The term subtracted off at the end ensures that 𝑓𝑗𝑘(𝑛) never exceeds 

𝑁𝑗𝑘, just as Ca2+ cannot accumulate to infinite concentrations but is limited by the 

electrochemical gradient across the cell membrane (Simons, 1988). An alternative would 

be simply to set 𝑓𝑗𝑘(𝑛) = 𝑁𝑗𝑘 whenever a step size of one would cause it to exceed t+his 

limit, but the formula in Equation 2.32 allows for a smoother approach. Figure 2.22A 

shows how different values for 𝑁 (subscripts removed for convenience) cause the 

otherwise linear step sizes to saturate at different levels. Importantly, 𝑁 ≥ 1 to ensure 

stable growth. Figure 2.22B shows how spike frequency also plays a role in determining 

the steady-state level of facilitation. 
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Figure 2.22: Saturation of Facilitation Parameters. 

(A) Facilitation parameter 𝑓(⋅) increases almost linearly from one spike (𝑓(𝑛 − 1)) to the 

next (𝑓(𝑛)), until it approaches some limit 𝑁 ≥ 1. (B) Curves represent the unseen 

change in 𝑓(⋅) between APs. Dots represent actual values observed at spike times, 

values determined by the Ca2+-triggered increment in release fidelity at each AP. 

Steady-state value for facilitation parameter limited by stimulus frequency and by value 

of 𝑁. No facilitation above baseline occurs for 𝑁 = 1. 
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To gain a better intuition of this function, consider the case with a single 

component, 

 𝐹(𝑛) = 𝑓(𝑛)𝜉, (2.33) 

where the subscripts have been removed for simplicity. In cases with a constant 

frequency of stimulation, 𝛼 ≔ Δ𝑡−1, the steady-state value for the facilitation component, 

𝑓(∞), can be solved analytically by setting 𝑓(𝑛) = 𝑓(𝑛 + 1) and solving with Equation 

2.32 to yield 

 (𝑁−𝑁 exp (−
𝑁

𝛼𝜏
)) 𝑓(∞)𝑁 + (1 − exp(−

Δ𝑡

𝜏
)) 𝑓(∞) − 1 = 0. 

(2.34) 

In the limit as 𝑁 → ∞, or at least for low enough stimulation frequencies that the 

intermediate variable 𝑔(𝑛) = 𝑔(𝑛 + 1) = 𝑓(𝑛) exp(−Δ𝑡/𝜏) ≪ 𝑁 for all 𝑛, 

 𝑓(∞) = (1 − exp(−
Δ𝑡

𝜏
))
−1

 ⟹   𝐹(∞) = (1 − exp(−
Δ𝑡

𝜏
))
−𝜉

. 
(2.35) 

Thus, there is a finite limit to facilitation even without the saturation parameter 𝑁. 

However, as stimulus frequency increases, saturation becomes more apparent, and in 

the limit of (unphysiologically) high stimulus frequency (𝛼 → ∞ or Δ𝑡 → 0), 

 𝑓(𝑛|𝑛 ≪ 𝑁) = 𝑛   ⟹     𝐹(𝑛|𝑛 ≪ 𝑁) = 𝑛𝜉 (2.36) 

 𝑓(∞) = 𝑁   ⟹     𝐹(∞) = 𝑁𝜉 = 𝐿. (2.37) 

In other words, the function facilitates linearly for the first several spikes (for large 

enough 𝑁) and then plateaus to some maximum value. For large enough 𝑁 and 𝜉 = 1, 

this set of functions acts as a simple convolution of an exponential with the spike times, 

as in Equation 2.29, so long as the 𝜏 of facilitation decay exactly matches the 𝜏 of 

release rate decay; this kind of linearity, however, is not observed in the release profile 

considered here. Although we have considered facilitation always to be positive, this 

model provides the flexibility to allow negative facilitation: for 𝜉 > 0, 𝐹(∞) > 1, giving 
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positive facilitation as normal; for 𝜉 < 0, 𝐹(∞) < 1, producing depression in the 

parameter; for 𝜉 = 0, 𝐹(∞) = 1, and no change can occur in the release-rate parameter. 

Such negative facilitation, although not observed in the magnitude of release rate for the 

Syt-1/7 mechanisms studied here, could apply in other circumstances to other 

parameters like time constants or rates that decrease with activity. For instance, short-

term depression induced by Ca2+-triggered inactivation of Ca2+ channels (Ben-Johny & 

Yue, 2014; Catterall, Leal, & Nanou, 2013; A. Lee et al., 2002; Nanou et al., 2016) could 

be represented as second or third component of the facilitation function that has a 

negative value for 𝜉𝑗𝑘. However, this feature was not included in the MCell model so is 

beyond the scope of the current dissertation. 

2.2.5.2 Fitting Facilitation to Complex Spike Trains 

With the model for facilitation well established, I sought to fit it to the empirical changes 

observed in release rate for complex spike trains. For simplicity, I took facilitation to 

apply only to the 𝑃𝑗 parameters, which control for the magnitude of each release 

component, although in principle the parameters of the temporal filter (𝑘𝑗, 𝜇𝑗, and 𝜎𝑗) 

might also increase (𝜉 > 0) or decrease (𝜉 < 0) with spike history. As discussed in 

Methods 2.1.3, I explored 136 unique spike trains and how both spike rate (along the 

spike ramp) and ISI (of the probe spike) affect the release rate in response to the last 

AP. Synaptic fidelity in each of these cases has been measured in Figure 2.20B, and the 

stimulus response profiles are displayed in Figure 2.21. 

For the fitting algorithm, we used a simplex method for gradient descent, since 

the derivatives of the error function are difficult to compute (see Methods 2.1.4). The 

values of the 𝑃𝑗 parameters were allowed to vary within bounds, while the profile time 

constants and the temporal filter parameters were held constant. The best-fit set of 
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values for 𝑃𝑗 were found for the AP-response profile at the end of each spike train, after 

which the meta-parameters of the facilitation functions could be fitted to the patterns in 𝑃𝑗 

(see Figure 2.23B). Through trial-and-error, I found that the two components of 

synchronous release with the fastest time constants, along with the fastest component of 

asynchronous release, each required two facilitation components to explain their 

patterns of change from case to case. The synchronous and asynchronous release 

components with “medium” time constants (each close to 80 ms) could each be fitted 

with a single facilitation component. The slowest release components, with time 

constants of 1000 ms due to latent [Ca2+]i released from the buffer (see Figure 2.11 in 

Results 2.2.2), were constrained not to facilitate, since changes in these components 

seemed to have a negligible effect on fitting error. Table 2.4 records the facilitation meta-

parameters obtained from the fits, along with the baseline values for release fidelity for 

each component (𝑃0). During each step of the fitting algorithm, these metaparameters 

were used to generate predictions for the state of facilitation across all 136 spike-train 

cases, and error was calculated as the fraction of the variance of the “true” release 

fidelity values unexplained by the predicted pattern (Figure 2.23C; see Methods 2.1.4). 
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Figure 2.23: Release Rate Parameters and Facilitation Metaparameters Fitted to 

Empirical Histogram Profiles. 

(A) Synchronous and asynchronous profiles fitted for baseline (un-facilitated) case, (B) 

and for highly facilitated case (probe spike 5 ms after 5-spike ramp of 5-ms ISIs). (C) 

Release fidelity values fitted case-by-case (dark colors) overlaid with predictions from 

best-fit facilitation functions (light colors). (D) Errors across all cases in linear and 

logarithmic space for the predictive model. 
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Table 2.4: Metaparameters for Facilitation of Release Fidelity. 

First column shows baseline magnitudes of integrated release rate, duplicated from 

Table 2.3. First and second components of synchronous release and first component of 

asynchronous release facilitate with two time constants each. Smallest component of 

both release mechanisms does not facilitate. 𝑃0 is integrated release rate for the un-

facilitated case (baseline), 𝜏 is the time constant of decay for each facilitation 

component, 𝑁 is the number of linear facilitation steps to saturation, 𝜉 is the nonlinearity 

parameter, and 𝐿 is the maximum facilitation factor contributed by each component. 

Valid for Ca2+-sensitive synchronous and asynchronous release mechanisms located 

400 nm from a cluster of 100 VDCCs. 

component 𝑷𝟎 𝝉 𝑵 𝝃 𝑳 = 𝑵𝝃 

𝑺𝟏𝟏 
0.0175 

95.9 ms 7.00 1.27 11.8 

𝑺𝟏𝟐 7.66 ms 2.32 2.93 11.8 

𝑺𝟐𝟏 
0.0220 

13.1 ms 10.0 1.23 17.0 

𝑺𝟐𝟐 114 ms 17.6 1.68 125 

𝑺𝟑 1.70×10-5 199 ms 12.5 2.67 846 

𝑺𝟒 1.10×10-5 – 1 0 1 

𝑨𝟏𝟏 

3.72×10-3 

141 ms 12.2 1.48 40.0 

𝑨𝟏𝟐 17.2 ms 12.5 0.996 12.4 

𝑨𝟐 0.0111 126 ms 12.1 1.67 64.4 

𝑨𝟑 0.0136 – 1 0 1 

 

 

Chapter 2, in part, is currently being prepared for submission for publication of 

the material. Bartol, Thomas M.; Sejnowski, Terrence J. The dissertation author was the 

primary investigator and author of this material. 
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3 A Phenomenologically Accurate and 

Computationally Efficient Event-Driven 

Model of Presynaptic Dynamics 

Using the validated MCell model and the results of the previous chapter as 

ground truth, we build an asynchronous phenomenological model that treats spikes and 

releases as point events and that jumps directly to the earliest next event time after each 

update to the state of the synapse. I treat vesicle release as a Poisson process with a 

decaying set of rate parameters and derive the equations for determining the timing of 

the next release event given the current time, the number of releasable vesicles, the 

nature of the decay in release rate, and the current state of facilitation relative to the 

most recent spike. Furthermore, I extend this framework to handle arbitrary numbers of 

synaptic processes and vesicle pools. Because of the event-driven structure, releases 

and other processes may occur with an arbitrary time resolution. Model outputs replicate 

the release time histograms obtained from full MCell simulations, with differences 

explained as sensitivity to the position of the Ca2+ sensor. Runtime complexity scales 

linearly with both the number of spikes and the total simulated time, with the latter only 

having a significant effect for extremely sparse input sequences. The event-driven 

structure of the model enables computationally efficient simulation of 

phenomenologically accurate vesicular release dynamics, amenable to inclusion in 

network models with many synapses. This will allow for controlled testing of which 

synaptic processes may be implicated in healthy and disease states of a network and 

what role each feature may play in information processing. 
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3.1 Methods 

3.1.1 Model Overview 

Vesicles in the model exist in homogeneous pools for sake of simplicity, each pool 

representing a different state. As the model evolves, driven both by action potentials and 

by spontaneous activity, the probabilistic state-transition rates change, dynamically 

updating the occupancy of each pool. Figure 3.1 shows all pools and vesicle-exchange 

pathways modeled in this chapter, representing both the spontaneous and the spike-

evoked rates of transition. 

 

 

Figure 3.1: Vesicle State-Transition Diagram. 

Vesicles transition between pools (colored shapes) during point event times for different 

processes (arrows). PRM holds the primed vesicles of the readily releasable pool (RRP); 

RFR holds vesicles in a post-release refractory period (see Results 3.2.1.1); DEP holds 

vesicles inactivated by release-independent depression (see Results 3.2.1.2); REC 

holds recycling vesicles after release events. Arrow from PRM to REC depicts vesicle 

release and reuptake, while arrow from PRM to RFR depicts simultaneous transition of 

all other primed vesicles in the active zone into a refracted state. Arrow from RFR back 

to PRM depicts vesicles coming out of refractory period, while arrow from REC back to 

PRM depicts redocking of recycled or reserved vesicles. Arrows from PRM to DEP and 

back respectively depict release-independent depression and recovery from depression. 
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The model treats the arrival of spikes, the fusion of vesicles, the end of the post-

release refractory period, and the recruitment of vesicles to release sites as point events. 

