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Abstract 17	  

Runoff and soil moisture are two key components of the global hydrologic cycle 18	  
that should be validated at local to global scales in Earth System Models (ESMs) 19	  
used for climate projection. We have evaluated the runoff and surface soil 20	  
moisture output by the Community Climate System Model (CCSM) along with 8 21	  
other models from the Coupled Model Intercomparison Project (CMIP5) 22	  
repository using satellite soil moisture observations and stream gauge corrected 23	  
runoff products. A series of Community Land Model (CLM) runs forced by 24	  
reanalysis and coupled model outputs was also performed to identify 25	  
atmospheric drivers of biases and uncertainties in the CCSM. Results indicate 26	  
that surface soil moisture simulations tend to be positively biased in high latitude 27	  
areas by most selected CMIP5 models except CCSM, FGOALS, and BCC, which 28	  
share similar land surface model code. With the exception of GISS, runoff 29	  
simulations by all selected CMIP5 models were overestimated in mountain 30	  
ranges and in most of the Arctic region. In general, positive biases in CCSM soil 31	  
moisture and runoff due to precipitation input error were offset by negative biases 32	  
induced by temperature input error. Excluding the impact from atmosphere 33	  
modeling, the global mean of seasonal surface moisture oscillation was out of 34	  
phase compared to observations in many years during 1985-2004. The CLM also 35	  
underestimated runoff in the Amazon, central Africa, and south Asia, where soils 36	  
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all have high clay content. We hypothesize that lack of a macropore flow 37	  
mechanism is partially responsible for this underestimation. However, runoff was 38	  
overestimated in the areas covered by volcanic ash soils (i.e. Andisols), which 39	  
might be associated with poor soil porosity representation in CLM. Our results 40	  
indicate that CCSM predictability of hydrology could be improved by addressing 41	  
the compensating errors associated with precipitation and temperature and 42	  
updating the CLM soil representation. 43	  

Highlights 44	  

• We evaluated gridded soil moisture and runoff of nine CMIP5 models 45	  
• We isolated biases from the atmosphere model 46	  
• We identified areas with anomalies generated by CLM4 47	  
• We proposed modifications to improve hydrologic simulations in CLM 48	  

 49	  

Key words 50	  

CLM4, surface soil moisture, runoff, historical evaluation, bias test 51	  
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1. Introduction 52	  

The Community Land Model (CLM) serves as the land model for the Community 53	  
Climate System Model (CCSM) [Collins et al., 2006] and includes land 54	  
biogeophysics, hydrology, and biogeochemistry. Hydrology comprises key 55	  
processes that link and integrate atmosphere, ocean, vegetation, and human 56	  
systems. Increasing greenhouse gas concentrations and potential global 57	  
warming may affect water cycle dynamics, which in turn provide feedbacks to the 58	  
atmosphere and land surface. As a tool for predicting future states of ecosystems 59	  
and climate, land surface model development requires rigorous calibration and 60	  
validation against observations. 61	  

The growing demand for assessing the potential impacts of projected climate 62	  
change on human systems [Field et al., 2014] highlights the importance of 63	  
understanding surface hydrological responses within fully coupled Earth System 64	  
Models (ESMs), in addition to evaluating the accuracy of standalone land surface 65	  
models. While the IPCC AR5 has implemented a new framework for assessing 66	  
these impacts [Field et al., 2014] a recent study with the newly developed 67	  
integrated Earth System Model (iESM), which directly couples the Global Change 68	  
Assessment Model (GCAM) with the Community Earth System Model (CESM) 69	  
[Collins et al., 2014], has quantified the unintended consequences of not 70	  
implementing complete consistency among land use and land cover components 71	  
of the economic Integrated Assessment Models (IAMs) and the biophysical 72	  
ESMs [Di Vittorio et al., 2014]. The next steps for assessing climate impacts 73	  
include implementing and examining feedbacks between ESM water supply and 74	  
IAM water demand and management. In the context of the iESM, closer 75	  
examination of the surface hydrology of the fully coupled CCSM/CESM will 76	  
enable development of a more consistent framework for incorporating human-77	  
earth water cycle feedbacks into projections of water availability and use. 78	  

Runoff is an important component of the hydrological cycle, but runoff trend 79	  
detection at the global scale is a difficult task. Even the sign of the trends are 80	  
uncertain, as recent estimates of global runoff trends in the twentieth century 81	  
from various modeling studies are both positive [Gedney et al., 2006; Labat et al., 82	  
2004; Piao et al., 2007] and negative [Dai et al., 2009; Shi et al., 2011].  Positive 83	  
trends may be a result of increased continental precipitation, stomatal closure 84	  
due to rising CO2 concentration, land use changes, or decline of land ice content 85	  
[Alkama et al., 2013]. Decreasing trends in global runoff could be a consequence 86	  
of climate forcing changes with minor effects from nitrogen deposition and land 87	  
use change [Shi et al., 2011]. These uncertainties in runoff simulations are 88	  
largely due to different model implementations of atmosphere-plant-soil system 89	  
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interactions and the range in responses from these parameterizations to model-90	  
specific climate forcings.  91	  

Soil moisture has been demonstrated to affect regional climate via evaporation 92	  
and evaporative cooling [Seneviratne et al., 2013]. For example, atmospheric 93	  
circulation over the land surface is largely affected by soil moisture during 94	  
summer [Owe et al., 2008]. In particular, surface soil moisture controls 95	  
partitioning between sensible and latent heat, and affects partitioning between 96	  
overland flow and infiltration [Hou et al., 2012]. However, surface soil moisture is 97	  
among the most complex hydrologic variables to simulate as it interacts with the 98	  
atmosphere, plant canopy and roots, and vadose zone. This complexity is likely 99	  
evidenced by studies showing that peak variability in soil moisture occurs at the 100	  
surface [Decker and Zeng, 2009]. 101	  

