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Abstract

Objective: To identify which patient with prostate cancer (PCa) could safely avoid extended 

pelvic lymph node dissection (ePLND) by predicting lymph node invasion (LNI), via a radiomics-

based machine learning approach.

Methods: An integrative radiomics model (IRM) was proposed to predict LNI, confirmed by the 

histopathologic examination, integrating radiomics features, extracted from prostatic index lesion 

regions on MRI images, and clinical features via SVM. The study cohort comprised 244 PCa 

patients with MRI and followed by radical prostatectomy (RP) and ePLND within six months 

between 2010 and 2019. The proposed IRM was trained in training/validation set and evaluated 

in an internal independent testing set. The model’s performance was measured by area under the 

curve (AUC), sensitivity, specificity, negative predictive value (NPV) and positive predictive value 

(PPV). AUCs were compared via Delong test with 95% confidence interval (CI), and the rest 

measurements were compared via Chi-squared test or Fisher's exact test.

Results: Overall, 17 (10.6%) and 14 (16.7%) patients with LNI were included in training/

validation set and testing set, respectively. Shape and first-order radiomics features showed 

usefulness in building the IRM. The proposed IRM achieved an AUC of 0.915 (95% CI: 

0.846-0.984) in the testing set, superior to pre-existing nomograms whose AUCs were from 0.698 

to 0.724 (p<0.05).

Conclusion: The proposed IRM could be potentially feasible to predict the risk of having LNI 

for patients with PCa. With the improved predictability, it could be utilized to assess which 

patients with PCa could safely avoid ePLND, thus reduce the number of unnecessary ePLND.
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INTRODUCTION

The presence of lymph node invasion (LNI) is a poor prognostic marker for patients who 

have undergone radical prostatectomy (RP) for prostate cancer [1]. An extended pelvic 

lymph node dissection (ePLND) is standard for staging of prostate cancer and a key decision 

after RP is to determine which patients should undergo ePLND [2]. However, because of 

the morbidity of the procedure including lymphocele, lymphedema, and thromboembolic 

events, the American Urology Association (AUA) guidelines reserve ePLND for patients 

with a high risk of nodal involvement [3]. Current indications for ePLND are limited and 

vary considerably [4; 5].

To select the most appropriate prostate cancer (PCa) patients for ePLND, several well-

known nomograms have been developed to predict LNI utilizing clinical test results, 

demographic information and biopsy-related results [6-11]. Some recent studies showed 

the prostate specific membrane antigen (PSMA) positron emission tomography (PET) scans 

provided promising results in preoperative nodal staging for patients with PCa, and also 

could assist the prediction of LNI [12-15]. However, the relatively high price and low 

availability in many areas and regions made the PSMA-PET not easily achieved in the 

current clinical practice. Recent studies show that findings from multiparametric magnetic 

resonance imaging (mpMRI), which costs less and is more achievable, may help predict 

LNI, as described by the Prostate Imaging Reporting and Data System version 2 (PI-RADS 

v2) [16-18]. However, the current assessment methods have limited prediction performance, 

where the area under the curve (AUC) ranged from 0.720 to 0.806 [7; 8].

Radiomics, a quantitative imaging technique, provides quantitative imaging information 

within a given region of interest (ROI) [19-22], and has shown promising results to help 

predict the aggressiveness of PCa [23-27] and predict LNI in patients with colorectal cancer 

[28; 29]. The aim of the study was to build a prediction model to predict LNI in patients 

with PCa via machine learning, integrating MRI-based radiomics features with routinely 

used clinical features including clinical test results, demographic information and biopsy-

related results. We evaluated the benefits of integrating the radiomics features and clinical 

features, and the integrative radiomics model (IRM) was compared with commonly used 

nomograms [6; 9-11] when predicting LNI in patients with PCa. To our best knowledge, 

this is the first study trying to utilize mpMRI-based radiomics features to build the machine 

learning model to predict LNI for patients with PCa.

MATERIAL AND METHODS

Study population and MRI data

The single institutional retrospective study was approved by the institutional review board 

(IRB) and was conducted in compliance with the 1996 Health Insurance Portability and 

Accountability Act (HIPAA). The initial patient cohort consisted of all patients who had 

positive 3 Tesla (3T) mpMRI (defined as having any lesions with PI-RADS≥3), from 

January 2010 to December 2019 in the institution. The 3T mpMRI scans were performed on 

one of the five 3T scanners with standardized protocols (Prisma, Skyra, Trio, Vida and Verio 

(Siemens Healthcare)). All mpMRI scans were reviewed by two genitourinary radiologists 
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following the PI-RADS v2.1 guideline [30]. The detailed MRI sequence parameters can be 

found in Table S1 in supplementary materials.

