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An Open-Source Architecture for Control and Coordination of a
Swarm of Micro-Quadrotors

M. Furci, G. Casadei, R. Naldi, R.G. Sanfelice and L. Marconi

Abstract— This work presents the design of an open-source
control architecture specifically tailored to the rapid develop-
ment and testing of control and coordination algorithms on
micro quadrotors. The proposed design extends an existing
open-source and open-hardware quadrotor project, i.e., the
Crazyflie nano quadrotor, by adding the guidance, navigation
and control layers required to accomplish autonomous flight.
The control layer, in particular, is based on a cascade control
algorithm able to globally stabilize the position and the attitude
of the vehicle. The global property guaranteed by the algo-
rithm allows the quadrotors to perform aggressive maneuvers.
The guidance layer is designed to coordinate simultaneously
multiple vehicles by generating suitable reference trajectories.
Experiments demonstrate the effectiveness of the proposed
design.

I. INTRODUCTION

A. Background and Motivation

Quadrotor aerial vehicles are currently employed success-
fully in a large variety of applications including, among
others, surveillance, aerial photography and search and res-
cue operations [1]. One reason for this large success is the
high level of maneuverability [2], [3], [4] which allows to
safely perform flight missions even in densely populated
environments [5] or to perform advanced robotic operations
[6]. All of these vehicles are under-actuated mechanical
systems, namely the number of available control inputs is
less than the number of degrees-of-freedom (d.o.f.). As a
consequence, to achieve the level of agility required by
real-world applications, the feedback control design plays
a central role.

Several contributions in the literature document the effec-
tiveness of rapid prototyping control frameworks for the de-
velopment and testing of coordination and control algorithms
[7], [8]. Most of these frameworks are based on motion
tracking systems in which ad-hoc quadrotor platforms can
be employed to perform advanced maneuvers. While the
control algorithms are often released by the authors, the
overall control architecture may not be directly available to
other research groups. More recently, an open-source and
open-hardware project, the Crazyflie [9], has proposed a
miniature low-cost quadrotor platform. The vehicle can be
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easily piloted by a human operator though a remote computer
by means of a standard joystick interface. However, the
currently available software architecture does not include
the guidance, control and navigation layers required to test
closed-loop control algorithms and to perform advanced
operations.

B. Contribution

The goal of this paper is to develop an open source control
framework to allow the Crazyflie nano quadrotors to be
employed as a test bench for the development of advanced
control and coordination algorithms. In particular, the guid-
ance, control, and navigation layers have been designed to let
a group of nano quadrotors to be controlled simultaneously
using a motion tracking system. The control layer is based
on a novel trajectory tracking controller [10] able to globally
stabilize the position and the attitude of the vehicle. In
particular, the proposed algorithm overcomes the topological
obstruction [11] affecting continuous state-feedback stabiliz-
ers by relying upon hybrid control techniques. This feature
allows to exploit the agility of the selected nano quadrotors
so as to perform acrobatic maneuvers as well as to effectively
recover the vehicle from an arbitrary initial configuration.
The proposed algorithm relies on a cascade control structure
based in which an inner attitude control loop plays the
role of a virtual input for the outer position control loop.
This structure is exploited to distribute the computation
on the ground and the onboard embedded processor. More
specifically, the attitude loop is implemented on the onboard
processor while the outer position loop as well as the overall
guidance layer are implemented on a remote ground station,
which consists of a PC. The guidance layer is in charge
of generating the reference position and orientation to be
tracked by the cascade controller and also to coordinate
multiple nano quadrotors.

The proposed control architecture is then validated by
means of an experiment in which two different vehicles are
required to perform a coordinated maneuver. The experiment
also shows the capability of the proposed control layer to
recover the vehicle from an arbitrary initial configuration.

C. Paper Organization

The paper is organized as follows. In Section II, we briefly
introduce the Crazyflie quadrotors used to implement the
architecture and to perform the experiments. In Section III,
we describe the control architecture and all the components
involved in the design, while in Section IV, we describe
briefly the control law implemented.



Finally, in Section V, we display the experimental setup
used to test the proposed architecture, and show experimental
results.