Our evaluation procedures comply with the benchmarking framework proposed 102	  
by Luo et al. [2012]. We focus on runoff and soil moisture because observation-103	  
based, gridded, global datasets have recently become available for these two 104	  
key hydrologic variables[Fekete and Vorosmarty, 2002; Liu et al., 2012]. Other 105	  
variables such as river discharge and soil water storage of CLM4 [Lawrence et 106	  
al., 2011] and earlier versions (3-3.5) were reported to match observations of 107	  
major basins globally, although the accuracy of timing for simulated hydrologic 108	  
quantities varied among rivers and areas [Lawrence et al., 2011; Oleson et al., 109	  
2008; Qian et al., 2006]. However, CLM4 hydrologic simulations have not been 110	  
fully assessed at the level of a global grid. Thus, we define a set of metrics 111	  
including absolute and normalized biases, temporal correlation, and seasonal 112	  
dynamics to identify model strengths and deficiencies at the grid level. Using 113	  
these metrics, we identify the contributions of uncertainty from both the 114	  
atmosphere and the land components of the earth system model to soil moisture 115	  
and runoff. Based on our evaluation, we propose improvements to the land 116	  
model hydrology. Our results not only meet evaluation objectives that are 117	  
coincident with CMIP5 goals [Taylor et al., 2012], they also provide insights 118	  
toward coupling ESM and IAM water cycles to examine human-earth feedbacks 119	  
affecting water supply, demand, and management. 120	  

 121	  

2. Datasets and methods 122	  

The study was designed as two parts to answer following questions: 123	  

1. How well do the fully coupled models, particularly CCSM/CLM, represent 124	  
the surface soil moisture and runoff? What atmospheric forcings have the 125	  
greatest influence on these two variables? 126	  
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The hydrologic simulations of the CMIP5 models are largely dependent on the 127	  
forcings of various atmosphere models, but the ensemble comparison may 128	  
still help to reveal areas where hydrology is frequently underrepresented by 129	  
the earth system models and areas where observations/satellite products 130	  
have biases. 131	  

2. What are the contributions of these dominant forcings to hydrologic biases? 132	  
How do these biases relate to biases generated by land component? 133	  
What are the potential modifications for addressing land component – 134	  
driven biases? 135	  

By applying alternate atmospheric forcings, offline CLM simulations help to 136	  
determine contributions of biases in the coupled model from those driven by 137	  
the land model component. 138	  

2.1 Fully coupled global model outputs 139	  

The CCSM version 4.0 (CCSM4) is a coupled climate model for simulating the 140	  
earth system. The historical model outputs are available from the Climate Model 141	  
Intercomparison Project Phase 5 (CMIP5) repository. We use outputs from the 142	  
CCSM4 MOther of All Runs (MOAR) for several reasons. First, MOAR is the 143	  
historical control run with fixed satellite phenology and hence more realistic 144	  
interactions between vegetation and hydrological processes than the 145	  
unconstrained model.  This constraint helps us focus on the physical rather than 146	  
vegetative hydrologic components of version 4 of the land model (CLM4) in 147	  
CCSM4. The MOAR run is the only century-long ensemble member with sub-148	  
daily atmosphere variables, making it possible to perform subsequent offline runs 149	  
driven by the same set of forcing. Also, the MOAR outputs cover the time period 150	  
of 1850-2005 that is overlapped with observations. 151	  

In CLM4, soil moisture dynamics is controlled by infiltration, runoff (surface and 152	  
subsurface), gradient diffusion, gravity, and root extraction in a ten-layer model 153	  
(3.8 m) plus an underlying five-layer aquifer (5 m). The runoff is parameterized as 154	  
exponential functions of groundwater level [Oleson et al., 2010]. The model has 155	  
been calibrated and validated against major river discharge and terrestrial water 156	  
storage observations [Oleson et al., 2008]. Using uncertainty quantification 157	  
framework, Huang et al. [2013] found that subsurface runoff generation and soil 158	  
texture-related parameters are the most significant to runoff simulations. Details 159	  
of hydrologic parameterizations in CLM4 can be found in [Huang et al., 2013; Niu 160	  
et al., 2005; Niu et al., 2007; Oleson et al., 2008]. The choice of CLM4 hydrologic 161	  
parameters may have considerable impact on the results of runoff and soil 162	  
moisture, but is not the scope of the study. 163	  
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We included eight other models from the CMIP5 repository in our comparison 164	  
with observations: HadCM3, MIROC5, GFDL-CM3, CSIRO-Mk3, BCC-csm1, 165	  
MRI-ESM1, FGOALS-g2, and GISS-E2-R. The models were selected to meet 166	  
two criteria: they must have both runoff and surface soil moisture monthly outputs 167	  
and they must have historical runs. Brief descriptions of each model and 168	  
institution can be found in CMIP5 website (http://cmip-169	  
pcmdi.llnl.gov/cmip5/availability.html). Outputs were extracted from a single 170	  
historical run (1850-2005) by each model. 171	  

Two types of coupled model output were involved in this evaluation: the 172	  
hydrologic outputs (i.e. runoff and surface soil moisture) for comparison against 173	  
observations, and the atmosphere outputs from CCSM4 MOAR simulations for 174	  
driving the CLM4 offline runs. We extracted monthly surface soil moisture in the 175	  
top 10 cm and runoff from the CMIP5 archive via the Earth System Grid 176	  
(http://pcmdi9.llnl.gov) for the CCSM4 and the eight other models. Coupled 177	  
model monthly land outputs were extracted from ensemble member r6i1p1 for 178	  
CCSM4 and from r1i1p1 for the eight other models. Atmosphere outputs from the 179	  
coupled CCSM MOAR run were acquired from the National Center for 180	  
Atmosphere Research (NCAR) via the Earth System Grid 181	  
(https://www.earthsystemgrid.org) and used to force the offline CLM4 runs.  The 182	  
forcing data include 3-hourly solar radiation, specific humidity, temperature, 183	  
surface pressure, and wind together with 6-hourly fields of precipitation. 184	  