The detailed flowchart of patient inclusion criteria is shown in Figure 1. The study cohort 

consisted of patients who underwent RP with ePLND within six months after mpMRI. 

Patients meeting one or more of the following criteria were excluded: 1) prior treatment for 

PCa (radiotherapy or focal ablation and anti-hormonal therapy); 2) poor mpMRI quality with 

strong artifact and/or extensive motion blur; 3) MR examination in other institutions 4) lack 

of formal preoperative biopsy report or review. All preoperative mpMRIs were interpreted 

by an abdominal imaging fellow and then reviewed by one of three board-certified attending 

genitourinary radiologists with 5-20 years of experience. The final study cohort comprised 

244 patients, with median age of 62 years (IQR: 58-67) and was subdivided into training/

validation set (mpMRI examination dates between 2010 and 2016; n =160), and testing 

set (mpMRI examination dates between 2017 and 2019; n=84). LNI positive patients were 

defined as those with LNI confirmed at the final histopathologic examination, and the rest 

were defined as LNI-negative patients [31].

For each patient, clinical features that positively related to the presence of LNI were initially 

included [6; 9-11; 17; 18]. The clinical features consist of demographic information: age; 

clinical test results: serum level of prostate-specific antigen (PSA), PSA density (PSAD), 

digital rectum exam results (DRE); mpMRI observations: prostate volume, MR stage, 

maximum index lesion diameter, is PI-RADSv2.1 score > 4, is index lesion located or 

involved in peripheral zone (PZ); biopsy-related results: number of positive prostate biopsy 

cores, percentage of positive prostate biopsy cores, the primary and secondary Gleason 

Score, and Gleason Grade Group [6; 9-11; 17; 18]. Other clinical information that was 

partially available was not included to avoid selection bias [32]. The detailed clinical feature 

information is described in Table 1.

Integrative Radiomics Model

The detailed workflow of the IRM construction is illustrated in Figure 2. We utilized both 

T2-weighted images (T2WI) and apparent diffusion coefficient (ADC) maps from mpMRI 

to build the patient-wise LNI prediction model. The ADC maps were registered to T2WI 

images using spatial transformation utilizing world coordinate system information, and no 

observable discrepancies were discovered after manually checking the registration results 

[26; 33; 34]. For each patient, the index lesion was considered as the one with the highest 

PI-RADSv2.1 score, or highest volume in cases where equivalent PI-RADSv2.1 scores were 

assigned to different lesions. The slice-by-slice manual segmentation of each index lesion 

was performed on T2WI images by three clinical research fellows with more than three 

years of experience in segmenting prostate MRI. All segmentations were reviewed and 

validated by an abdominal radiologist (X.X., five years of experience in prostate mpMRI 

interpretation) together with a board-certified abdominal radiologist (Y.Y., 20+ years of 

experience in prostate MRI interpretation) blinded to the histopathology reports of LNI. N4 

bias field correction was applied to T2WI images to compensate for low-frequency intensity 

variations, and z-score normalization was then applied to both ADC and T2WI images for 

each patient [25; 35].
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Radiomics features were extracted from the region of interest (ROI) of the index lesions 

from both ADC and T2WI images, as shown in Figure 2. Shape features, first-order features 

and texture features, including Gray-level Run Length Matrix (GLRLM) features, Gray-level 

Cooccurrence Matrix (GLCM) features, Gray-level Size Zone Matrix (GLSZM) features, 

Neighboring Gray Tone Difference Matrix (NGTDM) features and Gray Level Dependence 

Matrix (GLDM) features, were extracted. We used the package PyRadiomics v3.0.1 in 

Python 3.6 for the radiomics feature extraction, following the guideline of Image Biomarker 

Standardization Initiative (IBSI), with slight optimization in discretizing and resampling of 

the input [21; 36]. For each imaging modality, 16 shape features, 19 first-order features and 

75 texture features were extracted and thus, 220 radiomics features were extracted for each 

patient.

We pre-selected the clinical features from the initially included demographic information, 

clinical tests results, MRI observations and biopsy-related results, via univariate logistic 

regression based on the training/validation set, thresholded by significance level p<0.10. 

Finally, the integrative features were selected from the integration of the pre-selected clinical 

features and the extracted radiomics features by the Sequential Forward Floating Selection 

(SFFS) method, as shown in Figure 2 [37].

