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Genome‑wide association study and functional validation implicates 
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Abstract
Primary age-related tauopathy (PART) is a neurodegenerative pathology with features distinct from but also overlapping with 
Alzheimer disease (AD). While both exhibit Alzheimer-type temporal lobe neurofibrillary degeneration alongside amnestic 
cognitive impairment, PART develops independently of amyloid-β (Aβ) plaques. The pathogenesis of PART is not known, 
but evidence suggests an association with genes that promote tau pathology and others that protect from Aβ toxicity. Here, we 
performed a genetic association study in an autopsy cohort of individuals with PART (n = 647) using Braak neurofibrillary 
tangle stage as a quantitative trait. We found some significant associations with candidate loci associated with AD (SLC24A4, 
MS4A6A, HS3ST1) and progressive supranuclear palsy (MAPT and EIF2AK3). Genome-wide association analysis revealed 
a novel significant association with a single nucleotide polymorphism on chromosome 4 (rs56405341) in a locus contain-
ing three genes, including JADE1 which was significantly upregulated in tangle-bearing neurons by single-soma RNA-seq. 
Immunohistochemical studies using antisera targeting JADE1 protein revealed localization within tau aggregates in autopsy 
brains with four microtubule-binding domain repeats (4R) isoforms and mixed 3R/4R, but not with 3R exclusively. Co-
immunoprecipitation in post-mortem human PART brain tissue revealed a specific binding of JADE1 protein to four repeat 
tau lacking N-terminal inserts (0N4R). Finally, knockdown of the Drosophila JADE1 homolog rhinoceros (rno) enhanced 
tau-induced toxicity and apoptosis in vivo in a humanized 0N4R mutant tau knock-in model, as quantified by rough eye 
phenotype and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) in the fly brain. Together, these 
findings indicate that PART has a genetic architecture that partially overlaps with AD and other tauopathies and suggests a 
novel role for JADE1 as a modifier of neurofibrillary degeneration.

 *	 John F. Crary 
	 john.crary@mountsinai.org
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Introduction

Primary age-related tauopathy (PART) is nearly ubiq-
uitously observed to varying degrees of severity in the 
brains of aged individuals. PART develops in the absence 
Aβ plaques yet manifests as neurofibrillary tangles (NFT) 
composed of abnormal aggregates of the microtubule-
associated protein tau that are morphologically, biochemi-
cally and ultrastructurally identical to those in early to 
moderate-stage Alzheimer Disease (AD) [23]. A neuro-
pathological diagnosis of PART does not imply cognitive 
impairment; individuals with PART can be normal, mildly 
cognitively impaired (MCI) or demented [40, 101]. Most 
individuals with PART remain cognitively normal; how-
ever, those clinically affected usually develop amnestic 
cognitive changes [7, 10, 40, 69]. Given the similarities 
between PART and AD, PART as a diagnostic construct 
would have greater value if it were shown to arise indepen-
dently [16, 28]. The observation that some individuals of 
advanced age at autopsy show substantial NFT pathology 
without evidence of amyloid deposition provides strong 
evidence that it does. However, the argument can be made 
that PART might be a component of the AD spectrum, and 
Aβ pathology might have eventually developed in such 
individuals had they lived longer [28, 53]. Thus, the ques-
tion remains to what extent patients with a neuropathologi-
cal diagnosis of PART have divergent or overlapping risk 
factors with AD and other dementias [8, 48].

Much of the mechanistic knowledge surrounding tauop-
athy stems from genetic studies [95]. Autosomal dominant 
mutations in the microtubule-associated protein tau gene 
(MAPT) in coding regions can interfere with microtubule 
binding or promote transition to toxic forms [38]. Muta-
tions in splice sites disrupt alternative mRNA splicing 
of the tau mRNA transcript, modifying the ratio of three 
repeat (3R) and four repeat (4R) tau isoforms leading to 
downstream pathological sequelae [38], while alternative 
splicing of the N-terminal exons may also play a role in 
modulating toxic tau specifically through regulation of 
microtubule stabilization [21, 26, 72]. However, MAPT 
mutations are rare. In contrast, PART occurs sporadically 
and nearly ubiquitously with advanced age in individu-
als without MAPT mutations. Thus, studying PART may 
reveal common genetic drivers of tauopathy and their asso-
ciation with abnormalities in tau proteostasis and isoform 
expression. The MAPT 17q21.31 locus is defined by a 
large ~ 900 kb inversion consisting of two distinct com-
mon haplotypes, H1 and H2. The more frequent H1 has 
been associated with increased risk for PART and several 
other sporadic tauopathies including APOE ɛ4-negative 
AD, progressive supranuclear palsy, corticobasal degener-
ation, as well as Parkinson disease which is not classically 