Therefore, although events can occur at arbitrarily fine temporal resolution, this 

treatment effectively limits the resolution to the time scale of the processes in question, 

from a hundred microseconds to several milliseconds for spikes, releases, and priming 

events (Acuna et al., 2014; Pabst et al., 2002; Sabatini & Regehr, 1996). To avoid the 

cost of simulation between these time points, each synaptic process must be able to 

predict the timing of its next event from the synaptic state at a given point in time. Given 

that the model is able to do this (see next section), it stores all predicted next event 

times in a vector, 𝐧, where the index corresponds to the event ID. Extracting the timing 

of the next event, 𝑡𝑒, and the identity, 𝑖𝑒, then simply requires finding the minimum: 

 𝑡𝑒 = min
𝑖
{𝐧}, (3.1) 

 𝑖𝑒 = argmin
𝑖

{𝐧}. 
(3.2) 

Once it has chosen a next event, the model jumps forward to that time and performs the 

relevant update to the synaptic state before calculating a new set of event times, 

iterating until some specified stop time 𝑇. We derive how the model calculates new event 

times for each process in the next section. 

3.1.2 Computing Next Event Times 

All transitions in the model, other than spike times, take the form of Poisson processes 

with potentially time-varying rate parameters. Since the model is event-driven, each 

process needs to predict its next event time relative to the current state of the synapse. 

The probability for a Poisson event not occurring within a time window Δ𝑡 after the 

current time 𝑡 is 
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 𝑃(𝑡𝑒 ∉ [𝑡, 𝑡 + Δ𝑡]) = e
−𝜆(𝑡)Δ𝑡, (3.3) 

where 𝑡𝑒 is the next event time and 𝜆(𝑡) is the average Poisson process rate in the 

interval (Cooper, 2005). The probability of an event time occurring within an interval [0, 𝑡) 

is then the complement of the product of the probabilities of not occurring in all 

subintervals: 

 

𝑃(0 ≤ 𝑡𝑒 < 𝑡) = 1 − 𝑃(𝑡𝑒 ≥ 𝑡) 

                            = 1 −∏ e−𝜆(𝑡
′)Δ𝑡

𝑡

0
. 

(3.4) 

Letting Δ𝑡 → 0 and bringing the exponential outside the product yields the general form 

 𝑃(0 ≤ 𝑡𝑒 < 𝑡) = 1 − exp (−∫ 𝜆(𝑡′)d𝑡′
𝑡

0

). 
(3.5) 

This represents a cumulative distribution function, where all possible event times map to 

a number on the interval [0, 𝑝𝑒), where 𝑝𝑒 is the probability of the event occurring in finite 

time. Therefore, a random sample from the uniform distribution can predict an event time 

for a general synaptic process, starting at any time. 

3.1.2.1 Spontaneous Events 

Spontaneous events occur even in the absence of spiking activity, such as the 

neurotransmitter release events that induce mini-EPSCs (Kato et al., 2007; Malgaroli & 

Tsien, 1992; Nanou et al., 2016). Such processes have essentially constant rate 

parameters, proportional to the number of vesicles in the pool producing the event: 

 𝜆(𝑡) = 𝑁𝑣𝜆0, (3.6) 

where 𝑁𝑣 represents the number of vesicles and 𝜆0 the rate per vesicle. 

To choose the next events time 𝑡𝑒 after the current time 𝑡, first select a random 

number 𝑟𝑒 ~ 𝒰(0,1) from the uniform distribution, and then compute the inverse CDF 

after plugging the rate parameter 𝜆(𝑡) into Equation 3.5: 
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𝑟𝑒 = 1 − exp(−∫ 𝑁𝑣𝜆0d𝑡
′

𝑡𝑒

𝑡

) 

     = 1 − exp(−𝑁𝑣𝜆0(𝑡𝑒 − 𝑡)). (3.7) 

Solving for 𝑡𝑒, this yields 

 

𝑡𝑒 = 𝑡 −
ln(1 − 𝑟𝑒)

𝑁𝑣𝜆0
 

     = 𝑡 + exprnd((𝑁𝑣𝜆0)
−1), (3.8) 

where exprnd(𝜏) represents a random number from the exponential distribution with 

mean parameter 𝜏. This is the typical result for Poisson processes where the interval 

between successive events follows an exponential distribution with a mean parameter 

equal to the average interval (Cooper, 2005). 

3.1.2.2 Spike-Evoked Events 

When an action potential arrives at a presynaptic terminal, it elicits a transient influx of 

Ca2+ through voltage-dependent calcium channels (VDCCs), which falls off exponentially 

with time due to diffusion, buffering, and active pumps (see Chapter 2 Methods 2.1.1.1, 

Results 2.2.1). In response, Ca2+-dependent processes, including both synchronous and 

asynchronous vesicle fusion, follow a similar time course with respect to their 

instantaneous rates. Release rates quickly rise to maximum (within a couple 

milliseconds) before falling exponentially toward baseline, with around four exponential 

decay components (see Table 2.3 in Chapter 2 Results 2.2.3.2). During the decay 

phases of release (or of any spike-evoked synaptic process), the (random) intervals 

between events must start small (fast rate) and increase with time since the spike 

(slower rate). 
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To derive a formula for determining the next spike-evoked event time, I treat 

each component of the synaptic process as a Poisson process with an exponentially 

decaying rate parameter, according to 

 𝜆(𝑡) =
𝑁𝑣𝑃

𝜏
e−(𝑡−𝑡𝑠) 𝜏⁄ , 

(3.9) 

where 𝑃 is the fitted area under the rate curve (effectively the probability of release from 

that component if 𝑃 < 1), 𝜏 is the time constant of rate decay, and 𝑡𝑠 is the time of the 

last spike. Plugging this into Equation 3.5 produces 

 

𝑟𝑒 = 1 − exp (−∫
𝑁𝑣𝑃

𝜏
e−(𝑡

′−𝑡𝑠) 𝜏⁄
𝑡𝑒

𝑡

d𝑡′) 

     = 1 − exp (𝑁𝑣𝑃(e
−(𝑡𝑒−𝑡𝑠) 𝜏⁄ − e−(𝑡−𝑡𝑠) 𝜏⁄ )) (3.10) 

for a current time 𝑡 > 𝑡𝑠. Solving for 𝑡𝑒 yields 

 𝑡𝑒 = 𝑡 − 𝜏 ln (1 +
ln(1 − 𝑟𝑒)

𝑁𝑣𝑃e
−(𝑡−𝑡𝑠) 𝜏⁄

). 
(3.11) 

This formalism ensures that event intervals close to the spike time are shorter than those 

further out. 

Note that the above equation can produce complex or undefined event times. 

Therefore, we introduce an intermediate, exponentially distributed random variable 

𝐾𝑠𝑒(𝑡; 𝑡𝑠), whose mean parameter value grows with time since the last spike and shrinks 

with a larger expected event count (𝑃) or number of vesicles (𝑁𝑣): 

 𝐾𝑠𝑒(𝑡; 𝑡𝑠) = exprnd((𝑁𝑣𝑃e
−(𝑡−𝑡𝑠) 𝜏⁄ )

−1
). (3.12) 

Applying this to Equation 3.11 reveals that the next release time is both real and finite 

only when this variable is less than one. Otherwise, the model sets the next event time 

to infinity: 
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 𝑡𝑒 = {
𝑡 − 𝜏 ln(1 − 𝐾𝑠𝑒(𝑡; 𝑡𝑠)) 𝐾𝑠𝑒(𝑡; 𝑡𝑠) < 1

∞ 𝐾𝑠𝑒(𝑡; 𝑡𝑠) ≥ 1
. 

(3.13) 

By setting 𝐾𝑠𝑒 equal to one, the probability of any further events from this exponential 

component after time 𝑡 is 

 1 = −
ln(1 − 𝑝𝑒)

𝑁𝑣𝑃e
−(𝑡−𝑡𝑠) 𝜏⁄

 
 

 𝑝𝑒 = 1 − exp(−𝑁𝑣𝑃e
−(𝑡−𝑡𝑠) 𝜏⁄ ). (3.14) 

Thus, such events are more likely to occur with more vesicles, with a higher expected 

value, or closer in time to the most recent spike (relative to 𝜏). This way, subsequent 

release times become less likely and further apart the further out into the tail of the 

release rate profile the simulation goes. Figure 3.2 shows how this event-generation 

scheme matches the analytically predicted histograms of Equation 2.17 in Chapter 2 

Results 2.2.3. 

 

Figure 3.2: Histogram of Spontaneous and Spike-Evoked Processes. 

Histograms generated over 2000 trials with 0.5-ms bins. 0 − 40 ms: Spontaneous event 

rate follows flat line. 40 − 80 ms: In response to one spike with one (green) or two (blue) 

components. 80 − 120 ms: Responses to two spikes in close succession (ISI = 10 ms), 

with components building off of each other. Parameter values: 𝜆0 = 0.01 ms
−1, 𝑃1 = 0.5, 

𝜏1 = 5 ms, 𝑘1 = 0.5 ms
−1, 𝜇1 = 2 ms, 𝜎1 = 0.3 ms, 𝑃2 = 1, 𝜏2 = 20 ms, 𝑘2 = 0.1 ms

−1, 

𝜇2 = 10 ms, 𝜎2 = 3 ms. 
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Of course, because it takes finite time for Ca2+-sensitive processes to detect the 

spike-evoked calcium influx, the events cannot begin instantly. Ca2+ ions must transition 

through numerous stochastic processes, entering the axon at some point during the AP, 

binding and unbinding with buffering molecules as they diffuse, and associating with the 

Ca2+ sensor, all of which may be considered a Markov chain Monte Carlo process. 

Therefore, to represent the time it takes for the Ca2+ ions to reach the sensor through 

buffered diffusion, I add a random delay relative to the originally calculated spike time, 

sampled from an ex-Gaussian distribution that is specific to each component 𝑐 of the 

activity profile: 

 𝑡0,𝑐 = 𝑡𝑠 + 𝑥𝑐 + 𝑛𝑐,  (3.15) 

where 𝑥𝑐  ~ 𝒳(𝑘𝑐) is an exponentially distributed random number with rate parameter 𝑘𝑐 

and 𝑛𝑐 ~ 𝒩(𝜇𝑐 , 𝜎𝑐
2) is normally distributed. This random delay acts as a convolutional 

filter on the exponentially decaying rate profile described above and leads to a 

distribution described in Equations 2.18-2.22 in Chapter 2 Results 2.2.3.1. To ensure 

that this method produces a spike-evoked event histogram that matches the empirical 

distribution after many trials, the model calculates the value of 𝑡0,𝑐 once for each spike 

and vesicle pool, essentially treating it as the spike time for that activity component. 

Thus, each component has its own “idea” of when the latest spike occurred, and they 

calculate their subsequent event times as described above, using 𝑡0,𝑐 instead of 𝑡𝑠. 
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Figure 3.3: Spike-Evoked Processes with Ex-Gaussian Delay Follow Analytical 

Predictions. 

Same toy process as Figure 3.2, with a temporal filter implemented by adding random 

delays after the spike event. 0 − 40 ms: Spontaneous event rate the same as in Figure 

3.2. 40 − 80 ms: In response to ones spike with one (green) or two (blue) components, 

with rising phases clearly visible. 80 − 120 ms: Responses to two spikes in close 

succession (ISI = 10 ms), with components building off of each other. Parameter values: 

𝜆0 = 0.01 ms
−1, 𝑃1 = 0.5, 𝜏1 = 5 ms, 𝑘1 = 0.5 ms

−1, 𝜇1 = 2 ms, 𝜎1 = 0.3 ms, 𝑃2 = 1, 

𝜏2 = 20 ms, 𝑘2 = 0.1 ms
−1, 𝜇2 = 10 ms, 𝜎2 = 3 ms. 

 

Many synaptic processes, such as vesicle release, use a combination of 

spontaneous and spike-evoked event timing, often with more than one exponential 

component. In these cases, each component can calculate its next event time 

independently, and the process will use the earliest of the calculated times. Figures 3.2 

and 3.3 both show how the event histograms align with predictions for toy synaptic 

processes with multiple components, in the case of single spikes. For more complex 

spike trains, responses from consecutive spikes interfere with each other, such that prior 

to the delayed response start time 𝑡0,𝑐 to spike 𝑛, the synaptic process must continue to 

make predictions relative to spike 𝑛 − 1, using the value of 𝑡0,𝑐 from the previous spike 

as the onset of its response phase. Once a predicted event time comes after the newest 

spike’s delay, however, the process switches to responding to the latest spike. The post-
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spike transition period awaiting the buffered-diffusion delay follows Equations 2.23-2.26 

in Chapter 2 Results 2.2.3.1.  