Model Comparison and Statistical Analysis

A quadratic kernelized support vector machine (SVM) classifier was proposed to build 

the proposed IRM, implemented using package Scikit-learn v1.0.1 in Python 3.6. In this 

study, we applied 5-fold cross validation on the training/validation set to find the optimal 

hyper-parameters that resulted in the highest AUCs for the models. Then, the optimal 

hyper-parameters were fixed and the models were finally trained using the entire training/

validation set and tested and evaluated in the internal independent testing set.

We first investigated the benefits of using the IRM approach compared with the approaches 

using radiomics features only or clinical features only by Delong test [38], all using SVM 

classifier. Then, we compared the prediction performance of the proposed IRM approach 

with the pre-existing nomograms by the Delong test and Chi-square test. All comparisons 

were conducted in the testing set.

The cut-off points for machine learning models were chosen by maximizing Youden's index 

value (sensitivity+specificity-1) on the receiver operating characteristic (ROC) curve. The 

cut-off points for the pre-existing nomograms were chosen following suggestions from 

the National Comprehensive Cancer Network (NCCN) and the European Association of 

Urology (EAU) guidelines [4; 5]. Sensitivity, specificity, negative predictive value (NPV) 

and positive predictive value (PPV), that were calculated from the cut-off points and were 

compared via Chi-squared test or Fisher's exact test, were included in order to perform 

a more comprehensive evaluation to minimize the potential influence caused by data 

imbalance during model evaluation. The area under the curve (AUC) with 95% confidence 

interval (CI) calculated based on ROC curves were used to evaluate and compare the models' 

performance, and compared via the Delong test.
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RESULTS

The final study cohort included 213 LNI-negative and 31 LNI-positive patients (n=244). 

The clinical features of the patients in the final study cohort are described in Table 1. The 

following ten features were pre-selected including PSA, PSAD, DRE, MR stage, maximum 

index lesion diameter, is index lesion located or involved in PZ, number of positive biopsy 

cores, percentage of positive biopsy cores, primary Gleason Score, and Gleason Grade 

Group, among the initial fourteen clinical features. The detailed information for the pre-

selection of clinical features using univariate logistic regression can be found in Table S2 in 

the supplementary material.

After integrative feature selection from the combination of radiomics features and the 

pre-selected features, a total of eleven features were finally selected by using the SFFS 

algorithm, as shown in Table 2. In Figure 3, examples of 3T mpMRI images, consisting of 

ADC and T2WI images from two LNI-positive patients (A and C) and two LNI-negative 

patients (B and D) are illustrated. With similar distributions of the clinical features (in blue), 

the radiomics features (in red) could show visually different patterns between the two groups 

(A vs. B and C vs. D), which can be observed through the histogram plots.

The model performances were all evaluated and compared based on the results conducted 

from the testing set. The ROC curves between the proposed IRM and the machine learning 

models using each individual feature group are shown in Figure 4A. The proposed IRM 

achieved an AUC, sensitivity, specificity, NPV, and PPV of 0.915 (95% CI: 0.846-0.984), 

0.786, 0.90, of 0.955 and 0.611 respectively. Compared with the other two models using 

only clinical features and only radiomics features, the proposed IRM achieved the highest 

AUC (p<0.05), with a relative improvement in AUC of 25.3% and 8.5%, respectively. With 

the same sensitivity/specificity, the IRM achieved higher specificity/sensitivity (Figure 4A). 

Details are shown in Table 3.

In Figure 4B and Table 4, we show performance results using IRM for detection of LNI with 

the cut-off points that maximized Youden index in comparison to common pre-existing 

nomograms including Briganti [11], MSKCC [10], Yale [6] and Roach [9], with the 

guideline suggested cut-off points (risk probability of 0.02, 0.05 for Briganti, MSKCC 

and Yale and 0.15 for Roach) [4; 5; 9]. The proposed IRM achieved the highest AUC of 

0.915 (%95 CI: 0.846-0.984) (p<0.05) with relative improvement of AUC of 28.7%, 26.4%, 

31.1%, 30.5% compared with Briganti, MSKCC, Yale and Roach, respectively. As shown in 

Table 4, the IRM achieved 120.2% higher sensitivity than Briganti’s with the cut-off point as 

to the risk level of 0.05 (p<0.05), with no significant difference in specificity, NPV and PPV. 