2.2 Observational data 185	  

2.2.1 Surface soil moisture 186	  

Soil moisture products have been estimated from an individual remote sensing 187	  
satellite in various studies (e.g., Al-Yaari et al. [2014] and Loew et al. [2013]), but 188	  
a multi-sensor approach has improved global soil moisture estimates. Liu et al. 189	  
[2012] have merged four passive microwave soil moisture retrievals from the 190	  
Scanning Multichannel Microwave Radiometer, the Special Sensor Microwave 191	  
Imager, the Tropical Rainfall Measuring Mission microwave imager, and the 192	  
Advanced Microwave Scanning Radiometer – Earth Observing System with two 193	  
active microwave soil moisture estimates from the European Remote Sensing 194	  
satellite and the Advanced Scatterometer into the new European Space Agency 195	  
(ESA) global soil moisture product. The product’s temporal domain ranges from 196	  
1978 to 2010 with daily values at 0.25° spatial resolution. The detection depth of 197	  
the microwave signal ranges from 2 to 5 cm depending on the type of sensor and 198	  
soil condition [Liu et al., 2012]. We use Volumetric Water Content (VWC, vol vol-1) 199	  
as the basis for our comparisons. 200	  
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The ESA data product has no coverage in densely vegetated regions such as the 201	  
Amazon and central Africa where dense canopy masks out both passive and 202	  
active microwave signals. The soil moisture retrievals are also absent under 203	  
frozen or snow conditions. Whenever data are available, the areas are included 204	  
in the calculation as well as the model simulations. Intercomparison and 205	  
validation of the microwave satellite data have been conducted at regional and 206	  
continental scales against in-situ observations [Albergel et al., 2012; Brocca et al., 207	  
2011; Gruhier et al., 2010; Loew et al., 2013]. In general the satellite product 208	  
accurately reproduces the seasonal cycle as well as short-term variability. 209	  

2.2.2 Monthly runoff 210	  

The University of New Hampshire (UNH) Global Runoff Data Center (GRDC 211	  
hereafter) composite runoff field V10 is a gridded runoff dataset at 0.5 degree 212	  
[Fekete and Vorosmarty, 2002]. The dataset was constructed by first calculating 213	  
basin-scale runoff based on a water balance model developed by UNH. The 214	  
water balance model (WBM) simulation at each cell was corrected by runoff 215	  
estimates for the corresponding interstation area. The interstation areas were 216	  
defined by a river routing model, the Global Simulated Topological model, to 217	  
which the GRDC stations were geo-registered. A total of 663 GRDC stations 218	  
were included and represented 72% of actively discharging areas. The majority 219	  
of discharge records were from the 1970s and the final product is a composite 220	  
annual runoff. The WBM-modeled runoff from 1971 to 1980 was averaged to 221	  
approximate the time period. 222	  

The runoff dataset has more complete global coverage than the soil moisture 223	  
dataset, enabling evaluation of densely forested areas such as the Amazon and 224	  
central Africa and permafrost areas such the Himalayas and Arctic Circle. We 225	  
compared the runoff differences divided by Global Precipitation Climatology 226	  
Centre (GPCC) precipitation reanalysis, which gives the normalized runoff 227	  
difference (NRD):  228	  

𝑁𝑅𝐷 =
𝑄!"#$% − 𝑄!"#

𝑃  

where Qmodel and Qobs denote the modeled and observed runoff and P the GPCC 229	  
precipitation. NRD was used instead of percent change because the long-term 230	  
runoff is zero or close to zero in arid areas, making any percent difference either 231	  
very large or infinite. We applied GPCC precipitation instead of precipitation from 232	  
each corresponding model because our aim was to reduce the range of runoff 233	  
difference induced by variations in modeled precipitation. Dividing runoff by 234	  
precipitation within each model generates a runoff ratio that describes the portion 235	  
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of runoff relative to precipitation, which is not the intention of this comparison. 236	  
Furthermore, applying precipitation from each individual model also introduces 237	  
uncertainties from atmospheric simulation that we wanted to minimize in our 238	  
comparison. The GPCC monthly precipitation 1-degree data [Schneider et al., 239	  
2011] were provided by the NOAA/OAR/ESRL Physical Science Division from 240	  
the website at http://www.esrl.noaa.gov/psd. 241	  

2.2.3 Qian’s reanalysis data and GPCC 242	  

Qian et al. [2006] adjusted NCEP-NCAR (National Centers for Environmental 243	  
Prediction-National Center for Atmospheric Research) reanalysis forcing dataset 244	  
by combining it with station records and satellite observations of temperature, 245	  
precipitation, and cloud cover. Qian’s reanalysis dataset covers the global land 246	  
areas with 3-hourly and T62 (~1.875°) resolution and serves as the offline CLM 247	  
model forcing data from 1948 to 2004.  248	  

The GPCC full data reanalysis version 6.0 comprises globally gridded gauge-249	  
analysis precipitation products over land areas derived from quality controlled 250	  
station data [Becker et al., 2013]. The monthly precipitation data were used to 251	  
normalize the runoff discrepancies between CMIP5 models and observations. 252	  

2.3 Offline experiments to assess sources of error 253	  

We extracted climate variables from the MOAR run to construct the forcings for 254	  
offline CLM4 runs. The MOAR climate variables are available in 3-hourly, 6-255	  
hourly, and monthly time steps. All our processing was based on 3-hourly data. 256	  
The standard climate forcings for a CLM4 historical run with satellite phenology 257	  
include three NetCDF files: 3-hourly solar radiation, 6-hourly precipitation 258	  
(converted by averaging from 3-hourly), and 3-hourly surface temperature, 259	  
specific humidity, pressure, wind speed. The MOAR climate variables were 260	  
combined with Qian’s reanalysis data [Qian et al., 2006] to construct offline runs  261	  

with four sources of climate forcings (Table 1):  262	  

Table 1. List of offline experiments and forcings 263	  

  QIAN MOAR MOAR_PRECIP MOAR_TEMP 
Precipitation reanalysis1 coupled run2 reanalysis coupled run 
Temperature/humidity reanalysis coupled run coupled run reanalysis 
Other forcings3 reanalysis coupled run coupled run coupled run 

1. Qian’s 2006 reanalysis dataset (see section 2.2.3) 264	  
2. atmosphere forcings from MOAR coupled run 265	  
3. other forcings include solar radiation, wind, and surface pressure 266	  
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 267	  

a. Qian’s 2006 reanalysis dataset (QIAN hereafter)  268	  
b. Atmosphere outputs from the MOAR coupled run (MOAR hereafter) 269	  
c. Qian’s reanalysis, but with precipitation data from the MOAR run 270	  