considered a tauopathy [18, 35, 46, 49, 68, 83]. Research 
focusing on the genetics of PART has consistently failed to 
show an association with the APOE ε4 allele, the strongest 
risk locus in AD [43, 65, 69, 83]. This is not surprising, 
given the strong association of APOE ε4 with early deposi-
tion of amyloid beta (Aβ) peptide. Outside of PART, one 
of the largest AD GWAS has identified 21 risk loci [52]. 
However, APOE, the strongest AD risk locus may be con-
founding associations independently related to tauopathy 
[46]. Another study confirmed APOE ε4 was not associ-
ated with PART but did find associations in PART with 
AD alleles in the BIN1, PTK2B, and CR1 loci [61]. Taken 
together, these data suggest an unexplored genetic risk 
driving tauopathy that might be revealed by conducting 
association studies in PART.

The neuropathological overlap between PART and AD 
allows for a unique opportunity to study mechanisms of tau-
mediated AD-type neurodegeneration independently of Aβ. 
However, PART cannot be reliably diagnosed pre-mortem 
because of non-specific symptomology and accompanying 
age-related comorbid dementing pathologies. Therefore, 
discovering unique drivers is challenging antemortem [43, 
45, 70, 71, 80, 85]. Assembling an autopsy cohort large 
enough to assess its genetics on a genome-wide scale has 
not yet been attempted. In collaboration with 21 domestic 
and international brain biorepositories, we performed the 
first GWAS in PART, using tau pathology as a quantitative 
trait, and compared our findings to known tauopathy risk 
loci. We then examined expression of candidate genes in 
our strongest risk locus (chromosome 4q28.2) using bulk 
RNA sequencing, single cell RNA-sequencing, and immu-
nohistochemistry. We identified gene for apoptosis and dif-
ferentiation in epithelia (JADE1) as a potential candidate 
gene. Finally, we validated our findings biochemically in 
human postmortem brain and identified a JADE1-tau protein 
interaction. Studies in Drosophila suggest that JADE1 plays 
a neuroprotective role in tauopathy.  The work presented 
here not only further informs the genetics of PART, but also 
suggests a novel role for JADE1 in tauopathy.

Materials and methods

Cohort

Fresh-frozen brain tissue was obtained from the contribut-
ing centers (Supplementary Table 1, online resource). All 
tissue was used in accordance with the relevant guidelines 
and regulations of the respective institutions. Inclusion cri-
teria were individuals with normal cognition, mild cognitive 
impairment (any type) and dementia. Cognitive status was 
determined either premortem or postmortem by a clinical 
chart review, mini-mental score, or clinical dementia rating 
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[33, 64]. Neuropathological assessments were performed at 
the respective centers using standardized criteria including 
Consortium to Establish a Registry for Alzheimer’s Disease 
(CERAD) neuritic plaque assessment and Braak neurofi-
brillary tangle staging [15, 62]. Neuropathological inclusion 
criteria were Braak tangle stage of 0–IV and neuritic plaque 
severity CERAD score of 0 [15, 62]. In addition, formalin 
fixed paraffin-embedded tissue sections were obtained and 
reevaluated by the study investigators to confirm the lack 
of Aβ and degree of PART tau pathology as described by 
Walker et al. [97]. Clinical exclusion criteria were motor 
neuron disease, parkinsonism, and frontotemporal dementia. 
Neuropathological exclusion criteria were other degenera-
tive diseases associated with NFTs (i.e., AD, progressive 
supranuclear palsy [PSP], corticobasal degeneration [CBD], 
chronic traumatic encephalopathy [CTE], frontotemporal 
lobar degeneration-tau [FTLD-tau], Pick disease  (PiD), 
Guam amyotrophic lateral sclerosis/parkinsonism–demen-
tia, subacute sclerosing panencephalitis, globular glial 
tauopathy). Individuals with aging-related tau astrogliopa-
thy (ARTAG) were not excluded [51]. In addition to PART 
cases, neuropathologically confirmed cases of AD, PSP, 
CTE, CBD, argyrophilic grain disease (AGD) and PiD (n = 3 
for each, Supplemental Table 6) were examined for conver-
gent or divergent staining patterns.

Genotyping

High-throughput isolation of DNA was performed using 
the MagMAX DNA Multi-Sample Ultra 2.0 Kit on a King-
Fisher Flex robotic system (Thermofisher, Waltham, MA). 
Fresh frozen cortical brain tissue (20–40 mg) was placed 
into a deep-well plate and treated with 480 µl of Proteinase 
K mix (Proteinase K, phosphate buffered saline [pH 7.4], 
Binding Enhancer) and incubated overnight at 65 °C at 
800 rpm on a shaking plate. Genomic DNA was isolated 
and purified using magnetic particles. DNA quality control 
was performed using a nanodrop spectrophotometer (con-
centration > 50 ng/µl, 260/280 ratio 1.7–2.2). Genotyping 
was performed using single nucleotide polymorphism (SNP) 
microarrays (Infinium Global Screening Array v2.4. or 
Infinium OmniExpress-24; Illumina, San Diego, CA). Raw 
genotype files were converted to PLINK-compatible files 
using GenomeStudio software (Illumina, San Diego, CA).

Genetic analysis

PLINK v1.9 was used to perform quality control [78]. SNP 
exclusion criteria included minor allele frequency < 1%, 
genotyping call-rate filter less then 95%, and Hardy–Wein-
berg threshold of 1 × 10–6 [3]. Individuals with discordant 
sex, non-European ancestry, genotyping failure of > 5%, or 
relatedness of > 0.1 were excluded. A principal component 

analysis (PCA) was performed to identify population sub-
structure using EIGENSTRAT v6.1.4 and the 1000 genomes 
reference panel [20, 76]. Samples were excluded if they were 
five standard deviations away from the European population 
cluster (Supplementary Fig. 1, online resource). PCA was 
performed again on the genomic data with non-Europeans 
excluded to generate new PCs, of which the first four were 
used as covariates in the regression model. All data was 
imputed on the University of Michigan server using mini-
mac3 and HRC reference panel [24, 60]. Imputed variants 
with MAF < 0.01 and a dosage R2 < 0.7 were excluded. A 
quantitative trait association test was run on 647 PART 
cases vs. Gaussian-normalized Braak stage using condi-
tional linear regression and age, sex, principal component 
1–4 and SNP chip array (batch) as covariates. The analysis 
was run separately on each genotyping array and a meta-
analysis was performed using METAL (2011 release) [99]. 
Regional genome-wide association plots were created with 
LocusZoom [77] (GRCh37) and other plots were created 
using R v4.0 and ggplot2 v3.3.5.

Expression quantitative trait loci (eQTL) analysis

For eQTL analysis, publicly available Religious Orders 
Study and Rush Memory and Aging Project (ROS‐MAP) 
whole genome sequencing (WGS) and bulk RNA sequenc-
ing data were obtained from the Synapse portal (syn3219045 
and syn8456629, respectively) and analyzed using tech-
niques described elsewhere [25, 88]. Briefly, RNA was 
analyzed from the dorsolateral prefrontal cortex of 452 
postmortem samples and a linear regression was performed 
stratified by the lead SNP’s genotype and JADE1 mRNA 
expression. Statistics were performed using R v4.0 and plot-
ted in ggplot2 v3.3.5.

Single‑cell mRNA profiling in tangle‑containing 
neurons

Identification of differentially expressed genes in single 
neuronal somata with and without NFTs was performed by 
analyzing a transcriptomic data set of isolated neurons from 
Brodmann area 9 post-mortem human brain from individuals 
with AD (Braak stage VI) previously reported by Otero-
Garcia et al. [73]. This data set consists of single neuronal 
soma transcriptomes obtained by mechanical dissociation of 
frozen tissue, followed by fluorescence-activated cell sort-
ing (FACS) using p-tau (AT8) and MAP2 antisera to isolate 
single NFT-positive and NFT-negative neurons, mRNA cap-
ture using 10 × Chromium v2 and sequenced with Illumina 
Novaseq 6000. Briefly, the data was normalized using the 
global-scaling function “LogNormalize” which normalizes 
the gene expression measurements for each cell by the total 
expression, multiplies this by a scale factor (10,000), and 
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log-transforms the result (natural log). For dimensionality 
reduction and clustering, Seurat v2.4 MultiCCA was used 
with the top 4200 highly variable genes, selecting the first 26 
canonical correlation vectors aligned by sample as grouping 
variable. For visualization, Seurat v2.4 FindClusters func-
tion was used with the following parameters: 1:22 PCs; 1.0 
resolution; 100 random start positions and 10 iterations per 
random start; and 30 k for the k-nearest neighbor algorithm). 
Gene cluster-specific markers were identified by comparing 
the gene expression levels for each specific cluster to all 
other cells using the Wilcoxon rank-sum test. Genes detected 
in ≥ 25% of cells with positive log fold changes > 0.25 and 
adjusted p values < 0.05 were included. Clusters containing 
cells with nonspecific identities were removed from further 
analysis. Differential gene expression (DGE) between neu-
rons with and without NFTs for each cell-type cluster was 
assessed using the MAST generalized linear model, select-
ing an adjusted p value of < 0.05 as cutoff [31].

Immunohistochemistry

Formalin-fixed paraffin-embedded (FFPE) tissue  sec-
tions  (5 μm) on charged slides were baked at 70 ºC and 
immunohistochemistry (IHC) was performed on a Ventana 
Benchmark XT automatic stainer (Rouche, Tucson, AZ). 
Antigen retrieval was done using citric acid buffer (CC1) 
for 1 h followed by primary antibody incubation for approxi-
mately 40 min. A secondary antibody, 3,3'-diaminobenzi-
dine (DAB) was then applied. For slides that were dou-
bled-labeled, DAB and alkaline phosphatase were used for 
visualization. Slides were stained with antibodies to JADE1 
(1:100, Proteintech, Rosemont, IL) and hyperphosphoryl-
ated tau (p-tau, AT8, 1:1000, Invitrogen, Waltham, MA). To 
ensure specificity of the JADE1 antisera, a peptide competi-
tion was performed using a blocking peptide. The JADE1 
antibody was combined with a fivefold (by weight) excess 
of blocking peptide (Proteintech, Rosemont, IL) in 500 µl of 
PBS and incubated overnight at 4 °C. Whole slide images 
(WSI) were visualized and scanned using an Aperio CS2 
digital slide scanner (Leica Biosystems, Wetzlar Germany).

Biochemical analysis

Western blots were performed using homogenized fresh-
frozen brain tissue. Samples were placed in a micro-tube 
homogenizer (SP Bel-Art, Wayne, NJ) in 10 volumes (wt/
vol) of ice-cold Pierce RIPA buffer (Thermo Fisher Scien-
tific, Waltham, MA) containing Halt protease and phos-
phatase inhibitor cocktail (Thermo Fisher Scientific), and 
incubated on ice for 30 min. For each sample, 20 μg of pro-
teins were boiled in 1×Laemmli sample buffer (Bio-Rad, 
Hercules, CA) for 5 min, run on 10% Criterion TGX Pre-
cast Gels (Bio-Rad, Hercules, CA), blotted to nitrocellulose 

membranes, and stained with JADE1 antisera (1:2000). 
Horseradish peroxidase-labeled secondary anti-rabbit anti-
sera (1:20,000; Vector Labs, Burlingame, CA) was detected 
by SuperSignal West Pico PLUS Chemiluminescent Sub-
strate or Pierce ECL Western Blotting Substrate (Thermo 
Fisher Scientific). To quantify and standardize protein levels, 
GAPDH was detected with GAPDH antisera (6C5, 1:20,000; 
Abcam, Cambridge, MA) and total protein was detected 
with Amido Black (Sigma-Aldrich, St. Louis, MO) as pre-
viously described [2]. Chemiluminescence was measured in 
a ChemiDoc Imaging System (Bio-Rad), and relative opti-
cal densities were determined using AlphaEaseFC software, 
version 4.0.1 (Alpha Innotech, San Jose, CA), normalized to 
GAPDH and total protein loaded.

Co-immunoprecipitation (IP) assays were performed 
using fresh-frozen brain tissue homogenized in a glass-
Teflon homogenizer at 500 rpm in 10 volumes (wt/vol) of 
ice-cold lysis buffer containing 50 mM Tris, pH 7.8, 0.5% 
NP40, 150 mM NaCl, 1 mM EDTA, and Halt protease and 
phosphatase inhibitor cocktail (Thermo Fisher Scientific). 
Samples were incubated on ice for 30 min, and centrifuged 
at 1000×g for 10 min. The supernatant was collected and 
used for immunoprecipitation. In a microcentrifuge tube, 
70 ul of supernatant, Lysis buffer (930 µl) and 2 µg of either 
JADE1 antisera or anti-0N tau antisera (EPR21726, Abcam, 
Cambridge, MA) were combined and incubated overnight 
at 4 °C. Antisera-negative and IgG isotype controls, either 
normal rabbit IgG (PeproTech, Rocky Hill, NJ) or Mouse 
IgG1 kappa, (clone: P3.6.2.8.1, Thermo Fisher Scientific, 
Waltham, MA), were carried out. 20 ul of Pierce Protein 
A/G Agarose beads (Thermo Fisher Scientific, Waltham, 
MA) was added to each reaction, and the mixture was 
incubated for 1 h at 4 °C. Agarose beads were pelleted at 
1000 × g for 5 min at 4 °C, supernatant was removed, 1 ml 
of ice-cold lysis buffer was added, and pellet was washed 
by inverting tube several times. Beads were washed 4 times, 
each time repeating the centrifugation step above. After the 
final wash, pelleted beads were resuspended in 40 µl of 
1×Laemmli sample buffer (Bio-Rad, Hercules, CA) and 
boiled for 5 min. The samples were then centrifuged to pel-
let the agarose beads followed by SDS-PAGE analysis of the 
supernatant. Fifteen µl of samples for JADE1 detection and 
5 µl for tau with tau isoform ladders (rPeptide, Watkinsville, 
GA) were run on 10% PROTEAN TGX Precast Gels (Bio-
Rad, Hercules, CA), blotted to nitrocellulose membranes, 
and stained with JADE1 antisera (1:2000), total tau anti-
sera (HT7, 1:3000; Thermo Fisher Scientific), three micro-
tubule repeat domain tau antisera (3R, 8E6/C11, 1:2000; 
MilliporeSigma, St. Louis, MO), four microtubule binding 
domain repeat tau antisera (4R, 1:2000; Cosmo Bio, Carls-
bad, CA), pThr231 tau antisera (RZ3, 1:200; a gift from Dr. 
Peter Davies),  pSer396/pSer404 tau antisera (PHF1, 1:500; 
a gift from Dr. Peter Davies), pSer202 tau antisera (CP13, 
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1:500; a gift from Dr. Peter Davies),  pSer202/pThr205 tau 
antisera (AT8, 1:1000; Thermo Fisher Scientific), pSer214 
tau antisera (S214; 44-742G, 1:1000; Thermo Fisher Scien-
tific, Waltham, MA), or pSer409 tau antisera (PG5, 1:200; a 
gift from Dr. Peter Davies). Horseradish peroxidase-labeled 
conformation-sensitive secondary anti-mouse IgG for IP 
or anti-rabbit VeriBlot for IP Detection antibody (both at 
1:20,000; Abcam, Cambridge, MA) was detected by Super-
Signal West Femto Maximum Sensitivity substrate (Thermo 
Fisher Scientific).

A dephosphorylation assay was performed using fresh-
frozen brain tissue homogenized with a glass-Teflon homog-
enizer at 500 rpm in 10 volumes (wt/vol) of ice-cold lysis 
buffer containing 50 mM Tris, pH 7.8, 0.5% NP40, 150 mM 
NaCl, and Halt protease inhibitor cocktail (Thermo Fisher 
Scientific, Waltham, MA). Samples were incubated on ice 
for 30 min, centrifuged at 1000 ×g for 10 min, and super-
natant was collected. Reaction mixtures (51 µl) consisted of 
39 µl of supernatant, 1 µl of protease inhibitor cocktail, 5 µl 
of 10X NEBuffer for protein metallophosphatases, 5 µl of 
10 mM MnCl2, 1 µl of lambda protein phosphatase (New 
England BioLabs, Ipswich, MA). Each mixture was incu-
bated at 30 °C for either 1, 2, 3, or 4 h. Additional 1 µl of 
lambda protein phosphatase and 1 µl of protease inhibitor 
cocktail were added in each mixture every hour.

Proximity ligation assay

5 μm-thick FFPE hippocampal sections were mounted on 
charged slides and stained using a Duolink kit (Millipore-
Sigma, St. Louis, MO). Sections were deparaffinized and 
incubated in sodium citrate buffer (10 mM sodium citrate, 
0.05% Tween 20, pH 6.0) at 95 °C for 20 min, washed 
in running water, incubated in 0.2% Tween 20 in PBS at 
room temperature for 20 min, and washed in PBS 3 times 
for 5 min. Blocking assays were performed using Duolink 
In Situ Red Starter Kit Mouse/Rabbit (MilliporeSigma, St. 
Louis, MO) according to the manufacture’s protocol with 
JADE1 antisera (1:20) and  0N tau antisera (1:500; Bio-
Legend, San Diego, CA). Two control assays were also 
performed, one with JADE1 antisera only, and the other 
with anti-0N  tau antisera. All samples were counterstained 
with 4′,6-diamidino-2-phenylindole (DAPI). Sections were 
imaged using an Axioview fluorescent microscope (Carl 
Zeiss, Oberkochen, Germany) and processed using Zen Blue 
software v3.4 (Carl Zeiss).

In vivo Drosophila model

Drosophila stocks, crosses, and aging were performed 
at 25 °C for the duration of the experiment and an equal 
number of male and female flies were used. The GAL4-
UAS expression system and the pan-neuronal elav-GAL4 

driver were used to control transgenic gene expression. 
Analyses were run on four fly groups (Bloomington stock 
rnoRNAi line number 57774): elav-GAL4 driver in the 
heterozygous state (control, elav-GAL4/ +), elav-Gal4 
positive plus rnoRNAi positive group (control + rnoRNAi, 
elav-GAL4/ + ;UAS-rnoRNAi/ +), elav-Gal4 positive trans-
genic human UAS-tauR406W tau group (0N4R Tau, elav-
GAL4/ + ;UAS-TauR406W), elav-Gal4 positive human trans-
genic UAS-tauR406W tau plus rnoRNAi positive group (0N4R 
Tau + rnoRNAi, elav-GAL4/ + ;UAS-TauR406W/UAS-rnoRNAi). 
An additional rnoRNAi line was tested but did not produce 
progeny when crossed to tau transgenic Drosophila, as often 
occurs with strong enhancers (Bloomington stock rnoRNAi 
line number 62880). Flies were aged to 10 d, at which 
point terminal deoxynucleotidyl transferase dUTP nick 
end-labeling (TUNEL) assay was performed in the brain 
(n = 6 per genotype) and a blinded assessment of the fly eye 
phenotype was performed (n = 16 per genotype). TUNEL 
was performed on 4 μm FFPE fly heads. Quantification of 
TUNEL-positive nuclei was performed throughout the entire 
brain using DAB-based detection and bright field micros-
copy and representative images were taken in the fly cortex. 
Fly eye phenotype scoring was performed blindly using light 
microscopy. The blinded rater semi-quantitively evaluated 
the eye for four distinct qualities including roughness, size, 
shape and conical shape on a 1–5 scale (five being the most 
severe phenotype) and an average summary score was cal-
culated. Representative fly eye images were taken using a 
scanning electron microscope (JEOL, Peabody, MA) using 
an accelerating voltage of 20 kV.

Statistical analysis

For GWAS, statistical analysis was performed in PLINK and 
our genome-wide significance value was < 5 × 10–8, which is 
Bonferroni-corrected for all the independent common SNPs 
across the human genome. Genome-wide suggestive signifi-
cant value was set at < 5 × 10–6. All other statistical analyses 
were performed in R v4.0. For non-normally distributed 
data a Wilcox test was used to test for significance, and an 
ANOVA was used for normally distributed data.

Results

We assembled a cohort of aged individuals to enable our 
genetic study of primary age-related tauopathy (PART) in 
which all were neuropathologically confirmed to be devoid 
of neuritic plaques. Brain tissue samples were obtained 
from 21 biorepositories (n = 857). While each center had 
performed a comprehensive neurodegeneration workup, we 
restained and reassessed these cases as a component of our 
ongoing histological studies [97]. Because some subjects 
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upon restaining were found to have a mild neuritic plaque 
burden (CERAD 0), the final number of subjects in the study 
was reduced to 647. Neurofibrillary tangles (NFTs) were 
assessed using the Braak staging system, ranging from 0 
to IV with all stages well represented, as is consistent with 
PART (Table 1). It should be noted that many Braak stage 
0 subjects were observed to have rare tau pathology when 
assessed using immunohistochemistry which is compatible 
with that stage. The average age of death was 83 years, and 
the number of male and females was approximately equal. 
Braak stage II was the most frequent (n = 189), with rela-
tively equal number of donors with Braak stages III (n = 152) 
and I (n = 142), and the fewest with Braak stages 0 (n = 71) 
and IV (n = 93). Braak staging performed at each center was 
not disproportionally skewed (Supplementary Fig. 2a, online 
resource). Sixty-six percent of the donors were cognitively 
normal. However, amongst Braak stages I–IV, there was an 
equal number of cognitively impaired subjects across each 
stage. We evaluated the association of age at death with 
Braak stage with respect to cognitive status and found a pos-
itive correlation that does not significantly change when cog-
nitive status is accounted for in the model (Supplementary 
Fig. 2b, online resource). Comorbid cerebrovascular disease, 
which is common in this cohort, is likely responsible for 
the variation in cognitive impairment [39]. In summary, our 
cohort consists of older individuals, with a range of demen-
tia severity, restricted regional tau distribution and varying 
severity of burden, demonstrating the diversity of both the 
clinical and neuropathological features of the condition.

Using this cohort, we ran a quantitative trait association 
analysis across the entire genome to characterize genetic 
risk for PART. Our model adjusted for age, sex, genotyping 
platform, and principal components 1–4 and produced an 
inflation λ of 1.04 (Supplementary Fig. 3a, online resource). 
Using Braak stage as a quantitative trait revealed suggestive 
signals in 14 loci and a nominally genome-wide significant 
signal on chromosome 4q28.2 (Fig. 1a, rs56405341; linear 
regression β = 0.35, standard error = 0.06, p = 4.82 × 10–8, 
Table 2, Supplementary Table 3, online resource). The 
genome-wide significant variant (rs56405341) has a minor 

allele frequency of 0.27. Assessment of this region indi-
cated this SNP is not within the footprint of any specific 
gene, but is near C4orf33, SCLT1 and JADE1 (Fig. 1b), 
and in high linkage disequilibrium with 22 other SNPs 
(r2 > 0.8, Supplementary table 4, online resource). Further 
examination of the homozygous and heterozygous alleles 
using strip chart showed a significant relationship between 
higher Braak stage and homozygous minor allele carriers 
(Fig. 1 c, AA–AG p = 0.024, AA–GG p = 3.3 × 10–5, AG–GG 
p = 7.2 × 10–5). Analysis of data from each independent gen-
otyping array separately confirmed that the signal was appar-
ent in both subsets of the data (Infinium OmniExpress-24, 
n = 440, β = 0.27, SE = 0.05, p = 1.11 × 10–6, λ = 1.03, Global 
screening array n = 207, β = 0.20, SE = 0.08, p = 1.42 × 10–2, 
λ = 1.01, Supplementary Table  2 and Fig.  5a–d, online 
resource). The individual summary statistics derived from 
the separate chip analysis were then combined to run a meta-
analysis, and the resulting p value was similar to the com-
bined analyses, as well as in agreement in the direction of 
effect tested allele (p = 5.61 × 10–8).