For the rest nomograms and cutoff points, as shown in Table 4 following top-down order, the 

IRM achieved improvement in specificity of [125.0%, 529.4%, 232.1%, 958.8%, 186.6%, 

141.5%], and in PPV of [175.2%, 223.2%, 201.0%, 241.3%, 205.5%, 170.4%] (p<0.05), 

with no significant difference in sensitivity and NPV.

In Table 5, we also compared the prediction results using different approaches under each 

risk group following the National Comprehensive Cancer Network (NCCN) guidelines [5]. 

The NCCN risk groups were divided into Very Low (n=0), Low (n=2), Intermediate (n=25), 
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High (n=47) and Very High (n=10) following the stratification methods given in the NCCN 

guidelines [5]. We showed the count of true positive, true negative, false positive and 

false negative instead of the sensitivity, specificity, NPV and PPV, because the prediction 

results under each NCCN risk group might result in zeros in some of the measurements 

and made the calculation of sensitivity, specificity, NPV and PPV invalid. In general, the 

proposed IRM achieved less false positives and more true negatives compared with the other 

pre-existing methods, while keeping similar number of true positives and false negatives 

under each NCCN risk group.

We also conducted a sub-analysis to investigate how the proposed IRM would perform when 

predicting LNI for patients with PCa without using biopsy-related results. If we excluded all 

the biopsy-related results from the integrative features, the IRM resulted in an AUC of 0.887 

(%95 CI 0.808-0.965), and achieved better prediction AUC compared with results generated 

by Briganti, MSKCC, Yale and Roach (p<0.05).

DISCUSSION

In this study, we proposed an integrative radiomics model (IRM) to predict LNI for patients 

with PCa, in order to avoid unnecessary ePLND. The results showed that the integration of 

clinical features and radiomics features from mpMRI helped improved the prediction of LNI 

in patients with PCa (p<0.05), compared with the approaches using only radiomics features 

or clinical features. Meanwhile, the IRM outperformed the pre-existing Briganti, MSKCC, 

Yale and Roach on the prediction of LNI [6; 9-11].

Several proposed nomograms have aimed to predict the risk of having LNI in patients with 

PCa, tried to avoid unnecessary ePLND using preoperative clinicopathological information 

[6; 9-11]. Briganti, Yale and Roach were proposed to predict LNI using clinical test 

and biopsy-related results [6; 9; 11]. MSKCC was also proposed considering additional 

demographic information [10]. However, these nomograms were limited by the performance 

with an AUCs of 0.720 to 0.806 [7; 8]. Several studies have reported adding mpMRI 

imaging features and PI-RADS scores as additional nomogram variables to predict LNI 

in PCa patients and shown improved AUCs of 0.863-0.879 [17; 18]. In comparison, the 

proposed IRM improved the prediction AUC to 0.915, compared with the reported results, in 

the internal independent testing set.

In this study, following similar methodology to these prior studies, [23-29; 33] we 

incorporated first-order, shape, and texture features to build the IRM. Among radiomics 

features, three were finally included in the integrative features, including one first-order 

(intensity), and two shape features (shape and size), improved the predictability of LNI 

in patients with PCa. The inclusion of the shape feature Elongation, defined as the ratio 

between the largest and second largest principle components axes of the volume, indicated 

that the shape of the index lesion was correlated with LNI. The inclusion of the shape 

feature Maximum2DDiameterColumn, defined as the maximum length of the volume in the 

coronal plane direction, indicated that the size of the index lesion in a specific direction 

contributed to the prediction of LNI. In addition, the inclusion of first-order feature 10-

Percentile, defined as the 10% high intensity value, indicated that the relative high intensity 
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value on T2WI images also could be a useful feature correlated with the appearance of LNI. 

Our results showed the proposed IRM, integrating radiomics features and clinical features, 

outperformed the machine learning model using individual feature group only, or using the 

pre-existing Briganti, MSKCC, Yale and Roach [6; 9-11].

In the sub-analysis, the IRM’s performance without using biopsy-related results was shown 

better than all four existing clinical nomograms (Briganti, MSKCC, Yale and Roach) [6; 

9-11]. This brought us an insight that since the diagnosis of aggressiveness of PCa became 

increasingly accurate via machine learning methods without the need for prostate biopsies 

[26; 27; 39], the chance of having unnecessary prostate biopsies for patients with PCa could 

potentially be further reduced in the foreseeable future because the prediction of LNI in 

patients with PCa could also be accurate without using biopsy results.