(MOAR_PRECIP hereafter) 271	  
d. Qian’s reanalysis, but with surface temperature and specific humidity from 272	  

MOAR run (MOAR_TEMP hereafter). 273	  

 274	  

In the offline experiments, soil moisture is extracted from top 4.5 cm soils and 275	  
excludes ice content. This soil moisture output matches the satellite product 276	  
closely both in scale and phase, and therefore provides the most appropriate 277	  
comparison with observation datasets. Monthly global mean values were 278	  
compared between simulations and observations to reveal the dynamics of runoff 279	  
and soil moisture. Differences between MOAR_TEMP and MOAR_PRECIP 280	  
relative to QIAN determine what fractions of the total variance between MOAR 281	  
and QIAN are due to temperature/humidity and precipitation, respectively. 282	  

2.4 Correlation analyses  283	  

Temporal correlation analysis between model simulations and observations used 284	  
Pearson’s correlation coefficient r. The Pearson correlation coefficient was 285	  
calculated between simulations and observations, and between the hydrologic 286	  
variables (runoff and surface soil moisture) and atmosphere forcings 287	  
(precipitation and surface temperature). 288	  

 289	  

3. Results and discussions 290	  

3.1 Surface soil moisture 291	  

The soil volumetric water content differences between CCSM4 and the ESA 292	  
dataset indicate that soil moisture discrepancies are within 5% in the majority of 293	  
the area covered by the ESA dataset. The inclusion of wetland areas in the 294	  
surface soil moisture data in the CCSM4 CMIP5-archived outputs contributes to 295	  
the apparent, but incorrect, signal of permanently saturated soils in high latitude 296	  
areas between 50 to 70° N including the Hudson Bay in Canada and parts of 297	  
Siberia (Figure 1). For this reason, the wetland areas have been omitted from the 298	  
calculation of surface soil moisture in the remainder of our analyses. Outside of 299	  
the wetland areas, CCSM4’s soil moisture exceeded ESA’s observation by 0.05-300	  
0.20 VWC in predominantly mountainous regions covering the Rocky Mountains, 301	  
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central Europe and the Alps, central Africa, areas immediately south of 302	  
Himalayas including India, Bangladesh, Burma etc., northern and central China, 303	  
and western Australia. CCSM4 underestimated surface soil moisture by up to 304	  
0.20 in high latitude areas of North America and Eurasia, central Asia, and 305	  
southern China. 306	  

 307	  

Figure 1. Absolute surface soil moisture difference indicates CCSM4’s soil moisture 308	  
exceeds ESA’s observation by up 0.05-0.20 (vol vol-1) in the Rocky Mountains, central 309	  
Europe, central Africa, south of Himalayas, most of China, and west Australia. CCSM4 310	  
underestimated surface soil moisture by up to 0.20 in high latitude areas. Most other 311	  
CMIP5 models had positive biases in high latitude areas and United States except 312	  
FGOALS and BCC. 313	  

In contrast, with the exception of FGOALS and BCC, most other CMIP5 models 314	  
had positive biases in high latitude areas and in the United States. Both FGOALS 315	  
and BCC models suffered from the inclusion of wetland in the soil moisture 316	  
calculation and thus displayed oversaturation. This is not surprising because 317	  
FGOALS used an earlier version of the CCSM land surface model (CLM3). 318	  
FGOALS and BCC were the only models with an overall negative bias compared 319	  
to ESA dataset. An extremely dry bias followed the edge of continents and small 320	  
islands in CSIRO. 321	  

Two types of mismatch between these simulation outputs and satellite 322	  
observations cause models to overestimate soil moisture. The first possible 323	  
cause is a depth mismatch between the archived top 10 cm layer and the 2-5 cm 324	  
layer measured by the instruments in the ESA data set.  Although Wagner et al. 325	  
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[1999] has demonstrated that surface soil moisture can act as a predictor of 326	  
deeper soil profile, the surface soil is inherently drier than the underlying layers at 327	  
long time scales (e.g. monthly) because of loss by surface evaporation. The 328	  
archived outputs include more than double the depth of the satellite observation, 329	  
which potentially introduces a positive bias in water content in many areas with 330	  
respect to the ESA product. The second possible cause is a phase mismatch 331	  
between the modeled and observed VWC.  The archived surface soil water 332	  
content includes the mass of water in all phases, whereas the satellite data 333	  
includes only the liquid phase of soil water. The satellite data as a rule excludes 334	  
areas with snow cover or land surface temperature below zero, but it may not 335	  
exclude all areas with ice content below the surface that would not be detected 336	  
as water content. Therefore the satellite product is potentially ‘drier’ than the 337	  
modeled soil, especially in high latitude areas. 338	  

Therefore both thicker depth and the inclusion of ice content in the CCSM4 339	  
simulation tend to give higher water content values than the ESA observations. In 340	  
general the two types of mismatch would artificially shift the systematical bias in 341	  
modeled surface soil moisture toward small positive values.  For the purposes of 342	  
this comparison, areas with a negative difference or a positive difference greater 343	  
than 0.2 exhibit significant surface soil moisture biases. Fortunately, we were 344	  
able to remove these mismatches from our offline analyses because we ran our 345	  
own simulations and were not restricted to archived data. On the other hand, 346	  
under certain extreme circumstances, the modeled and satellite-derived 347	  
estimates of a given soil could differ by the total soil pore volume. This situation 348	  
would occur only where the surface temperature is above freezing so that the 349	  
measurement is included in the data set but the ground remains partially to 350	  
completely frozen, thereby resulting in a spurious satellite retrieval of low VWC 351	  
while the model output may contain a frozen, saturated soil column. 352	  

The evaluation of soil moisture estimation may be limited by the quality of the 353	  
observational dataset. ESA soil moisture products were found to have poor 354	  
correlations at high latitude of north hemisphere against the reanalysis of the 355	  
European Centre for Medium-Range Weather Forecasts Interim [Albergel et al., 356	  
2013], partly owing to the low average observation densities in northern latitudes 357	  
due to snow and ice [Dorigo et al., 2014]. Also, the quality of ESA soil moisture 358	  
dataset is affected by surface soil moisture simulation of GLDAS-1 Noah, a land 359	  
surface model that was used to rescale the microwave products [Liu et al., 2012]. 360	  
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361	  
Figure 2. Temporal correlation of CCSM4’s surface soil moisture in four seasons 362	  
indicates monthly soil moisture dynamics are better correlated with observations in low- 363	  
to mid-latitude areas.  364	  

