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Abstract 17	
  

Runoff and soil moisture are two key components of the global hydrologic cycle 18	
  
that should be validated at local to global scales in Earth System Models (ESMs) 19	
  
used for climate projection. We have evaluated the runoff and surface soil 20	
  
moisture output by the Community Climate System Model (CCSM) along with 8 21	
  
other models from the Coupled Model Intercomparison Project (CMIP5) 22	
  
repository using satellite soil moisture observations and stream gauge corrected 23	
  
runoff products. A series of Community Land Model (CLM) runs forced by 24	
  
reanalysis and coupled model outputs was also performed to identify 25	
  
atmospheric drivers of biases and uncertainties in the CCSM. Results indicate 26	
  
that surface soil moisture simulations tend to be positively biased in high latitude 27	
  
areas by most selected CMIP5 models except CCSM, FGOALS, and BCC, which 28	
  
share similar land surface model code. With the exception of GISS, runoff 29	
  
simulations by all selected CMIP5 models were overestimated in mountain 30	
  
ranges and in most of the Arctic region. In general, positive biases in CCSM soil 31	
  
moisture and runoff due to precipitation input error were offset by negative biases 32	
  
induced by temperature input error. Excluding the impact from atmosphere 33	
  
modeling, the global mean of seasonal surface moisture oscillation was out of 34	
  
phase compared to observations in many years during 1985-2004. The CLM also 35	
  
underestimated runoff in the Amazon, central Africa, and south Asia, where soils 36	
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all have high clay content. We hypothesize that lack of a macropore flow 37	
  
mechanism is partially responsible for this underestimation. However, runoff was 38	
  
overestimated in the areas covered by volcanic ash soils (i.e. Andisols), which 39	
  
might be associated with poor soil porosity representation in CLM. Our results 40	
  
indicate that CCSM predictability of hydrology could be improved by addressing 41	
  
the compensating errors associated with precipitation and temperature and 42	
  
updating the CLM soil representation. 43	
  

Highlights 44	
  

• We evaluated gridded soil moisture and runoff of nine CMIP5 models 45	
  
• We isolated biases from the atmosphere model 46	
  
• We identified areas with anomalies generated by CLM4 47	
  
• We proposed modifications to improve hydrologic simulations in CLM 48	
  

 49	
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1. Introduction 52	
  

The Community Land Model (CLM) serves as the land model for the Community 53	
  
Climate System Model (CCSM) [Collins et al., 2006] and includes land 54	
  
biogeophysics, hydrology, and biogeochemistry. Hydrology comprises key 55	
  
processes that link and integrate atmosphere, ocean, vegetation, and human 56	
  
systems. Increasing greenhouse gas concentrations and potential global 57	
  
warming may affect water cycle dynamics, which in turn provide feedbacks to the 58	
  
atmosphere and land surface. As a tool for predicting future states of ecosystems 59	
  
and climate, land surface model development requires rigorous calibration and 60	
  
validation against observations. 61	
  

The growing demand for assessing the potential impacts of projected climate 62	
  
change on human systems [Field et al., 2014] highlights the importance of 63	
  
understanding surface hydrological responses within fully coupled Earth System 64	
  
Models (ESMs), in addition to evaluating the accuracy of standalone land surface 65	
  
models. While the IPCC AR5 has implemented a new framework for assessing 66	
  
these impacts [Field et al., 2014] a recent study with the newly developed 67	
  
integrated Earth System Model (iESM), which directly couples the Global Change 68	
  
Assessment Model (GCAM) with the Community Earth System Model (CESM) 69	
  
[Collins et al., 2014], has quantified the unintended consequences of not 70	
  
implementing complete consistency among land use and land cover components 71	
  
of the economic Integrated Assessment Models (IAMs) and the biophysical 72	
  
ESMs [Di Vittorio et al., 2014]. The next steps for assessing climate impacts 73	
  
include implementing and examining feedbacks between ESM water supply and 74	
  
IAM water demand and management. In the context of the iESM, closer 75	
  
examination of the surface hydrology of the fully coupled CCSM/CESM will 76	
  
enable development of a more consistent framework for incorporating human-77	
  
earth water cycle feedbacks into projections of water availability and use. 78	
  

Runoff is an important component of the hydrological cycle, but runoff trend 79	
  
detection at the global scale is a difficult task. Even the sign of the trends are 80	
  
uncertain, as recent estimates of global runoff trends in the twentieth century 81	
  
from various modeling studies are both positive [Gedney et al., 2006; Labat et al., 82	
  
2004; Piao et al., 2007] and negative [Dai et al., 2009; Shi et al., 2011].  Positive 83	
  
trends may be a result of increased continental precipitation, stomatal closure 84	
  
due to rising CO2 concentration, land use changes, or decline of land ice content 85	
  
[Alkama et al., 2013]. Decreasing trends in global runoff could be a consequence 86	
  
of climate forcing changes with minor effects from nitrogen deposition and land 87	
  
use change [Shi et al., 2011]. These uncertainties in runoff simulations are 88	
  
largely due to different model implementations of atmosphere-plant-soil system 89	
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interactions and the range in responses from these parameterizations to model-90	
  
specific climate forcings.  91	
  

Soil moisture has been demonstrated to affect regional climate via evaporation 92	
  
and evaporative cooling [Seneviratne et al., 2013]. For example, atmospheric 93	
  
circulation over the land surface is largely affected by soil moisture during 94	
  
summer [Owe et al., 2008]. In particular, surface soil moisture controls 95	
  
partitioning between sensible and latent heat, and affects partitioning between 96	
  
overland flow and infiltration [Hou et al., 2012]. However, surface soil moisture is 97	
  
among the most complex hydrologic variables to simulate as it interacts with the 98	
  
atmosphere, plant canopy and roots, and vadose zone. This complexity is likely 99	
  
evidenced by studies showing that peak variability in soil moisture occurs at the 100	
  
surface [Decker and Zeng, 2009]. 101	
  

Our evaluation procedures comply with the benchmarking framework proposed 102	
  
by Luo et al. [2012]. We focus on runoff and soil moisture because observation-103	
  
based, gridded, global datasets have recently become available for these two 104	
  
key hydrologic variables[Fekete and Vorosmarty, 2002; Liu et al., 2012]. Other 105	
  
variables such as river discharge and soil water storage of CLM4 [Lawrence et 106	
  
al., 2011] and earlier versions (3-3.5) were reported to match observations of 107	
  
major basins globally, although the accuracy of timing for simulated hydrologic 108	
  
quantities varied among rivers and areas [Lawrence et al., 2011; Oleson et al., 109	
  
