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Chapter 20
A Hydrologic Modeling Assessment
of Future Water Scarcity in the Baitarani
River Basin

Sushree Swagatika Swain, Ashok Mishra, Chandranath Chatterjee,
and Morgan C Levy

Abstract Water scarcity, defined as an adverse imbalance between freshwater avail-
ability and water demand, is a critical concern in the 21st century, and is exacer-
bated by climate change and increased uncertainties in hydrological cycles. Rising
water demands driven by rapid population growth, urbanization, and industrializa-
tion further intensify water scarcity, posing significant threats to sustainable develop-
ment. Addressing water scarcity is particularly challenging in regions with limited
data availability, and data constraints can necessitate the use of a water balance
approach to quantify water scarcity. Evaluating the hydrological balance of river
basins in historical and projected future time periods requires the use of hydrologic
and climatic models, wherein the selection of an appropriate model and modelling
approach depends on research objectives, data accessibility, site-specific challenges,
costs, andmodel accuracy. In response to these conditions, this study explores hydro-
logical model-based estimates of water scarcity risk in the absence of sector-specific
water demand data. Specifically, this study evaluates streamflow, ‘blue’ and ‘green’
water balance components derived from streamflow, and a risk-based measure of
water scarcity calculated from those water balance components in the Baitarani river
basin (13,000 km2), a basin influenced by climate and land use change. This anal-
ysis relies on historical observed climate and hydrologic data (1974–2018) from the
Indian Meteorological Department (IMD) and Central Water Commission (CWC),
modelled future climate (2020–2064) from the Coupled Model Intercomparison
Project 6 (CMIP6), and the Soil Water Assessment Tool (SWAT) hydrologic model.
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This study finds that Baitarani basin water scarcity has decreased in recent decades
(1994–2018) relative to earlier decades (1974–1993), and that water scarcity risk will
also decrease in the future (2020–2064). Nevertheless, findings remain uncertain due
to limited model structural representation of hydrologic processes that may change
alongside land use and climate change drivers. Even so, this study offers valuable
insights for parsimoniously evaluating basin-scale water availability and scarcity,
aiding in the development of adaptive strategies for sustainable water management
in data-scarce river basins.

Keywords Water scarcity · Water availability · Climate change · Blue water
flow · Green water flow · Green water storage · CMIP6

20.1 Introduction

The World Economic Forum (WEF) has identified water scarcity as one of the
top three global systemic risks of utmost concern, based on a comprehensive
global survey encompassing stakeholders from business, academia, civil society,
governments, and international organizations (World Economic Forum 2014). Water
scarcity, defined as a deficit in the supply of freshwater relative to water demand, is a
critical concern inwater-stressed regions, as water availability and access have exten-
sive impacts on both human societies and ecosystems (Pedro-Monzonís et al. 2015;
Veldkamp et al. 2017; Sun and Zhou 2020). Concerns about water scarcity are ampli-
fied in regionswith rapid economic development, particularly in emerging economies
(Abedzadeh et al. 2020). Increasingwater demand due to population growth, industri-
alization, and agricultural expansion, coupledwith climate change and anthropogenic
activities, intensify water scarcity challenges (Wada et al. 2011; UN World Water
Development Report 2021). Urbanization along with climate change can accelerate
water scarcity at local to regional scales (Wu et al. 2023), where water scarcity
affects food security, access to safe drinking water, and public health (Taylor 2009).
Furthermore, many international and interstate river basins are expected to face water
scarcity in coming decades (Beck and Bernauer 2011; Gain and Giupponi 2015),
posing additional challenges to transboundary water management (Kryston et al.
2022).

The quantification of “blue” surface—and groundwater and “green” rainwater
as sources of available water is important for addressing the impacts of water
scarcity (Hoekstra 2016), but water scarcity is determined by both physical and social
factors, and their interactions. Thus, understanding and addressing water scarcity
also requires assessments that extend beyond simple water supply and demand anal-
yses to include socio-economic factors such as governance systems and policies
(Falkenmark et al. 2007). Ideally, water scarcity research considers the complex
interactions of climate change, variations in human activities, and their impacts
on hydrologic responses. “Socio-hydrologic” research (Sivapalan et al. 2012) that
bridges coupled physical and social dynamics that govern water scarcity, however,
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faces challenges such as data scarcity and anthropogenic feedback (Müller and Levy,
2019). For instance, assessing water scarcity risk under the non-availability of basin-
scale sectoral water demands and socio-economic factors limits capacity to execute
socio-hydrologic research in data-scarce river basins (Swain et al. 2020). Thus, water
scarcity risk research that relies on modelling of physical climate and readily observ-
able proxies for various forms of human activity, such as Land Use/ Land Cover
(LULC), are a practical and parsimonious approach to analysing water scarcity given
inherent complexity.