D. Notation and Definitions

Throughout this paper, Fi and Fb denote, respectively, an
inertial reference frame and a reference frame attached to the
center of gravity of the vehicle. With In ∈ Rn×n we denote
the n-dimensional identity matrix. With e1, e2 and e3 we
denote the unit vectors e1 := [1, 0, 0]T , e2 := [0, 1, 0]T

and e3 := [0, 0, 1]T . For any x ∈ R3, we let

S(x) :=

 0 −x3 x2
x3 0 −x1
−x2 x1 0


be a skew-symmetric matrix and we denote with ∧ the inverse
operator such that S(x)∧ = x. With Sn we denote the n-
dimensional unit sphere defined as Sn := {x ∈ Rn+1 :
‖x‖ = 1}. A unit quaternion q ∈ S3 is defined as a
pair q = [η, εT ]T in which η ∈ R and ε ∈ R3 are
denoted respectively as the scalar and vector part. Given unit
quaternions q1 = [η1, ε

T
1 ]T and q2 = [η2, ε

T
2 ]T , the standard

quaternion product is defined as

q1 ⊗ q2 =

[
η1 −εT1
ε1 η1I3 + S(ε1)

] [
η2
ε2

]
.

Rotations can be parameterized by means of a unit quaternion
q ∈ S3 through the mapping R : S3 → SO(3) known as
Rodrigues formula [12] and defined as

R(q) = I + 2ηS(ε) + 2S(ε)2 .

The mapping R is such that R(q) = R(−q), namely the
two quaternions q and −q corresponds to the same rotation
matrix.
We refer to a saturation function as a mapping σ : Rn → Rn

such that, for n = 1,

1) |σ′(s)| := |dσ(s)/ds| ≤ 2 for all s,
2) sσ(s) > 0 for all s 6= 0, σ(0) = 0,
3) σ(s) = sgn(s) for |s| ≥ 1,
4) |s| < |σ(s)| < 1 for |s| < 1.

For n > 1, the properties listed above are intended to hold
componentwise.

II. CRAZYFLIE PLATFORM

The Crazyflie nano-quadrotor is an open-source, open-
hardware project developed by the company Bitcraze AB
[9]. The available components 1 include the airframe, the
onboard avionics hardware, a wireless communication device
and the software packages that allow a human pilot to govern
the vehicle by means of a standard joystick connected to
a ground PC. The following two subsections describe the
available hardware and software components, respectively.

1We have considered the 6 DoF version of Crazyflie nano-quadrotor.

A. Hardware

• Crazyflie Quadrotor: Because of its dimensions - 90
mm from rotor to rotor - and flight time - up to 7
minutes - the Crazyflie falls under the nano-quadrotor
category [13]. Its small weight, 19 grams, and the low-
cost of all the components make it suitable to safely
perform experiments without the risk of damaging ex-
pensive hardware. Moreover, the high thrust-to-weight
ratio (the maximum thrust is more than 35 grams)
and torque-to-inertia ratio make it suitable to perform
aerobatic maneuvers. The core of the airframe is given
by the Printed Circuit Board (PCB), which includes
the microprocessor (an ARM Cortex M3), the Inertial
Measurement Unit (IMU) sensor - 3-axis gyros and 3-
axis accelerometers integrated in a single MPU6050
chip - and the power circuit for the motors. Each of the
four DC current motors drives a fixed-pitch propeller
having a diameter of 1.8 inches.

• Crazyflie Wireless Communication Device: The
Crazyflie setup includes a wireless radio for
bidirectional communication between the quadrotor
and a ground station. The radio device, denoted as
Crazyflie Dongle, is characterized by a frequency of
2.4 GHz and it is based on a Nordic Semiconductor
nRF24LU1 chip. The wireless communication is
based on the Enhanced ShockBurst protocol. The
wireless device supports approximately 100 different
channels simultaneously. Accordingly, the hardware
architecture is suitable to employ a large number of
different nano quadrotors simultaneously.

B. Software

The original software released by the company includes
a PC application, the Crazyflie Client, and the on-board
firmware. The two components, which are described here-
after, are specifically designed to let the vehicle be easily
piloted by a human operator.