2008; Qian et al., 2006]. However, CLM4 hydrologic simulations have not been 110	
  
fully assessed at the level of a global grid. Thus, we define a set of metrics 111	
  
including absolute and normalized biases, temporal correlation, and seasonal 112	
  
dynamics to identify model strengths and deficiencies at the grid level. Using 113	
  
these metrics, we identify the contributions of uncertainty from both the 114	
  
atmosphere and the land components of the earth system model to soil moisture 115	
  
and runoff. Based on our evaluation, we propose improvements to the land 116	
  
model hydrology. Our results not only meet evaluation objectives that are 117	
  
coincident with CMIP5 goals [Taylor et al., 2012], they also provide insights 118	
  
toward coupling ESM and IAM water cycles to examine human-earth feedbacks 119	
  
affecting water supply, demand, and management. 120	
  

 121	
  

2. Datasets and methods 122	
  

The study was designed as two parts to answer following questions: 123	
  

1. How well do the fully coupled models, particularly CCSM/CLM, represent 124	
  
the surface soil moisture and runoff? What atmospheric forcings have the 125	
  
greatest influence on these two variables? 126	
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The hydrologic simulations of the CMIP5 models are largely dependent on the 127	
  
forcings of various atmosphere models, but the ensemble comparison may 128	
  
still help to reveal areas where hydrology is frequently underrepresented by 129	
  
the earth system models and areas where observations/satellite products 130	
  
have biases. 131	
  

2. What are the contributions of these dominant forcings to hydrologic biases? 132	
  
How do these biases relate to biases generated by land component? 133	
  
What are the potential modifications for addressing land component – 134	
  
driven biases? 135	
  

By applying alternate atmospheric forcings, offline CLM simulations help to 136	
  
determine contributions of biases in the coupled model from those driven by 137	
  
the land model component. 138	
  

2.1 Fully coupled global model outputs 139	
  

The CCSM version 4.0 (CCSM4) is a coupled climate model for simulating the 140	
  
earth system. The historical model outputs are available from the Climate Model 141	
  
Intercomparison Project Phase 5 (CMIP5) repository. We use outputs from the 142	
  
CCSM4 MOther of All Runs (MOAR) for several reasons. First, MOAR is the 143	
  
historical control run with fixed satellite phenology and hence more realistic 144	
  
interactions between vegetation and hydrological processes than the 145	
  
unconstrained model.  This constraint helps us focus on the physical rather than 146	
  
vegetative hydrologic components of version 4 of the land model (CLM4) in 147	
  
CCSM4. The MOAR run is the only century-long ensemble member with sub-148	
  
daily atmosphere variables, making it possible to perform subsequent offline runs 149	
  
driven by the same set of forcing. Also, the MOAR outputs cover the time period 150	
  
of 1850-2005 that is overlapped with observations. 151	
  

In CLM4, soil moisture dynamics is controlled by infiltration, runoff (surface and 152	
  
subsurface), gradient diffusion, gravity, and root extraction in a ten-layer model 153	
  
(3.8 m) plus an underlying five-layer aquifer (5 m). The runoff is parameterized as 154	
  
exponential functions of groundwater level [Oleson et al., 2010]. The model has 155	
  
been calibrated and validated against major river discharge and terrestrial water 156	
  
storage observations [Oleson et al., 2008]. Using uncertainty quantification 157	
  
framework, Huang et al. [2013] found that subsurface runoff generation and soil 158	
  
texture-related parameters are the most significant to runoff simulations. Details 159	
  
of hydrologic parameterizations in CLM4 can be found in [Huang et al., 2013; Niu 160	
  
et al., 2005; Niu et al., 2007; Oleson et al., 2008]. The choice of CLM4 hydrologic 161	
  
parameters may have considerable impact on the results of runoff and soil 162	
  
moisture, but is not the scope of the study. 163	
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We included eight other models from the CMIP5 repository in our comparison 164	
  
with observations: HadCM3, MIROC5, GFDL-CM3, CSIRO-Mk3, BCC-csm1, 165	
  
MRI-ESM1, FGOALS-g2, and GISS-E2-R. The models were selected to meet 166	
  
two criteria: they must have both runoff and surface soil moisture monthly outputs 167	
  
and they must have historical runs. Brief descriptions of each model and 168	
  
institution can be found in CMIP5 website (http://cmip-169	
  
pcmdi.llnl.gov/cmip5/availability.html). Outputs were extracted from a single 170	
  
historical run (1850-2005) by each model. 171	
  

Two types of coupled model output were involved in this evaluation: the 172	
  
hydrologic outputs (i.e. runoff and surface soil moisture) for comparison against 173	
  
observations, and the atmosphere outputs from CCSM4 MOAR simulations for 174	
  
driving the CLM4 offline runs. We extracted monthly surface soil moisture in the 175	
  
top 10 cm and runoff from the CMIP5 archive via the Earth System Grid 176	
  
(http://pcmdi9.llnl.gov) for the CCSM4 and the eight other models. Coupled 177	
  
model monthly land outputs were extracted from ensemble member r6i1p1 for 178	
  
CCSM4 and from r1i1p1 for the eight other models. Atmosphere outputs from the 179	
  
coupled CCSM MOAR run were acquired from the National Center for 180	
  
Atmosphere Research (NCAR) via the Earth System Grid 181	
  
(https://www.earthsystemgrid.org) and used to force the offline CLM4 runs.  The 182	
  
forcing data include 3-hourly solar radiation, specific humidity, temperature, 183	
  
surface pressure, and wind together with 6-hourly fields of precipitation. 184	
  

2.2 Observational data 185	
  

2.2.1 Surface soil moisture 186	
  

Soil moisture products have been estimated from an individual remote sensing 187	
  
satellite in various studies (e.g., Al-Yaari et al. [2014] and Loew et al. [2013]), but 188	
  
a multi-sensor approach has improved global soil moisture estimates. Liu et al. 189	
  