Model-based analyses of water scarcity frequently acknowledge the multifaceted
influences of climate change and/or LULC dynamics on hydrological systems and
provide straightforward management-relevant findings (Ayeni et al. 2015; Chanap-
athi & Thatikonda, 2020; Dosdogru et al. 2020; Omer et al. 2020;Mechal et al. 2022;
Dolgorsuren et al. 2024; Li et al. 2024). Modelling can be used quantify the depen-
dence of hydrological processes on precipitation patterns, temperature regimes, and
LULC variations (Chen et al. 2020; Jose et al. 2021; Kayitesi et al. 2022; Gupta et al.
2024), and simulations of change in hydrology enable stakeholders to anticipate
shifts in water availability and plan adaptation measures accordingly. A widely used
hydrological model for the estimation of hydrological response to climate variability
and change, as well as LULC, is the Soil andWater Assessment Tool (SWAT), which
is a which is a quasi-distributed, physically-based hydrologic model (Srinivisan et al.
1998; Tan et al. 2020). SWAT model analyses have been used to assess quality and
quantity of surface and ground water, the impact of LULC and climate change on
hydrologic responses, prevention and control of soil erosion, control of point and
non-point source pollution, ecosystem assessment and regional river basin manage-
ment (Tan et al. 2020; Aloui et al. 2023; Dubey et al. 2023; Uniyal et al. 2023; Zhao
et al. 2024). Given that uncertainties in climate projections and LULC scenarios
challenge accurate prediction within any hydrologic model (Wagener et al. 2010),
including but not limited to SWAT, the integration of risk-based approaches into
water scarcity analysis with hydrological model output is necessary (Veldkamp et al.
2017).

While a focus on LULC within hydrologic modelling can simplify representa-
tions of human activity, and model input and output uncertainty can be acknowl-
edged to a certain extent using a risk framing, fundamental modelling design chal-
lenges remain. Specifically, land use and climate change dynamics are embedded in
hydrologic records that represent reference conditions in model experiments. Iden-
tifying points of change in hydrologic records over time remains an essential step in
many hydrologic modelling efforts, as the selection of “baseline” and “assessment”
periods underpin quantifications of change. Thus, use of ‘change point’, ‘break-
point’, or ‘turning point’ approaches, which indicate points in time at which time
series data split into subsetswith distinct statistical properties, can be used to establish
comparative time periods (Friedman et al. 2016).

Change points within datasets indicate non-stationarities, a concept widely
employed for identifying and evaluating the timing andmagnitudes of hydro-climatic
change at multiple scales (Xie et al. 2019; Zhou et al. 2019), and can indicate abrupt
shifts in variables like precipitation, streamflow, reservoir storage, urbanization or
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agricultural practices (Ryberg et al. 2020). As a result, change points in long-term
hydro-climatic data have been used to evaluate water scarcity across comparison time
periods (Rafiei-Sardooi et al. 2022). There are several change point detectionmethods
such as the Bayesian Change-Point (BCP) approach (Wang et al. 2018), parametric
change-point analysis (Killick and Eckley, 2014), non-parametric change-point anal-
ysis (Haynes et al. 2021), and the trend-based approach (Pettitt test) (Pettitt, 1979).
However, selecting suitable change point detection methods and then identifying
changepointswithin long-termhydro-climatic data are both processes that are subject
to inherent uncertainties and limitations related to data quality and availability (He
et al. 2022). At a minimum, approaches that are suitable for hydrologic applications
avoid invalid statistical assumptions (i.e., normality and independence) and have the
capacity to detect multiple change points (Ryberg et al. 2020). Ideally, approaches
can identify sequential trends with varying lengths and slopes (Şen, 2019).

It remains that the accuracy of water scarcity risk estimation and projection at
the basin scale alone depends on myriad model structural and forcing data factors:
representations of time-varying climate, LULC, hydrologic processes, and human
intervention.Nevertheless, appliedmanagement-relevant researchmust proceedwith
estimation in the absence of one or more of these factors. Thus, the question of what
parsimonious hydrologic modelling approaches yield in river basins, despite limita-
tions, is valid insofar as the model results are used to understand the future ‘possi-
bility space’ (Baldassarre et al. 2019). Thus, based on the above critical appraisal,
the present study aims to analyse water availability and water scarcity conditions in
long-term historical as well as future scenarios in the Baitarani river basin of Eastern
India, a basin that has undergone substantial land use change and faces significant
projections of hydroclimatic change (Srivastava and Maity, 2023).

This studydoes sousing aSWATmodel simulation approach, andusingdata inputs
that include 45 years of observed historical climate and hydrologic data (1974–2018),
historical land cover maps (1985, 2005), and 40 years of projected future climate
(2020-2059) from two Shared Socioeconomic Pathway (SSP) scenarios from the
Coupled Model Intercomparison Project 6 (CMIP6). The flowchart of the overall
methodology is shown in Figure 20.1. This study narrates the development of an
applied hydrologic model-driven analysis of climate and land use change in a histor-
ical reference period, and climate change (with static land use) in a future period,
as well as comparisons across time periods and future scenarios. Results from this
study illustrate what is, and is not, typically possible in the case of an applied water
scarcity risk analysis in a data-scarce basin. Furthermore, model simulation findings
and their interpretation highlight the potentially important but often omitted role
of model structural representations within management-focused studies of water
resources change.
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20.2 Background of the Study Area