• Crazyflie Client: the main goal of the Crazyflie Client
is to let the Crazyflie nano quadrotor communicate
with a ground station PC. From a hardware point of
view, the communication is obtained by means of the
wireless device described in the previous subsection.
The Crazyflie Client includes a user interface for manual
set-up and operations with the quadrotor. In particular,
the user interface presents to the operator a number of
useful information (battery status, current motor thrust,
etc.) and it allows to change the flight parameters in
real-time. In the standard flight mode, the Crazyflie
Client reads the position of the four axis of a standard
joystick device attached to the ground PC in order to
produce, as output, the set of commands to be sent to the
onboard avionics. In particular, the commands are the
attitude roll and pitch angle, the yaw angular speed, and
the resultant thrust to be produced by the four propeller.



• Crazyflie Firmware: the firmware is the code running
on the on-board microcontroller. The firmware runs on
a Real-Time Operative System (FreeRTOS) able to han-
dle multiple threads. The most important components
include the sensor drivers, the attitude estimation filter,
the attitude control law, the communication layer, and
the motor control. The attitude estimator, in particular,
is based on a complementary filter proposed in [14].
The attitude control law is based on a simple PID
control loop that has been implemented to stabilize
the three Euler angles, i.e., the roll, the pitch and the
yaw, parameterizing the attitude of the vehicle. As a
consequence, the available attitude control algorithm
suffers from singularities deriving from the attitude
parameterization and it is not able to globally stabilize
a desired angular position.

III. MOTIVATION AND CONTROL ARCHITECTURE
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Fig. 1: Control Framework

A. Motivation and Architecture

The idea behind this work is to define a distributed layered
control architecture. By taking advantage of the Crazyflie
platform described in Section II, this work derives a control
architecture suitable for experimental tests of a swarm of
quadrotors. The architecture can be divided into these layers:
• Control Layer is designed to achieve:

– a cascade closed loop control scheme with decen-
tralized computation;

– the controller to be global asymptotically stable,
which means that for any possible initial condition
the position and attitude error is steered to zero
asymptotically;

• Navigation Layer is designed to obtain information
about the state of the system: it relies on sensors (IMU,
gyroscopes, Optitrack System) and estimation filters
(filters for the attitude and velocity estimation);

• Guidance Layer: define a coordination protocol to con-
trol a swarm of quadrotors.

The overall control architecture is depicted in Figure 1
where the main interactions between hardware and software
components, necessary to achieve the proposed goals, are
shown. The core elements of this architecture, which are de-
tailed in the following, are given by the Crazyflie quadrotor,
the Optitrack System, the human-machine interface and the
ground station.
• Optitrack System: is an off-the-shelf real-time motion

tracking solution based on infrared cameras [15]. The
set of camera with the legacy software package Tracking
Tools, are able to provide attitude and position of rigid
bodies at a frequency of 100 Hz. A set of infra-red
reflective markers needs to be pinned to the rigid-body
to be tracked (in our setup, 3 markers for each Crazyflie
quadrotor). A flight arena, in which 12 infrared cameras
are employed, has been used in the experiments. The
resulting tracking volume is approximately given by a
box of 4 × 4 × 2 meters. Any tracking system could
be substituted to Optitrack by sending appropriate UDP
packets following the protocol described later;

• Human-Machine Interface: the human operator (pilot)
can communicate with the ground station through a joy-
stick. By means of the joystick the operator can interact
with the guidance layer trajectory, and guarantee a safe
flight termination. From a software point of view, the
commands generated by the human via the joystick are
processed by a control algorithm implemented using
Matlab/Simulink;

• Ground Station: it consists of a desktop PC running
Matlab/Simulink with RTWTK (Real Time Windows
Target Kernel) and Crazyflie Clients. The Simulink soft-
ware is employed to rapidly implement and validate all
the control and coordination algorithms. An open source
library has been developed to interpret the joystick
commands and data received from the Optitrack System
and transmit them, via UDP protocol, to the Simulink
controller.

1) Control Layer: A cascade control structure is chosen
to reflect the intrinsic physical connection between attitude
and position of the quadrotor model (See Section IV). This
strategy allows a simple and intuitive tuning of the attitude
and position controllers separately.

The cascade control structure requires frequency separa-
tion between the two loops, in which the attitude is referred
as the inner loop while the position is the outer loop. Thus,
the attitude controller is running on-board to fast compute
attitude sensors data, while the position control is running
on the ground station PC using Optitrack position data.