[2012] have merged four passive microwave soil moisture retrievals from the 190	
  
Scanning Multichannel Microwave Radiometer, the Special Sensor Microwave 191	
  
Imager, the Tropical Rainfall Measuring Mission microwave imager, and the 192	
  
Advanced Microwave Scanning Radiometer – Earth Observing System with two 193	
  
active microwave soil moisture estimates from the European Remote Sensing 194	
  
satellite and the Advanced Scatterometer into the new European Space Agency 195	
  
(ESA) global soil moisture product. The product’s temporal domain ranges from 196	
  
1978 to 2010 with daily values at 0.25° spatial resolution. The detection depth of 197	
  
the microwave signal ranges from 2 to 5 cm depending on the type of sensor and 198	
  
soil condition [Liu et al., 2012]. We use Volumetric Water Content (VWC, vol vol-1) 199	
  
as the basis for our comparisons. 200	
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The ESA data product has no coverage in densely vegetated regions such as the 201	
  
Amazon and central Africa where dense canopy masks out both passive and 202	
  
active microwave signals. The soil moisture retrievals are also absent under 203	
  
frozen or snow conditions. Whenever data are available, the areas are included 204	
  
in the calculation as well as the model simulations. Intercomparison and 205	
  
validation of the microwave satellite data have been conducted at regional and 206	
  
continental scales against in-situ observations [Albergel et al., 2012; Brocca et al., 207	
  
2011; Gruhier et al., 2010; Loew et al., 2013]. In general the satellite product 208	
  
accurately reproduces the seasonal cycle as well as short-term variability. 209	
  

2.2.2 Monthly runoff 210	
  

The University of New Hampshire (UNH) Global Runoff Data Center (GRDC 211	
  
hereafter) composite runoff field V10 is a gridded runoff dataset at 0.5 degree 212	
  
[Fekete and Vorosmarty, 2002]. The dataset was constructed by first calculating 213	
  
basin-scale runoff based on a water balance model developed by UNH. The 214	
  
water balance model (WBM) simulation at each cell was corrected by runoff 215	
  
estimates for the corresponding interstation area. The interstation areas were 216	
  
defined by a river routing model, the Global Simulated Topological model, to 217	
  
which the GRDC stations were geo-registered. A total of 663 GRDC stations 218	
  
were included and represented 72% of actively discharging areas. The majority 219	
  
of discharge records were from the 1970s and the final product is a composite 220	
  
annual runoff. The WBM-modeled runoff from 1971 to 1980 was averaged to 221	
  
approximate the time period. 222	
  

The runoff dataset has more complete global coverage than the soil moisture 223	
  
dataset, enabling evaluation of densely forested areas such as the Amazon and 224	
  
central Africa and permafrost areas such the Himalayas and Arctic Circle. We 225	
  
compared the runoff differences divided by Global Precipitation Climatology 226	
  
Centre (GPCC) precipitation reanalysis, which gives the normalized runoff 227	
  
difference (NRD):  228	
  

𝑁𝑅𝐷 =
𝑄!"#$% − 𝑄!"#

𝑃  

where Qmodel and Qobs denote the modeled and observed runoff and P the GPCC 229	
  
precipitation. NRD was used instead of percent change because the long-term 230	
  
runoff is zero or close to zero in arid areas, making any percent difference either 231	
  
very large or infinite. We applied GPCC precipitation instead of precipitation from 232	
  
each corresponding model because our aim was to reduce the range of runoff 233	
  
difference induced by variations in modeled precipitation. Dividing runoff by 234	
  
precipitation within each model generates a runoff ratio that describes the portion 235	
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of runoff relative to precipitation, which is not the intention of this comparison. 236	
  
Furthermore, applying precipitation from each individual model also introduces 237	
  
uncertainties from atmospheric simulation that we wanted to minimize in our 238	
  
comparison. The GPCC monthly precipitation 1-degree data [Schneider et al., 239	
  
2011] were provided by the NOAA/OAR/ESRL Physical Science Division from 240	
  
the website at http://www.esrl.noaa.gov/psd. 241	
  

2.2.3 Qian’s reanalysis data and GPCC 242	
  

Qian et al. [2006] adjusted NCEP-NCAR (National Centers for Environmental 243	
  
Prediction-National Center for Atmospheric Research) reanalysis forcing dataset 244	
  
by combining it with station records and satellite observations of temperature, 245	
  
precipitation, and cloud cover. Qian’s reanalysis dataset covers the global land 246	
  
areas with 3-hourly and T62 (~1.875°) resolution and serves as the offline CLM 247	
  
model forcing data from 1948 to 2004.  248	
  

The GPCC full data reanalysis version 6.0 comprises globally gridded gauge-249	
  
analysis precipitation products over land areas derived from quality controlled 250	
  
station data [Becker et al., 2013]. The monthly precipitation data were used to 251	
  
normalize the runoff discrepancies between CMIP5 models and observations. 252	
  

2.3 Offline experiments to assess sources of error 253	
  

We extracted climate variables from the MOAR run to construct the forcings for 254	
  
offline CLM4 runs. The MOAR climate variables are available in 3-hourly, 6-255	
  
hourly, and monthly time steps. All our processing was based on 3-hourly data. 256	
  
The standard climate forcings for a CLM4 historical run with satellite phenology 257	
  
include three NetCDF files: 3-hourly solar radiation, 6-hourly precipitation 258	
  
(converted by averaging from 3-hourly), and 3-hourly surface temperature, 259	
  
specific humidity, pressure, wind speed. The MOAR climate variables were 260	
  
combined with Qian’s reanalysis data [Qian et al., 2006] to construct offline runs  261	
  

with four sources of climate forcings (Table 1):  262	
  

Table 1. List of offline experiments and forcings 263	
  

  QIAN MOAR MOAR_PRECIP MOAR_TEMP 
Precipitation reanalysis1 coupled run2 reanalysis coupled run 
Temperature/humidity reanalysis coupled run coupled run reanalysis 
Other forcings3 reanalysis coupled run coupled run coupled run 

1. Qian’s 2006 reanalysis dataset (see section 2.2.3) 264	
  
2. atmosphere forcings from MOAR coupled run 265	
  
3. other forcings include solar radiation, wind, and surface pressure 266	
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 267	
  

a. Qian’s 2006 reanalysis dataset (QIAN hereafter)  268	
  
b. Atmosphere outputs from the MOAR coupled run (MOAR hereafter) 269	
  
c. Qian’s reanalysis, but with precipitation data from the MOAR run 270	
  

(MOAR_PRECIP hereafter) 271	
  
d. Qian’s reanalysis, but with surface temperature and specific humidity from 272	
  