The temporal dynamics of soil moisture, however, are more consistent than the 365	  
magnitudes between the models and observations (Figure 2). Monthly CCSM4 366	  
soil moisture dynamics are better correlated with observation in tropical areas, 367	  
but have decreased coefficients in high latitude areas, especially in northern 368	  
hemisphere winter (DJF) and spring (MAM). Similar to CCSM4, most CMIP5 369	  
models displayed similar annual spatial patterns with decreased correlation 370	  
coefficient in permafrost areas such as Canada and Siberia and in arid zones 371	  
such as the Sahara and central Australia (not shown). The high latitude areas 372	  
with the least correlation generally have the largest absolute biases. Overall, soil 373	  
moisture is better correlated in northern hemisphere summer and fall, but has 374	  
more negative coefficients in spring (MAM), implying model deficiency in 375	  
snowmelt simulation.  376	  

3.2 Runoff 377	  

Canada and Siberia and the major mountain ranges, including the Rocky 378	  
Mountains, Andes, and Himalayas are the areas where most models 379	  
overestimate runoff by more than the magnitude of the Global Precipitation 380	  
Climatology Centre (GPCC) precipitation reanalysis (Figure 3). FGOALS and 381	  
BCC both produce unrealistically high amounts of runoff in the Saharan region. 382	  
GISS is the exception in that it generally underestimates runoff. The Amazon is 383	  
the only region where all models underestimate runoff, and these results are 384	  
consistent with a negative precipitation bias reported for CMIP5 models [Mehran 385	  
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et al., 2014]. Similar to soil moisture, the runoff comparison has a mismatch 386	  
between the simulation and observations: the CMIP5 models define runoff as the 387	  
total liquid water leaving the grid cell, which accounts for both surface and 388	  
subsurface terms, while the GRDC runoff product assumes all water leaving a 389	  
grid cell emerges as river discharge at a given stream gauge. Thus, the GRDC 390	  
product may underestimate total runoff in headwater and upstream basins if 391	  
subsurface water does not discharge within a grid cell and/or discharges to a 392	  
stream outside a measurement basin.  393	  

 394	  

Figure 3. Precipitation normalized runoff difference between CMIP5 models and GRDC 395	  
dataset. Most CMIP5 models, except GISS, produced higher runoff than GRDC in 396	  
mountain ranges. All models underestimated runoff in the Amazon. 397	  

Our evaluations of both surface soil moisture and runoff indicated that the largest 398	  
discrepancies between model outputs and observations occur in mountainous 399	  
and high latitude areas. Mehran et al. [2014] found that CMIP5 models generally 400	  
overestimate precipitation in steep terrain. Their bias map for CESM1_BGC_es, 401	  
a version close to CCSM4, shows a very similar pattern to the runoff bias in this 402	  
study except in Canada and Siberia. We speculate that that the runoff biases in 403	  
mountainous regions are caused by precipitation biases in the atmosphere model, 404	  
while biases in high latitude areas may be caused by other atmosphere forcings 405	  
or by the land surface model algorithms. 406	  

Another potential reason for most CMIP5 models having large biases in 407	  
mountainous areas may be tracked to deficiencies in the GRDC dataset. The 408	  
gridded GRDC runoff was generated by linking discharge gauging station data 409	  
with a digital river network and distributing runoff across interstation regions 410	  
using a water balance model. The WBM itself could be biased due to 411	  
meteorological forcings (e.g. precipitation) and physical (e.g. soil properties) or 412	  
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biophysical attributes (e.g. land cover). Inconsistencies also exist between the 413	  
GRDC station data and the river network due to resolution discrepancies and 414	  
data quality [Fekete and Vorosmarty, 2002], but the GRDC dataset is still the 415	  
only gridded runoff field available for global scale evaluation. The GRDC 416	  
composite runoff dataset provides only a monthly mean runoff field, which limits 417	  
our analysis to bias evaluation.  418	  

3.3 Atmosphere-land hydrology correlations in the coupled CCSM4 419	  

Four potential sources of bias are 1) the error from observational data, 2) 420	  
structural deficiencies of CLM4, 3) forcing errors from the atmosphere, and 4) 421	  
model parameterization. Many researchers are currently working to improve CLM 422	  
and its parameters, and here we attempt to identify the effects of atmospheric 423	  
forcing on land hydrology to better understand CLM deficiencies. 424	  

 425	  

Figure 4. Correlation between runoff and precipitation, and runoff and surface 426	  
temperature in winter and summer, respectively. Precipitation is positively correlated to 427	  
runoff in northern hemisphere summer (JJA) except for the areas above Arctic Circle. In 428	  
northern hemisphere winter (DJF), the correlation is weakened in the high elevation 429	  
areas where freeze and thaw dominate the hydrology. Surface temperature is negatively 430	  
correlated to runoff in JJA but more positively correlated in DJF. Correlations with soil 431	  
moisture follow similar patterns. 432	  



	   15	  

Atmospheric forcings are expected to be one of the major sources of bias in land 433	  
surface hydrology when hydrologic cycles are driven by climate model outputs. 434	  
Precipitation has been found to largely affect runoff trends while temperature has 435	  
relatively weaker influences [Gerten et al., 2008; McCabe and Wolock, 2011]. 436	  
CLM4 imports six atmospheric variables from the Community Atmosphere Model 437	  
4.0 (CAM4) including solar radiation, precipitation, surface temperature, pressure, 438	  
wind, and specific humidity. Monthly correlation analysis reveals that precipitation 439	  
and surface temperature are the major predictors for soil moisture and runoff. 440	  
The correlations for each hydrologic variable exhibit similar geographic and 441	  
temporal patterns. In northern hemisphere summer (JJA), precipitation is 442	  
positively correlated to both runoff (Figure 4) and soil moisture (not shown), 443	  
except for areas above Arctic Circle. In northern hemisphere winter (DJF), 444	  
precipitation is not as strongly correlated to runoff and soil moisture, especially in 445	  
the northern hemisphere and in high elevation areas when freeze and thaw are 446	  
the main drivers for hydrology. Surface temperature, on the other hand, is 447	  
negatively correlated to soil moisture and runoff in JJA as high temperature dries 448	  
up soil via evaporation and transpiration. Areas where temperature correlation 449	  
coefficients are positive are either within the Arctic Circle or affected by summer 450	  
monsoon. In DJF high temperatures induce snow thaws that consequently 451	  
moisten the soil, therefore surface temperature is more positively correlated to 452	  
the two hydrologic components. The rest of the atmospheric forcings indicate 453	  
much weaker correlations with the two hydrologic variables. 454	  