The outer loop layer (position) is running on the ground
station PC at 100 Hz, while the inner loop layer (attitude) is
running on-board on the Crazyflie quadrotor at 250 Hz. The
communication between these layers is described in Section
III-B, while the control law is defined in Section IV.

2) Navigation Layer: The Optitrack measured yaw is sent
on-board to allow yaw angle control, since the Crazyflies
PCB does not embed a magnetometer and thus the on-board



estimation diverges. The Optitrack System measures only
the position. Hence, a high gain filter for each quadrotor
is implemented on Simulink to estimate the linear velocity.
The linear velocity estimation is necessary to implement the
control law described in Section IV.

Also, with the aforementioned control law in mind, the
original on-board attitude estimation filter is slightly modi-
fied to evaluate the attitude in terms of quaternion instead of
Euler Angles.

3) Guidance Layer: All the high level logic (state ma-
chines, trajectory generation, swarm algorithms, etc.) can be
implemented directly on Simulink, depending on the specific
experiment to perform. The Guidance Layer is defined as the
layer that aims to control the overall behavior of the system,
being a single quadrotor or a swarm. In therms of output, the
Guidance Layer generates reference trajectories to be tracked
by the Control Layer: thus, from a functional point of view,
it can be seen as a complex reference generator.

B. Communication Protocols for Architecture Design

On the Ground Station PC, the communication between
the layers is obtained by means of UDP protocols while
the communication from the Ground Station PC to the the
quadrotors is performed by means of the Crazyflie standard
radio communication.

”Stream Input” and ”Stream Output” Simulink blocks
(Real Time Windows Target Toolbox) are used to receive
input data from Optitrack and Joystick into Simulink and to
send output data from Simulink to the Client, respectively.
The Crazyflie standard radio communication protocol is used
to send the desired attitude and thrust from the Crazyflie
Client to the quadrotors on-board. Three types of messages
can be defined (see Figure 2):
• Optitrack Message: Used to send UDP data from the

Optitrack System to Simulink; a single packet is used
for every quadrotor, and the ID of the vehicle is distin-
guished using different UDP port for every agent;

• Joystick Message: Used to send UDP data from Joystick
to Simulink;

• Control Message: Used to send UDP data from
Simulink to the Client.

Fig. 2: Messages Protocol Definition

Fields description:
• X, Y, Z: x, y, z positions from optitrack of the tracked

quadrotor
• Q0, Q1, Q2, Q3: the four component of the attitude of

the tracked quadrotor, expressed with quaternion
• A, B, C, D: the values from the four axis of joystick

(from 0 to 1024)
• BUT the value of the button of joystick

• R, P, Y, THR: roll, pitch, yaw and thrust reference sent
to the client.

• YAW: the actual yaw measured by the Optitrack System,
to be sent to the client

• T: timestamp (data not used in the current architecture)
• ERR: mean tracking error of optitrack system (data not

used in the current architecture)
• CRC: cyclic redundancy check for packets integrity

check
To allow the use of multiple quadrotors with the proposed

architecture, multiple Clients should be used on the Ground
Station. Each quadrotor is associated to one Crazyflie Client,
each one reading from a different UDP ports and commu-
nicating data on-board via a private Dongle. The client is
modified to allow the scan for multiple Dongles and to be
able to link every dongle to a quadrotor.

A preliminary code example, including the modified on-
board firmware, the modified Client and the Simulink control
scheme for multiple Crazyflies can be found in [16].

IV. GLOBAL TRAJECTORY TRACKING CONTROL LAW

Following [10], we shortly describe the implemented con-
trol law.

A. Quadrotor Dynamical Model

The dynamical model of the Crazyflie nano quadrotor can
be described by considering the so called vectored-thrust
approximation [17]:

Mp̈ = −TRe3 +Mge3
Ṙ = RS(w)
Jω̇ = S(Jω)ω + τ

(1)

where M and J are the mass and the moment of inertia
matrix of the vehicle, p = [x, y, z]T ∈ R3 is the position
in inertial frame Fi, R ∈ SO(3) is the rotation matrix
expressing the rotation of the body frame with respect to
inertial frame, ω ∈ R3 is the angular speed of the vehicle
expressed in the body frame Fb, T ∈ R≥0 and τ ∈ R3 are
the thrust and the torques generated by the four propellers,
respectively.