3.1.3 Model Dependencies 

Upon each event, the synapse receives a signal to update its state in some process-

dependent manner. The update could involve the transition of vesicles from one pool to 

another, or it could entail spike-evoked changes in the transition rates of other synaptic 

processes, as in short-term facilitation. Once the synapse has changed its state, it 

recalculates the next event times for any process that might be affected. For instance, 

upon a release event, the releasable vesicle pool decrements by one while the empty 

pool increments. This change requires recalculation not only for the next release event, 

but also for the next vesicle reuptake event, likely sooner than the one previously 

calculated since the recycling pathway now has an extra vesicle (see Figure 3.1 in 

Methods 3.1.1 for the vesicle pools and process descriptions; see Methods 3.1.3.2 for 

how to recalculate times upon vesicle pool updates). To accomplish this, I constructed a 

set of general classes (in MATLAB; see github.com/soiens24/Presynaptic_Framework 

for source code) that track states for vesicle pools and synaptic processes and that 

notify one another of any changes (see Figure 3.4). This structure allows the model to 

act asynchronously and to scale efficiently. 
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Figure 3.4: Class Dependencies of the Event-Driven Model. 

Scheduler determines earliest next event time and updates synapse state according to 

each process’ user-defined function. VesiclePool updates cause SynProcess updates for 

processes coming from and feeding into the pool (‘respond2src’ and ‘respond2dst’, 

respectively), depending on the change in pool size (DeltaPool). SynProcesses contain 

sets of ProfileParams that calculate new event times (‘new_evt’) and notify the scheduler 

via an EventTime. SpikingAxon simply sends spikes to the model and may be elicited by 

anything in the simulation, such as a source model neuron in a network simulation. 

 

At the beginning of the simulation, all vesicle pools (VesiclePool) are initialized to 

their desired sizes, and all synaptic processes (SynProcess) calculate their initial 

(spontaneous) event times, which are added to the scheduler. Then the simulation 

begins, and the scheduler jumps to the first event time, whether a spike or a vesicle 

transition. Upon reaching an event, the scheduler notifies a user-defined function that 

determines how it affects the synapse. When the function requires that a vesicle pool 

change size, the pool notifies the synaptic processes that use it as a source, which in 

turn recalculate new event times and notify the scheduler of the update. Below, I discuss 

these steps in more detail. 
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3.1.3.1 Spike Events 

Each time a spike arrives from the axon, whether from a set of precomputed spike times 

or from an asynchronous network model, all spike-evoked synaptic processes must 

update their next expected event times. No vesicles change states, but each state 

transition process (the arrows in Figure 3.1 in Methods 3.1.1) will recalculate its spike-

evoked event time according to Equations 3.11-3.15 in Methods 3.1.2.2, including the 

onset delay of Equation 3.15 and the facilitated rate of release described below, and 

update the corresponding value in 𝐧 if the new time comes earlier. 

Numerous Ca2+-dependent processes in the synapse increase in rate in 

response to high spiking activity (Ben-Johny & Yue, 2014; Brody & Yue, 2000; Hosoi, 

Holt, & Sakaba, 2009; Hosoi, Sakaba, & Neher, 2007; A. Lee et al., 2002; J. S. Lee et 

al., 2012; Neher & Sakaba, 2008; Okamoto et al., 2016; Sakaba, 2006; Sakaba & Neher, 

2001; Wadel, Neher, & Sakaba, 2007; L. G. Wu, Hamid, Shin, & Chiang, 2014; X. S. Wu 

et al., 2009; X. S. Wu et al., 2014; J. Xue et al., 2011; L. Xue et al., 2012; Yamashita, 

Eguchi, Saitoh, von Gersdorff, & Takahashi, 2010; L. Yao & Sakaba, 2012; Yue & Xu, 

2014), in a manner analogous to the facilitation of vesicle release probability. The 

facilitation function described in Equations 2.27-2.37 in Chapter 2 Results 2.2.5.1 

therefore generally applies to all spike-evoked presynaptic processes. To recapitulate, 

spike-evoked processes act in this model as Poisson processes with exponentially 

decaying rate parameters and integrated rates 𝑃, which is related to probability of an 

event occurring over all time but may exceed one. The value of 𝑃 on spike 𝑛 depends on 

its baseline value 𝑃0 and on the facilitation factor for the spike, 𝐹(𝑛): 

 𝑃(𝑛) = 𝑃0 ⋅ 𝐹(𝑛). (3.16) 

The value of 𝐹(𝑛) depends on the nonlinear product of a set of internal facilitation state 

parameters 𝑓𝑘(𝑛) as 
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 𝐹(𝑛) =∏ 𝑓𝑘(𝑛)
𝜉𝑘

𝑀

𝑘=1
, 

(3.17) 

where 𝑀 is the number of components and 𝜉𝑘 are the nonlinearities. The value of 𝑓𝑘(𝑛) 

decays with time since the previous spike and increments by at most one at each spike 

according to 

 𝑔𝑘(𝑛) = 𝑓𝑘(𝑛 − 1)e
−Δ𝑡 𝜏𝑘⁄ ,  

 𝑓𝑘(𝑛) = 1 + 𝑔𝑘(𝑛) − (
𝑔𝑘(𝑛)

𝑁𝑘
)

𝑁𝑘

, 
(3.18) 

where 𝑔𝑗𝑘(𝑛) represents the amount of the facilitation parameter “left over” from the 

previous spike, 𝜏𝑘 represents the time constant for decay, and 𝑁𝑘 is the saturation level. 

When a spike event occurs, the scheduler notifies all synaptic processes via their 

‘respond2spk’ function, which signals each process to reevaluate its next scheduled 

event time. The process calls upon its components (except the spontaneous 

component), each of which has a different time course, a different probability of 

responding, and a different delay. Each component (ProfileParam) first calculates a 

random delay from the spike time until it begins to respond to the new spike, 𝑡0,𝑐; this is 

the temporal filter described in Equation 3.15 in Methods 3.1.2.2 and in Equations 2.18-

2.22 in Chapter 2 Results 2.2.3.1. It also determines the magnitude of facilitation for the 

latest spike based on the interval from the previous spike (Equation 3.18). Whether it 

recalculates a new event time depends on when its previously planned event falls 

relative to the end of the delay. If the next event occurs before the delay ends, the Ca2+ 

sensor has essentially not yet seen the Ca2+ from the latest spike, so it maintains its 

planned time. If, however, the delay ends before the planned event, the Ca2+ from the 

latest spike will interfere with the old plan, so it recalculates a new time, taking the 

facilitated rate into account. Recalculations use the number of vesicles in the source 
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pool at the time of the spike as 𝑁𝑣 and the spike time as 𝑡 in Equations 3.11-3.14 in 

Methods 3.1.2.2. Once the synaptic process has received any new times from each of its 

components, it takes the earliest one and compares it to its previously planned next 

event time. If the new time is earlier, it notifies the scheduler of the update. 

3.1.3.2 Vesicle Transitions 

During most non-spiking events, one or more vesicle pools will change size as vesicles 

change state or move around the synapse. Because the rate at which any vesicle-

transition process can occur depends directly on the number of vesicles available for the 

transition, those pools that change in size must notify all processes that depend on them 

both of the magnitude of the change and of how many remain in the pool. The model 

does this by adding event listeners for each pool’s ‘DeltaPool’ signal that call the 

‘respond2src’ (source pool) or ‘respond2dst’ (destination pool) function for each relevant 

process. How a ‘SynProcess’ responds depends on the sign of the change and on the 

circumstances of the function call. The different cases for changes in the number of 

vesicles of the source pool are discussed below. Similar considerations are given to 

changes in the number of vacancies in the destination pool for those pools with limited 

capacity, such as the RRP, which has a limited number of release sites (Neher, 2010; 

Stevens & Wang, 1995; J. Y. Sun & Wu, 2001; L. G. Wu et al., 2014). 

Upon an increase in the size of its source pool, a process needs only to calculate 

the time at which the newly introduced vesicles “want” to trigger an event. Before the 

new vesicle(s) arrived, the process already had an idea of when its next event would be, 

based on the number of vesicles already at its disposal. However, when more vesicles 

arrive, there is some chance that one of them would trigger an event earlier than the one 

already calculated. This happens rarely in most situations, where the number of vesicles 
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already in the pool far outweighs the number added (typically only one vesicle at a time), 

since the earliest time produced by sampling from each of a large number of vesicles 

usually comes earlier than a single random sample. However, to avoid ignoring any new 

vesicle’s alacrity for participating in a new event, the model samples the added vesicles 

by calculating a new event time as described above, using the number of added vesicles 

(usually 1) as the value of 𝑁𝑣 and the time at which they are added as 𝑡 in Equations 

3.6-3.14 in Methods 3.1.2. The process only takes the result of this sample as its new 

next event time if it precedes the time previously calculated. In this comparatively rare 

case, it notifies the scheduler of the update. 

When an event causes a vesicle pool to decrease in size, one of two scenarios is 

possible from the perspective of a process that uses that vesicle pool as a source: either 

the same process triggered the event, or another process that has the same vesicle pool 

source triggered it. In the former case, the process simply recalculates a new event time 

without exception, using the number of vesicles remaining in the pool as the value for 

𝑁𝑣. In the latter case, the process must randomly determine whether to recalculate. 

Since all vesicles in a pool are treated identically, the probability that a vesicle removed 

by the other process was one that would have been involved next with the current 

process is 𝑛𝑟 (𝑁𝑣 + 𝑛𝑟)⁄ , where 𝑛𝑟 is the number of vesicles removed and 𝑁𝑣 + 𝑛𝑟 was 

the number of vesicles in the source pool before this event. If decides to recalculate, it 

does so as described above, and it sends a notification to the scheduler of the update. 

One important caveat affects the event-time recalculations describe above: 

When a component of a synaptic process has to deal with an update in the (usually) 

short interval between the time of the latest spike (𝑡𝑠) and the end of its random delay 

before responding to the spike (𝑡0,𝑐), it must consider both the latest and the previous 

spike times. If its earliest planned time happens to fall before its delay ends, it must 
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continue to respond to the previous spike, using the old value of 𝑡0,𝑐 and of its facilitation 

factor 𝐹𝑐(𝑛 − 1). If, however, the previously planned event falls after the delay for the 

latest spike, it must recalculate using the new 𝐹𝑐(𝑛) and the new 𝑡0,𝑐 as a starting point. 

In this latter case, because the current time is earlier than the start time for responding to 

the new spike, it uses 𝑡0,𝑐 rather than the current time as the value of 𝑡 in Equations 

3.11-3.14 in Methods 3.1.2.2. Most of the time, though, vesicle pool updates will occur 

outside of a process’ spike-response delay interval, so this caveat has a miniscule effect 

on the event rate histograms. Outside of this interval, spike-evoked processes can 

respond safely to just the latest spike times. 

3.2 Results 

3.2.1 Validation 

The event-driven model seeks to balance the phenomenological realism of the MCell 

model with the computational scalability of simpler models and is to minimize the trade-

off between the two. For validation, I compare the results of the model first to the MCell 

model off of which it was based and then to other models and experiment. The model 

proves to make useful predictions and allows sufficient flexibility to perform controlled 

experimental simulations of the synaptic processes necessary to explain physiological 

data. 

3.2.1.1 Replicating MCell Results 

Because the results of MCell formed the basis for characterizing the dynamics of release 

(see Methods 2.1.1 in Chapter 2), I first sought to replicate the MCell results with the 

event-driven model. In the paper that introduced the model (Nadkarni et al., 2010) off of 

which I based this model’s phenomenology of the current model, vesicles of the readily 
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releasable pool (RRP) sit docked in a small cluster (usually seven vesicles) at some 

fixed distance (10-400 nm) from a cluster of a certain number (1-208) voltage-dependent 

Ca2+ channels (VDCCs). When an action potential (AP) evokes an influx of Ca2+, it 

diffuses passively to the SNARE complex of each docked vesicle, which acts as the 

trigger for vesicle fusion and release of neurotransmitter. The Ca2+-driven kinetics of the 

synchronous and asynchronous release mechanisms were explored in the previous 

chapter. To replicate the same model here, I established three vesicle pools: the primed 

vesicle pool (PRM) initialized to seven vesicles, the recycling pool (REC) initialized to 

zero, and the “refractory pool” (RFR) initialized to zero, which are a subset of the pools 

shown in Figure 3.1 in Methods 3.1.1. Vesicles of the RRP engaged in spontaneous and 

spike-triggered release, with facilitation, following the parameters outlined in the previous 

chapter for a SNARE complex located 400 nm from a cluster of 100 VDCCs (see 

Results 2.2.3 in Chapter 2). Both synchronous and asynchronous release were treated 

as independent synaptic processes, as outlined above in Methods, transferring one 

vesicle from PRM to REC (representing release and removal of a vesicle) and all the 

rest of PRM to RFR (representing the post-release refractory period). Another synaptic 

process acted as the end of the refractory period, transferring one vesicle at a time from 

RFR to PRM, which represents simply a change in state for vesicles sitting within the 

RRP. A redocking synaptic process takes one vesicle at a time from REC to PRM with a 

time constant of 2.8 s, as in the MCell model (Nadkarni et al., 2010). The vesicle state 

diagram for this model is shown in Figure 3.5A. 