MOAR run (MOAR_TEMP hereafter). 273	
  

 274	
  

In the offline experiments, soil moisture is extracted from top 4.5 cm soils and 275	
  
excludes ice content. This soil moisture output matches the satellite product 276	
  
closely both in scale and phase, and therefore provides the most appropriate 277	
  
comparison with observation datasets. Monthly global mean values were 278	
  
compared between simulations and observations to reveal the dynamics of runoff 279	
  
and soil moisture. Differences between MOAR_TEMP and MOAR_PRECIP 280	
  
relative to QIAN determine what fractions of the total variance between MOAR 281	
  
and QIAN are due to temperature/humidity and precipitation, respectively. 282	
  

2.4 Correlation analyses  283	
  

Temporal correlation analysis between model simulations and observations used 284	
  
Pearson’s correlation coefficient r. The Pearson correlation coefficient was 285	
  
calculated between simulations and observations, and between the hydrologic 286	
  
variables (runoff and surface soil moisture) and atmosphere forcings 287	
  
(precipitation and surface temperature). 288	
  

 289	
  

3. Results and discussions 290	
  

3.1 Surface soil moisture 291	
  

The soil volumetric water content differences between CCSM4 and the ESA 292	
  
dataset indicate that soil moisture discrepancies are within 5% in the majority of 293	
  
the area covered by the ESA dataset. The inclusion of wetland areas in the 294	
  
surface soil moisture data in the CCSM4 CMIP5-archived outputs contributes to 295	
  
the apparent, but incorrect, signal of permanently saturated soils in high latitude 296	
  
areas between 50 to 70° N including the Hudson Bay in Canada and parts of 297	
  
Siberia (Figure 1). For this reason, the wetland areas have been omitted from the 298	
  
calculation of surface soil moisture in the remainder of our analyses. Outside of 299	
  
the wetland areas, CCSM4’s soil moisture exceeded ESA’s observation by 0.05-300	
  
0.20 VWC in predominantly mountainous regions covering the Rocky Mountains, 301	
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central Europe and the Alps, central Africa, areas immediately south of 302	
  
Himalayas including India, Bangladesh, Burma etc., northern and central China, 303	
  
and western Australia. CCSM4 underestimated surface soil moisture by up to 304	
  
0.20 in high latitude areas of North America and Eurasia, central Asia, and 305	
  
southern China. 306	
  

 307	
  

Figure 1. Absolute surface soil moisture difference indicates CCSM4’s soil moisture 308	
  
exceeds ESA’s observation by up 0.05-0.20 (vol vol-1) in the Rocky Mountains, central 309	
  
Europe, central Africa, south of Himalayas, most of China, and west Australia. CCSM4 310	
  
underestimated surface soil moisture by up to 0.20 in high latitude areas. Most other 311	
  
CMIP5 models had positive biases in high latitude areas and United States except 312	
  
FGOALS and BCC. 313	
  

In contrast, with the exception of FGOALS and BCC, most other CMIP5 models 314	
  
had positive biases in high latitude areas and in the United States. Both FGOALS 315	
  
and BCC models suffered from the inclusion of wetland in the soil moisture 316	
  
calculation and thus displayed oversaturation. This is not surprising because 317	
  
FGOALS used an earlier version of the CCSM land surface model (CLM3). 318	
  
FGOALS and BCC were the only models with an overall negative bias compared 319	
  
to ESA dataset. An extremely dry bias followed the edge of continents and small 320	
  
islands in CSIRO. 321	
  

Two types of mismatch between these simulation outputs and satellite 322	
  
observations cause models to overestimate soil moisture. The first possible 323	
  
cause is a depth mismatch between the archived top 10 cm layer and the 2-5 cm 324	
  
layer measured by the instruments in the ESA data set.  Although Wagner et al. 325	
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[1999] has demonstrated that surface soil moisture can act as a predictor of 326	
  
deeper soil profile, the surface soil is inherently drier than the underlying layers at 327	
  
long time scales (e.g. monthly) because of loss by surface evaporation. The 328	
  
archived outputs include more than double the depth of the satellite observation, 329	
  
which potentially introduces a positive bias in water content in many areas with 330	
  
respect to the ESA product. The second possible cause is a phase mismatch 331	
  
between the modeled and observed VWC.  The archived surface soil water 332	
  
content includes the mass of water in all phases, whereas the satellite data 333	
  
includes only the liquid phase of soil water. The satellite data as a rule excludes 334	
  
areas with snow cover or land surface temperature below zero, but it may not 335	
  
exclude all areas with ice content below the surface that would not be detected 336	
  
as water content. Therefore the satellite product is potentially ‘drier’ than the 337	
  
modeled soil, especially in high latitude areas. 338	
  

Therefore both thicker depth and the inclusion of ice content in the CCSM4 339	
  
simulation tend to give higher water content values than the ESA observations. In 340	
  
general the two types of mismatch would artificially shift the systematical bias in 341	
  
modeled surface soil moisture toward small positive values.  For the purposes of 342	
  
this comparison, areas with a negative difference or a positive difference greater 343	
  
than 0.2 exhibit significant surface soil moisture biases. Fortunately, we were 344	
  
able to remove these mismatches from our offline analyses because we ran our 345	
  
own simulations and were not restricted to archived data. On the other hand, 346	
  
under certain extreme circumstances, the modeled and satellite-derived 347	
  
estimates of a given soil could differ by the total soil pore volume. This situation 348	
  
would occur only where the surface temperature is above freezing so that the 349	
  
measurement is included in the data set but the ground remains partially to 350	
  
completely frozen, thereby resulting in a spurious satellite retrieval of low VWC 351	
  
while the model output may contain a frozen, saturated soil column. 352	
  

The evaluation of soil moisture estimation may be limited by the quality of the 353	
  
observational dataset. ESA soil moisture products were found to have poor 354	
  
correlations at high latitude of north hemisphere against the reanalysis of the 355	
  
European Centre for Medium-Range Weather Forecasts Interim [Albergel et al., 356	
  
2013], partly owing to the low average observation densities in northern latitudes 357	
  
due to snow and ice [Dorigo et al., 2014]. Also, the quality of ESA soil moisture 358	
  
dataset is affected by surface soil moisture simulation of GLDAS-1 Noah, a land 359	
  
surface model that was used to rescale the microwave products [Liu et al., 2012]. 360	
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361	
  