B. The Control Goal

Goal of the controller to be designed is to track a desired
time reference trajectory

t 7→ pR(t), t 7→ RR(t) (2)

with pR(t), RR(t) sufficiently smooth functions of time.
Due to the under-actuation of the dynamical model (1), the
reference attitude is required to satisfy some constraints in
order to guarantee the feasibility of the position tracking
objective. More specifically, with an eye on (1), the following
relation must be satisfied

RRe3 =
vR
|vR|

(3)

with vR := −Mp̈R + Mge3 satisfying |vR(t)| > 0 for all
t ≥ 0. The above constraint is requiring the spin axis of the
propellers to be oriented so as to produce the force required



to track the desired position trajectory. Let us assume that
the class of references is such that eT3 vR > 0, namely
the desired vertical acceleration is lower bounded by the
gravity acceleration. From (3) we can compute the desired
reference rotation matrix as RR = Rx(φR)Ry(θR)Rz(ψR),
where Ri, i ∈ {x, y, z}, are elementary rotation matrices
around the body axis, φR := arctan

(
−eT2 vR/eT3 vR

)
, θR :=

arcsin(eT1 vR), and, finally, ψR ∈ R is a degree-of-freedom
corresponding to the desired heading orientation that can
be chosen arbitrarily without affecting the position tracking
objective. In summary, by taking into account for the under-
actuation of the vehicle, the control goal consists of tracking
the reference position and heading angle trajectories given
by

t 7→ pR(t), t 7→ ψR(t) (4)

where the position trajectory satisfies eT3 vR(t) > vz > 0 for
all t ≥ 0. Note that the above constraint also implies that
|vR(t)| > 0 so as (3) is well defined.

C. The Cascade Control strategy
In order to address the control problem derived in the

previous section, we consider a cascade control structure
having the attitude and the position control loops playing
the role of the outer and inner loop, respectively.

1) Position control law: Let us consider the following
control vector

vc(ηp, p̃, ˙̃p) := vR + κ(p̃, ˙̃p, ηp)

in which p̃ := p− pR denotes the position error coordinates,
and

κ(·) := λ3σ

(
k3
λ3

(
˙̃p+ λ2σ

(
k2
λ2
p̃+ λ1σ

(
k1
λ1
ηp

))))
(5)

with λi, ki, i ∈ {1, 2, 3}, control parameters to be tuned,
and where ηp denotes the state of the following integrator

η̇p = p̃ .

The integrator is included to be robust to constant distur-
bances due to non perfect parameters estimation. In order to
apply the control vector to the position, following the same
arguments as in the previous section, we design the control
thrust as T = |vc| and the control attitude Rc as

Rce3 =
vc
|vc|

(6)

with vc(0, 0, 0) ≡ vR. As a consequence, if ηp = p̃ = ˙̃p = 0,
the desired position trajectory is tracked and Rc ≡ RR, i.e.,
the desired heading angle ψR is stabilized. Essentially, from
[10] the control law was slightly modified to introduce an
integral term to be more robust to constant or slow varying
disturbances (as battery discharge) or to wrong parameters
estimation (for example the mass).

Remark 1 It is worth to point out that the above position
controller is essentially a saturated PID control law. Satura-
tions are introduced to guarantee that the desired control
vector vc is non vanishing and the rotation Rc can be
computed as proposed in Section IV-B.

2) Attitude: Goal of the attitude control loop is to stabilize
the desired control attitude Rc so as, on one hand, to allow
the position controller to track the desired trajectory pR(t)
and, on the other, to track the desired heading angle ψR(t)
given in (4).

Let qc = [ηc, ε
T
c ]T be the control quaternion that is

computed from from the rotation matrices Rc applying the
path-lifting mechanism proposed in [18]. Inspired by [19],
[10], we consider the following hybrid attitude control law:

τ?c = τFF
c (q̄, wc, ẇc) + τFB

c (q̄, w̄, h̄) (7)

having defined

q̄ = q−1c ⊗ q, ω̄ := ω − ω̄c, (8)

with ω̄c := R(q̄)Tωc and ωc, ω̇c as[
ωc,x

ωc,y

]
:= WxyRc

d

dt

vc
|vc|

, (9)