The efficiency and flexibility of the model allow for simulating a large number of 

trials several orders of magnitude faster than MCell (see Runtime in Results 3.2.2), for 

testing the output in response to arbitrary spike trains, and for testing the effect of adding 

or removing features from the model. Figure 3.5B shows the release rate histogram 
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obtained by running 100,000 trials in response to a single AP. Notice that the several of 

the very low-probability components of synchronous release do not appear, since they 

would require billions of trials to produce a discernable histogram at this resolution. The 

combined release rate (black) matches the results of the single-AP MCell experiments 

(Figure 3 in  (Nadkarni et al., 2010)) in that it exhibits a seeming triple-exponential 

shape, where the first two components of synchronous release account for the 

“superfast” and “fast” components and the middle component of asynchronous release 

accounts mainly for the “slow” component. Spontaneous release results virtually entirely 

from the asynchronous mechanism. A simpler model could consolidate the two release 

mechanisms into a single “net” mechanism, further increasing the efficiency of the model 

(see Chapter 4 for more discussion). Applying a random spike train over 1000 ms for 

1000 trials produced the results in Figure 3.5C-D, which show the release events and 

track the changes in size of the vesicle pools describes above. Both facilitation and 

depletion-induced depression are evident in the changes in density of the release 

rasters. This demonstrates the ability of the model to respond realistically to arbitrary 

input and to allow investigation into the internal dynamics that explain the observable 

effects. 
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Figure 3.5: Structure and Output of the Simple MCell-Analog Model. 

(A) Vesicle state diagram: PRM is the primed (releasable) state, RFR is the refracted 

state, REC is the recycling (undocked) state. Arrows signify vesicle transitions. (B) 

Release histograms for 100,000 trials of a synapse of seven docked vesicles responding 

to a single spike at 20 ms. (C) Release raster in response to random spike train 

stimulus. Colored dots correspond to release mechanism (synchronous = green; 

asynchronous = red), the same color scheme as in (A). (D) Number of vesicles 

transitioning over time between the primed/docked state (PRM, green), the post-release 

refractory state (RFR, yellow) and the recycling/undocked state (REC, blue). Solid lines 

indicate mean values over 1000 trial, while dotted lines indicate 25th and 75th 

percentiles. Value of recycling pool initialized to zero for comparison with (Nadkarni et 

al., 2010), which did not include an extra recycling pool but did allow for redocking of 

used vesicles. 
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One feature of interest in this model is the post-release refractory period. 

Dobrunz et al. (1997) have observed that the probability of vesicle release significantly 

drops immediately after a first vesicle fuses, preventing multiple vesicles from fusing at 

the same time at the same active zone. This likely arises from so-called “lateral 

inhibition” of release, where changes in the mechanical properties of the membrane 

immediately around the fused vesicle increase the energy barrier for membrane fusion 

(Dobrunz et al., 1997; Stevens & Wang, 1995). Nadkarni et al. (2010) modelled this in 

MCell as a refractory state that all unfused vesicles in the active zone enter after a 

release, each returning to a releasable state with a time constant ε = 6.34 ms (see Table 

2.2 in Chapter 2 Methods 2.1.1.3). Such a refractory period has significant effects on a 

synapse’s release rate histogram, particularly for those with high initial probabilities of 

release (see Figure 3.6 below and Figure 7 in Nadkarni et al. (2010)). Removing this 

refractory period has the dual effect of increasing probability of release for early spikes in 

a train of action potentials and of accelerating depletion. Including the release refractory 

period extends the time window for synaptic response to its input, as seen in Figure 3.6 

below. 
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Figure 3.6: Comparisons of Event-Driven Release to MCell Model, with and without 

Post-Release Refractory Period. 

Spike trains delivered at 100 Hz. MCell traces reproduced with permission from 

(Nadkarni et al., 2010). All histograms use 1-ms bins. (A) MCell release histograms for 

synapses with high initial probability of release (𝑝𝑟 = 0.6, blue) and with low initial 

probability of release (𝑝𝑟 = 0.2, red), with a post-release refractory period of 𝜀 = 6.34 ms. 

(B) MCell release histograms for synapses with high initial probability of release 

(𝑝𝑟 = 0.6, turquoise) and with low initial probability of release (𝑝𝑟 = 0.2, gold), with no 

post-release refractory period. Lack of refractory period amplifies spike response but 

shortens release window. (C) Release histogram of event-driven model with parameters 

derived for SNARE complex 400 nm from Ca2+ source (see Results 2.2.3 in Chapter 2), 

including a post-release refractory period. (D) Same model as (C), but without a 

refractory period. (E) Release rates of two active zones with baseline release rates fitted 

at 370 nm and 580 nm from the Ca2+ source (facilitation functions still fitted at 400 nm), 

with a refractory period. (F) Same model as (E), but without a refractory period. 



89 
 

 

 

  



90 
 

  

Note that the model’s release rate histogram profiles in Figure 3.6C,D do not 

quite match those read from MCell in Figure 3.6A,B. In particular, while the release rate 

reaches a comparable magnitude, the window for significant release probability cuts off 

several tens of milliseconds earlier than with the MCell model. I hypothesized that this 

results from the fact that the vesicles of the MCell RRP were distributed in space. Peak 

release rate falls off exponentially with distance from the Ca2+ source (see Results 2.2.4 

in Chapter 2), whereas the release rate parameters and facilitation meta-parameters in 

the event-driven model were derived for a release site at a single location in space, 

specifically, for a SNARE complex located 400 nm from a cluster of 100 VDCCs (see 

Results 2.2.3, 2.2.5.2 in Chapter 2). Ca2+ sensors closer to the VDCC cluster should 

respond more quickly and over a shorter time window than those farther away. 

Therefore, a pool of vesicles over a range of distances would exhibit a mix of high 

release rate (for more proximal vesicles) and longer-lasting release (for more distal 

vesicles). Figure 3.6E,F show how releasable pools at two arbitrary distances can exhibit 

each of these properties in turn. Further discrepancies between the MCell and event-

driven models may be due to some form of distance-dependence in the dynamics of the 

facilitation function. That is, the amount of facilitation in per-vesicle release probability 

from spike to spike may depend nonlinearly on the amount of Ca2+ available to the 

sensor at a given distance. This would cause different release components to facilitate 

differently at different distances from the Ca2+ source, whereas the model presented 

here assumes that the same facilitation function applies at all locations. To determine 

how the function might depend on location, however, falls outside the scope of this 

dissertation. 



91 
 

  

3.2.1.2 Depressing Synapses 

Hitherto, I have dealt primarily with a model for synaptic facilitation, which dominates the 

phenomenology of the axon terminals of pyramidal cells in hippocampus (Dobrunz et al., 

1997; Dobrunz & Stevens, 1997; Kandaswamy et al., 2010). However, many types of 

synapses, notably from cortical pyramidal cells (Fuhrmann, Cowan, Segev, Tsodyks, & 

Stricker, 2004; Thomson & Bannister, 1999; Thomson & Deuchars, 1994; M. Tsodyks et 

al., 1998), exhibit synaptic depression, either predominantly or in concert with facilitation. 

Three major types of depression may exist in synapses: release-dependent depression 

(RDD), caused by simple depletion of used vesicles; release-independent depression 

(RID), caused by AP-triggered mechanisms that reduce the probability of 

neurotransmitter release on subsequent spikes; and the post-release refractory period, 

discussed in the previous section. 

In any synaptic model that tracks the size of the RRP, release-dependent 

depression falls out naturally as a consequence of vesicle use. As long as vesicles can 

deplete, the model has implemented RDD. The mechanisms for recovery, however, can 

vary widely, from a steady-state supply of new vesicles, to activity-dependent recycling 

(L. G. Wu et al., 2014; X. S. Wu et al., 2009; J. Xue et al., 2011; L. Yao & Sakaba, 

2012), to multiple recycling and recruitment pathways (de Lange, de Roos, & Borst, 

2003; Gandhi & Stevens, 2003; Z. Li et al., 2005; Okamoto et al., 2016; Rizzoli & Jahn, 

2007; Y. Wu et al., 2014). Recruitment of new or recycled vesicles to the active zone 

should have a limit, though, because synapses each have a limited number of release 

sites, at least on a timescale shorter than long-term potentiation (Neher, 2010; Stevens 

& Wang, 1995; J. Y. Sun & Wu, 2001; L. G. Wu et al., 2014; Yang & Calakos, 2013). 

Figure 3.7 shows how depletion alone contributes to synaptic depression over extended 

periods of stimulation. When the number of vesicles in the RRP does not decrease with 
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every release, synaptic fidelity continues indefinitely, but when RDD is restored, release 

rate falls significantly within a relatively short time period. Recycling of used vesicles, 

especially in an activity-dependent manner can limit the effect of this form of depression. 

 

 

Figure 3.7: Release-Dependent Depression Limits the Time Window for Synaptic 

Transmission under Sustained Stimulation. 

Spike trains consist of 20 APs at 10 Hz, followed by a 1-s delay, followed by 20 APs at 

100 Hz, followed by a 1-s delay, followed by 20 APs at 20 Hz. Parameters for spike-

evoked release rate profiles taken from fits at 160 nm from Ca2+ source (see Figure 2.18 

in Chapter 2 Results 2.2.4), and facilitation disabled for clarity. (A) Normal synapse with 

depletion from RRP and a constant rate of redocking (𝜏 = 2.8 s). (B) Synapse with 

depletion removed by omitting changes to vesicle pool sizes at each release event. 

Sustained high-fidelity transmission possible without depletion, or equivalently, with very 

fast replenishment of the RRP. 
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Another form of depression that features in certain synapses is release-

independent depression (RID), where the probability of release decreases from spike to 

spike even without vesicle depletion. Fuhrmann et al. (2004) measured changes in 

synaptic fidelity in excitatory synapses of rat somatosensory cortex and observed a 

combination of RDD, RID, and frequency-dependent recovery (FDR) from depression. 

The changes in EPSC amplitude in response to different artificial spike train stimuli 

indicated a form of short-term depression (RID) acting independently of vesicle depletion 

and recovering more quickly under stronger stimulation (FDR), allowing the synapse to 

remain responsive even at high stimulus frequencies. Such opposing effects are 

consistent with a model of competitive interaction between one mechanism that 

suppresses Ca2+-triggered release and one that restores it. In fact, studies have 

revealed a competition between calmodulin (CaM) and Ca2+ binding protein 1 (CaBP-1) 

in modulating the permeability of voltage-dependent Ca2+ channels (VDCCs) in neurons 

(Hardie & Lee, 2016; A. Lee et al., 2002). Inactivation of the VDCCs reduces the 

probability of release, but it also affects other Ca2+-dependent processes. Direct 

inactivation of release sites, however, would have more local effects (Fioravante & 

Regehr, 2011). 