Recently, PSMA-PET imaging has also shown great potential to help the assessment of the 

aggressiveness of PCa and also the prediction of LNI for patients with PCa [12-15]. There 

were existing studies building PSMA-PET-based radiomics machine learning model for the 

prediction LNI for patients with PCa and achieved good AUCs ranged from 0.85 to 0.87 

[13; 14]. In general, a combination of PSMA-PET and mpMRI is not widely available, and 

thus it might be hard to achieve a fair comparison between the radiomics machine learning 

prediction models built based on the two image modalities on the same patient population. 

In the future, when both image modalities are available, a potential further improvement on 

the performance of prediction of LNI could be achieved by integrating information from 

both mpMRI-based radiomics features and PSMA-PET-based radiomics features.

The proposed IRM could also potentially be useful in the planning of radiotherapy for 

patients with PCa. Apart from surgery, the prediction and assessment of LNI is also essential 

for patients with PCa that will receive definitive radiotherapy. As the radiotherapy could 

potentially lead to radiation induced injury, unnecessary lymph node radiation should be 

tried to be avoided [40; 41]. The proposed IRM could be used to predict the possibility 

of having LNI for the patients, and thus could potentially be helpful to stratify which 

patients are having lower risk of LNI, and thus assists to avoid the unnecessary lymph node 

radiation.

Our study has some limitations. One limitation is that the proposed IRM could only be 

applied to patients with PCa having positive mpMRI (exist lesions with PI-RADS≥3), 

since radiomics features and some MRI observation features were calculated and extracted 

from the index lesions region. We believe the superiority of our proposed IRM could 

be generalized to a more general population with PCa as long as the required imaging 

and clinical information are available, but the findings might be limited since the 

histopathological ground truth of LNI for patients with low suspicious are generally not 

available, and thus might be hard to test the results. In addition, after reviewing all patients 

with PCa that have went RP with ePLND from 2010-2019 in our institution (n=679), 244 

eligible patients were finally included, with positive 3T mpMRI taken within six months 

before RP. Although the dataset was imbalanced, and the size of the dataset was relatively 

small, the characteristics were similar to existing studies conducted in a single institution 

[8]. Moreover, inter-reader variability might exist in our study. The initial lesion annotations 
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were generated as part of the clinical routine following the guidelines from PI-RADS [16]. 

During our review and the quality control (QC) process, we found a small fraction of 

annotations were not sufficient enough, and thus slightly modified the annotations, blinded 

to the histopathology results of LNI. We used Dice coefficient and volume similarity to 

measure the possible inter-reader variability [42; 43], and it showed relative consistency 

with Dice coefficient of 0.89 and volume similarity of 0.95. The model evaluation might 

also be limited by the fact that the study is conducted single-institutional, and with MR 

machines from single vendor. Our future works would enlarge the dataset with multi-center 

collaborations to validate the generalizability onto other institutions’ dataset, with different 

vendors and patient populations, also further solidify our findings with a prospective study 

design.

In conclusion, the proposed integrative radiomics model (IRM) could be potentially feasible 

in the prediction of presence of lymph node invasion (LNI) in patients with prostate cancer 

(PCa). The integration of mpMRI-based radiomics features with the clinical features helped 

improve the prediction performance, compared with the machine learning model using 

each individual feature group only. The proposed IRM presented superior performance with 

an AUC of 0.915, compared with pre-existing nomograms. The proposed model has the 

potential to be used to predict which patient with PCa may have LNI and could thus possibly 

help reduce the number of unnecessary extended pelvic lymph node dissection (ePLND).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

mpMRI Multiparametric magnetic resonance imaging

ePLND Extended pelvic lymph node dissection

LNI Lymph node invasion

PCa Prostate cancer

csPCa Clinically significant prostate cancer

PI-RADS Prostate Imaging Reporting and Data System

NPV Negative predictive value

PPV Positive predictive value
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AUC Area under the curve

ROC Receiver operating characteristic

PSA Prostate specific antigen

PSAD Prostate specific antigen density

DRE Digital rectum exam results

IRM Integrative radiomics model

ADC Apparent diffusion coefficient maps

T2WI T2-weighted images

GLCM Gray-Level Cooccurrence Matrix

GLRLM Gray-Level Run Length Matrix

GLSZM Gray-level Size Zone Matrix

NGTDM Neighboring Gray Tone Difference Matrix

GLDM Gray Level Dependence Matrix

SFFS Sequential Floating Forwarding Selection
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Key Points:

1. The combination of MRI-based radiomics features with clinical information improved 

the prediction of lymph node invasion, compared with the model using only radiomics 

features or clinical features.