The Baitarani river basin is an interstate basin in Eastern India that spans approxi-
mately 12,094 km2, and the river has a travelling length of 360 km before draining
into the Bay of Bengal. It extends from 20°30′ N to 22°20′ N in latitude and 85°05′ E
to 87°05′ E in longitude (Figure 20.2). Covering primarily the regions of Odisha and
a smaller portion of Jharkhand, the Baitarani river basin is a major regional catch-
ment known for its agriculture, fisheries and industrial sectors, and the basin includes
a wide variety of land-use types such as agricultural land, water bodies, fallow and
wasteland, forested areas and developed/urban land (Visakh et al. 2019). In this basin,
the Anandapur streamflow gauging station is located upstream of the Salandi Dam
(Figure 20.2), constructed between 1974 and 1983, enabling assessment of variations
in unimpaired hydrologic responses with climate change and LULC (Swain et al.
2020). The Salandi Dam is the major water management structure in the Baitarani
river basin, storing floodwaters during the monsoon season and supplying water to
agriculture and industry during periods of high demand.

The Baitarani river basin falls within a subtropical monsoon climate zone, and
the monsoon months (June–September) are the primary source of precipitation,
contributing approximately 80%of annual rainfall (Swain et al. 2020). Earlier studies
have identified the study area as flood-prone (Rai et al. 2018; Dahm et al. 2019) and
simultaneously drought-prone according to projections of increased drought occur-
rence and magnitudes under future climate change (Ojha et al. 2013; Suman and
Maity, 2021). Studying water availability and water scarcity in the context of these
divergent and changing extremes poses an illustrative modelling challenge.

20.3 Data Sources

The necessary input data for SWAT consists of the Digital Elevation Model (DEM),
LULCmaps, soil and meteorological data, and streamflow time series data for model
calibration and validation. The details of the data are given as follows:

20.4 Spatial Data Sources

The DEM is sourced from the Shuttle Radar Topography Mission (SRTM), offering
a spatial resolution of 30 m × 30 m (Farr et al. 2007; NASA JPL, 2013). Statics
derived from soil property maps rely on the Food and Agriculture Organization
(FAO) Harmonized World Soil Database (HWSD) v1.2 (Fisher et al. 2008; FAO,
2012), with a spatial scale of 1 kmby 1 km. TheDecadal LULCClassifications across
India dataset provides satellite-derived LULC classifications at a decadal temporal
resolution and with a spatial resolution of 100 m by 100 m (Roy et al. 2016). To
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analyse the impact of LULC changes during the reference period, representative
land cover maps for the years 1985 and 2005 are employed.

20.5 Historical Hydro-Climatic Data Sources

The time period represented by historical data is 1974–2018. The primary observed
meteorological data (precipitation, min andmax temperature) are obtained on a daily
scale from the India Meteorological Department (IMD), Pune (Rajeevan et al. 2006;
Pai et al. 2015). The spatial resolution of obtained precipitation data is 0.25°. The
obtained 1° gridded temperature data is rescaled to 0.25° resolution through a widely
used bilinear interpolation approach (Almazroui et al. 2017, 2020) tomaintain spatial
consistency with the obtained precipitation data (Swain et al. 2021; Dey et al. 2022).
The daily observed streamflow data is collected from the Anandpur (21° 13’ 46”
N, 86° 7’ 30” E) gauging station made available by the Central Water Commission
(CWC), Bhubaneswar, and has been extensively used in various applied hydrologic
studies (Rai et al. 2018; Visakh et al. 2019; Swain et al. 2023, 2024).

20.6 Future Climatic Data Sources

Global ClimateModels (GCMs) arewidely employed to simulate and project climate
change on both a global and regional scale and are regarded as essential for water
resources management research (Fan et al. 2020; Xu et al. 2021). By using stan-
dardized simulations within a variety of GCMs, the CoupledModel Intercomparison
Project (CMIP) enables quantification of uncertainties in future climate projections
acrossmodels.GCMs from the sixth phase ofCMIP (CMIP6) have delivered substan-
tial enhancements over their previous model generation (CMIP5) in horizontal reso-
lution, physical parameterizations (e.g., cloud representation), the addition of other
Earth system processes (like nutrient limitations to the terrestrial carbon cycle) and
added components (e.g., ice sheets) (Eyring et al 2016, 2019). A set of socioeco-
nomic and technological development scenarios, collectively known as the Shared
Socioeconomic Pathways (SSPs), are developed in CMIP6. SSPs differ from prior
CMIP5 Representative Concertation Pathway (RCP) scenarios by describing chal-
lenges to adaptation and mitigation, in addition to emissions as presented in the
Special Report on Emissions Scenarios (SRES) of the Intergovernmental Panel on
Climate Change (IPCC) (O’Neill et al. 2017). The CMIP6 SSP scenarios combine
two dimensions, the RCP representation of the severity of climate change (repre-
sented by emissions levels), and the SSP narrative characterization of five directions
of global societal development (Kriegler et al. 2014). The five SSPs portray alter-
native pathways of socioeconomic development, such as sustainable development
(SSP1), middle-of-the-road development (SSP2), regional rivalry (SSP3), inequality
(SSP4) and fossil-fuelled development (SSP5) (Meinshausen et al. 2019).
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Fig. 20.3 Box and whisker representation of observed IMD and modelled MRI-ESM2 climate
variables.