In their model of RID-FDR, Fuhrmann et al. (2004) represented RID as a relative 

per-vesicle probability of release (𝑈𝑆𝐸) that steps down by some fraction after each spike 

and exponentially recovers. They implemented FDR by having the time constant for this 

recovery also step down after each spike and exponentially recover. Although their 

model reasonably fit the data from their electrophysiological recordings, a model of 

competitive, stimulus-evoked inactivation/reactivation works just as well and seems 

more grounded in plausible physiology. Figure 3.8 shows how such a competitive model 

(cyan and red) compares to the Fuhrmann model (labelled RID-FDR in black). The 
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competitive model considers a release mechanism transition between an active and an 

inactive state, where the rate of inactivation (𝑘𝑅𝐼𝐷) and the rate of reactivation (𝑘𝐹𝐷𝑅) 

both increase in response to spike-evoked Ca2+ and decay exponentially, according to 

 𝜏𝑅𝐼𝐷
d𝑘𝑅𝐼𝐷
d𝑡

= 𝑘𝑅𝐼𝐷,0 − 𝑘𝑅𝐼𝐷 + 𝑃𝑅𝐼𝐷∑δ(𝑡 − 𝑡𝑠)

𝑡𝑠∈𝐒

, 
(3.19) 

 𝜏𝐹𝐷𝑅
d𝑘𝐹𝐷𝑅
d𝑡

= 𝑘𝐹𝐷𝑅,0 − 𝑘𝐹𝐷𝑅 + 𝑃𝐹𝐷𝑅∑δ(𝑡 − 𝑡𝑠)

𝑡𝑠∈𝐒

, 
(3.20) 

where 𝑃𝑅𝐼𝐷 and 𝑃𝐹𝐷𝑅 are the sizes of the respective jumps, 𝑡𝑠 ∈ 𝐒 are the spike times, 

𝑘𝑅𝐼𝐷,0 and 𝑘𝐹𝐷𝑅,0 are the spontaneous (baseline) rates, and 𝜏𝑅𝐼𝐷 and 𝜏𝐹𝐷𝑅 are the 

respective time constants. They each tug on the probability of the release mechanism 

being in the active state (𝐴), pulling it either toward zero (RID) or one (FDR): 

 
d𝐴

d𝑡
= −𝑘𝑅𝐼𝐷(𝑡) ⋅ 𝐴 + 𝑘𝐹𝐷𝑅(𝑡) ⋅ (1 − 𝐴). (3.21) 

Figure 3.8A,C shows how insensitive the competitive model can be to different values of 

the inactivation time constant, 𝜏𝑅𝐼𝐷, which can change by as much as an order of 

magnitude while still preserving the same overall shape of depression dynamics. 
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Figure 3.8: Release-Independent Depression with Frequency-Dependent Recovery 

Equivalent to Competitive Model of Synaptic Inactivation and Reactivation. 

(A) Rate of inactivation process changing in response to a random spike train, with time 

constant 𝜏𝑅𝐼𝐷 at two separate orders of magnitude. (B) Rate of reactivation evolving in 

response to the same spike train, with a nonzero 𝑘𝐹𝐷𝑅. (C) Competitive models of RID-

FDR (cyan and red) produce changes in synaptic release efficacy that closely follow the 

trajectory of the Fuhrmann et al. (2004) model. 
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The value of 𝐴 could represent the fraction of VDCCs that have not been 

inactivated, in which case RID and FDR relate to the rates of Ca2+-sensitive molecules 

interacting with the channels (Ben-Johny & Yue, 2014; Catterall et al., 2013; Hardie & 

Lee, 2016; A. Lee et al., 2002; Nanou et al., 2016). Alternatively, it could represent the 

fraction of docked vesicles whose fusion mechanisms remain unimpeded by some Ca2+-

dependent blocking mechanism (Fioravante & Regehr, 2011). For the event-driven 

model presented here, the latter is the less computationally expensive option. In this 

case, vesicles would stochastically transition between a depressed and an activated 

state, with transition rates 𝑘𝑅𝐼𝐷 and 𝑘𝐹𝐷𝑅 determined as described above. Figure 3.9 

shows the effect of introducing this form of short-term depression on synaptic dynamics 

for a synapse with a high initial probability of release, as is the case for most depressing 

synapses (C. C. Lee, Anton, Poon, & McRae, 2009; Rotman et al., 2011; Thomson & 

Bannister, 1999; M. Tsodyks et al., 1998; M. V. Tsodyks & Markram, 1997). Alternative 

formulations of RID might include adding a component to the release facilitation 

functions with a negative exponent (𝜉), which would allow the “facilitated” release 

probability to end up below baseline. I found, however, that the facilitation function used 

in this model, even with a negative exponent, does not match the dynamics of RID-FDR 

as well as the competitive state-transition model (data not shown). A new function that 

exclusively describes depression would enable efficient modelling of RID in future 

iterations of this model. 
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Figure 3.9: Effect of Competitive RID-FDR Depression Model on Synaptic 

Dynamics. 

Same spike train as in Figure 3.7. Model includes depressed and active states for 

vesicles of the RRP. (A) With depletion (combined RDD and RID), frequency-dependent 

recovery (FDR) from the depressed state allows model to delay the reduction in release 

rate caused by depletion. (B) Without depletion (all depression caused by RID), FDR 

(blue) sustains release fidelity indefinitely over the levels attained by a constant rate of 

recovery (red). 
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Applying the model of RID-FDR that treats vesicles as transitioning between 

active and depressed states produces the results seen in Figure 3.9. In Figure 3.9A, 

both depletion (RDD) and RID are present, while in 3.9B, the “deactivation” of releasable 

vesicles is the only form of depression present. In RID, the rate of vesicle transition from 

the active state (PRM) to the depressed state (DEP; Figure 3.1) jumps with every AP 

and decays exponentially to zero (see Figure 3.8A). The rate of recovery is either 

constant (RID alone, red) or facilitating (RID + FDR, blue). Including the activity-

dependent (i.e., Ca2+-dependent) recovery rate allows the synapse to mitigate the effects 

of depression for long spike trains, keeping the transmission fidelity within a useful range 

even for very high-frequency stimulation (Fuhrmann et al., 2004). 

3.2.1.3 Achieving Sustained Facilitation with Ca
2+

-Dependent 

Recruitment 

The generality of the event-driven model allows for controlled simulated experiments that 

can demonstrate which features of a synapse might explain the dynamics observed in 

physiological experiments. Kandaswamy et al. (2010) stimulated the Schaffer collateral 

fibers of rat hippocampal slices and performed whole-cell recordings of pyramidal cells in 

area CA1 and built a simple model to account for the patterns of facilitation in synaptic 

strength that they observed. In both observation and the fitted model, the synapses 

exhibited significant facilitation in synaptic strength on multiple time scales, coupled with 

a slower component of short-term depression that was presumably caused by vesicle 

depletion. The trend for a constant-rate stimulus of 40 Hz appears in Figure 3.10A (see 

Figure 1E in (Kandaswamy et al., 2010) for comparison to experimental recordings). 

However, when I applied the same 40-Hz stimulus to my model, described in Methods 

and seen in Figure 3.3 in Results 3.2.1.1, the released vesicles quickly depleted after an 
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initial facilitation (Figure 3.10B, blue). Sustained facilitation could not be achieved even 

for enhanced rates of recycling or for larger reserve vesicle pools (data not shown). 

 

 

Figure 3.10: Ca2+-Dependent Vesicle Recruitment Enables Sustained Facilitation to 

Overcome Depletion. 

All plots reveal expected number of releases in response to each AP in a 40-Hz stimulus 

train. (A) Synaptic strength of model from (Kandaswamy et al., 2010) exhibits strong 

initial facilitation that is sustained over many spikes, decreasing gradually from depletion. 

(B) Output of the same event-driven model as in Figure 3.3 in Results 3.2.1.1. Expected 

number of release events per AP calculated from 10-ms time bins around spike times. 

With constant rate of redocking (blue), model shows both rapid facilitation and rapid and 

sustained depletion. Applying a facilitation function to the rate of vesicle redocking (red) 

restores high release fidelity under sustained stimulation. 
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The solution to this problem comes from research that demonstrates a 

relationship between [Ca2+]i and the rate of vesicle recruitment to release sites. Because 

[Ca2+]i so strongly depends on AP-mediated Ca2+ influx (Bischofberger et al., 2002; 

Neher & Sakaba, 2008; Simons, 1988), the level of Ca2+ in the intracellular space can 

serve as a useful proxy for measuring the recent level of spiking activity. Therefore, if the 

rate of vesicle recruitment to the RRP correlates with [Ca2+]i, then the synapse should be 

able to replace vesicles at a rate proportional to that at which it is depleting them, 

allowing it to maintain transmission fidelity even over long stimulus trains (Denker et al., 

2011; Ertunc et al., 2007; Fernández-Alfonso & Ryan, 2004; Hallermann & Silver, 2013; 

Sara, Mozhayeva, Liu, & Kavalali, 2002). During more quiescent periods, the 

spontaneous undocking rate would shift the balance toward fewer occupied sites 

(Murthy, Schikorski, Stevens, & Zhu, 2001; Murthy & Stevens, 1999). In their study of 

the rat calyx of Held, Hosoi et al. (Hosoi et al., 2007) elucidated a linear relationship 

between Ca2+ concentration in the presynaptic volume and the rate of vesicle 

recruitment to the RRP, at low [Ca2+]i. According to their findings, the rate at which 

vesicles are recruited to the RRP depends linearly on the internal  [Ca2+]i according to 

 𝑘1 = 𝑘1,𝑏 + 𝑘[Ca
2+]𝑖, (3.22) 

where k1 is the rate of vesicle docking to a release site, k1,b = 0.1 pool/s is the Ca++-

independent docking rate, and k = 1.0 pool (μM ⋅ s)⁄  gives the calcium dependence. 

Because the experiments were conducted at room-temperature, however, the precise 

values for these reaction rates could be different (Delvendahl, Vyleta, von Gersdorff, & 

Hallerman, 2016; Renden & von Gersdorff, 2007; Sabatini & Regehr, 1996; Watanabe et 

al., 2014). 

Applying this concept to the model allows it to reclaim lost vesicles in an activity-

dependent manner. This requires adding a spike-evoked component to the recycling 
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process (the pathway from REC to PRM in Figures 3.1, 3.4A) that evolves in proportion 

to the [Ca2+]i profile (see Figure 2.12 in Chapter 2 Results 2.2.3) according to Equation 

3.22. The parameter values chosen were only first approximations, but including this 

feature restored the sustained level of facilitation seen in Figure 3.10B (red). This 

highlights the importance of Ca2+ mediated processes in vesicle recycling and retrieval in 

strongly facilitating synapses, and the model presented here provides a useful 

framework for studying the impact of synaptic structure and dysfunction on the 

transmission of signals between neurons. 

This sustained level of facilitation was achieved even in the absence of a large 

reserve pool. A more complete model would include multiple recycling pathways, each 

acting on a different time scale (Kononenko & Haucke, 2015; Okamoto et al., 2016; 

Schikorski, 2014; Y. Wu et al., 2014; L. Xue et al., 2012; Zhang, Li, & Tsien, 2009), 

along with a “reluctant” pool of docked vesicles that may act as an extra reserve pool (J. 

S. Lee et al., 2012; J. S. Lee et al., 2013; Sakaba, 2006). Reluctant vesicles appear in 

various synaptic types, including the calyx of Held and hippocampal boutons (Moulder & 

Mennerick, 2005; Sakaba & Neher, 2001). Although they do not typically release 

neurotransmitter in response to action potentials, they may be induced to do so by global 

applications of Ca2+ or hypertonic sucrose (Bacaj et al., 2015; Rosenmund & Stevens, 

1996; Sara et al., 2002), which demonstrates that the RRP is much larger than can be 

estimated through depletion via tetanic stimulation (Moulder & Mennerick, 2005; Neher, 

2015). Synapses can actively recruit these vesicles during period of rapid stimulation in 

a Ca2+- and actin-dependent manner (J. S. Lee et al., 2012; J. S. Lee et al., 2013). This 

would provide a way for synapses to maintain a facilitated state during long stimulus 

trains without depending on vesicle recycling as a rate-limiting step. I expect future 

implementations of the model presented here to match the data better as they include 
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more vesicle pools and synaptic processes from the literature. Such models are beyond 

the scope of this current project, not because the extra features would be difficult to 

include, but because the parameter values would require a great deal of fine-tuning. The 

model presented here provides a sufficient proof-of-concept for the utility of Ca2+-

dependent rates of vesicle recruitment. 

3.2.2 Runtime Complexity 

A significant advantage of this model is its minimization of computational cost at runtime. 

As with other event-driven models of physical systems (Ros, Carrillo, Ortigosa, Barbour, 

& Agís, 2006), jumps directly from one event time to the next, skipping over the 

intervening periods without having to simulate directly any of the underlying processes. 

The only processing occurs during the point events, in which the synapse updates its 

state and uses the new state to calculate the timing of future events. Therefore, the 

runtime complexity depends most directly on the level of activity driving the synapse 

model rather than the amount of time being simulated; a long period of low activity may 

run just as fast as a short period of high activity. For a given synaptic model, the runtime 

grows linearly with the number of spikes used to stimulate it (Figure 3.11). For low spike 

rates, there is also a small linear dependence on the simulated time, but this arises from 

the existence of spontaneous processes. Removing all but the spike-evoked 

components of synaptic processes eliminates this dependence on time. 
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Figure 3.11: Linear Runtime Complexity of Event-Driven Synaptic Model. 