2. With improved prediction performance on predicting lymph node invasion, the number 

of extended pelvic lymph node dissection (ePLND) could be reduced by the proposed 

integrative radiomics model (IRM), compared with the existing nomograms.
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Figure 1: 
The inclusion workflow of the study population. Patients whose mpMRI examination dates 

between 2010 and 2016 were included into training/validation set (n=160), patients whose 

mpMRI examination dates between 2017 and 2019 were included into testing set (n=84).
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Figure 2: 
The Workflow of building the IRM for predicting LNI for patients with PCa. First, 

clinical features were pre-selected from initial clinical features, and radiomics features 

were extracted from ADC and T2WI images from the ROI of the index lesion for each 

patient. Then, integrative features were selected from the combination of clinical features 

and radiomics features. Finally, an SVM-based LNI prediction model was trained using the 

selected integrative features on the training/validation set and then tested on the internal 

independent testing set.
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Figure 3: 
Visualizations of ADC and T2WI images and the values of the selected integrative features 

of each patient from patients that were predicted correctly using IRM at the optimal 

cutoff point. A) and C) are LNI-positive patients, B) and D) are LNI-negative patients. 

Visualizations of the values of the integrative features are shown in the histograms. The 

correspondence of features names and the indices on x-axis are shown in the table at the 

bottom, due to the limited space in the histogram. The height of a feature’s bar, also known 

as the percentage number as shown in y-axis, is proportional to the value of that feature of 

the patient compared with the feature’s maximum value across all patients. Blue bars are 

visualizations for clinical features, red bars are visualizations for radiomics features.
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Figure 4: 
A): ROC curve comparisons between the proposed IRM and other machine learning 

approaches that only utilizing each individual feature group (clinical features or radiomics 

features). Green, blue and red curves are the ROC curves of the model that using radiomics 

features only, model that using clinical features only, and the IRM models, respectively. B): 

ROC curve comparisons between the proposed IRM and Yale, MSKCC, Briganti and Roach. 

Olive, cyan, orange, pink and red curves are the ROC curves of the Yale, MSKCC, Briganti, 

Roach and the IRM model.
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Table 1:

Characteristics of clinical features for patients included in the study cohort.

Feature Name
Training/Validation set (2010-2016) Testing set (2017-2019)

Overall LNI-positive LNI-negative Overall LNI-positive LNI-negative

No. of men, n {%} 160 {100} 17 {10.6} 143 {89.4} 84 {100} 14 {16.7} 70 {83.3}

Age (yr), median 
{IQR} 62 {58-67} 62 {57.5-65} 62 {58-67} 64 {59-68} 63 {60-68} 64 {59-68}

PSA (ng/ml), 
median {IQR} 6.5 {4.9-10.0} 10.0 {6.4-24.0} 6.1 {4.5-9.0} 8.3 {5.5-12.6} 10.3 {8.0-18.3} 7.3 {5.3-12.2}

PSAD (ng/ml/ml), 
median {IQR} 0.19 {0.13-0.29} 0.22 {0.17- 

0.58}
0.18 
{0.12-0.27}

0.19 
{0.13-0.37}

0.25 
{0.15-0.40}

0.19 
{0.13-0.34}

DRE (Yes/No: 1/0), 
n {%}

0: 116 {72.5}
1: 44 {27.5}

0: 9 {52.9}
1: 8 {47.1}

0: 107{74.8}
1: 36 {25.2}

0: 67 {79.8}
1: 17 {20.2}

0: 9 {64.3}
1: 5 {35.7}

0: 58 {82.9}
1: 12 {17.1}

Prostate volume 
(cc), median {IQR} 36.0 {29.0-44.0} 40.0 {37.1-45.0} 35.0 

{29.0-44.0}
37.3 
{29.0-48.2}

42.0 
{29.0-47.3}

36.3 
{30.0-49.0}

Maximum index 
lesion diameter 
(mm), median 
{IQR}

1.6{1.1-1.2} 2.4 {1.4-3.0} 1.5 {1.1-2.0} 2.0 {1.2-2.6} 2.1 {1.2-2.9} 1.9 {1.2-2.5}

MR stage
(1: Organ-Confined;
2: Extraprostatic 
Extension;
3: Seminal Vesicle 
Invasion), n {%}