As the precipitation shows strong correlation to the runoff and surface soil 455	  
moisture in mid- to low-latitude areas and temperature shows stronger (positive 456	  
and negative) correlation in high latitude zones, understanding the geographic 457	  
differences in atmosphere-driven biases can help evaluation of hydrological 458	  
processes in the land surface model. For example, the CMIP5 archived models 459	  
often have larger biases in high latitude areas where snow and permafrost 460	  
freeze-and-thaw mechanism may be underrepresented due to deficiency from 461	  
temperature or land model. Similarly, runoff simulation of CMIP5 models in high 462	  
latitude areas may be more biased by temperature forcing, but more affected by 463	  
precipitation in mountainous areas. The correlations between climate forcings 464	  
and hydrologic variables open the possibility of isolating the biases from 465	  
atmospheric forcings therefore revealing respective sources of uncertainty from 466	  
the atmosphere and land models.  467	  

3.4 Atmospheric drivers of soil moisture and runoff errors in CLM4 468	  

The offline MOAR simulation demonstrates that our offline runs can be used to 469	  
diagnose the coupled model simulations (i.e. CMIP5). The offline MOAR 470	  
simulation generates almost identical 10-cm soil moisture (comparisons not 471	  
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shown here) and surface runoff as the coupled simulation, except where the 472	  
wetland area has been removed from the soil moisture calculations in the offline 473	  
outputs. See section 3.1 for discussion of improperly inclusion of wetland in soil 474	  
moisture outputs in CMIP5 simulations. This confirms that offline runs can be 475	  
used to determine the error sources of the land model hydrology in the coupled 476	  
model. 477	  

To better evaluate the contributions of atmospheric forcing error to hydrologic 478	  
uncertainty, the following analyses reduce the effects of soil depth and ice 479	  
content mismatch present in the CMIP5 analysis of soil moisture. For the offline 480	  
analyses, we used the modeled soil moisture in the top 4.5 cm layers, which 481	  
matches closely with the satellite detecting depth, and included only liquid water 482	  
in the modeled water content. These procedures were not possible for the CMIP5 483	  
evaluations as the CMIP5 repository provides limited output variables. The 484	  
difference between the two outputs is mostly within 0.04 except the CMIP5 soil 485	  
(10 cm with ice content) contains 0.1-0.2 more water content in high latitude areas. 486	  
This explains the discrepancies in high latitude areas between two comparisons 487	  
of coupled and offline runs (Figure 1, CCSM-ESA vs Figure 5, MOAR-ESA).  488	  

 489	  

Figure 5. Absolute biases between offline runs and ESA surface soil moisture 490	  
observations. a). the offline MOAR run resembled the CCSM4 coupled run. b). Qian’s 491	  
reanalysis forced run served as the reference that alleviated the underestimation of soil 492	  
moisture in high latitude areas and Central America. c). offline run forced by reanalysis 493	  
and modeled precipitation increased soil moisture compared to MOAR and QIAN runs, 494	  
especially in the band of north 40 to 70. d) offline run forced by modeled temperature 495	  
and relatively humidity reduce surface soil moisture compared to other offline runs. 496	  
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Qian’s reanalysis dataset is the closest atmosphere forcings to the observations 497	  
and was therefore intended to isolate the biases to the land surface model only. 498	  
Using reanalysis forcings improved soil moisture and runoff outputs with respect 499	  
to the offline MOAR simulation. Underestimation of soil moisture in the MOAR 500	  
simulation was alleviated in the QIAN simulation in high latitude areas and 501	  
Central America (Figure 5). Additionally, positive differences from ESA data in 502	  
Europe and Africa were reduced in the QIAN simulation. Runoff output was even 503	  
more drastically improved in the QIAN simulation. The overestimation of runoff in 504	  
mountains was mostly alleviated (Figure 6a and b), including the Rocky 505	  
Mountains, Andes, Himalayas, and Northern Oceania. The QIAN simulation also 506	  
improved runoff in the eastern Amazon, central Africa, and high latitude areas, 507	  
although it increased overestimation in Eastern Europe. East of the Amazon and 508	  
Central Africa changed from positive biases to neutral or negative. Overall, the 509	  
biases in mountainous and tropical areas have been improved by using 510	  
reanalysis data in place of the MOAR atmosphere model outputs. 511	  

 512	  

Figure 6. Absolute biases between offline runs and GRDC runoff dataset. Similar as 513	  
surface soil moisture, a) offline run driven by modeled forcings; b) offline run driven by 514	  
reanalysis eliminated most of positive biased in mountainous areas; c) offline run driven 515	  
by MOAR precipitation produced more positive biases than the reference; d) offline run 516	  
driven by modeled temperature and relative humidity changed the overall positive biases 517	  
into negative. 518	  

Independent use of modeled precipitation and temperature forcings for offline 519	  
simulations indicates that these atmospheric inputs have opposing effects on 520	  
land surface hydrology with respect to their respective reanalysis forcings. The 521	  
MOAR_PRECIP simulation increases soil moisture compared to the QIAN 522	  
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simulation, especially within the latitude band of north 40° to 70°, but otherwise 523	  
has limited effects across the rest of the land surface (Figure 5b and c). The 524	  
MOAR_PRECIP simulation has a greater impact on runoff through increases in 525	  
area and magnitude of positive biases (Figure 6b and c). Furthermore, the soil 526	  
moisture and runoff in the MOAR_PRECIP simulation are greater than in the 527	  
MOAR simulation (Figures 5a and c, and 6a and c). The MOAR_TEMP 528	  
simulation shows that modeled temperature and humidity reduced the surface 529	  
moisture and runoff with respect to the QIAN simulation (Figures 5b and d, and 530	  
6b and d). The runoff bias maps in particular show the distinct contrast between 531	  
runs driven by modeled precipitation and temperature (Figure 6c and d). In the 532	  
original coupled CCSM4 and offline MOAR simulations the positive bias 533	  
introduced by precipitation input is canceled out to varying degrees around the 534	  
globe by the negative bias from temperature input. 535	  