[
ω̇c,x

ω̇c,y

]
:= Wxy

(
−S(ωc)Rc

d

dt

vc
|vc|

+Rc
d2

dt2
vc
|vc|

)
(10)

where Wxy ∈ R2×3 is the matrix with the first and second
rows given by [0, −1, 0] and [1, 0, 0], respectively. And
where

τFF
c = JmR(q̄)T ẇc − S(Jw̄c)w̄c

τFB
c = −kph̄ε̄− kdw̄

(11)

with kp, kd positive gains and where h̄ ∈ {−1, 1} is obtained
through the following hybrid system

Hc

{
˙̄h = 0 h̄η̄ ≥ −δ

h̄+ ∈ sgn(η̄) h̄η̄ ≤ −δ
(12)

where δ ∈ (0, 1) is the hysteresis threshold and sgn : R ⇒
{−1, 1} is the outer-semicontinous set-valued map

sgn =

{
sgn(s) |s| > 0
{−1, 1} s = 0 .

Remark 2 Note that the proposed attitude controller is
essentially composed of a nonlinear PD feedback controller,
a feed-forward control action deriving from the desired
references and able to decouple the inner from the outer
loop, and a hybrid hysteresis mechanism. The hybrid control
algorithm is required to remove the topological obstruction,
while the hysteresis mechanism allows to obtain robustness
also in the presence of non negligible measurement noise
[19].

D. Motivations behind the proposed hybrid control law

Variuos approaches for the attitude control can be found in
literature, yet few of them take into account the topological
obstruction that hides behind this problem. One typical
approach consists in parametrizing the SO(3) manifold.
For instance, the Euler angles attitude representation is a
parametrization of SO(3) but it suffers singularities issues.
Moreover, since this mapping function is surjective, it could
lead to undesired behaviour such as unwinding [18].



Another approach consists in the design of the attitude
control law directly in SO(3) with a continuous control law.
It can be prooved (see [11]) that, the continuous control law,
leads to more than one equilibrium point and, if the initial
condition is close to this undesired equilibrium points, due
to continuity, a large amount of time could be required to
converge to the stable equilibrium. The solution to these
problems comes from discontinuous control laws that, on
the other hand, suffer from measurement noise. When the
system state is close to switching condition, an arbitrary
small measurement noise may leads undesired switches, i.e.
chattering.The solution implemented in this paper is capable
of overcoming this drawback by means of an hysteresys
region on the switching condition.

V. EXPERIMENTS

To validate the proposed distributed control law and to
show the effectiveness of the overall control architecture, in
this section experimental results are presented. We expect
two crazyflie nano-quadrotors to track a desired trajectory,
generated by the Guidance Layer. The quadrotors are hand
deployed by the human operator. One nano-quadrotor is
deployed mid-air with a harsh initial condition (it’s deployed
overturned, facing downward and with initial high linear
speed) and thus has to perform an attitude recovery maneu-
ver, assuring that the proposed control law is globally asymp-
totically stable. The second quadrotor is then deployed. As
soon as the quadrotors are deployed and have recovered the
hovering state, the desired trajectory is generated and they
are requested to track such a reference.

It is important to stress that the harsh initial conditions
from which the quadrotor may start, can impact gravely
on a small aerial vehicle without a GAS control law: in
our case, the proposed control law guarantees that, after a
small transient, the quadrotors recover the hovering condition
globally.

A. Experimental Setup

Two Crazyflie mini-quadrotors are equipped with a carbon
fiber structure, to bear markers for the Optitrack System
(Figure 3). To avoid limitation in the thrust, the structure
is designed to position the markers outside the airflow. The
whole structure and markers weight is approx. 3.5 grams.
This payload impacts on the total flight time, which drops
from 7 to 5 and a half minutes.

B. Guidance Layer

In this experiment, the Guidance Layer is a simple cen-
tralized trajectory generator. As soon as the two quadrotors
reach hovering condition, it generates two circular path at
constant height, in counter-clockwise direction, with a phase
of π rad and radius of 0.85 m.

C. Parameters

The control parameters employed in the experiments are
the following.