Figure 2. Temporal correlation of CCSM4’s surface soil moisture in four seasons 362	
  
indicates monthly soil moisture dynamics are better correlated with observations in low- 363	
  
to mid-latitude areas.  364	
  

The temporal dynamics of soil moisture, however, are more consistent than the 365	
  
magnitudes between the models and observations (Figure 2). Monthly CCSM4 366	
  
soil moisture dynamics are better correlated with observation in tropical areas, 367	
  
but have decreased coefficients in high latitude areas, especially in northern 368	
  
hemisphere winter (DJF) and spring (MAM). Similar to CCSM4, most CMIP5 369	
  
models displayed similar annual spatial patterns with decreased correlation 370	
  
coefficient in permafrost areas such as Canada and Siberia and in arid zones 371	
  
such as the Sahara and central Australia (not shown). The high latitude areas 372	
  
with the least correlation generally have the largest absolute biases. Overall, soil 373	
  
moisture is better correlated in northern hemisphere summer and fall, but has 374	
  
more negative coefficients in spring (MAM), implying model deficiency in 375	
  
snowmelt simulation.  376	
  

3.2 Runoff 377	
  

Canada and Siberia and the major mountain ranges, including the Rocky 378	
  
Mountains, Andes, and Himalayas are the areas where most models 379	
  
overestimate runoff by more than the magnitude of the Global Precipitation 380	
  
Climatology Centre (GPCC) precipitation reanalysis (Figure 3). FGOALS and 381	
  
BCC both produce unrealistically high amounts of runoff in the Saharan region. 382	
  
GISS is the exception in that it generally underestimates runoff. The Amazon is 383	
  
the only region where all models underestimate runoff, and these results are 384	
  
consistent with a negative precipitation bias reported for CMIP5 models [Mehran 385	
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et al., 2014]. Similar to soil moisture, the runoff comparison has a mismatch 386	
  
between the simulation and observations: the CMIP5 models define runoff as the 387	
  
total liquid water leaving the grid cell, which accounts for both surface and 388	
  
subsurface terms, while the GRDC runoff product assumes all water leaving a 389	
  
grid cell emerges as river discharge at a given stream gauge. Thus, the GRDC 390	
  
product may underestimate total runoff in headwater and upstream basins if 391	
  
subsurface water does not discharge within a grid cell and/or discharges to a 392	
  
stream outside a measurement basin.  393	
  

 394	
  

Figure 3. Precipitation normalized runoff difference between CMIP5 models and GRDC 395	
  
dataset. Most CMIP5 models, except GISS, produced higher runoff than GRDC in 396	
  
mountain ranges. All models underestimated runoff in the Amazon. 397	
  

Our evaluations of both surface soil moisture and runoff indicated that the largest 398	
  
discrepancies between model outputs and observations occur in mountainous 399	
  
and high latitude areas. Mehran et al. [2014] found that CMIP5 models generally 400	
  
overestimate precipitation in steep terrain. Their bias map for CESM1_BGC_es, 401	
  
a version close to CCSM4, shows a very similar pattern to the runoff bias in this 402	
  
study except in Canada and Siberia. We speculate that that the runoff biases in 403	
  
mountainous regions are caused by precipitation biases in the atmosphere model, 404	
  
while biases in high latitude areas may be caused by other atmosphere forcings 405	
  
or by the land surface model algorithms. 406	
  

Another potential reason for most CMIP5 models having large biases in 407	
  
mountainous areas may be tracked to deficiencies in the GRDC dataset. The 408	
  
gridded GRDC runoff was generated by linking discharge gauging station data 409	
  
with a digital river network and distributing runoff across interstation regions 410	
  
using a water balance model. The WBM itself could be biased due to 411	
  
meteorological forcings (e.g. precipitation) and physical (e.g. soil properties) or 412	
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biophysical attributes (e.g. land cover). Inconsistencies also exist between the 413	
  
GRDC station data and the river network due to resolution discrepancies and 414	
  
data quality [Fekete and Vorosmarty, 2002], but the GRDC dataset is still the 415	
  
only gridded runoff field available for global scale evaluation. The GRDC 416	
  
composite runoff dataset provides only a monthly mean runoff field, which limits 417	
  
our analysis to bias evaluation.  418	
  

3.3 Atmosphere-land hydrology correlations in the coupled CCSM4 419	
  

Four potential sources of bias are 1) the error from observational data, 2) 420	
  
structural deficiencies of CLM4, 3) forcing errors from the atmosphere, and 4) 421	
  
model parameterization. Many researchers are currently working to improve CLM 422	
  
and its parameters, and here we attempt to identify the effects of atmospheric 423	
  
forcing on land hydrology to better understand CLM deficiencies. 424	
  

 425	
  

Figure 4. Correlation between runoff and precipitation, and runoff and surface 426	
  
temperature in winter and summer, respectively. Precipitation is positively correlated to 427	
  
runoff in northern hemisphere summer (JJA) except for the areas above Arctic Circle. In 428	
  
northern hemisphere winter (DJF), the correlation is weakened in the high elevation 429	
  
areas where freeze and thaw dominate the hydrology. Surface temperature is negatively 430	
  
correlated to runoff in JJA but more positively correlated in DJF. Correlations with soil 431	
  
moisture follow similar patterns. 432	
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Atmospheric forcings are expected to be one of the major sources of bias in land 433	
  
surface hydrology when hydrologic cycles are driven by climate model outputs. 434	
  
Precipitation has been found to largely affect runoff trends while temperature has 435	
  
relatively weaker influences [Gerten et al., 2008; McCabe and Wolock, 2011]. 436	
  
CLM4 imports six atmospheric variables from the Community Atmosphere Model 437	
  
4.0 (CAM4) including solar radiation, precipitation, surface temperature, pressure, 438	
  
wind, and specific humidity. Monthly correlation analysis reveals that precipitation 439	
  
and surface temperature are the major predictors for soil moisture and runoff. 440	
  