In this study, SSP245 and SSP585 scenarios from CMIP6 are selected to
represent future water availability and scarcity under medium and high emission
scenarios, respectively. Bias-corrected CMIP6 precipitation, maximum temperature
and minimum temperature at a 0.25° × 0.25° spatial resolution and daily temporal
resolution come from the Bias Corrected Climate Projections from CMIP6 Models
for South Asia dataset (Mishra et al. 2020). These bias-corrected future datasets are
widely used for hydro-climatic analysis in the South Asia region (Pandey et al. 2022;
Das et al. 2023; Swain et al. 2023). Out of the 13 available GCMs, the MRI-ESM2
model is selected for its superior regional performance, relative to other GCMs, over
the modelled historical period (Mahato et al. 2022). Figure 20.3 depicts the annual
precipitation and temperature (maximum and minimum) from the observed IMD
and modelled MRI-ESM2 spanning the years 1979–2014. There is good agreement
between the IMD data and the bias-corrected MRI-ESM2 model data within the
study area. Bias-corrected MRI-ESM2 data from the period of 2020–2059 is then
used to represent the future period.

20.7 Methodology

20.7.1 Change Point Detection Analysis

This study uses the Sequential Mann–Kendall test for the identification of multiple
change points in the historical hydrologic data, and is used to partition the historical
period into baseline and assessment periods. The Sequential version of the Mann–
Kendall test was initially formulated by Sneyers, 1990, and was subsequently modi-
fied and applied in hydrological studies (Douglas et al. 2000; Yang and Tian, 2009;
Zhao et al. 2015; Dey and Mishra; 2017; Nourani et al. 2018). Using comparisons
between progressive (forward) and retrograde (backward) sequences of ranked time
series data, this method detects change points as the onset of trends in those data. The
rank of mean annual streamflowmagnitudes Xj (where j = 1, 2,…., n) are compared
to the rank of Xk (where k = 1, 2, …., j-1). The number of events in which the rank
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of Xk exceeds the rank of Xj is denoted by nj. The test statistic (Tj) is then calculated
based on these counts and given by:

Tj =
∑j

1
nj (j = 2, 3, ..., n) (20.1)

The test statistics are assumed to be normally distributed. The mean and variance
of the test statistics are estimated as:

E(T ) = n(n − 1)

4
(20.2)

Var(Tj) =
[
j(j − 1)(2j + 5)

]

72
(20.3)

The sequential values of the statistic U(Tj) are calculated as:

U (Tj) = Tj − E(Tj)√
Var(Tj)

(20.4)

which is called the progressive series. Similarly, the retrograde seriesU’(Tj) is gener-
ated in the same way, but with a reversed original time series. The null hypothesis is
accepted if |U(Tj)| is less than or equal toU(Tj)1-α/2; where α is the significance level
at which the two-sided trend test is performed. The critical value (U(Tj)1-α/2) repre-
sents the threshold of the standard normal distribution with a probability greater than
α/2. A positive U(Tj) indicates a positive trend, while the negative U(Tj) signifies
a negative trend, with U’(Tj) reflecting the same pattern as U(Tj). The Sequential
Mann–Kendall test in this study is performed at a 5% significance level. The change
points in the hydrologic variable (streamflow) are observed at the point where the
progressive and retrograde series intersect with each other, and the null hypothesis
of there being no trend in the data is rejected for the entire sample if any of the
sequential statistics U(Tj) exceed the confidence interval (i.e., +/− 1.96). Here, the
intersection point with the greatest sequential statistic value is used to indicate the
break point in the long-term streamflow data series. Thus, the study period (i.e. refer-
ence period) is partitioned into a baseline period and an assessment period using the
year corresponding to the greatest positive value of U(Tj).

20.8 Linear Trend Analysis

The linear trend test is a statisticalmethod frequently used in the hydrology domain to
identify and quantify trends in hydro-climatic variables over time, such as precipita-
tion, streamflow, and temperature, providing understanding of long-term changes in
water resources and climate patterns (Zhou et al. 2023; Wu et al. 2024). In this study,
the linear trend test is performed to evaluate change in annual summaries (e.g., total
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precipitation, mean streamflow and temperature) of hydro-climatic variables during
the reference, baseline and assessment periods, with a significance level set at 5%.

20.9 SWAT Model-Based Scenario Definition

The basin-scale modelling of the study area is done using the SWAT2012 inter-
face (Arnold et al. 2012) with an ArcGIS 10.3-ArcView extension (Wang et al.
2020). SWAT enables representation of various physical hydrological processes,
including streamflow, groundwater flow, evapotranspiration, lateral flow and perco-
lation. Streamflow is generated using the SCS curve number method and routed
through the Muskingum channel routing method. Evapotranspiration in this study is
quantified by the Penman-Monteith method. Subsurface flow components, including
groundwater flow, lateral flow and percolation, are assessed through themass balance
of the subsurface system. The conceptualization of hydrological processes in SWAT
is presented through the water balance equation, which is formulated as:

SWt = SWo +
t∑

i=1

(Pi − Qi − ETi − Gi − Ri) (20.5)

where SWt is the residual water content in the soil, SWo is the initial soil water
content on ith day, t is time in days, Pi is the precipitation on ith day, Qi is the
surface runoff on ith day, ETi is the evapotranspiration (ET) on ith day, Gi is the
water flowing to the subsurface zone from the soil profile on ith day, and Ri is the
return flow on ith day.