Surface plot of the number of events simulated for a given number of spikes and length 

of simulated time. In each trial of a configuration, a fixed number of random spike times, 

spread uniformly over a fixed length of time, drove the model. Colored surface 

represents the maximum number of simulated events out of 25 trials in each 

configuration. Transparent mesh represents best-fit planes to this surface, where two 

distinct planar regions are visible, and the minimum of the two planes is shown at all 

points. 

 

In general, as Figure 3.11 demonstrates empirically, the model has a linear 

runtime complexity of O(𝑎𝑆 + 𝑏𝑇 + 1), where 𝑆 is the number of spikes, 𝑇 is the length of 

simulated time, and 𝑎 and 𝑏 are their respective relative contributions to runtime. The 

value of 𝑎 depends on the number and rate of spike-evoked processes; 𝑎 = 0 in the 

case where no synaptic processes depend on action potentials or Ca2+ influx. The value 

of 𝑏 depends on the number and rate of spontaneous processes; 𝑏 = 0 when no 

spontaneous vesicle transitions occur and when all events are tightly coupled to the 

spike times (that is, no event windows longer than a typical ISI). A phase transition in 

model runtime occurs above a certain rate of stimulation, where the runtime switches 
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from depending predominantly on the number of spikes (𝑎 > 𝑏) to depending more on 

the length of time simulated (𝑎 < 𝑏). In this high-spike-rate regime, the runtime actually 

becomes less than what it would have been if it continued to depend mostly on the 

number of action potentials. The reason for this reduction is that above a certain rate of 

stimulation, the release times (and the times of other spike-evoked events) responding 

to one AP start to overlap with those triggered by the next AP. In other words, the 

average ISI becomes less than the average time window for spike-evoked activity, 

reducing the number of events that have time to occur. This phase transition manifests 

in Figure 3.11` as the function fitting to the minimum of two best-fit planes, where line of 

intersection of the two planes marks the spike-rate phase-transition boundary. This line 

of intersection should change depending on the time windows of whatever evoked 

synaptic processes are present in the model. 

 

Chapter 3, in part, is currently being prepared for submission for publication of 

the material. Bartol, Thomas M.; Sejnowski, Terrence J. The dissertation author was the 

primary investigator and author of this material.  
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4 Discussion 

Choosing or designing a synaptic model always involves tradeoffs between 

realism and efficiency. The model presented in this dissertation bridges a gap between 

existing models on both dimensions. In terms of realism, it includes features such as 

stochastic, asynchronous release of neurotransmitter from multiple Ca2+ sensitive 

mechanisms and demonstrates physiologically crucial features such as facilitation and 

depression. Furthermore, the explicit nature of vesicle pool exchange provides a highly 

flexible framework for building models of a diverse array of synapse types and for 

exploring the effects of synaptic dysfunction on a mechanism-specific level. In terms of 

efficiency, the event-driven structure allows for maximum scalability for a given level of 

abstraction of the underlying processes. The structure of the model allows for 

consolidation of related processes (such as synchronous and asynchronous release 

mechanisms, or different recycling pathways) into simpler, more abstract 

representations, although this comes at the cost of making testable predictions with the 

model. 

4.1 Model Extensibility 

One important feature of the model presented here is its applicability to a diverse array 

of synapse types. In the central nervous system, some synapses, such as those 

projecting from pyramidal cells in cortex and interneurons in hippocampus], 

predominately depress in release probability (Fuhrmann et al., 2004; Rotman et al., 

2011; Thomson & Bannister, 1999; Thomson & Deuchars, 1994; M. Tsodyks et al., 

1998; M. V. Tsodyks & Markram, 1997). Other synapses, such as those from 

interneurons in cortex and pyramidal cells in hippocampus, predominantly facilitate 

(Dobrunz et al., 1997; Dobrunz & Stevens, 1997; Rotman et al., 2011; Thomson & 
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Bannister, 1999; Thomson & Deuchars, 1994). Some large synapses, such as the calyx 

of Held in auditory brainstem, contain tens of thousands of vesicles and hundreds of 

active zone release sites (de Lange et al., 2003; Guo et al., 2015; Qiu, Zhu, & Sun, 

2015), while others, such as hippocampal synapses, contain very few vesicles in a small 

active zone (Denker et al., 2011; Dobrunz & Stevens, 1997; N. Harata et al., 2001; 

Rosenmund & Stevens, 1996). Recycling pathways for used vesicles also display a 

huge variety, with many synapses responding to short-term changes in presynaptic 

activity by adjusting the balance between endocytosis and exocytosis, between kiss-

and-run vesicle fusion and full-collapse fusion, or between single-vesicle retrieval and 

bulk endocytosis (Alabi & Tsien, 2013; Delvendahl et al., 2016; N. C. Harata, Aravanis, & 

Tsien, 2006; Jockusch, Praefcke, McMahon, & Lagnado, 2005; Park, Li, & Tsien, 2012; 

Rizzoli & Jahn, 2007; Watanabe et al., 2013; Watanabe et al., 2014; L. G. Wu et al., 

2014; Y. Wu et al., 2014; J. Xue et al., 2011; Yamashita et al., 2010; Yue & Xu, 2014; 

Zhu, Xu, & Heinemann, 2009b). The current model possesses sufficient flexibility to 

represent any of these features simply by adding or removing vesicle pools and defining 

the dynamics of the processes whereby vesicles transition between them. 

Chapter 3 had the event-driven framework modeling both facilitating hippocampal 

synapses based on Nadkarni et al. (2010) and Kandaswamy et al. (2010) and 

depressing cortical synapses based on Fuhrmann et al. (2004) (see Results 3.2.1). The 

framework easily extends to much larger synapses, such as the calyx of Held, simply by 

multiplying the number of releasable vesicle pools accordingly. Each releasable pool 

would have its own associated recycling pathways, feeding either into as many local 

recycling pools (Fernández-Alfonso & Ryan, 2004; Z. Li et al., 2005) or into a single, 

much larger recycling pool (Qiu et al., 2015; Staras et al., 2010; X. S. Wu & Wu, 2009). 

Each releasable pool would represent a single active zone, and runtime would scale 
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linearly with the number of active zones, since each would generate release times 

independently. The ability to include an arbitrary number of active zones (with a single 

shared recycling pool) is already implemented in the code simply by making the primed 

pool into an array of VesiclePools and using an array of SynProcesses to handle their 

respective release and redocking dynamics (see Chapter 3 Methods 3.1.3 and 

github.com/soiens24/Presynaptic_Framework).  

Any number of recycling pathways are also possible, depending on the rates of 

each stage of fusion, retrieval, reacidification, and redocking. The way a synapse 

couples its rate of release/exocytosis with its rate of endocytosis strongly determines the 

nature of transmission fidelity (Hosoi et al., 2009; L. G. Wu et al., 2014; Xu et al., 2013; 

Zhu, Xu, & Heinemann, 2009a). Furthermore, this coupling depends on the extent to 

which the synapse relies on kiss-and-run release and retrieval or on full-collapse fusion 

and either clathrin mediated or ultrafast bulk endocytosis (Park et al., 2012; Rizzoli & 

Jahn, 2007; Watanabe et al., 2013; L. G. Wu et al., 2014; Zhang et al., 2009). Each of 

these processes happens at a different rate in an activity-dependent manner, and each 

leads to a different time course for reacidification and refill with neurotransmitter (Atluri & 

Ryan, 2006; X. S. Wu et al., 2009; Y. Wu et al., 2014; J. Xue et al., 2011; Yamashita et 

al., 2010). The framework presented in this dissertation allows one to explore how 

different levels of each recycling pathway might contribute to different synaptic 

adaptations in context of different levels of activity, and each can be made to depend on 

[Ca2+]i (Sakaba & Neher, 2001; X. S. Wu et al., 2014; L. Yao & Sakaba, 2012) by 

including both spontaneous and spike-evoked components to the vesicle transition rates 

(see Chapter 3 Methods 3.1.2). Figure 4.1 provides an example of the sort of complexity 

that this event-driven framework can naturally accommodate. 
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Figure 4.1: Example of Complex Synapse Made Possible with Event-Driven 

Framework. 

Colored shapes represent vesicle pools; black arrows represent synaptic processes that 

move vesicles between pools/states. All pools and pathways based on physiological 

data. RRP (readily releasable pool) contains releasable vesicles in multiple states 

(Rosenmund & Stevens, 1996): SRP (slow-releasing pool) holds reluctant vesicles 

(Moulder & Mennerick, 2005); PPV (positionally-primed vesicles) holds vesicles that 

have been recruited via actin to sit near Ca2+ channels during periods of high activity (J. 

S. Lee et al., 2012); FRP (fast-releasing pool) holds vesicles that have undergone further 

molecular priming (J. S. Lee et al., 2013); RFR (refractory) represents a post-release 

refractory period based on local mechanical disturbances in the membrane (Dobrunz et 

al., 1997); DEP (depressed) represents an inactive state as part of release-independent 

depression (Fioravante & Regehr, 2011). Any number of RRPs may exist in a model to 

accommodate synapses of varying sizes. Purple states represent released vesicles that 

have released neurotransmitter but are still fused, either “kissing” the membrane (KIS; 

kiss) (Alabi & Tsien, 2013) or fully collapsed (FCF; full-collapse fusion) (Zhang, Cao, & 

Tsien, 2007). Orange states represent vesicles or membrane that have been retrieved 

and are being refilled with neurotransmitter (Atluri & Ryan, 2006), either into kiss-and-run 

vesicles (RUN; run) (Zhang et al., 2009), into clathrin-retrieved large vesicles (RFL; refill) 

(L. H. Yao et al., 2012), or into bulk endosomes (BLK; bulk) (Delvendahl et al., 2016). 

RPP (readily priming pool) represents those fully ready vesicles awaiting an open 

release site in the RRP (Qiu et al., 2015). RSV (reserve) holds vesicles that only slowly 

get incorporated into the recycling process (Z. Li et al., 2005); and AXN (axon) 

represents the superpool of vesicles in the axon distributed over numerous synapses 

(Staras et al., 2010). 
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4.2 Limiting Assumptions of MCell as Ground Truth 

A major assumption of the model proposed in this dissertation is that the MCell model of 

a Schaffer collateral synapse put forth by Nadkarni et al. (2010) can serve as ground 

truth. However, this assumption is limited on several levels. First, it assumes that MCell 

can correctly replicate the dynamics of diffusion and molecular interactions of 

biophysical systems through its Markov chain Monte Carlo framework (Rex A Kerr et al., 

2008; Stiles & Bartol, 2001; Stiles et al., 1996). Second, it assumes that the molecular 

kinetics of the included species match their true kinetics. Finally, it assumes that the 

molecular species and biological systems modelled are the only ones present in the 

presynaptic compartment, or at least that any other systems would produce only 

negligible changes to the phenomenology of the synapse. MCell has been sufficiently 

well validated to satisfy the first assumption, at least to the temporal and spatial scales of 

interest here (hundreds of microseconds and hundreds of nanometers). 

The second assumption is valid insofar as the molecular models used by MCell 

correctly represent reality, both in terms of the molecular state diagrams and in terms of 

the binding and interaction kinetics fitted by other groups: Sun et al. (2007) for the 

descriptions of Ca2+-driven SNARE kinetics for vesicular release; Bischofberger et al. 