The correlations for each hydrologic variable exhibit similar geographic and 441	
  
temporal patterns. In northern hemisphere summer (JJA), precipitation is 442	
  
positively correlated to both runoff (Figure 4) and soil moisture (not shown), 443	
  
except for areas above Arctic Circle. In northern hemisphere winter (DJF), 444	
  
precipitation is not as strongly correlated to runoff and soil moisture, especially in 445	
  
the northern hemisphere and in high elevation areas when freeze and thaw are 446	
  
the main drivers for hydrology. Surface temperature, on the other hand, is 447	
  
negatively correlated to soil moisture and runoff in JJA as high temperature dries 448	
  
up soil via evaporation and transpiration. Areas where temperature correlation 449	
  
coefficients are positive are either within the Arctic Circle or affected by summer 450	
  
monsoon. In DJF high temperatures induce snow thaws that consequently 451	
  
moisten the soil, therefore surface temperature is more positively correlated to 452	
  
the two hydrologic components. The rest of the atmospheric forcings indicate 453	
  
much weaker correlations with the two hydrologic variables. 454	
  

As the precipitation shows strong correlation to the runoff and surface soil 455	
  
moisture in mid- to low-latitude areas and temperature shows stronger (positive 456	
  
and negative) correlation in high latitude zones, understanding the geographic 457	
  
differences in atmosphere-driven biases can help evaluation of hydrological 458	
  
processes in the land surface model. For example, the CMIP5 archived models 459	
  
often have larger biases in high latitude areas where snow and permafrost 460	
  
freeze-and-thaw mechanism may be underrepresented due to deficiency from 461	
  
temperature or land model. Similarly, runoff simulation of CMIP5 models in high 462	
  
latitude areas may be more biased by temperature forcing, but more affected by 463	
  
precipitation in mountainous areas. The correlations between climate forcings 464	
  
and hydrologic variables open the possibility of isolating the biases from 465	
  
atmospheric forcings therefore revealing respective sources of uncertainty from 466	
  
the atmosphere and land models.  467	
  

3.4 Atmospheric drivers of soil moisture and runoff errors in CLM4 468	
  

The offline MOAR simulation demonstrates that our offline runs can be used to 469	
  
diagnose the coupled model simulations (i.e. CMIP5). The offline MOAR 470	
  
simulation generates almost identical 10-cm soil moisture (comparisons not 471	
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shown here) and surface runoff as the coupled simulation, except where the 472	
  
wetland area has been removed from the soil moisture calculations in the offline 473	
  
outputs. See section 3.1 for discussion of improperly inclusion of wetland in soil 474	
  
moisture outputs in CMIP5 simulations. This confirms that offline runs can be 475	
  
used to determine the error sources of the land model hydrology in the coupled 476	
  
model. 477	
  

To better evaluate the contributions of atmospheric forcing error to hydrologic 478	
  
uncertainty, the following analyses reduce the effects of soil depth and ice 479	
  
content mismatch present in the CMIP5 analysis of soil moisture. For the offline 480	
  
analyses, we used the modeled soil moisture in the top 4.5 cm layers, which 481	
  
matches closely with the satellite detecting depth, and included only liquid water 482	
  
in the modeled water content. These procedures were not possible for the CMIP5 483	
  
evaluations as the CMIP5 repository provides limited output variables. The 484	
  
difference between the two outputs is mostly within 0.04 except the CMIP5 soil 485	
  
(10 cm with ice content) contains 0.1-0.2 more water content in high latitude areas. 486	
  
This explains the discrepancies in high latitude areas between two comparisons 487	
  
of coupled and offline runs (Figure 1, CCSM-ESA vs Figure 5, MOAR-ESA).  488	
  

 489	
  

Figure 5. Absolute biases between offline runs and ESA surface soil moisture 490	
  
observations. a). the offline MOAR run resembled the CCSM4 coupled run. b). Qian’s 491	
  
reanalysis forced run served as the reference that alleviated the underestimation of soil 492	
  
moisture in high latitude areas and Central America. c). offline run forced by reanalysis 493	
  
and modeled precipitation increased soil moisture compared to MOAR and QIAN runs, 494	
  
especially in the band of north 40 to 70. d) offline run forced by modeled temperature 495	
  
and relatively humidity reduce surface soil moisture compared to other offline runs. 496	
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Qian’s reanalysis dataset is the closest atmosphere forcings to the observations 497	
  
and was therefore intended to isolate the biases to the land surface model only. 498	
  
Using reanalysis forcings improved soil moisture and runoff outputs with respect 499	
  
to the offline MOAR simulation. Underestimation of soil moisture in the MOAR 500	
  
simulation was alleviated in the QIAN simulation in high latitude areas and 501	
  
Central America (Figure 5). Additionally, positive differences from ESA data in 502	
  
Europe and Africa were reduced in the QIAN simulation. Runoff output was even 503	
  
more drastically improved in the QIAN simulation. The overestimation of runoff in 504	
  
mountains was mostly alleviated (Figure 6a and b), including the Rocky 505	
  
Mountains, Andes, Himalayas, and Northern Oceania. The QIAN simulation also 506	
  
improved runoff in the eastern Amazon, central Africa, and high latitude areas, 507	
  
although it increased overestimation in Eastern Europe. East of the Amazon and 508	
  
Central Africa changed from positive biases to neutral or negative. Overall, the 509	
  
biases in mountainous and tropical areas have been improved by using 510	
  
reanalysis data in place of the MOAR atmosphere model outputs. 511	
  

 512	
  

Figure 6. Absolute biases between offline runs and GRDC runoff dataset. Similar as 513	
  
surface soil moisture, a) offline run driven by modeled forcings; b) offline run driven by 514	
  
reanalysis eliminated most of positive biased in mountainous areas; c) offline run driven 515	
  
by MOAR precipitation produced more positive biases than the reference; d) offline run 516	
  
driven by modeled temperature and relative humidity changed the overall positive biases 517	
  
into negative. 518	
  

Independent use of modeled precipitation and temperature forcings for offline 519	
  
simulations indicates that these atmospheric inputs have opposing effects on 520	
  
land surface hydrology with respect to their respective reanalysis forcings. The 521	
  
MOAR_PRECIP simulation increases soil moisture compared to the QIAN 522	
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simulation, especially within the latitude band of north 40° to 70°, but otherwise 523	
  
has limited effects across the rest of the land surface (Figure 5b and c). The 524	
  
MOAR_PRECIP simulation has a greater impact on runoff through increases in 525	
  
area and magnitude of positive biases (Figure 6b and c). Furthermore, the soil 526	
  
moisture and runoff in the MOAR_PRECIP simulation are greater than in the 527	
  
MOAR simulation (Figures 5a and c, and 6a and c). The MOAR_TEMP 528	
  
simulation shows that modeled temperature and humidity reduced the surface 529	
  
moisture and runoff with respect to the QIAN simulation (Figures 5b and d, and 530	
  