SWAT model setups (Table 20.1) are designed around the baseline and assess-
ment time periods that were determined through the change point analysis, and these
periods represent alternative climatic and LULC conditions. A warm-up period of
2 years is incorporated for both baseline and assessment periods. The Baitarani
river basin is calibrated at the Anandpur gauging station using the SUFI-2 algo-
rithm within the SWAT-CUP interface at a monthly scale (Abbaspour, 2014). Sensi-
tivity analysis of model parameters is conducted using the LH-OAT sampling
approach (Van Griensven and Meixner, 2007). The performance of the calibrated
and validated models is assessed using three performance indicators: the coefficient
of determination (R2), the Nash-Sutcliffe Efficiency (NSE), and the Percent Bias
(PBIAS).

R2 =
[

n∑

i=1

(
Qo

i − Qo
)(
Qm

i − Qm
)
]2/ n∑

i=1

(
Qo

i − Qo
)2 n∑

i=1

(
Qm

i − Qm
)2

(20.6)

NSE = 1 −
∣∣∣∣∣

n∑

i=1

(
Qo

i − Qm
i

)2
/

n∑

i=1

(
Qo

i − Qo
)2

∣∣∣∣∣ (20.7)
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Table 20.1 Details of the
historical time periods for
SWAT modelling.

Time frame LULC Climate

Baseline period 1985 1974–1993

Assessment period 2005 1994–2018

PBIAS =
(

n∑

i=1

(
Qm

i − Qo
i

) × 100

)/
n∑

i=1

Qo
i (20.8)

where Qo is the observed mean streamflow, Qo
i is the ith observed streamflow, Qm

i
is the ith model-simulated streamflow, Qm is the model-simulated mean streamflow
and n is the total number of the data points. The calibrated and validated SWAT
model is then used to simulate future hydrology using CMIP6 climate for the period
of 2020–2059. Due to the assessed compatibility between historical CMIP6 climate
and observed historical climate (Figure 20.2), a SWAT run of historical periodCMIP6
climate was deemed unnecessary.

20.10 Blue/ Green Water Availability Analysis

Water availability is assessed using blue and green water components constructed
from SWAT outputs. Blue Water Flow (BWF) is calculated by aggregating surface
water and groundwater components. Hence, surface runoff/ streamflow, lateral flow
and return flow are combined to form the BWF components at a basin scale. The
concept of naturally infiltrated water forms the basis of the green water compo-
nent in a basin, which is estimated using two terms. Firstly, Green Water Storage
(GWS) represents the availablemoisture in the soil. Secondly, theGreenWater Flows
(GWF) denote the actual evapotranspiration, which is the loss of water from the soil
by release to the atmosphere through a combination of transpiration from vegetative
and evaporation from water bodies and soil profiles. Therefore, in the present study,
BWF and GWS are considered indicators of water availability in that they are used
to quantify water scarcity. Further, Water Availability (WA) is defined as the summa-
tion of BWF and GWS components (i.e., total water available is surface water and
groundwater). It is important to note that the derived estimates for the water balance
components are analysed directly from model-simulated outputs due to the lack of
available observational data.
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20.11 Framework Water Scarcity-Risk Analysis

Water scarcity is usually assessed by comparing sectoral water demands with the
available water resources at the basin scale. However, the details of sectoral water
demand data are limited in many river basins, including the Baitarani basin. Thus,
water scarcity risk assessment is performed in this study based on relative changes
in streamflow (�Q) and Water Availability (�WA) for baseline and assessment
periods. It is assumed that there is a state of equilibrium between water demands and
water availability for this analysis, which means that the amount of water needed by
different sectors (agriculture, industry, households, etc.) is assumed to be balanced
by the water available from BWS and GWS. The relative changes in streamflow and
water availability are calculated as follows:

�Q = Qa − Qb

Qb
(20.9)

�WA = WAa − WAb

WAb
(20.10)

The relative change in streamflow (�Q) is calculated as the ratio of the difference
between the average streamflow for the assessment period (Qa) and the baseline
period (Qb) to the average streamflow for the baseline period (Qb). Similarly, the
relative change inwater availability (�WA) is determined as the ratio of the difference
between the average water availability for the assessment period (WAa) and the
baseline period (WAb) to the averagewater availability for the baseline period (WAb).