(2002) for the VDCC dynamics for spike-evoked Ca2+ influx; Nägerl et al. (2000) for the 

high- and medium-affinity sites of the calbindin Ca2+ buffer; and Sneyd et al. (2003) for 

the kinetics of the PMCA pumps. The state diagrams and kinetic parameters for these 

species are summarized in Figures 2.1, 2.2, 2.4 and Tables 2.1, 2.2 in Chapter 2 

Methods 2.1.1. Simplifying assumptions inevitably go into models such as these, which 

limit the accuracy of any model based on them. However, for the purposes of this 

dissertation, I assume that these models reproduce experimental results sufficiently to 

use them. 
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The greatest limitations to model accuracy come from the third assumption in 

that the variety of systems and molecular species far exceed what MCell represents 

(Rizzoli & Tabares, 2016). For instance, the Nadkarni et al. (2010) model did not include 

any endoplasmic reticulum (ER), which stores of intracellular Ca2+ and has a significant 

effect on neuronal signaling (Verkhratsky, 2002). Ryanodine receptors (RyR) (Bouchard, 

Pattarini, & Geiger, 2003; Lanner, Georgiou, Joshi, & Hamilton, 2010; Otsu et al., 1990) 

and inositol 1,4,5-trisphosphate receptors (IP3R) (Mikoshiba, 2007; Nixon, Mignery, & 

Somlyo, 1994) can unleash these Ca2+ stores. Inclusion of such an ER would likely alter 

the shape of the Ca2+ transient and increase the probability of neurotransmitter release, 

possibly over longer time scales, as in synaptic augmentation (de Juan-Sanz et al., 

2017; Kandaswamy et al., 2010). Another system that would significantly affect Ca2+ 

dynamics over multiple APs is the inactivation and facilitation of Ca2+ channels mediated 

by Ca2+-calmodulin (CaM) and Ca2+ binding proteins (CaBP1) (Ben-Johny & Yue, 2014; 

Catterall et al., 2013; Hardie & Lee, 2016; A. Lee et al., 2002; Nanou et al., 2016). These 

interactions might help control release-independent depression (RID) and the frequency-

dependent recovery (FDR) from depression (Fuhrmann et al., 2004) by restricting Ca2+ 

influx over extended spike trains (see Chapter 3 Results 3.2.1.2).  Furthermore, the 

presynaptic Ca2+ buffer includes more than just calbindin (Schwaller, 2010; Timofeeva & 

Volynski, 2015) and diffusion is limited by the plethora of intracellular microstructures 

(Blum, Lawler, Reed, & Shin, 1989; Novak, Kraikivski, & Slepchenko, 2009). Because 

location and movement through space plays a crucial role in phenomenology (see 

Chapter 2 Results 2.2.1, 2.2.4), investigating how these features affect release dynamics 

would require rerunning the MCell model with them included. Fitting functions to the 

results, as in Chapter 2, could then allow one to apply these effects to the event-driven 

model of Chapter 3. 
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Other considerations of synaptic physiology, those which do not affect the shape 

of the spike-evoked Ca2+ transient, would not require rerunning full MCell simulations 

and include the structure of the SNARE complex. In the MCell model, we assumed that 

each vesicle employs two Ca2+ sensors for triggering vesicle fusion, Syt-1/2 for 

synchronous release and Syt-7 for asynchronous release, as characterized by the Sun 

et al. (2007) model. Each mechanism acted independently, and together they served as 

the sole mechanism of release. However, many more molecules comprise the SNARE 

complex, each affecting release fidelity in complex ways (Imig et al., 2014; J. S. Lee et 

al., 2013; Sudhof, 2004; Südhof, 2013a, 2013b; Südhof & Rothman, 2009; Tang et al., 

2006; Varoqueaux et al., 2002). In fact, the inclusion of extra molecules in the SNARE 

assembly may play a crucial “superpriming” step in enhancing the release alacrity of 

already-primed vesicles (J. S. Lee et al., 2013; Neher & Sakaba, 2008). Furthermore, 

although a single SNARE complex is sufficient to induce spike-evoked release (van den 

Bogaart et al., 2010), each vesicle may have multiple SNARE complexes associated 

with it, which is necessary for fast vesicle fusion (Mohrmann, de Wit, Verhage, Neher, & 

Sørensen, 2010). I predict that multiplying SNARE complex would simply multiply 

release rate in proportion. It is less clear what effects that other molecules, such as 

complexins and Muncs, would have on release kinetics. A new, validated model of their 

molecular interaction kinetics is required before they can be applied to this model. 

The advantages of using MCell as ground truth, I believe, outweigh the 

limitations enumerated above. A simulated synaptic model allows for much finer 

experimental control and consistency from trial to trial, while yielding far more precise 

results than physiological experiments. Measuring release rate, probability, facilitation, 

and depression at biological synapses is difficult and requires a number of problematic 

assumptions (Neher, 2015). Using MCell allows for precise measurements of unmodified 
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Ca2+ traces (Bartol et al., 2015) and of single-vesicle release rates, even controlling for 

such confounding processes as the post-release refractory period (Nadkarni et al., 

2010). All things considered, the approach taken in this dissertation made the 

development of a flexible event-driven framework possible. Any new features, including 

arbitrary numbers of vesicle pools and synaptic processes, can easily be included in 

future work (see Section 4.1). 

4.3 Room for Improvement in Scalability 

Although a major part of the purpose of this presynaptic model is to balance realistic 

phenomenology with computational efficiency, the model presented in this dissertation 

tends to prioritize the former over the latter. However, there are a number of ways to 

improve the efficiency significantly. First, and most trivially, the code needs to migrate 

from a high-level interpreted language (MATLAB; see 

github.com/soiens24/Presynaptic_Framework) to a more machine-level compiled 

language. Second, although memory necessarily scales linearly with the number of 

synapses, this increased load can remain insignificant through a shared-memory 

system. All synapses of the same type could reference the same location in memory for 

retrieving parameter values, and all synapses of the same axon may share the same 

states of facilitation, which depends only on spike history (see Chapter 2 Results 2.2.5), 

without sharing vesicle pool sizes or event times. Both of these changes could reduce 

processing time and memory requirements without affecting accuracy. 

For large-scale simulations that do not require sub-millisecond precision in the 

timing of events, the temporal filter described in Chapter 2 Results 2.2.3.1 and Chapter 3 

Methods 3.1.2.2 may be eliminated. This would, for instance, cause the release 

response to begin exactly at the spike time or at some fixed delay (𝜇), while maintaining 
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most of the realism in the release histogram shape. The number of spike-evoked, 

exponentially decaying release rate components could also be reduced without much 

loss in accuracy. Combining synchronous and asynchronous release into one effective 

mechanism, as done by Nadkarni et al. (2010) when fitting the release histograms, 

would yield a single triple-exponential shape that fits to within reasonable accuracy over 

a timescale of a few hundreds of milliseconds (see Figure 3.5B in Chapter 3 Results 

3.2.1.1). Longer timescales of release resulting from residual Ca2+ (see Chapter 2 

Results 2.2) may still be included, although their effect on the release histogram is not 

significantly above spontaneous release rate even for thousands of trials (data not 

shown). Removing these low-magnitude, long-timescale components may prove not to 

incur an appreciable cost in accuracy while allowing for a significant speedup in 

processing time. 

Further improvement in efficiency may come by reducing the number of 

facilitation components used by each component of the spike-evoked processes. 

Although it is clear that the various time scales of vesicle release, for example, facilitate 

according to unique functions (see Chapter 2 Results 2.2.5.2), there are possible 

correlations between components that I did not explore in this dissertation. Future work 

may elucidate what sorts of reductions and correlations may exist. To simplify the 

computations required for estimating release rate and facilitation, the model may further 

use lookup tables for calculating event times based on empirical release-rate histogram 

profiles. This would allow the model to capture more nuanced dynamics without having 

to uncover analytical functions to approximate the true histograms or to fit those 

parameters. It could also allow significant speedup and reduction in memory 

requirements (Ros et al., 2006), although it may be at the cost of having a system that 

cannot converge to a smooth histogram over many trials, as the noise of the empirical 
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lookup table would be preserved. I considered this approach and decided against it in 

favor of theoretical elegance, but future work may wish to explore incorporating lookup 

tables into this event-driven framework. 

One source of computational load is the post-release refractory period, where all 

remaining vesicles in the active zone of a release event simultaneously enter a refracted 

state for 5-8 ms, a form of very-short-term synaptic depression (Dobrunz et al., 1997; 

Stevens & Wang, 1995). The major cost comes from the fact that each vesicle exits the 

refracted state individually, as in the MCell implementation (Nadkarni et al., 2010), 

although it is unclear from experiment whether this is how it happens. To speed this up, 

one may have all vesicles come out of their refractory period simultaneously. It would 

preserve the average-case histogram for recovery while significantly speeding up 

simulations by O(𝑁𝑣), where 𝑁𝑣 is the number of vesicles per active zone. However, it 

remains unclear how much of an effect this would have on the information transmitted in 

single trials and whether it would bring the model closer to reality or further away. Other 

processes, such as bulk endocytosis (Watanabe et al., 2013; J. Xue et al., 2011) and the 

clathrin-mediated budding of synaptic vesicles from endosomes (Watanabe et al., 2014), 

could also benefit from having multiple effective vesicles transition between states at 

once. 

A similar gain in efficiency might be possible with a different implementation of 

release-independent depression and frequency-dependent recovery (RID-FDR). The 

original model (Fuhrmann et al., 2004) treated recovery from depression as a process 

with a time constant that changes with time, depending on activity, but this requires 

simulation of intervening time steps, which can be computationally expensive. The RID-

FDR model introduced in this dissertation used competing Ca2+-dependent processes to 

move vesicles between releasable and inactive states (Fioravante & Regehr, 2011) (see 
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Chapter 3 Results 3.2.1.2). While more efficient for small number of vesicles, such a 

model becomes impractical for very large releasable pools, and it becomes quite 

unwieldy when it is taken to occur at individual Ca2+ channels (Ben-Johny & Yue, 2014; 

Catterall et al., 2013; Hardie & Lee, 2016; A. Lee et al., 2002; Nanou et al., 2016). A 

much more efficient model would be to implement RID-FDR with a function that depends 

only on the value of some variable at the previous spike and on the time interval from 

then to the current spike, just like the facilitation function explored throughout this 

dissertation (see Chapter 2 Results 2.2.5 and Chapter 3 Methods 3.1.3.1).  

There will always exist trade-offs between accurate representation and efficient 

computation. The event-driven framework presented in this dissertation allows one to 

explore these trade-offs on a spectrum, from molecular-level, sub-millisecond 

representation to a highly abstract level that operates over much longer timescales. It 

allows for easy inclusion and exclusion of both dynamic features and levels of detailed 

complexity. 

4.4 Comparisons to Other Models 

Over the years, many synaptic models have been explored and used in various 

applications. Many neural networks used both for theoretical research in neuroscience 

and for practical applications in machine learning and artificial intelligence use 

“synapses” that act as simple multiplicative weights (Chapeau-Blondeau & Chambet, 

1995; Dayhoff & DeLeo, 2001; Maass & Zador, 1999; Schmidhuber, 2015). While such 

abstractions have enabled a great deal of progress in areas such as deep learning for 

image recognition and natural language processing, they bear only distant resemblance 

to real synapses. As such, they are not amenable to studying the effects of synaptic 

function or dysfunction in brain circuits. The model presented in this dissertation 
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overcomes this limitation by enabling a scalable representation of many different 

synaptic features in a way that bridges the gap between concrete physiology and 

abstract phenomenology. 

It is unfortunately impossible to make an exact quantitative comparison between 

the different models below because they each produce different types of outputs, 

whether actual release event times (my model), instantaneous synaptic current (M. V. 

Tsodyks & Markram, 1997), Boolean release events (Maass & Zador, 1999), or spike-

evoked release probabilities (Kandaswamy et al., 2010). Fortunately, each of these 

generates the same downstream effect on the postsynaptic neuron, namely an 

excitatory post-synaptic potential (EPSP, assuming excitatory synapses). The 

associated excitatory postsynaptic current (EPSC) results from the opening of AMPA 

receptors at the postsynaptic density upon the release of neurotransmitter, and the 

magnitude is proportional to the fraction of activated synaptic resources (M. V. Tsodyks 

& Markram, 1997) or to the probability of spike-evoked release (Kandaswamy et al., 

2010; Maass & Zador, 1999). The resulting current, 𝐼𝑠𝑦𝑛(𝑡), jumps in response to a 

release event (or probabilistically in response to an AP) and decays exponentially with a 

time constant of 1-3 ms as activated AMPARs close (M. V. Tsodyks & Markram, 1997). 

It drives the EPSP (𝑉) according to 

 𝜏𝑚𝑒𝑚
d𝑉

d𝑡
= −𝑉 + 𝑅𝑖𝑛𝐼𝑠𝑦𝑛(𝑡), (4.1) 

where 𝜏𝑚𝑒𝑚 = 50 ms is the membrane time constant and 𝑅𝑖𝑛 = 100 MΩ is the input 

(synaptic) resistance (M. Tsodyks et al., 1998). However, because synaptic conductance 

is incidental to the concern for short-term presynaptic plasticity, I treated the resulting 

EPSP magnitudes as arbitrary, although it typically fell in the range of a couple millivolts. 
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4.4.1 Tsodyks and Markram (1997) 

One popular synaptic model that represents a wide range of synapse types through its 

elegant implementation of short-term plasticity is the model designed by Tsodyks and 

Markram (1997). It uses a relatively simple representation of the utilization of synaptic 

resources, tracking the fraction of resources in recovered, active, and inactivated states, 

to flexibly model both short-term depression and facilitation (M. Tsodyks et al., 1998). It 

has already proven useful in simulated neural network contexts for producing complex 

behavior (Cortes et al., 2013). 