Monthly global 10-year mean runoff (1971-1980) shows a similar pattern of 536	  
opposing hydrological effects of modeled precipitation and temperature inputs. 537	  
The CMIP5 fully coupled CCSM4 simulation matches observations well in April to 538	  
September when hydrologic cycles are active (Figure 7). The QIAN simulation 539	  
matches observations even better at low flow months, but underestimates runoff 540	  
in June and July. This indicates that either the Qian dataset has low precipitation 541	  
or high temperature bias in these two months, or the CLM has deficiency in 542	  
simulating the drying limb of the spring peakflow. The offline MOAR simulation 543	  
follows the coupled run well with subtle discrepancies in spring and summer. 544	  
These discrepancies are likely induced by lack of land-atmosphere feedbacks 545	  
(e.g. evapotranspiration effects on temperature and humidity). The 546	  
MOAR_PRECIP simulation has high positive bias in spring and early summer 547	  
(February to June in northern hemisphere, September to December in the 548	  
southern hemisphere) when snow melts and high flows occur. These are the 549	  
months when MOAR precipitation is more positively biased than QIAN, implying 550	  
precipitation is the main driver of runoff bias. In contrast, the MOAR_TEMP 551	  
simulation has the greatest negative bias compared to the other three 552	  
simulations throughout the year. Peakflow timings were advanced from June to 553	  
May in the QIAN and MOAR_PRECIP simulations. These monthly global results 554	  
are consistent with the spatial results in that opposite hydrological effects of 555	  
modeled precipitation and temperature inputs cancel each other out. 556	  
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 557	  

Figure 7. Global mean monthly runoff (10-year average) of model simulations and 558	  
GRDC data indicates that CCSM simulation matched GRDC well April to September. 559	  
QIAN simulation matched GRDC in all months but June and July. MOAR_PRECIP run 560	  
has high positive biases in the months when MOAR precipitation is more positively 561	  
biased than the Qian’s reanalysis. MOAR_TEMP run simulation has greater negative 562	  
biases throughout the year. 563	  

The annual cycle of global mean surface soil moisture also demonstrates 564	  
hydrological compensation in simulations due to opposing effects of modeled 565	  
precipitation and temperature inputs (Figure 8). The 1991 trough is related to a 566	  
global precipitation deficiency associated with a warm El Niño Southern 567	  
Oscillation (http://www.isse.ucar.edu/sadc/chptr5.html). The trough starting in 568	  
2001 are the results of the millennium drought in many areas (e.g., [van Dijk et 569	  
al., 2013; Wandel et al., 2009]). The ESA data generally have troughs in January 570	  
and peaks in the middle of the year (i.e. June and July). The MOAR simulation 571	  
tends to have two peaks in the first and second half of a year (e.g., year 1995) 572	  
and has more intra-annual variability than the observations. The QIAN simulation 573	  
follows the observations more closely in both phase and magnitude, except for 574	  
the years after 2002, indicating that sources of uncertainty are more likely from 575	  
the atmospheric forcings. Similar as surface runoff, the surface soil moisture 576	  
simulations were shifted upwards by MOAR_PRECIP and downwards by 577	  
MOAR_TEMP relative to the MOAR run. 578	  

 579	  
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580	  
Figure 8. Global mean monthly soil moisture (1985-2004) of model simulations and 581	  
observations shows that seasonal moisture dynamics are out of phase in some years 582	  
(i.e. opposite wet and dry extremes). Basically all runs except MOAR_TEMP 583	  
overestimated runoff globally, implying the deficiency is more likely from land surface 584	  
model rather than forcing data. 585	  

3.5 Potential sources of bias from CLM4 586	  

If we assume the CLM4 offline run driven by Qian’s reanalysis data eliminates 587	  
most of the uncertainty generated by atmospheric forcing, the rest of the QIAN 588	  
simulation bias is most likely induced by CLM4 itself. The QIAN simulation has 589	  
negative runoff bias in the Amazon, central Africa, southwest China, and south 590	  
Asia. Comparing with soil texture maps generated by National Aeronautics and 591	  
Space Administration Land Data Assimilation Systems 592	  
(http://ldas.gsfc.nasa.gov/gldas/GLDASsoils.php) and by Global Soil Wetness 593	  
Project-Phase 3 (http://hydro.iis.u-tokyo.ac.jp/~sujan/research/gswp3/soil-texture-594	  
map.html), the areas with runoff underestimation are mostly associated with high 595	  
clay content soils including sandy clay loam, clay loam,  and clay. The bias may 596	  
be propagated from the mischaracterization of clayey soils though pedo-transfer 597	  
functions or parameterizations. For example, clayey soils tend to exhibit 598	  
aggregation structure, which is one of most important characteristics of 599	  
macropore formation. Macropores enable water to flow through unsaturated soil 600	  
more rapidly than it would in a soil matrix defined by Darcy’s law [Beven and 601	  
Germann, 1982]. The existence of macropores increases effective hydraulic 602	  
conductivity, thus decreases water content in surface soils. Without this 603	  
mechanism, CLM4 may overestimate evapotranspiration and in turn 604	  
underestimate runoff by retaining too much plant available water. Comparing to 605	  
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FLUXNET-MTE global land estimates, Tang and Riley [In review] found that 606	  
CLM4.5 overestimated evapotranspiration in the same areas where runoff was 607	  
underestimated in this study. We propose that macropore flow is an essential 608	  
mechanism that is lacking in the CLM and may be responsible for the mis-609	  
partitioning of water among evapotranspiration, groundwater, and runoff in 610	  
tropical and other high clay content areas. 611	  