1: 93 {58.1}
2: 56 {35.0}
3: 11 {6.9}

1: 5 {29.4}
2: 10 {58.8}
3: 2 {11.8}

1: 88 {61.5}
2: 46 {32.2}
3: 9 {6.3}

1: 40 {47.6}
2: 37 {44.0}
3: 7 {8.3}

1: 3 {21.4}
2: 8 {57.1}
3: 3 {21.4}

1: 37 {52.9}
2: 29 {41.4}
3: 4 {5.7}

Is index lesion 
located or involved 
in PZ (Yes/No: 1/0), 
n {%}

0: 47 {29.4}
1: 113 {70.6}

0: 2 {11.8}
1: 15 {88.2}

0: 45 {31.5}
1: 98 {68.5}

0: 15 {17.9}
1: 69 {82.1}

0: 1 {7.1}
1: 13 {92.9}

0: 14 {20.0}
1: 56 {80.0}

Is PIRADSv2.1 >4? 
(Yes/No: 1/0), n 
{%}

0: 83 {51.9}
1: 77 {48.1}

0: 6 {35.3}
1: 11 {64.7}

0: 77 {53.8}
1: 66 {46.2}

0: 35 {41.7}
1: 49 {58.3}

0: 5 {35.7}
1: 9 {64.3}

0: 30 {42.9}
1: 40 {57.1}

Primary Gleason 
Score, n {%}

3: 73 {45.6}
4: 83 {51.9}
5: 4 {2.5}

3: 3 {17.6}
4: 12 {70.6}
5: 2 {11.8}

3: 70 {49.0}
4: 71 {49.7}
5: 2 {1.4}

3: 31 {36.9}
4: 52 {61.9}
5: 1 {1.2}

3: 2{14.3}
4: 12{85.7}
5: 0 {0}

3: 29 {41.4}
4: 40 {57.1}
5: 1 {1.4}

Secondary Gleason 
Score, n {%}

3: 63 {39.4}
4: 63 {39.4}
5: 34 {21.2}

3: 6 {35.3}
4: 5 {29.4}
5: 6 {35.3}

3: 57 {39.9}
4: 58 {40.6}
5: 28 {19.6}

3: 37 {44.0}
4: 39 {46.4}
5: 8 {9.5}

3: 5 {35.7}
4: 8 {57.1}
5: 1 {7.1}

3: 32 {45.7}
4: 31 {44.3}
5: 7 {10.0}

Gleason Grade 
Group, n {%}

1: 19 {11.9}
2: 40 {25.0}
3: 43 {26.9}
4: 37 {23.1}
5: 21 {13.1}

1: 0 {0}
2: 2 {11.8}
3: 5 {29.4}
4: 5 {29.4}
5: 5 {29.4}

1: 19 {13.3}
2: 38 {26.6}
3: 38 {26.6}
4: 32 {22.4}
5: 16 {11.2}

1: 9 {10.7}
2: 21 {25.0}
3: 28 {33.3}
4: 18 {21.4}
5: 8 {9.5}

1: 0 {0}
2: 2 {14.3}
3: 5 {35.7}
4: 6 {42.9}
5: 1 {7.1}

1: 9 {12.9}
2: 19 {27.1}
3: 23 {32.9}
4: 12 {17.1}
5: 7 {10.0}

Number of positive 
biopsy cores, 
median {IQR}

5 {4-7} 6 {4.5-9} 5 {3-7} 5 {3.5-8} 7.5 {3-9} 5 {4-7}

Percentage of 
positive biopsy 
cores, median 
{IQR}

0.39 {0.25-0.53} 0.50 {0.33-0.75} 0.36 {0.25-0.5} 0.48 
{0.29-0.67}

0.61 
{0.38-0.73}

0.40 
{0.29-0.67}
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Table 2:

Eleven selected features after integrative feature selection.

Feature names

Categories

Clinical features
Radiomics

featuresClinical test
results

MRI
observations

Biopsy-related
results

PSAD x

DRE x

MR stage x

Maximum index lesion diameter x

Is index lesion located or involved in PZ x

The Primary Gleason Score x

Gleason Grade Group x

Percentage of positive biopsy cores x

Shape_Elongation x

Shape_Maximum2DDiameterColumn x

First-order_10Percentile_T2WI x
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Table 3:

Comparisons of the prediction performance between the proposed IRM model and the other two machine 

learning approaches that using either only clinical features or radiomics features. The p values were calculated 

using Delong test for the comparisons of AUCs.