6b and d). The runoff bias maps in particular show the distinct contrast between 531	
  
runs driven by modeled precipitation and temperature (Figure 6c and d). In the 532	
  
original coupled CCSM4 and offline MOAR simulations the positive bias 533	
  
introduced by precipitation input is canceled out to varying degrees around the 534	
  
globe by the negative bias from temperature input. 535	
  

Monthly global 10-year mean runoff (1971-1980) shows a similar pattern of 536	
  
opposing hydrological effects of modeled precipitation and temperature inputs. 537	
  
The CMIP5 fully coupled CCSM4 simulation matches observations well in April to 538	
  
September when hydrologic cycles are active (Figure 7). The QIAN simulation 539	
  
matches observations even better at low flow months, but underestimates runoff 540	
  
in June and July. This indicates that either the Qian dataset has low precipitation 541	
  
or high temperature bias in these two months, or the CLM has deficiency in 542	
  
simulating the drying limb of the spring peakflow. The offline MOAR simulation 543	
  
follows the coupled run well with subtle discrepancies in spring and summer. 544	
  
These discrepancies are likely induced by lack of land-atmosphere feedbacks 545	
  
(e.g. evapotranspiration effects on temperature and humidity). The 546	
  
MOAR_PRECIP simulation has high positive bias in spring and early summer 547	
  
(February to June in northern hemisphere, September to December in the 548	
  
southern hemisphere) when snow melts and high flows occur. These are the 549	
  
months when MOAR precipitation is more positively biased than QIAN, implying 550	
  
precipitation is the main driver of runoff bias. In contrast, the MOAR_TEMP 551	
  
simulation has the greatest negative bias compared to the other three 552	
  
simulations throughout the year. Peakflow timings were advanced from June to 553	
  
May in the QIAN and MOAR_PRECIP simulations. These monthly global results 554	
  
are consistent with the spatial results in that opposite hydrological effects of 555	
  
modeled precipitation and temperature inputs cancel each other out. 556	
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 557	
  

Figure 7. Global mean monthly runoff (10-year average) of model simulations and 558	
  
GRDC data indicates that CCSM simulation matched GRDC well April to September. 559	
  
QIAN simulation matched GRDC in all months but June and July. MOAR_PRECIP run 560	
  
has high positive biases in the months when MOAR precipitation is more positively 561	
  
biased than the Qian’s reanalysis. MOAR_TEMP run simulation has greater negative 562	
  
biases throughout the year. 563	
  

The annual cycle of global mean surface soil moisture also demonstrates 564	
  
hydrological compensation in simulations due to opposing effects of modeled 565	
  
precipitation and temperature inputs (Figure 8). The 1991 trough is related to a 566	
  
global precipitation deficiency associated with a warm El Niño Southern 567	
  
Oscillation (http://www.isse.ucar.edu/sadc/chptr5.html). The trough starting in 568	
  
2001 are the results of the millennium drought in many areas (e.g., [van Dijk et 569	
  
al., 2013; Wandel et al., 2009]). The ESA data generally have troughs in January 570	
  
and peaks in the middle of the year (i.e. June and July). The MOAR simulation 571	
  
tends to have two peaks in the first and second half of a year (e.g., year 1995) 572	
  
and has more intra-annual variability than the observations. The QIAN simulation 573	
  
follows the observations more closely in both phase and magnitude, except for 574	
  
the years after 2002, indicating that sources of uncertainty are more likely from 575	
  
the atmospheric forcings. Similar as surface runoff, the surface soil moisture 576	
  
simulations were shifted upwards by MOAR_PRECIP and downwards by 577	
  
MOAR_TEMP relative to the MOAR run. 578	
  

 579	
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580	
  
Figure 8. Global mean monthly soil moisture (1985-2004) of model simulations and 581	
  
observations shows that seasonal moisture dynamics are out of phase in some years 582	
  
(i.e. opposite wet and dry extremes). Basically all runs except MOAR_TEMP 583	
  
overestimated runoff globally, implying the deficiency is more likely from land surface 584	
  
model rather than forcing data. 585	
  

3.5 Potential sources of bias from CLM4 586	
  

If we assume the CLM4 offline run driven by Qian’s reanalysis data eliminates 587	
  
most of the uncertainty generated by atmospheric forcing, the rest of the QIAN 588	
  
simulation bias is most likely induced by CLM4 itself. The QIAN simulation has 589	
  
negative runoff bias in the Amazon, central Africa, southwest China, and south 590	
  
Asia. Comparing with soil texture maps generated by National Aeronautics and 591	
  
Space Administration Land Data Assimilation Systems 592	
  
(http://ldas.gsfc.nasa.gov/gldas/GLDASsoils.php) and by Global Soil Wetness 593	
  
Project-Phase 3 (http://hydro.iis.u-tokyo.ac.jp/~sujan/research/gswp3/soil-texture-594	
  
map.html), the areas with runoff underestimation are mostly associated with high 595	
  
clay content soils including sandy clay loam, clay loam,  and clay. The bias may 596	
  
be propagated from the mischaracterization of clayey soils though pedo-transfer 597	
  
functions or parameterizations. For example, clayey soils tend to exhibit 598	
  
aggregation structure, which is one of most important characteristics of 599	
  
macropore formation. Macropores enable water to flow through unsaturated soil 600	
  
more rapidly than it would in a soil matrix defined by Darcy’s law [Beven and 601	
  
Germann, 1982]. The existence of macropores increases effective hydraulic 602	
  
conductivity, thus decreases water content in surface soils. Without this 603	
  
mechanism, CLM4 may overestimate evapotranspiration and in turn 604	
  
underestimate runoff by retaining too much plant available water. Comparing to 605	
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FLUXNET-MTE global land estimates, Tang and Riley [In review] found that 606	
  