Based on the parameter values outlined above, four distinct risk zones are iden-
tified, following the criteria proposed in earlier studies (Garrote et al. 2018; Swain
et al. 2020). The criteria for potential water scarcity risk assessment zoning are as
follows:

Zone1 (Z1) = (�Q > 0, �WA > 0) = Less risk

Zone2 (Z2) = (�Q < 0, �WA > 0) = Moderate risk

Zone3 (Z3) = (�Q > 0, �WA < 0) = High risk

Zone4 (Z4) = (�Q < 0, �WA < 0) = Extreme risk

Zone 1 represents low water scarcity risk, wherein water demands exceed water
availability, and is represented by positive changes in both streamflow and water
availability. Zone 2 signifies a moderate risk of water scarcity due to decreased
streamflow (only). Zone 3 indicates a high water scarcity risk due to reduced water
availability (only). In zone 4, where both streamflow and water availability decrease,
the basin faces an extreme risk of water scarcity and is likely to experience hydro-
logical drought conditions in the region (Goyal et al. 2017). The assessment of
water scarcity includes a change point analysis of streamflow, a linear trend analysis
of hydro-climate variables, and an evaluation of their impact on water availability.
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This impact analysis relies on the calibrated and validated SWAT outputs over the
reference (baseline and assessment) period. Water scarcity in the reference period is
assessed by comparing water availability and streamflow in the baseline and assess-
ment periods. Then, water scarcity in the future period is assessed by comparing the
reference period with SSP245 and SSP 585 hydro-climate variables, respectively.

20.12 Results and Discussions

20.12.1 Change Point Detection Analysis

The Sequential Mann–Kendall test statistic calculated on streamflow data from the
Anandapur station in the Baitarani basin identified a total of 11 change points
(Table 20.2, Figure 20.4).

Table 20.2 Sequential
Mann–Kendal test statistics in
the reference period.

Year Sequential statistic

1978 0.92

1983 2.01

1985 1.63

1989 2.21

1991 1.93

1993 2.32

2002 1.69

2009 1.09

2011 1.11

2012 1.19

Fig. 20.4 Change points identified by the Sequential Mann–Kendall test of streamflow in the
reference period.
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Between 2010 and 2013, there are three change points with almost identical
sequential statistic values (1.1–1.2). Similarly, in the years 1983 and 1993, sequential
statistic values greater than 2 are observed, with the year 1993 exhibiting the greatest
value of 2.32. Based on these results, the full reference period of 1974–2018 is
divided into two sub-periods: the period before the change point with the greatest
corresponding sequential statistic value (1974–1993) is considered to be the baseline
period, while the period after (1994–2018) is termed the assessment period.

20.13 Hydro-Climatic and LULC Change Statistics
in Reference Period

Comparisons of the trends in the hydro-climatic variables across different periods are
illustrated in Figure 20.5. In the reference period from 1974 to 2018, precipitation
shows a positive trend (� = 3.65mm/year), though there is no statistical significance
(p-value= 0.2). Similarly, streamflow has a negligible downward trend (� = − 0.17
m3/s/year) during the reference period, which is not statistically significant (p-value
= 0.805). However, temperature displays a consistent and statistically significant
upward trend (� = 0.01 °C/year, p-value = 0.020) over this period. In the baseline
period from 1974 to 1993, precipitation exhibits a significant upward trend (� =
13.37 mm/year2) without any statistical significance (p-value = 0.102). Streamflow
also demonstrates a significant upward trend (� = 3.06 m3/s/year) during the base-
line period, but not significant (p-value = 0.123). Similarly, temperature shows no
statistically significant trend during this period. Finally, in the assessment period from
1994 to 2018, precipitation displays a slight downward trend (� = − 1.44 mm/year),
though not statistically significant (p-value= 0.845). Streamflow, however, reveals a
significant downward trend (� = − 3.03 m3/s/year), approaching statistical signif-
icance (p-value = 0.088). Temperature continues its upward trend (� = 0.02 °C/
year) during the assessment period, and is statistically significant (p-value = 0.016).
Overall, while precipitation and streamflow exhibit varying trends with statistical
insignificance across different periods, temperature consistently displays a signifi-
cant upward trend, which is especially noticeable in the reference and assessment
periods.

The LULC maps of 1985 and 2005 were selected to represent the baseline
period and assessment periods, respectively. Summaries of basin LULC classes
by time period are shown in Figure 20.6. Between 1985 and 2005, agricultural
land increased slightly from 56.22% to 56.89%, indicating continued agricultural
expansion. Conversely, deciduous forests experienced a decline from 28.06% to
24.15%, suggesting deforestation or land conversion activities. Fallow land remained
relatively stable at 1.35% throughout both periods. Shrubland and mixed forest
areas showed modest increases, indicating possible reforestation or natural growth
processes. The proportion of water bodies also saw a slight rise from 1.58% to
1.82%, reflecting potential changes in hydrological features. Urban land exhibited a
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Fig. 20.5 Linear trend variation of annual hydro-climatic variables for different periods.

minor increase from 1.04% to 1.23%, indicating limited urbanization or infrastruc-
ture development. These changes highlight shifts in land use patterns over the two
decades, with implications for ecosystem health, biodiversity, and water resource
management within the study area.
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Fig. 20.6 LULCpercentageswithin theBaitarani river basin during baseline (1985) and assessment
(2005) years of the reference period.