Methods AUC [%95 CI] Sensitivity
(%)

Specificity
(%)

NPV (%) PPV (%) P value

Clinical only 0.730 [0.575-0.884] 78.6 65.7 93.9 31.4 0.006

Radiomics only 0.843 [0.744-0.942] 92.9 70.0 98.0 38.2 0.007

IRM 0.915 [0.846-0.984] 78.6 90.0 95.5 61.1 -
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Table 4:

Comparisons of the prediction performance between the proposed IRM model and the pre-existing Briganti, 

MSKCC, Yale and Roach. The p values for the comparisons of AUCs were calculated using Delong test. The p 

values for the comparisons of sensitivity, specificity, NPV and PPV were calculated using Chi-squared test or 

Fisher's exact test.

Methods AUC [%95 CI] p value Sensitivity
(%)

p value Specificity
(%)

p value NPV
(%)

p value PPV
(%)

p value

Briganti (0.02 
cut-off)

0.711 
[0.571-0.852]

0.004 85.7 1.000 40.0 <0.001 93.3 0.646 22.2 0.002

Briganti (0.05 
cut-off)

0.711 
[0.571-0.852]

0.004 35.7 0.022 88.6 0.785 87.3 0.093 38.5 0.213

MSKCC (0.02 
cut-off)

0.724 
[0.571-0.878]

0.011 100.0 0.222 14.3 <0.001 100.0 1.000 18.9 0.001

MSKCC (0.05 
cut-off)

0.724 
[0.571-0.878]

0.011 92.9 0.596 27.1 <0.001 95.0 1.000 20.3 0.001

Yale (0.02 cut-
off)

0.698 
[0.528-0.868]

0.014 100.0 0.222 8.5 <0.001 100.0 1.000 17.9 <0.001

Yale (0.05 cut-
off)

0.698 
[0.528-0.868]

0.014 85.7 1.000 31.4 <0.001 91.7 0.606 20.0 0.001

Roach (0.15 cut-
off)

0.701 
[0.560-0.842]

0.007 85.7 1.000 41.4 <0.001 93.5 0.731 22.6 0.010

IRM 0.915 
[0.846-0.984]

- 78.6 - 90.0 - 95.5 - 61.1 -
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Table 5:

Comparisons of the prediction performance between the proposed IRM model and the pre-existing Briganti, 

MSKCC, Yale and Roach inside each NCCN risk group. LNI+ stands for LNI positive cases, LNI- stands 

for LNI negative cases. We showed the count of true positive, true negative, false positive and false negative 

instead of the sensitivity, specificity, NPV and PPV, because the prediction results under each NCCN risk 

group might result in zeros in some of the measurements and make the calculation of sensitivity, specificity, 

NPV and PPV invalid.

NCCN risk group (n=84)
Briganti

(0.02
cut-off)

Briganti
(0.05

cut-off)

MSKCC
(0.02

cut-off)

MSKCC
(0.05

cut-off)

Yale
(0.02

cut-off)

Yale
(0.05

cut-off)

Roach
(0.15

cut-off)
IRM

Very Low (LNI +/−: 0/0)

True Positive 0 0 0 0 0 0 0 0

True Negative 0 0 0 0 0 0 0 0

False Positive 0 0 0 0 0 0 0 0

False Negative 0 0 0 0 0 0 0 0

Low (LNI +/−: 0/2)

True Positive 0 0 0 0 0 0 0 0

True Negative 2 2 2 2 1 2 2 2

False Positive 0 0 0 0 1 0 0 0

False Negative 0 0 0 0 0 0 0 0

Intermediate (LNI +/−: 2/23)

True Positive 1 0 2 1 2 1 1 1

True Negative 12 23 3 8 3 9 12 22

False Positive 11 0 20 15 20 14 11 1

False Negative 1 2 0 1 0 1 1 1

High (LNI +/−: 9/38)

True Positive 8 4 9 9 9 8 8 7

True Negative 13 32 5 9 2 10 15 35

False Positive 25 6 33 29 36 28 23 3

False Negative 1 5 0 0 0 1 1 2

Very High (LNI +/−: 3/7)

True Positive 3 1 3 3 3 3 3 2

True Negative 1 5 0 0 0 1 0 4

False Positive 6 2 7 7 7 6 7 3

False Negative 0 2 0 0 0 0 0 1

Eur Radiol. Author manuscript; available in PMC 2022 August 01.


	Abstract
	INTRODUCTION
	MATERIAL AND METHODS
	Study population and MRI data
	Integrative Radiomics Model
	Model Comparison and Statistical Analysis

	RESULTS
	DISCUSSION
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Table 1:
	Table 2:
	Table 3:
	Table 4:
	Table 5:



