
UC San Diego
UC San Diego Previously Published Works

Title
Deep learning enhanced transmembranous electromyography in the diagnosis of sleep 
apnea

Permalink
https://escholarship.org/uc/item/1qc8j56w

Journal
BMC Neuroscience, 25(1)

ISSN
1471-2202

Authors
Mandeville, Ross
Sedghamiz, Hooman
Mansfield, Perry
et al.

Publication Date
2024

DOI
10.1186/s12868-024-00913-9
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1qc8j56w
https://escholarship.org/uc/item/1qc8j56w#author
https://escholarship.org
http://www.cdlib.org/


R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:   //creativecommo ns.  org/lice ns e s/by/4.0/.

Mandeville et al. BMC Neuroscience           (2024) 25:80 
https://doi.org/10.1186/s12868-024-00913-9

BMC Neuroscience

*Correspondence:
Jejo Koola
jkoola@health.ucsd.edu

Full list of author information is available at the end of the article

Abstract
Obstructive sleep apnea (OSA) is widespread, under-recognized, and under-treated, impacting the health and 
quality of life for millions. The current gold standard for sleep apnea testing is based on the in-lab sleep study, 
which is costly, cumbersome, not readily available and represents a well-known roadblock to managing this huge 
societal burden. Assessment of neuromuscular function involved in the upper airway using electromyography 
(EMG) has shown potential to characterize and diagnose sleep apnea, while the development of transmembranous 
electromyography (tmEMG), a painless surface probe, has made this opportunity practical and highly feasible. 
However, experience and ability to interpret electrical signals from the upper airway are scarce, and much of the 
pertinent information within the signal is likely difficult to detect visually. To overcome this issue, we explored 
the use of transformers, a deep learning (DL) model architecture with attention mechanisms, to model tmEMG 
data and distinguish between electromyographic signals from a cohort of control, neurogenic, and sleep apnea 
patients. Our approach involved three strategies to train a generalizable model on a relatively small dataset 
including, (1) transfer learning using an audio spectral transformer (AST), (2) the use of 6,000 simulated EMG 
recordings, converted to spectrograms and using standard backpropagation for fine-tuning, and (3) application of 
regularization to prevent overfitting and enhance generalizability. This DL approach was tested using 177 transoral 
EMG recordings from a prior study’s database that included six healthy controls, five moderate to severe OSA 
patients, and five amyotrophic lateral sclerosis (ALS) patients with evidence of bulbar involvement (neurogenic 
injury). Sensitivity and specificity for classifying neurogenic cases from controls were 98% and 73%, respectively, 
while classifying OSA from controls were 88% and 64%, respectively. Notably, by averaging the predicted 
probabilities of each segment for individual patients, the model correctly classified up to 82% of control and OSA 
patients. These results not only suggest a potential to diagnose OSA patients accurately, but also to identify OSA 
endotypes that involve neuromuscular pathology, which has major implications for clinical management, patient 
outcomes, and research.

Keywords Deep learning in medicine, Audio spectral transformer, Sleep apnea diagnosis, Quantitative 
electromyography, Transmembranous EMG
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Introduction
Obstructive sleep apnea (OSA) is a common and serious 
disorder that affects millions of people in the U.S. and 
around the world [1]. Sleep apnea is defined by repeated 
interruptions in breathing during sleep, which can lead 
to daytime sleepiness, impaired cognitive function, and 
increased risk of cardiovascular and metabolic diseases 
[2]. OSA also imposes an important economic burden on 
individuals, employers, health care systems, and society, 
with undiagnosed OSA costing the U.S. approximately 
$149.6 billion (about $460 per person) [3]. Treating OSA 
improves quality of life and health, as well as reduces the 
economic costs associated with the disorder [4, 5].

The polysomnogram (PSG) is the current gold standard 
test for OSA, yielding the apnea-hypopnea index (AHI) 
that measures respiratory events per hour of sleep as a 
function of disease severity [6]. PSG has limited access, 
especially in rural and economically disadvantaged areas, 
and is costly, cumbersome, and inconvenient, impact-
ing accuracy [7]. Home sleep apnea testing (HSAT) 
addresses some drawbacks but lacks electroencephalog-
raphy (EEG) and sleep stage assessment [8]. Both PSG 
and HSAT lack the versatility to act as an on-demand 
diagnostic screening tool in hospitals for pre-sedation 
assessment, as is often desired to ensure the safe use of 
anesthetics and narcotics. Current standard sleep testing, 
regardless of venue, may be influenced by physiological 
variables and does not typically provide insights regard-
ing pathophysiological mechanisms. Accurate detection 
of OSA presence, severity, and endotype is crucial for 
ensuring appropriate therapy, which to date can include 
behavior modification, oral devices, surgery, hypoglossal 
nerve stimulation, neuromuscular stimulation, or posi-
tive airway pressure [9]. Therefore, there exists an impor-
tant need for an alternative, simpler, and less invasive 
method for OSA detection, quantification, and character-
ization [10]; in particular, one that can be implemented 
for point-of-care screening and diagnosis across a broad 
spectrum of clinical contexts.

Electromyography (EMG) in OSA has been the subject 
of only limited investigation to date. However, a few prior 
studies [11–15] have suggested potentially useful differ-
ences in the EMG signals recorded from the genioglos-
sus in those with and without OSA. Evidence of local 
nerve and muscle pathologies, as well as neurogenic 
EMG changes, has been found in patients with OSA who 
show no other clinical signs of a neuromuscular disorder 
[16–21]. In addition to neuromuscular pathology, altera-
tions in signal that do not result in classic quantitative 
electromyographic abnormalities, such as resting activ-
ity levels and changes in motor recruitment throughout 
the respiratory cycle, are likely important [13–15]. Sev-
eral limitations including the invasive nature of testing 
have resulted in little advance in this potentially fruitful 

diagnostic avenue. A major step toward realizing the 
diagnostic ability of EMG in OSA has recently been 
achieved by overcoming the invasive and painful nature 
of testing; a novel mucous membrane surface probe 
has been developed termed transmembranous EMG 
(tmEMG™) that can record electrical activity from intra-
oral and oropharyngeal muscles with similar diagnostic 
quality to needle EMG [22]. However, due to the scarcity 
of experience and skill in performing and analyzing EMG 
data from this area, and our hypothesis that much of 
the pertinent diagnostic information within the signal is 
likely difficult to detect visually, we aimed to develop and 
evaluate a novel Deep Learning (DL) method to enhance 
the diagnostic ability of tmEMG in OSA.

In this study, we hypothesized that transformers [23] 
are capable of modelling tmEMG data effectively. Trans-
formers are a type of DL model architecture that use 
attention mechanisms to learn from sequential data. 
Almost all state-of-the-art modern methods for audio 
signal processing and natural language processing tasks 
(such as automated transcription, machine translation, 
text summarization, and question answering, among oth-
ers) are based on the transformers model architecture. In 
this work, we used a transformer-based model to encode 
tmEMG signals into latent vectors which were used for 
downstream classification of tmEMG recordings into 
control vs. neurogenic or control vs. OSA classes. Where 
possible, we adhere to the CLAIMS checklist as a guide 
for reporting the findings from our study [24].

Methods
Data
Data for this study were obtained from a prior pilot study 
published by our group [22] that demonstrated the qual-
ity of tmEMG signals closely matched that of standard 
invasive needle EMG (nEMG). Please refer to the original 
study for the full description of the patient population, 
characteristics, and study design. Briefly, the pilot study 
was a prospective cohort study with blinded data analy-
sis involving six healthy participants, five patients with 
moderate to severe OSA, and five patients with amyo-
trophic lateral sclerosis (ALS) who showed clinical signs 
of bulbar involvement. Each patient underwent sampling 
from bilateral palatoglossus (PG) and genioglossus (GG), 
using both tmEMG and needle EMG with band-pass fil-
ter settings at 10 Hz to 10 kHz and sampling frequency 
at 64 kHz. ALS patient EMG data was classified as “neu-
rogenic”, meaning injury to the peripheral nerve, by dual 
subject-matter expert review. Including both tmEMG and 
nEMG, and recordings from both GG and PG muscles, a 
total of 177 labelled EMG recordings of 10 s in duration 
were de-identified and exported for use in assessing the 
DL model methodology of the current study. Prior to use 
in training and validation of the DL model, manual data 



Page 3 of 11Mandeville et al. BMC Neuroscience           (2024) 25:80 

selection was performed with EMG recordings cropped 
to remove extraneous signal that did not include the tar-
get EMG signal; a separate DL model is being developed 
to automate this quality assurance process. This process 
of manual cropping resulted in EMG recordings being of 
variable length, up to 10  s in duration. Down-sampling 
was performed to conform with sampling requirements 
for the AST (16 kHz) and to reduce data size.

Transformers
We used transformers, a DL model architecture with 
attention mechanisms, to model EMG data. Transform-
ers are integral to state-of-the-art methods in audio 
signal and natural language processing tasks. The intro-
duction of the Transformer model by Vaswani et al. 
[25] marked a departure from conventional sequence 
transduction approaches, which heavily relied on recur-
rent neural networks (RNNs) and convolutional neural 
networks (CNNs). This novel architecture utilizes atten-
tion mechanisms exclusively, discarding the use of RNNs 
and CNNs, leading to significant gains in parallelization 
and training efficiency. Notably impactful in machine 
translation, the Transformer sets new benchmarks with 
commendable results, including scores of 28.4 BLEU 
(Bilingual Evaluation Understudy) on the WMT (Work-
shop on Machine Translation) 2014 English-to-German 
and a record-breaking 41.8 BLEU on the WMT 2014 
English-to-French translation tasks.

At its foundation, the Transformer is built with an 
encoder and decoder, each composed of layers that 
employ self-attention and fully connected networks. The 
encoder concurrently processes input sequences, while 
dependencies between the input and output are delin-
eated by the self-attention mechanism. The decoder, 
empowered by its own self-attention and additional 
encoder-decoder attention mechanisms, produces the 
output sequence and selectively concentrates on per-
tinent segments of the input. Positional information is 
integrated into input embeddings via positional encod-
ings. The multi-head attention aspect of this architecture 
allows for simultaneous focus on various subdivisions 
of the sequence, thereby covering extensive dependency 
ranges. With these innovations, the architecture provides 
a boost in training speed and enhancement of perfor-
mance on translation tasks, proving the efficacy of atten-
tion-centric models in sequence-related issues.

Extending the principles of the Transformer architec-
ture to visual recognition, Dosovitskiy et al. [26]

presented the Vision Transformer (ViT), which applies 
this model directly to images for classification. ViT rep-
resents a deviation from the CNN-dominated image rec-
ognition field; it partitions images into patches, linearly 
embeds them, combines with positional embeddings, 
and processes them through a traditional Transformer 

encoder. When trained on expansive datasets, ViT deliv-
ers impressive results across multiple image recogni-
tion benchmarks, outshining contemporary CNNs while 
also requiring fewer computational efforts for training. 
Through this innovation, the ViT contends the prevalent 
dependence on CNNs and promotes Transformers as 
capable and scalable alternatives for image classification.

In the audio realm, the Audio Spectrogram Trans-
former (AST) [23], a model eschewing convolutions in 
favor of pure attention-based mechanisms, explores the 
viability of non-CNN architectures for audio classifica-
tion. The AST applies directly to audio spectrograms and 
discerns long-range context from the earliest layers of the 
network. Mirroring ViT architectural methodology, AST 
excels on various audio classification benchmarks such as 
AudioSet, ESC-50, and Speech Commands V2, surpass-
ing previous models and showcasing its versatility as a 
universal audio classifier. With a straightforward struc-
ture and rapid convergence rates during training, AST 
offers a compelling alternative to conventional CNN-
based models in audio analysis.

Audio signals and certain physiological signals, such 
as EMG, share numerous similarities. Both are sampled 
at very high frequencies due to the presence of various 
frequency spectrums. The EMG signal is a complex phys-
iological signal that potentially consists of a superposi-
tion of various Motor Unit Action Potentials (MUAPs). 
Numerous studies have demonstrated that Time-Fre-
quency decompositions can provide valuable insights for 
underlying diagnostics [27].

In this study, we chose to leverage Audio Spectrogram 
Transformers (AST), as they operate on the Time-Fre-
quency representation of EMG signals (spectrograms). 
Additionally, in the field of Deep Learning, transfer learn-
ing has proven to be a valuable asset [28], even when the 
underlying deep learning model has been trained on a 
different modality. We found both the Time-Frequency 
representation and the transfer learning capabilities of 
Transformers to be attractive features for our study, as 
our results suggest.

We employed transformers that leverage attention 
mechanisms to analyze EMG data, aiming to classify 
signals into control vs. neurogenic and control vs. OSA 
classes. Our model, inspired by the ViT, encodes EMG 
signals into latent vectors. This approach is particu-
larly novel in the context of EMG data, as Transformers 
are typically employed in processing 2D image data or 
sequential text data.

Our methodology included three main strategies to 
train a robust model on a limited dataset:

1. Transfer Learning: We adapted an Audio 
Spectral Transformer (AST; Fig. 1), a variation of 
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ViT, pre-trained on extensive audio datasets, to 
understand the spectral dynamics of EMG signals.

2. Simulated Data Augmentation: To counter the 
limited dataset size, we leveraged simulated data 
to pre-train the AST on 6,000 simulated EMG 
recordings, converting to spectrograms and using 
standard backpropagation for fine-tuning. Thousands 
of recordings were generated by validated EMG 
simulation [29], resulting in an array of abnormalities 
providing a rich training environment that enhances 
the model’s ability to generalize from limited real 
patient data to expose the algorithm to a wide variety 
and large sample to maximize training and accuracy.

3. Regularization Techniques: We implemented 
several regularization strategies to prevent 
overfitting, ensuring the model performance remains 
consistent across new, unseen data.

Additionally, we incorporated advanced signal process-
ing techniques, including filtering and normalization, to 
prepare the EMG data for effective Transformer learning. 
Signals were pre-processed to remove noise and normal-
ized using Z-score normalization, adapting from prac-
tices common in high-density EMG signal analysis [30] 
. These steps are crucial for reducing variability in signal 
quality and enhancing model training efficiency (Refer to 
Fig. 2 for an overview).

Two experiments were performed: one to assess the 
ability of the DL model to distinguish between control 
and neurogenic cases, and a second to assess the ability to 
distinguish between control and OSA cases. We included 
neurogenic cases to understand the generalizability of 

the DL architecture to different disease states and to 
assess the potential for this methodology to identify OSA 
patients with neuromuscular pathology. The overarch-
ing objective of this work was to develop an algorithm 
to distinguish between healthy and pathological EMG 
signals, leveraging audio spectral transformers and their 
proficiency in learning from sequential data with time-
frequency representations. As shown in Fig.  1, tmEMG 
can be modeled well by sequentially analyzing overlap-
ping time-frequency segments and identifying features 
across frequency bands and time.

Classifying control vs. neurogenic cases
In each experiment, cases were tested using training, 
validation, and testing sets in a 4-Fold Cross-Valida-
tion Process. In each fold, one patient’s data was exclu-
sively reserved for testing. The data of the remaining 
four patients were then shuffled and randomly allocated 
between the training and validation sets. This approach 
ensured that each patient contributed to the testing set 
exactly once, mitigating potential biases. We opted for 
patient-based splitting primarily to address two key con-
cerns: data leakage and validation set importance. The 
segment level classification is done using a 50% prob-
ability threshold. We extrapolated this approach further 
to the patient level, taking an average probability over 
all segments and again setting this against a threshold 
of 50%. We did not adjust either of these thresholds to 
observe for potential improvement in accuracy.

Avoiding data leakage If the folds were created by ran-
domly sampling individual EMG recordings, the model 

Fig. 1 Model Architecture: Example of an Audio Spectral Transformer [23] (CC BY 4.0; arXiv:2104.01778)
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might leverage patient-specific characteristics instead of 
focusing on the generalizable features indicative of OSA. 
This phenomenon, known as data leakage, could unfairly 
inflate the model’s performance by providing access to 
information it should not have during testing. Patient-
based splitting effectively eliminates this risk by ensuring 
that the test set contains data from completely unseen 
individuals.

Validation set Importance In deep learning models, the 
validation set plays a critical role in determining when 
to stop training. It allows us to monitor the model’s per-
formance on unseen data during training, preventing 
overfitting and optimizing hyperparameters accordingly. 
Without a dedicated validation set, relying solely on train-

ing metrics could lead to an overly optimistic assessment 
of the model’s generalizability. Patient-based splitting 
guarantees the presence of a robust validation set in 
each fold, further improving the reliability of our model 
evaluation.

By segregating a dedicated test set, completely inde-
pendent of the training and validation data, we ensure 
that the final assessment of our model is unbiased and 
reliable. This test set represents a fresh, unseen challenge 
for the model, providing a more accurate reflection of its 
true performance in real-world scenarios.

While patient-based splitting offers significant advan-
tages, it also presents challenges. Notably, the training 
data size in each fold becomes limited, with only one 
patient’s data contributing to the test set for each class. 

Fig. 2 Overview of the data processing and Deep Learning model finetuning
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However, we believe for the purposes of this pilot study 
that this trade-off is necessary to prevent data leakage 
and ensure the model’s ability to generalize effectively 
across different patients.

We averaged the predicted probabilities of each 
patient’s recording segments to create a combined score 
for each patient. This method allows for quantification of 
abnormality in addition to classification and requires the 
choice of a threshold for classification. In the future, this 
threshold will be adjusted to identify the optimal thresh-
old to achieve the greatest accuracy.

Although data from needle EMG and tmEMG have 
been found to have equivalent diagnostic quality, we ana-
lyzed data separately as well as combined to ensure no 
significant differences and to further support the use of 
tmEMG as having equivalent quality to standard needle 
EMG.

Data analysis
Performance was evaluated using accuracy, sensitivity, 
specificity, and F1-score metrics in a 4-fold cross-valida-
tion design. Data were analyzed as an aggregate as well as 
grouped by electrode type used; tmEMG™ (Powell Man-
sfield, Inc., San Diego, USA), or standard EMG needle 
electrode (Ambu, Inc., Columbia, MD, USA Neuroline 
25 mm x 30G).

Results – classifying control versus neurogenic 
cases
Using combined needle EMG and tmEMG data, the 
model exhibited a high sensitivity for Neurogenic cases 
(98%), and moderately high specificity (73%), which could 
be indicative of the model’s training data distribution or 
feature representation bias towards the Neurogenic class, 
which is often more rigorously characterized in clinical 
datasets.

The performance of the model did not show a signifi-
cant difference whether using tmEMG or needle EMG 
data, demonstrating the same high sensitivity (98%) and 
moderate specificity (71–73%) for needle EMG, tmEMG, 
and with both combined, indicating the comparable diag-
nostic ability of tmEMG compared to nEMG.

Regarding classification performance across the four 
folds between Control and Neurogenic cases, Valida-
tion Accuracy ranged from 79.6 to 90.6% across four 
folds. The highest accuracy was in Fold 2 (90.6%), and the 
lowest in Fold 4 (79.6%). Test Accuracy varied between 
81.05% and 88.42%, with the highest in Fold 4 (88.42%). 
Note that the test set is the same for each fold, the best 
model per each fold is evaluated.

The Uniform Manifold Approximation and Projection 
(UMAP; Fig. 3) plot offers a compelling visual represen-
tation of the Transformer model’s performance on the 
task of classifying control and Neurogenic EMG data. 

Using the two identified dimensions, it is clear that the 
model distinguishes well between the two patients. 

Results – classifying control versus OSA cases
Using combined needle EMG and tmEMG data, the 
model exhibited moderately high sensitivity for OSA 
cases (88%), and moderate specificity (64%). The perfor-
mance of the model did not show a significant difference 
whether using tmEMG or needle EMG data, again dem-
onstrating similar sensitivity and specificity for needle 
EMG, tmEMG, and with both combined, indicating the 
comparable diagnostic ability of tmEMG compared to 
nEMG.

Table  1 depicts the classification performance across 
the four folds between Control and OSA cases. Valida-
tion Accuracy ranged from 52 to 73% across four folds. 
The highest accuracy was in Fold 4 (72%), and the low-
est in Fold 1 (52%). Test Accuracy varied between 61.5% 
and 77%, with the highest in Fold 1 (77%). Validation 
F1-Score ranged from 55 to 83% across four folds, while 
Test F1-Score ranged from 62 to 81.8%.

The UMAP plot visual representation of the Trans-
former model’s performance on the task of classifying 
Control and OSA EMG data (Fig.  4) demonstrates the 
Transformer model’s performance when classifying OSA 
and controls. The distinction between groups is not as 
pronounced as compared to the UMAP representation 
when classifying Neurogenic and controls (Fig.  3), sug-
gesting greater electromyographic similarity between the 
two classes and a requirement for increased training to 
optimize the model’s performance.

Table 2 displays the results of averaging the predicted 
probabilities of each segment for individual patients 
across all 11 OSA and control patients, achieving an 
accuracy of 82% in correctly classifying the two groups.

Discussion
Diagnosis in OSA management is a well-known concern 
within the community [7] and causes a major healthcare 
disparity within the population. Prior studies have sug-
gested a potential utility for EMG in OSA, but the field 
has remained nascent due to the invasive nature of the 
testing and the lack of experience in interpreting the 
signals recorded. The first of these issues was addressed 
recently by the design of a novel surface transmembra-
nous probe for intra-oral EMG recordings, tmEMG. The 
second issue, lack of experience in interpreting intra-oral 
EMG from OSA patients, is the subject of this study, and 
together these innovations have the potential to enable 
the field to rapidly move forward and take advantage of 
this novel and significant diagnostic avenue.

To diagnose OSA, the gold standard method has tradi-
tionally been PSG, an overnight test conducted in a sleep 
lab [31]. PSG uses over seven channels to monitor sleep, 
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respiration, and muscle activity, including electroen-
cephalography, electrooculography, EMG, electrocardi-
ography, airflow monitoring, respiratory effort, and pulse 
oximetry. The PSG report provides detailed informa-
tion about sleep, limb movements, and the presence of 
sleep-disordered breathing based on the apnea-hypopnea 
index (AHI). Because PSG is expensive, labor and time-
intensive, and lacks versatility as an on-demand pre-sur-
gical and pre-sedation screening tool, several alternative 
screening and diagnostic technologies have been evalu-
ated throughout the years to broaden access to diagnostic 
services.

Alternatives to PSG in OSA diagnosis and screening
Although lacking EEG and sleep stage assessment [8], the 
most common alternative to PSG is the HSAT. However, 
several studies have pointed to issues with HSAT; false 
negatives may be significant in high-risk patients (18%) 
[32], HSAT may underestimate AHI severity by about 
10% [33], specificity increases while sensitivity decreases 
as severity of sleep apnea increases, and technical failure 
is an important concern [34].

Both PSG and HSAT are unable to inform on the vari-
ous mechanistic subtypes of OSA, which is essential for 
making personalized therapeutic decisions. Addition-
ally, existing medical insurance paradigms do not suf-
ficiently cover PSG or HSAT to allow for repeat testing 
as is needed to monitor responses to therapy. Further-
more, the cumbersome nature of each test prevents the 
straightforward point-of-care assessment that is crucial 
for reducing morbidity and mortality associated with this 
prevalent condition.

A few other techniques have been evaluated showing 
a moderate ability to diagnose OSA, including oximetry 
and acoustic devices. Several studies have found a cor-
relation between oximetry (oxygen desaturation index; 
ODI) and PSG AHIs [35–40]. One study that has not 
been replicated to date did report 82% sensitivity and 94% 

Table 1 Performance characteristics of the transformer model 
on classifying control and OSA patients, grouped by results from 
validation and testing sets, using combined tmEMG and needle 
EMG data. OSA: obstructive sleep apnea
Fold Accuracy 

(validations)
Accuracy 
(test)

F1-Score 
(validations)

F1-
Score 
(test)

1 0.52 0.77 0.55 0.818
2 0.635 0.615 0.67 0.62
3 0.73 0.74 0.83 0.8
4 0.72 0.71 0.78 0.794

Fig. 3 An example of Uniform Manifold Approximation and Projection (UMAP) for neurogenic versus control classification using data from one ALS pa-
tient and one healthy control. UMAP: Uniform Manifold Approximation and Projection, CLS: Classify token, ALS: Amyotrophic lateral sclerosis
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specificity36; however this was in moderate to severe OSA 
patients and relied on oximetry from the PSG itself, sug-
gesting incorporation bias, in addition to a selective pop-
ulation [39]. Acoustic devices have also been evaluated in 
OSA diagnosis and screening through a few exploratory 
studies, although only at most moderate accuracy has 
been reported [41]. Based on evidence to date, neither 
technique is recommended for the evaluation of OSA at 
this time [31]. Furthermore, these techniques, similar to 
PSG and HSAT, rely on overnight measurement, making 

them incompatible with the need for immediate, point-
of-care testing.

Screening for OSA, in primary care, inpatient settings, 
and pre-surgically, has primarily focused on question-
naires, specifically Berlin, STOP, STOP-BANG, and ESS 
[31]. Overall, STOP-BANG appears most suitable as a 
screening test when considering both sensitivity and 
specificity; however, specificity is fairly low, especially 
pre-surgically, ranging in one study from 30 to 43% [42], 
with important implications including unnecessary test-
ing, costs, and delays. STOP-BANG receiver operating 
curves (ROC) at varied OSA severity have implied that 
a cutoff score of 5 results in the optimal sensitivity and 
specificity for moderate-severe OSA (60%, 72%) and 
surgical populations (45%, 56%)31. Despite the lower 
specificity, the International Consensus Statement on 
Obstructive Sleep Apnea [31] recommends patients 
undergo screening and, at this time, this is best carried 
out using STOP-BANG. Should results of our pilot study 
hold up in larger studies with diverse populations, the 
initial estimates for sensitivity and specificity for detect-
ing OSA of 88% and 64% compare favorably, especially to 
pre-surgical questionnaire performance. However, there 
was notable variability in model performance across dif-
ferent data folds, suggesting that our model might benefit 
from further tuning, more sophisticated data handling 

Table 2 Accuracy of combined tmEMG and needle-EMG data in 
classifying control vs. OSA
ID Group Confidence for 

Normal
Confidence for 
OSA

Final Clas-
sification

1242 Control 0.66 0.34 Correct
2041 OSA 0.15 0.85 Correct
3578 Control 0.35 0.65 Misclassified
3161 OSA 0.22 0.78 Correct
2300 Control 0.63 0.37 Correct
6262 OSA 0.4 0.6 Correct
9588 Control 0.63 0.37 Correct
8435 Control 0.31 0.69 Misclassified
1537 OSA 0.11 0.89 Correct
3826 OSA 0.17 0.83 Correct
4309 Control 0.52 0.48 Correct

Accuracy 82%

Fig. 4 Uniform Manifold Approximation and Projection (UMAP) for OSA versus Control classification using data from one OSA patient and one healthy 
control. UMAP: Uniform Manifold Approximation and Projection, CLS: Classify token, OSA: obstructive sleep apnea
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strategies to improve consistency, and increasing expo-
sure to additional data and the full spectrum of EMG sig-
nal characteristics in OSA.

Electromyography and machine learning in OSA
The potential role of EMG in OSA has been evaluated 
in several studies, generally involving intramuscular 
microwire electrodes or submental surface electrodes [8, 
10, 12]. The focus has predominantly been on detecting 
neurogenic or myopathic signals from the genioglossus of 
patients with OSA, which has generally been interpreted 
as being caused by traumatic vibratory damage or hypox-
emia, or alternatively as causative of OSA secondary to 
weakness of pharyngeal dilator musculature [10]. These 
studies have identified predominantly neurogenic pathol-
ogy associated with OSA, although the relationship 
remains to be clarified. Few studies have commented on 
the utility of EMG in detecting OSA and have relied on 
detecting differences in resting activity in the genioglos-
sus to differentiate healthy controls from OSA patients 
with moderate success [13, 15]. There was likely little 
traction due to a lack of advancements in probe and elec-
trode design as well as quantitative EMG techniques.

No other studies to our knowledge have attempted 
to apply machine learning methodology to EMG sig-
nals recorded from the muscles of the oral cavity to 
detect OSA, whether using needles or surface elec-
trodes. Although obtained using transmembranous sur-
face recording from the genioglossus and palatoglossus, 
the design of the tmEMG probe and lack of intervening 
subcutaneous tissue results in our probe containing sub-
stantially equivalent information to the more sensitive 
needle EMG techniques [22]. Numerous studies have 
assessed the effectiveness of machine learning models 
in distinguishing neuromuscular pathology using EMG 
recordings obtained from standard clinical needle EMG 
of limb muscles: a recent scoping review article [43] sum-
marizes the literature on machine learning in needle-
based EMG well, reviewing 51 studies in detail. It should 
be noted that the majority of included studies (71%) used 
small open-source data sets such as the EMGLab data 
set [44] or a PhysioNet data set [45]. EMGLab data set 
consists of recordings (from the limbs, not oral cavity) 
of 10 healthy controls, 8 ALS patients, and 7 myopathy 
patients and all studies using this data set were focused 
on classification of EMG signal as being neurogenic, 
myogenic, or healthy. The PhysioNet data set used by 
some studies comprises only a single patient in each cat-
egory (neuropathy, myopathy, and healthy controls). The 
majority of the studies used machine learning techniques 
while 8% implemented deep learning techniques. Over-
all, older studies reported very high accuracy but gener-
ally suffered from significant issues such as data leakage 
and the use of signal-level rather than patient-level split, 

resulting in likely overestimation of performance up to 
levels as high as 100% accuracy. However, more recent 
studies implementing deep learning techniques and sev-
eral of similar sample size to this study, were found to 
be of higher quality (based on degree of adherence to 
CLAIM criteria [24]), and therefore validity, but slightly 
lower performance, up to around 85% accuracy. In our 
study, the performance for detecting neurogenic pathol-
ogy in an EMG segment was found to be high, with a sen-
sitivity and specificity of 98% and 73%, respectively. The 
high sensitivity for detecting ALS cases in this instance 
may result because the severity of the neurogenic abnor-
mality in the ALS EMG recordings was in most cases not 
mild. Performance might drop with the inclusion of more 
borderline cases but greater exposure to the variety and 
full spectrum of pathology would enhance generalizabil-
ity and is the focus of ongoing research.

The results of this pilot study show promise in the 
ability of EMG signals, obtained non-invasively using a 
tmEMG probe, to not only detect neuromuscular pathol-
ogy (that might be related to subcategories and endo-
types of OSA) but also the potential to act as a simple, 
cost-effective, and practical diagnostic test for the detec-
tion of OSA itself. Because the absolute numbers of 
patients were low (6 healthy, 5 OSA, 5 ALS patients), this 
will reduce generalizability of our findings despite the 
several important methods put in place to mitigate this, 
discussed above.

Of note, our findings were consistent whether nEMG 
or tmEMG signals were used, indicating comparable 
information content. Furthermore, UMAP visualiza-
tion of the model’s learned representations showed that 
recordings from the two modalities often cluster together 
for controls and separately for abnormal recordings, sug-
gesting tmEMG appears capable of effectively replac-
ing the more invasive nEMG recordings without loss of 
accuracy, and supporting findings from the prior study 
[22]. An important method employed in this study was 
the use of varied simulated EMG data that included a 
variety of levels of simulated pathology for pretraining to 
maximize model accuracy. Combined with AST architec-
ture, this approach demonstrates the potential to achieve 
valid results even within small sample-size datasets. This 
approach aligns with recent trends in machine learn-
ing, where simulated data are increasingly used to bol-
ster models before real-world application and may allow 
earlier identification of promising avenues without the 
often-insurmountable requirement for large quantities 
of data and could dramatically increase the efficiency of 
research.

The most notable finding was that by averaging the 
predicted probabilities of each segment for individual 
patients, the model correctly classified up to 82% of sub-
jects as belonging to either the control or OSA classes. 
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This approach allows quantification of the degree of 
abnormality, which could be used for clinical decision-
making as well as for outcomes research to minimize 
costly studies of new therapies coming down the pipeline.

As discussed, the limitations of this pilot study were 
mainly based on the small sample size, which reduces the 
degree of confidence in interpretation. As this is a pilot 
study and there was limited information regarding test-
ing characteristics necessary for power calculations, tests 
of significance are not possible. To mitigate the small 
sample size, we leveraged transfer learning from the pre-
trained AST architecture, further fine-tuned the model 
with large numbers of a variety of simulated EMG data 
and employed an optimal testing and validation method-
ology. Prospective studies based on larger sample sizes 
comparing control and OSA patients are ongoing by our 
group and are needed to optimize the model and assess 
its full diagnostic capability and generalizability.

The low-force protocol used for acquiring EMG sig-
nals in this study did not account for variations across the 
respiratory cycle, which might contain crucial diagnostic 
information. Future protocols should consider including 
dynamic muscle activity to capture a broader range of 
physiological data.

The variability in fold-specific performance met-
rics raises questions about the robustness of the model. 
Future studies could explore more diverse and larger 
datasets to validate the model’s efficacy and potentially 
develop a more robust algorithm that can perform uni-
formly well across different subsets of data.

In summary, our study demonstrates a potential for 
deep learning to enhance tmEMG to classify and quantify 
OSA and neurogenic patients and further underscores 
the excellent concordance between standard needle EMG 
recordings and those from the newly designed non-inva-
sive tmEMG probe. Further work is currently underway 
to increase sample size to improve generalizability and 
confidence in the results.

Conclusion
The application of deep learning methods to tmEMG 
data from muscles of the oral cavity and oropharynx 
shows promise not only for the characterization of neu-
romuscular pathology but also potentially for the diag-
nosis of OSA, which would have exciting implications 
for the current state of OSA diagnostics. However, larger 
prospective studies are required.
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