20.14 SWAT Model Scenario Execution

The two SWAT model setups of baseline and assessment periods, as outlined in
Table 20.1, are calibrated and validated using 10 parameters that the model is partic-
ularly sensitive to according to earlier literatures (Paul et al. 2019; Visakh et al.
2019; Swain et al. 2020, 2021, 2023). The selected sensitive parameters with suit-
able ranges and fitted values are detailed in Table 20.3. Sensitive parameters and
their ranges are determined through a comprehensive model calibration of the study
area. The calibrated peak flow is fine-tuned by adjusting sensitive parameters such
as the curve number (CN2.mgt) and available water capacity of the soil layer (SOL_
AWC.Sol), drawing from insights gained in earlier studies (Abbaspour et al. 2015).
Parameters such as the groundwater delay time (GW_DELAY.gw), threshold depth
of water in the shallow aquifer required for return flow to occur (GWQMN.gw),
and the groundwater revap coefficient (GW_REVAP.gw) are employed to modify
the baseflow of the study area. Changes in LULC are anticipated to influence the
variability of sensitive model parameters (Das et al. 2018; Swain et al. 2021), as
well as the streamflow response of the basin. The calibration and validation periods
are selected based on a ratio of approximately 60:40, respectively. For the baseline
period (1974–1993), the model is calibrated from 1974 to 1985 and validated from
1986 to 1993. Similarly, for the assessment period (1994–2018), the model is again
calibrated from 1994 to 2008 and validated for the years from 2009 to 2018.

Figure 20.7 illustrates the comparisons ofmonthly streamflow time series between
model simulations and observed streamflow at the Anandapur station. The model
results demonstrate an acceptable level of agreement between observed and model-
simulated streamflow. The statistical performance indices used to evaluate model
performance, including NSE values exceeding 0.5, R2 values above 0.6, and PBIAS
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Table 20.3 Best-fit sensitive parameters of model calibration in the study area.

Parameters Description Range Fitted value

Baseline period Assessment period

CN2 Initial SCS runoff number
for moisture condition II

(70,90) 80.53 77.30

GW_DELAY Groundwater delay time
(days)

(30,450) 53.94 37.98

ALPHA_BF Baseflow alpha factor (1/
days)

(0,1) 0.40 0.72

GWQMN Threshold depth of water
in the shallow aquifer
required for return flow to
occur (mm H2O)

(0,5000) 2755 2695

CH_K2 Effective hydraulic
conductivity in main
channel alluvium (mm/h)

(0,200) 11.49 38.70

CH_N2 Manning’s n value for the
main channel

(0,0.3) 0.07 0.10

ALPHA_BNK Base flow alpha factor for
bank storage (days)

(0,1) 0.47 0.91

SOL_AWC Available water capacity
of the first soil layer (mm
H2O/mm soil)

(0,1) 0.20 0.17

REVAPMN Threshold of evaporation
in the shallow aquifer
(mm)

(0,500) 273 19.5

GW_REVAP Groundwater ‘revap’
coefficient

(0.02,0.2) 0.11 0.12

values falling within ±25, suggest reliability of the model (Moriasi et al. 2007). The
NSE, R2 and PBIAS values for the calibration period and validation period of the
respective model scenarios are outlined in Figure 20.7. During the calibration of
the baseline period, the model exhibits an NSE of 0.81 and R2 of 0.88, indicating
a good fit between observed and simulated streamflow values. The PBIAS value of
12.27 suggests a slight overestimation of the observed values. During validation, the
model performance improves slightly, with NSE and R2 values of 0.84 and 0.90,
respectively, and a higher PBIAS value of 16.76, indicating a larger overestimation
in the validation period. In the calibration period of the assessment period, the model
exhibits a slight decrease in performance compared to the baseline period, showing
NSE and R2 values of 0.79 and 0.82, respectively and a negative PBIAS value of −
13.14, indicating an underestimation of observed values. However, in the assessment
period validation, the model performance improves, with NSE and R2 values of 0.83
and 0.88, respectively and a further reduction in PBIAS to − 19.56, indicating a
larger underestimation. Overall, the model performance indicators suggest satisfac-
tory performance across different time scales, with some variation in performance
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metrics between calibration and validation periods and between baseline and assess-
ment periods. Subsequently, the model is simulated for different future SSPs based
on the calibrated model parameters of the assessment period.

20.14.1 Assessment of Water Availability

Figure 20.8 presents summaries of estimatedblue andgreenwater components (BWF,
GWF and GWS), alongside precipitation, across the different time periods and SSPs.
In the reference period (baseline and assessment periods combined), the average
precipitation is recorded as 247.02 mm, with corresponding values for BWF, GWF,
andGWSof 201.055, 21.3 and 24.76mm, respectively. In the baseline period, there is
slightly less precipitation of 245.38 mm, while other components also exhibit minor
differences. In the assessment period, precipitation increases very slightly to 248.29
mm, leading to a corresponding slight rise in BWF, GWF andGWS. SSP585 exhibits
significantly higher precipitation and BWF, while maintaining the same GWF and
only slightly higherGWScompared to the reference period. Both SSP scenarios show
similar GWS levels, which are only marginally higher than those in the reference
period. This indicates that evaporative and subsurface processes as represented in the
SWAT model are unchanged from the reference period, and thus GWS changes only
to the extent that increases in BWF propagate through the representation of those
processes.