CLM4.5 overestimated evapotranspiration in the same areas where runoff was 607	
  
underestimated in this study. We propose that macropore flow is an essential 608	
  
mechanism that is lacking in the CLM and may be responsible for the mis-609	
  
partitioning of water among evapotranspiration, groundwater, and runoff in 610	
  
tropical and other high clay content areas. 611	
  

Another important process often associated with clayey soils is the shallow 612	
  
subsurface lateral drainage (i.e. interflow) [McDaniel et al., 2008]. The restricting 613	
  
layers formed by argillic and fragipan horizons intercept percolating water and 614	
  
contribute to river discharge directly thus contribute much more rapidly than 615	
  
groundwater [Jackson et al., 2014]. Hillslope with restricting layers may therefore 616	
  
produce considerably more runoff than those without argillic/fragipan layers 617	
  
[Needelman et al., 2004]. The CLM hydrology contains no lateral drainage except 618	
  
in frozen soils. We therefore argue that adding lateral drainage in the high clay 619	
  
content soils with high contrast hydraulic conductivity may potentially change the 620	
  
water balance in the areas currently with large runoff biases. The lateral drainage 621	
  
from restricting layer may be directly added to the surface runoff depending on 622	
  
the topography and river channel network. 623	
  

The areas where runoff simulation is overestimated overlap with the global 624	
  
distribution of Andisols [Takahashi and Shoji, 2002]. Defined by United States 625	
  
Department of Agriculture soil taxonomy 626	
  
(http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051232.pdf), 627	
  
Andisols are soils formed in volcanic ash with very high porosity (often >0. 60 628	
  
cm3 cm-3) and therefore high water holding capacity. The mineral soil porosity θ 629	
  
is defined by sand content in CLM as 𝜃 = 0.489− 0.00126(%𝑠𝑎𝑛𝑑). Increasing 630	
  
porosity has been shown to be among the most sensitive parameters for 631	
  
decreasing runoff yield in a physically-based hydrologic model [Du et al., 2013]. 632	
  
With low porosity, CLM4 may retain insufficient plant available water and 633	
  
underestimate evapotranspiration, therefore partitioning too much to runoff. 634	
  
Sensitivity of surface hydrology to saturated hydraulic conductivity and porosity 635	
  
needs to be evaluated before future modifications are taken, as the two 636	
  
parameters were identified as secondarily significant to runoff and sensible/latent 637	
  
heat flux after subsurface runoff parameters [Hou et al., 2012; Huang et al., 638	
  
2013]. The proposed modifications are speculated by overlapping the biases with 639	
  
the CLM soil texture map and need further test and proof. 640	
  

 641	
  

4. Summary 642	
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Comparisons of surface soil moisture between fully coupled model simulations 643	
  
and observations reveal large positive biases, mostly in mid- to high-latitude 644	
  
areas, except for CCSM4, FGOALS, and BCC. Runoff is overestimated in 645	
  
mountain ranges and in most of the arctic by all CMIP5 models except GISS. All 646	
  
models underestimated runoff in Amazon areas. Terrestrial water storage and 647	
  
dynamics at high northern latitudes are critical to the global water balance. 648	
  
Hydrological fluxes have been poorly monitored in these areas [Kane, 2005], and 649	
  
hydrologic models have difficulties obtaining high quality data for calibration and 650	
  
validation. Current model deficiencies, like those presented above, urge the land 651	
  
modeling community to better understand hydrologic cycles in high latitudes and 652	
  
to help improve overall performance of the models.  653	
  

When assessing runoff and soil moisture, one should not seek an exact match 654	
  
between model simulations and observations due to the mismatch and 655	
  
uncertainty derived from both ends. The validation of soil moisture from land 656	
  
surface modeling should focus mainly on relative changes and dynamics, but we 657	
  
do need to pay attention to the areas consistently having large biases. For 658	
  
example, the CIMP5 archived CLM simulated 10-cm soil moisture was up to 10% 659	
  
different from the observed moisture in 2-5 cm in many areas such as southern 660	
  
China and central/ southern Africa over the long term. The discrepancies were 661	
  
expectedly reduced in the offline tests with 4.5-cm soil moisture and ice content 662	
  
excluded, however the overall spatial pattern was retained. The simulated runoff 663	
  
had the same sign of bias in the same area and implied precipitation might be 664	
  
responsible for the dry or wet in both variables. There were also areas where the 665	
  
biases are opposite sign from soil moisture and runoff such as east half of the 666	
  
United States. It indicates that the land model may not correctly partition the 667	
  
water into surface runoff and infiltration. 668	
  

CCSM4 produces reasonable soil moisture estimates (except where wetlands 669	
  
are included) and positive runoff bias in mountain ranges and central Africa. 670	
  
Negative runoff biases are found mainly in the Amazon, Southeast Asia, and the 671	
  
Middle East. Positive bias of global mean runoff occurred mainly in February-672	
  
April and October-December. CCSM4 globally averaged surface soil moisture 673	
  
follows observed seasonal cycles but is out of phase compared to ESA data in 674	
  
some years. Overall, CCSM4 produces less bias in surface soil moisture 675	
  
prediction compared to eight other CMIP5 models, but has similar runoff over-676	
  
predictions in high altitude and high latitude areas as most of the other models. 677	
  

Modeled precipitation and temperature errors generate compensating biases in 678	
  
CCSM4 soil moisture and runoff. Offline CLM4 runs driven by simulated and 679	
  
reanalysis atmospheric inputs reveal that simulated precipitation causes 680	
  
overestimation of runoff in the mountainous areas, east Amazon, and central 681	
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Africa, and a general increase in overestimation of soil moisture. CLM4 tends to 682	
  
compensate for these overestimations when provided with simulated temperature 683	
  
and humidity, but at the cost of exacerbating surface soil moisture 684	
  
underestimates in high latitudes. 685	
  

Bias from atmosphere forcings is not sufficient to explain all the deviation of 686	
  
simulated runoff and soil moisture from observation. Driven by Qian’s reanalysis 687	
  
data, the CLM4 underestimates runoff in Amazon, central Africa, and other areas 688	
  
with high soil clay content. We hypothesize that the lack of fast path water 689	
  
infiltration is partially responsible for erroneous partitioning between 690	
  
evapotranspiration and runoff. CLM does not include preferential fast flow 691	
  
through macropore structure, and implementing this structure into global scale 692	
  
climate model is a challenging task involving extra parameterization and 693	
  
computational demand. Adding lateral drainage within the shallow soil layers is 694	
  
however relatively straightforward, but the model sensitivity needs to be tested 695	
  
first. We also hypothesize that low soil porosity causes overestimation of runoff in 696	
  
mountainous areas with volcanic soils. Improving these processes and data in 697	
  
CLM might help correct the compensating sensitivities of soil moisture and runoff 698	
  
to errors in precipitation and temperature inputs.  699	
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