Another important process often associated with clayey soils is the shallow 612	  
subsurface lateral drainage (i.e. interflow) [McDaniel et al., 2008]. The restricting 613	  
layers formed by argillic and fragipan horizons intercept percolating water and 614	  
contribute to river discharge directly thus contribute much more rapidly than 615	  
groundwater [Jackson et al., 2014]. Hillslope with restricting layers may therefore 616	  
produce considerably more runoff than those without argillic/fragipan layers 617	  
[Needelman et al., 2004]. The CLM hydrology contains no lateral drainage except 618	  
in frozen soils. We therefore argue that adding lateral drainage in the high clay 619	  
content soils with high contrast hydraulic conductivity may potentially change the 620	  
water balance in the areas currently with large runoff biases. The lateral drainage 621	  
from restricting layer may be directly added to the surface runoff depending on 622	  
the topography and river channel network. 623	  

The areas where runoff simulation is overestimated overlap with the global 624	  
distribution of Andisols [Takahashi and Shoji, 2002]. Defined by United States 625	  
Department of Agriculture soil taxonomy 626	  
(http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051232.pdf), 627	  
Andisols are soils formed in volcanic ash with very high porosity (often >0. 60 628	  
cm3 cm-3) and therefore high water holding capacity. The mineral soil porosity θ 629	  
is defined by sand content in CLM as 𝜃 = 0.489− 0.00126(%𝑠𝑎𝑛𝑑). Increasing 630	  
porosity has been shown to be among the most sensitive parameters for 631	  
decreasing runoff yield in a physically-based hydrologic model [Du et al., 2013]. 632	  
With low porosity, CLM4 may retain insufficient plant available water and 633	  
underestimate evapotranspiration, therefore partitioning too much to runoff. 634	  
Sensitivity of surface hydrology to saturated hydraulic conductivity and porosity 635	  
needs to be evaluated before future modifications are taken, as the two 636	  
parameters were identified as secondarily significant to runoff and sensible/latent 637	  
heat flux after subsurface runoff parameters [Hou et al., 2012; Huang et al., 638	  
2013]. The proposed modifications are speculated by overlapping the biases with 639	  
the CLM soil texture map and need further test and proof. 640	  

 641	  

4. Summary 642	  
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Comparisons of surface soil moisture between fully coupled model simulations 643	  
and observations reveal large positive biases, mostly in mid- to high-latitude 644	  
areas, except for CCSM4, FGOALS, and BCC. Runoff is overestimated in 645	  
mountain ranges and in most of the arctic by all CMIP5 models except GISS. All 646	  
models underestimated runoff in Amazon areas. Terrestrial water storage and 647	  
dynamics at high northern latitudes are critical to the global water balance. 648	  
Hydrological fluxes have been poorly monitored in these areas [Kane, 2005], and 649	  
hydrologic models have difficulties obtaining high quality data for calibration and 650	  
validation. Current model deficiencies, like those presented above, urge the land 651	  
modeling community to better understand hydrologic cycles in high latitudes and 652	  
to help improve overall performance of the models.  653	  

When assessing runoff and soil moisture, one should not seek an exact match 654	  
between model simulations and observations due to the mismatch and 655	  
uncertainty derived from both ends. The validation of soil moisture from land 656	  
surface modeling should focus mainly on relative changes and dynamics, but we 657	  
do need to pay attention to the areas consistently having large biases. For 658	  
example, the CIMP5 archived CLM simulated 10-cm soil moisture was up to 10% 659	  
different from the observed moisture in 2-5 cm in many areas such as southern 660	  
China and central/ southern Africa over the long term. The discrepancies were 661	  
expectedly reduced in the offline tests with 4.5-cm soil moisture and ice content 662	  
excluded, however the overall spatial pattern was retained. The simulated runoff 663	  
had the same sign of bias in the same area and implied precipitation might be 664	  
responsible for the dry or wet in both variables. There were also areas where the 665	  
biases are opposite sign from soil moisture and runoff such as east half of the 666	  
United States. It indicates that the land model may not correctly partition the 667	  
water into surface runoff and infiltration. 668	  

CCSM4 produces reasonable soil moisture estimates (except where wetlands 669	  
are included) and positive runoff bias in mountain ranges and central Africa. 670	  
Negative runoff biases are found mainly in the Amazon, Southeast Asia, and the 671	  
Middle East. Positive bias of global mean runoff occurred mainly in February-672	  
April and October-December. CCSM4 globally averaged surface soil moisture 673	  
follows observed seasonal cycles but is out of phase compared to ESA data in 674	  
some years. Overall, CCSM4 produces less bias in surface soil moisture 675	  
prediction compared to eight other CMIP5 models, but has similar runoff over-676	  
predictions in high altitude and high latitude areas as most of the other models. 677	  

Modeled precipitation and temperature errors generate compensating biases in 678	  
CCSM4 soil moisture and runoff. Offline CLM4 runs driven by simulated and 679	  
reanalysis atmospheric inputs reveal that simulated precipitation causes 680	  
overestimation of runoff in the mountainous areas, east Amazon, and central 681	  
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Africa, and a general increase in overestimation of soil moisture. CLM4 tends to 682	  
compensate for these overestimations when provided with simulated temperature 683	  
and humidity, but at the cost of exacerbating surface soil moisture 684	  
underestimates in high latitudes. 685	  

Bias from atmosphere forcings is not sufficient to explain all the deviation of 686	  
simulated runoff and soil moisture from observation. Driven by Qian’s reanalysis 687	  
data, the CLM4 underestimates runoff in Amazon, central Africa, and other areas 688	  
with high soil clay content. We hypothesize that the lack of fast path water 689	  
infiltration is partially responsible for erroneous partitioning between 690	  
evapotranspiration and runoff. CLM does not include preferential fast flow 691	  
through macropore structure, and implementing this structure into global scale 692	  
climate model is a challenging task involving extra parameterization and 693	  
computational demand. Adding lateral drainage within the shallow soil layers is 694	  
however relatively straightforward, but the model sensitivity needs to be tested 695	  
first. We also hypothesize that low soil porosity causes overestimation of runoff in 696	  
mountainous areas with volcanic soils. Improving these processes and data in 697	  
CLM might help correct the compensating sensitivities of soil moisture and runoff 698	  
to errors in precipitation and temperature inputs.  699	  
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