Future SSP simulations only include future climate change in this study, and
calibrated SWAT representation of dynamical land surface and subsurface hydro-
logic processes are unchanged from the reference period. In reality, future LULC
dynamics can significantly impact water availability by altering surface runoff,
groundwater recharge and evapotranspiration processes, as documented in earlier
studies conducted in various regions around the world (Levy et al. 2018; Tankpa
et al. 2021; Sinha et al. 2023; Ebodé et al. 2024). For example, the expansion of
urban areas or conversion of natural habitats to agricultural land can lead to increased
surface runoff and reduced infiltration rates, potentially exacerbating flood risks and
reducing groundwater recharge. Conversely, afforestation efforts or restoration of
degraded landscapes may enhance water retention and infiltration capacities, miti-
gating runoff and improving groundwater replenishment (Brown et al. 2005; Zhang
et al. 2017). From a modelling perspective, such changes would alter calibration of
SWAT model parameters, resulting in change additional to that which is generated
by climate alone. It remains that this study’s representation of the two baseline and
assessment period LULC types, along with their corresponding observed climate,
yielded only marginal change in water availability components over the reference
period.
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Fig. 20.8 Water availability assessment for different periods.

20.15 Water Scarcity Risk Analysis

The calculation of water scarcity based on streamflow and water availability is
assessed at a basin scale and presented in Figure 20.9. The figure represents the
changes in water availability (WA) and streamflow (Q) between different periods
(reference, baseline, and assessment periods) and scenarios (SSP245 and SSP585),
indicating potential shifts in water scarcity risk zoning. In the comparison between
the baseline period and the assessment period, there is a marginal increase in water
availability (0.02) but a sizable increase in streamflow (0.08). Overall, this generates
reduced risk of water scarcity primarily due to enhanced runoff. Comparing the refer-
ence period with the SSP245 and SSP585 scenarios (RP-SSP245 and RP-SSP585,
respectively), both scenarios show increases in water availability and streamflow.
However, the SSP585 scenario exhibits a larger increase in water availability (0.52)
compared to SSP245 (0.22); both exhibit relative changes of 0.04 for streamflow.

According to the water scarcity-risk criteria (as defined in subsection 4.4), posi-
tive relative changes in both WA and Q, which represents a situation wherein both
terms are greater relative to a comparison period, suggests lower water scarcity
risk. A positive change in water availability implies an increase in the overall water
supply, while a positive change in streamflow indicates higher runoff and potentially
improved replenishment of water resources. Thus, in this model simulation experi-
ment, and when manipulating primarily climate variability and change via the use
of alternative time periods and CMIP6 SSPs, water scarcity is expected to decrease
in the Baitarani river basin in the future.

This conclusion faces several limitations. While the assumption of equilibrium
between water demands and water availability simplifies the analysis, the dynamic
and variable nature of water supply and demand is influenced by numerous factors
such as seasonal variations, population growth, economic development and climate
change, which limits understanding of water scarcity risks. This study also uses a
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Fig. 20.9 Relative changes in streamflow and water availability for different comparison periods.

hydrologic model whose process representations (e.g., parameterizations) are repre-
sentative of a static historical period. In contrast to that representation, a study by
Garrote et al. (2018) suggested that basin-scale water availability is determined
by a combination of streamflow and variable hydrological responses represented
by water storage components. Such variable hydrologic responses are not incorpo-
rated in this study. One way to do so would be to integrate future LULC scenarios
and corresponding parameterizations, along with future climate, into the analysis to
assess the combined effects of climate and land use change on hydrologic responses
and water scarcity more comprehensively (Leta et al. 2021; Acharya et al. 2023).
This would provide valuable insights not only into potential trade-offs and relations
between different land management strategies and climate adaptation measures, but
also understanding about the extent to which model structural representations are
important for understanding future risk of water scarcity.

20.16 Conclusions

This study evaluates modelled water scarcity in an observed historical reference
period (1974–2018) and under simulated future climate (2020–2059), alongside
representative land use/land cover (LULC) conditions. Using a Sequential Mann–
Kendall change point analysis, this study identifies the year (1993) of the most
significant change in historical Baitarani river basin streamflow. The subsequent use
of this change point analysis to partition the historical reference data into base-
line (1974–1993) and assessment periods (1994–2018) represents the use of a data-
driven approach to guide otherwise subjectivemodelling decisions under uncertainty.
This study then finds that the SWAT model performs satisfactorily in capturing the
dynamic changes in LULC throughout both the baseline and assessment periods.
Additionally, modelled blue and green water components yield fluctuations in water
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availability across the baseline and assessment periods, and in future SSP scenarios.
In particular, SSP585 hydrology had notably higher quantities of blue water relative
to other time periods, indicating the potentially strong influence of extreme precip-
itation on water resources in the study region. Building from the analysis of blue
and green water components, the analysis of water scarcity indicates that the relative
changes in water availability and streamflow are positive for the assessment period,
as well as for the SSP245 and SSP585 scenarios, suggesting that the Baitarani basin
will face reduced water scarcity risk in the future.

The findings of this study offer valuable insights for making informed decisions
and managing water resources effectively in data-limited river basins, especially
given the evolving dynamics of climate and changes in landuse and land cover.Never-
theless, limitations remain. Here, consideration of future LULC scenarios alongside
future climate would enhance the robustness of the model structural representation
of hydrologic change, and thereby offer water resource management and planning
efforts greater certainty in projected future streamflow and water availability.
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