The Tsodyks-Markram (TM) model does all this deterministically, representing 

average or aggregate synaptic behavior rather than single-trial behavior. However, the 

presence of trial-to-trial stochasticity in synaptic transmission may have important 

implications for the learning and information processing performed in neural circuits 

(Buesing, Bill, Nessler, & Maass, 2011; Faber, Young, Legendre, & Korn, 1992; Faisal, 

Selen, & Wolpert, 2008; Otmakhov, Shirke, & Malinow, 1993; Seung, 2003). Although 

the TM model captures a wide variety of synaptic dynamics, including facilitation and 

depression of transmission strength, its deterministic formulation fails to capture this 

trial-to-trial variability. Furthermore, it lacks the predictive inherent to my model since it 

abstracts away all the internal processes of the synapse, even conflating presynaptic 

(vesicle availability, release probability) with postsynaptic (neurotransmitter receptor 

saturation) resources. As seen in Figure 4.2 below, both my event-driven framework and 

the TM model are able to represent a wide variety of synapse types, both predominantly 

facilitating (red) and predominantly depressing (blue), through changes to parameter 

values.  
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Figure 4.2: Comparison of My Model with That of Tsodyks and Markram (1997). 

In both models, blue represents the output of a model with depressing parameter values, 

and red represents output with facilitating values. Eight spikes delivered at 20 Hz 

followed by six spikes delivered at 50 Hz. (A) Release event raster for 100 trials of each 

event-driven model. (B) EPSPs generated from the respective release time histograms 

of the event-driven models. (C) Fraction of synaptic resources in use for transmission 

over time for the TM model. (D) EPSPs generated from TM model. 

The TM model succeeds in the simplicity of its representation of different 

synapse types. It can serve well for high-level models that care more about aggregate 

changes in short-term synaptic transmission than the contributions of individual 

synapses (Cortes et al., 2013). My model has the advantage of capturing trial-to-trial 

variability, asynchronicity, and internal synaptic dynamics, which the TM model fails to 

represent. It works best for simulations that aim to uncover the contributions of single 

synapses or synaptic features to network computations.  
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4.4.2 Maass and Zador (1999) 

An example of a presynaptic model that captures probabilistic release is that by Maass 

and Zador (1999). The Maass-Zador (MZ) model tracks short-term facilitation in 

response to spike history and short-term depression in response to release history, 

calculating the probability of release in response to each spike as a function of the 

facilitation and depression functions at each spike time and generating Boolean release 

events according to this probability. As such, it captures stochasticity and trial-to-trial 

variability of real synapses. However, it still fails to account for spontaneous or 

asynchronous release of neurotransmitter since releases in the MZ model can only 

occur exactly at spike times. Furthermore, a series of mathematical quirks in the model 

cause depression to over-exert itself (specifically, pulling the depression function below 

zero), forcing an extended quiescent period and limiting the number of release events for 

a given spike train over many trials. When stimulated at high frequency, the MZ model 

generates releases in waves of alternating quiescence and recovery (data not shown). 

These oscillations do not arise from physiological data but rather as a mathematical 

artifact of the model. 

A further limitation is the lack of explanatory power as to the synaptic origins of 

short-term plasticity. The phenomenology of the MZ model, while elegant, arises from 

mathematical abstractions rather than from physiologically grounded mechanisms, 

making it susceptible to produce unrealistic behavior as described above and limiting its 

utility as a testable model. Once again, the advantage of my event-driven framework is 

its balance of efficiency with physiologically grounded realism. It further includes both 

asynchronous and spontaneous release events, which the MZ model lacks (see Figure 

4.3). Both models can have their parameters adjusted to alter the balance between 

short-term facilitation and depression, but only my model bridges the gap between 
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molecular mechanisms and phenomenology. For neural network simulations where the 

presence of stochasticity in synaptic transmission is more important than reproducing 

true dynamics, the MZ model may suffice. Of course, it surpasses my model in terms of 

computational scalability, both in memory load and in number of computations. However, 

for investigations into how presynaptic mechanisms of vesicle release and recycling 

affect information transmission and network behavior, my model provides and 

indispensable layer of flexibility. 

 

 

Figure 4.3: Comparison of My Model with That of Maass and Zador (1999). 

Same spike train as in Figure 4.2. (A) Same as Figure 4.2A. (B) Same as Figure 4.2B. 

(C) Release raster of the MZ model with release events occurring probabilistically at 

spike times. (D) EPSP generated from MZ model. 
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4.4.3 Kandaswamy et al. (2010) 

Although the Kandaswamy et al. (KK) model (2010) does match the experimental data 

well, it lacks generalizability. In particular, the free parameters of their model, which they 

adjusted to fit the experimental data, depend empirically on the frequency of stimulation 

but without any discernible pattern that would provide insight into their origin (see Table 

2 in (Kandaswamy et al., 2010)). Additionally, the exponential decay model for the REC 

pool assumes a constant rate of stimulation, and their 𝜉 parameter, introduced to prevent 

overfilling of the RRP, relies on the assumption that a minimum time interval has passed 

between action potentials (data not shown). Finally, and crucially, the model for 

facilitation treats the first spike as a special case relative to all subsequent spikes. As 

seen in Figure 4.4C, the facilitation from the first to the second spike of the first AP train 

is much larger than for the second AP train beginning at 700 ms. A realistic short-term 

facilitation model should scale the probability of release on the first spike as though it 

occurred in the middle of a train after an infinite ISI, as the synapse should return to its 

baseline state after a sufficiently long interval of no spiking activity, all else being equal. 

However, the KK model instead arbitrarily excludes the first spike from facilitation to fit 

the data. Thus, it lacks the generalizability to appropriately accommodate spike trains 

with arbitrarily large inter-spike intervals. 

The model I developed in this dissertation overcomes these limitations by 

providing a highly flexible and explanatory framework. Each of the parameters for 

describing the profile of the release histogram (𝑃, 𝜏, 𝑘, 𝜇, 𝜎; see Equations 2.17-2.26 in 

Chapter 2 Results 2.2.3) has an almost direct link to the underlying physiology, whether 

to the Ca2+-binding and vesicle fusion kinetics of the SNARE complex (𝑃 and 𝜏) or to the 

stochastic delay in response to the AP caused by buffered diffusion of Ca2+ (𝑘, 𝜇, and 𝜎). 

Furthermore, the facilitation function has sufficient complexity to account for the changes 
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seen in neurotransmitter release fidelity of a wide variety of spike train patterns. 

Importantly, all spikes are treated equally: Equations 2.27-2.32 (in Chapter 2 Results 

2.2.5) apply as consistently to the first spike as to the 𝑛-th. While it falls short in terms of 

computational efficiency relative to the Kandaswamy et al. model, it makes up for it in 

terms of biophysical plausibility and its utility for testing hypotheses regarding synaptic 

function. 

 

 

Figure 4.4: Comparison of My Model with That of Kandaswamy et al. (2010). 

Same spike train as in Figure 4.2. (A) Same as Figure 4.2A. (B) Same as Figure 4.2B. 

(C) Probability of neurotransmitter release in response to each spike for the KK model. 

(D) EPSP generated from KK model. 
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4.5 Summary and Further Applications 

The event-driven model that I introduce in this dissertation provides a framework for 

making testable predictions and performing controlled experiments of synaptic function 

in a manner that balances the realism, versatility, and scalability required for large-scale 

simulations of synaptic information processing. The MCell model of Schaffer collateral 

synapses off of which much of this work was based (Nadkarni et al., 2010) must keep 

track of dozens of parameters and thousands of molecular positions, trajectories, and 

reactions at high spatial and temporal resolution. Such a high computational overhead 

can reproduce highly detailed phenomenology and generate testable predictions (Bartol 

et al., 2015; R. A. Kerr et al., 2008; Stiles & Bartol, 2001; Stiles et al., 1996), assuming 

the validity of chosen parameter values and molecular state diagrams (Bischofberger et 

al., 2002; Nägerl et al., 2000; Simons, 1988; Sneyd et al., 2003; J. Sun et al., 2007), but 

at the cost of speed and computer memory. Other synaptic models, reviewed in the 

previous section, operate at high speed and with low memory requirements, but at the 

cost of realism and predictive power, either because they are too mathematically 

abstract (Maass & Zador, 1999) or because they represent only the aggregate behavior 

of many synapses (Kandaswamy et al., 2010; M. V. Tsodyks & Markram, 1997). My 

event-driven framework bridges the gap between these molecular and aggregate 

models. Its predictive power arises from explicit vesicle pool dynamics and from the 

extreme versatility of its spike-evoked, Ca2+-dependent processes. It can represent 

synapses of arbitrary size and complexity (see Section 4.1) while minimizing simulation 

time between successive events. 

To study the roles of short-term facilitation, depression, and recovery at 

synapses relative to information transfer, researchers may use computational models 

rather than experimental investigations because of the difficulty in the latter (Scott et al., 
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2012). The event-driven presynaptic framework presented in this dissertation is ideal for 

this purpose, not only because it produces arbitrarily realistic dynamics, but also 

because it can elucidate the link between the molecular and information-processing 

scales. Specifically, the flexibility of the model can uncover the roles that each 

presynaptic biochemical process plays in transforming the spiking code into the 

synapse-specific release code by allowing investigators to perform the necessary 

controlled experiments without requiring the manipulation of living tissue. 

Much debate has gone on about whether neurons use predominantly a spike-

timing code or a spike-rate code (O'Keefe & Burgess, 2005; Van Rullen, Guyonneau, & 

Thorpe, 2005; Van Rullen & Thorpe, 2001), but the answer could simply be that it 

depends on what the neuron is trying to represent in context of its position in the 

perception-action cycle in the brain (Prescott & Sejnowski, 2008; Tateno & Robinson, 

2006). Facilitating synapses, such as those from hippocampal pyramidal cells 

(Kandaswamy et al., 2010; O'Keefe & Burgess, 2005), exhibit high-pass filtering. Due to 

their low baseline probability of release, they ignore lone spikes and instead respond 

selectively to bursts of action potentials, which might imply that such synapses wait until 

their source neuron has accumulated enough evidence to be adamantly certain of its 

associated belief state before it conveys this information to the next neuron . Depressing 

synapses, on the other hand, such as layer 5 and 6 cortical pyramidal cells (Fuhrmann 

et al., 2004; Thomson & Bannister, 1999; Thomson & Deuchars, 1994), acts as low-pass 

filters. With high initial release probabilities, they respond to isolated spikes while 

ignoring extended high-activity trains, which might imply a preference for conveying 

information about the timing of stimulus onset (Rotman et al., 2011).  

My model can reproduce a wide variety of synaptic dynamics, essential for 

representing the diversity of computations performed in the various circuits throughout 
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the brain. Simply changing a handful of parameters can transform the synapse from 

predominantly facilitating to predominantly depressing, for instance. Crucially, it can 

reveal how each of the various internal presynaptic processes that couple exocytosis 

and endocytosis control the resonance of the synapse’s release code with the neuron’s 

spike code (C. C. Lee et al., 2009; L. G. Wu et al., 2014; Zhu et al., 2009a). 

Furthermore, the same flexibility of the model that allows one to explore each 

mechanism’s role in information processing by turning features on and off can enable 

future investigators to explore how disease states in synaptic function may induce 

disease states at the level of network behavior. Scientists studying the role of synaptic 

dysfunction in behavioral or mental disorders (Crabtree & Gogos, 2014; Deng et al., 

2011; Giovedi et al., 2014; Vawter et al., 2002) may manipulate relevant recycling 

pathways, time constants, or Ca2+ dependencies in the model to help pinpoint not only 

which molecular mechanisms might contribute most to the disease state but also which 

pharmacological interventions might produce the greatest benefit. For such purposes, 

my model could help save considerable time and cost of research by providing the 

necessary flexibility for performing such controlled experiments. In summary, I have 

presented in this dissertation a tool for computational neuroscientists to explore how low-

level presynaptic dynamics effect large-scale neural computations. By explicitly tracking 

vesicle pools and state transitions and their spontaneous and Ca2+-dependent rates in a 

flexible manner and by representing dynamics in an event-driven fashion, the model 

balances physiological realism with both representational versatility and computational 

scalability. 
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