The mass is computed by adding to the weight of a
Crazyflie, the weight of markers and structure. The marker’s

Fig. 3: Crazyflie quadrotor with structure and markers

TABLE I: Control parameters for the experiment

λ1 = 0.1 λ2 = 0.15 λ3 = 0.24

k1 = 0.01 k2 = 0.1 k3 = 0.11

kp,x = 60000 kp,y = 30000 kp,z = 40000

kd,x = 70 kd,y = 60 kd,z = 130

δ = 0.1 KT = 8.5e−7 KQ = 1.3e−8

weight is approx. 1 g each, while the weight of the structure
is negligible. It results a final mass of 22 g.

The inertia tensor is computed using Huygens-Steiner
theorem and considering separate masses. In particular, the
frame and the marker mounted on the battery are considered
as a parallelepiped of dimension 4x4x3 cm and mass 12 g.
The inertia contribution of this parallelepiped is given by:

Ixx,f = 13g/cm2

Iyy,f = 13g/cm2

Izz,f = 32g/cm2

The motors and propellers are considered as point masses
of 2 g at a distance of 4 cm from the center of mass. The
markers are considered as point masses centered at 7, 5 cm
from the center of mass, in the y-axis. Contribution of motors
to inertia is given by:

Ixx,m = 64g/cm2

Iyy,m = 64g/cm2

Izz,m = 128g/cm2

Contribution of markers to inertia is given by:

Ixx,m = 112.5g/cm2

Iyy,m = 0g/cm2

Izz,m = 112.5g/cm2

The total inertia is given by:

Ixx = Ixx,f + Ixx,m + Ixx,m = 189.5g/cm2

Iyy = Iyy,f + Iyy,m + Iyy,m = 77g/cm2

Izz = Izz,f + Izz,m + Izz,m = 272.5g/cm2



D. Results

In Figure 4, the attitude (reference and actual) of the first
quadtotor is shown: due to the harsh initial condition, it has
to perform an acrobatic maneuver (attitude recovery) to reach
the desired hovering position before the trajectory starts.
Between 7 sec and 9 sec, the human operator manually
turns the quadrotor downward. At time 9 sec, the quadrotor
is deployed and in the time interval 9 sec to 12 sec, the
quadrotor recovers the attitude and reaches the requested
position.

We can notice an offset in tracking the 3rd and 4th
component of the quaternion during the whole experiments,
due to the fact that the real attitude is estimated on-board,
while the attitude plotted in Figure 4 is given by the Optitrack
System. A sequence of the deployment and attitude recovery
maneuver can be seen in Figure 5. The condition (12) for
switching the hybrid parameter h of the attitude control is
fulfilled when the quadrotor is deployed. The change can be
seen in Figure 6.

In Figure 7 the thrust command of first quadrotor is
depicted.

In Figure 8 and 9, the position of the two quadrotors
performing trajectory tracking is shown: the real position is
the black line and the trajectory reference generated by the
Guidance Layer is dashed red.

A video of the experiment can be seen at [20].
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Fig. 4: Desired (black solid) and actual (red dashed) attitude
of Quadrotor n.1. (a): deployment phase. (b): recovery and
stabilization phase. (c): trajectory tracking phase.

VI. CONCLUSION

In this paper we presented the design of an open-source
control architecture to test control and coordination algorithm
for micro quadrotors. We described the main features of
the proposed architecture and its main components (both
hardware and software): this architecture relies on a hybrid
layered control law with computation distributed between the
quadrototrs and a ground station PC. The proposed solution
was then tested and experimental results were presented.

This architecture allows to rapidly test new control laws
and in particular to implement coordination protocols for the
multi-quadrotors scenario: in future works, we will focus

Fig. 5: Sequence of deployment maneuver and attitude
recovery

0 5 10 15 20 25 30 35

−1

−0.5

0

0.5

1

h

time [s]

Fig. 6: Hybrid parameter h of Quadrotor n.1
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Fig. 7: Thrust command of Quadrotor n.1
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Fig. 8: Position reference and state of Quadrotor n.1. (a):
deployment phase. (b): recovery and stabilization phase. (c):
trajectory tracking phase.

on the so called Guidance Layer, in order to accomplish
collective behavior and to perform complex task.

Software-wise, we will investigate the possibility of di-
rectly exchanging information between Crazyflie quadrotors
with the purpose to implement completely decentralized
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Fig. 9: Position reference and state of Quadrotor n.2. (a):
deployment phase. (b): recovery and stabilization phase. (c):
trajectory tracking phase.

coordination algorithms.
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