Replication in an independent cohort proved challenging 
given the lack of data sets containing similarly neuropatho-
logically ascertained individuals with PART. To our knowl-
edge, the only available autopsy based study performed 
in a cohort of AD subjects using Braak as a quantitative 
trait identified two other SNPs (rs4975209 R2 = 0.0072, 
D' = 0.0967 and rs10009321 R2 = 0.0091, D' = 0.1061) 
in a region distant (≈ 150,000 bp) from 4q28.2, and con-
sequently these SNPS are not in linkage disequilibrium 
with our lead SNP rs56405341 [6]. Another case/control 
AD GWAS used a cerebral spinal fluid (CSF) Aβ42/40 ratio 
threshold to dichotomize their study into 2 groups (normal 
and abnormal Aβ42/40 ratios) and found another unique SNP 
in the region (rs13129839) which was genome-wide sugges-
tive (p = 9.0 × 10–6), had a positive (protective) odds ratio 
(OR = 0.043), and was in high R2 and D' with our lead as 
well as supporting SNPs (> 0.8 and 0.1, respectively) [37]. 
It should be noted the Aβ42/40 ratio in the CSF is highly rel-
evant in the context of PART given Aβ42/40 ratios can be used 
as a proxy for lower levels of brain amyloid levels which is 

Table 1   Cohort data

*7 samples did not have cognative status available, MCI mild cognitive impairment

Braak stage n Average age of 
death in years 
(range)

Male (%) Female (%) Normal (%) MCI (%) Dementia (%)*

0 71 71.2 (51–104) 48 (7.5) 23 (3.5) 58 (8.9) 7 (1.0) 6 (0.9)
I 142 78.1 (53–108) 88 (13.6) 54 (8.3) 99 (15.3) 17 (2.6) 22 (3.4)
II 189 84.1 (51–107) 98 (15.1) 91 (14.0) 126 (19.4) 40 (6.1) 21 (3.2)
III 152 88.8 (68–105) 59 ( 9.1) 93 (14.8) 96 (14.8) 29 (4.4) 26 (4.0)
IV 93 91.2 (67–106) 29 (4.4) 64 (9.8) 50 (7.7) 22 (3.4) 21 (3.2)
Total (647) 647 83.5 (51–108) 322 (49.7) 325 (50.2) 429 (66.3) 115 (17.7) 96 (14.8)
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observed in PART. Taken together, these two independent 
genetic studies show signals near the 4q28.2 loci, with the 
latter using the same quantitative trait described here (Braak 
stage), and the former accounting for amyloidosis but lack-
ing a measurement of tau burden.

We then examined candidate SNPs previously found to 
be associated with AD and progressive supranuclear palsy 
(PSP) in prior GWAS studies to explore convergent and 
divergent genetic risk (Table 3, Supplementary table 5, 
online resource). Of the 52 candidates investigated, we found 
five also suggestively associated with Braak stage in PART. 

rs12590654, which is in the SLC24A4 locus, had the high-
est significance level (p = 0.001). rs1582763, rs2081545, 
rs7935829, within the MS4A6A locus (p = 0.01, 0.01, 0.02, 
respectively). The remaining AD SNP, rs7657553, was 
within HS3ST1 (p = 0.02) locus. We found two variants that 
overlapped with PSP risk: rs242557 (p = 0.02) in the MAPT 
locus, and rs7571971 (p = 0.03) in the EIF2AK3 locus. In 
summary, seven of the 52 probed risk AD and PSP SNPs 
showed significant associations (p < 0.05) in PART; how-
ever, they do not survive multiple test corrections.

Fig. 1   Genome-wide association study (GWAS) in primary age-
related tauopathy. a Quantitative trait GWAS was performed using 
normalized Braak neurofibrillary tangle stage with age, sex, prin-
cipal components (PCs), and genotyping SNP array as covariates 
(n = 647). The threshold for genome-wide significance (p < 5 × 10−8) 
is indicated by the solid grey line; the suggestive line (p < 5 × 10−6) 
is indicated by the dotted line. b LocusZoom plot shows a strong sig-
nal with multiple SNPs in linkage disequilibrium on chromosome 

4q28.2. The x axis is the base pair position, and the y axis is the –
log10 of the p value for the association with Braak stage. The blue 
line represents the recombination rate. c Association between single-
nucleotide polymorphism (SNP), rs56405341 and Braak tangle stage 
(adjusted for age and sex). Pairwise comparisons using Wilcoxon 
rank sum test, AA–AG p = 0.024, AA–GG p = 3.3 × 10–5, AG–GG 
p = 7.2 × 10–5
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Next, we refocused on the nominal association at the 
4q28.2 locus. While the strength of this association is 
relatively weak, it passed the most conservative Bonfer-
roni threshold for genome-wide significance; therefore, 
we investigated the 4q28.2 locus as previous studies have 
shown that many nominal associations are replicated in sub-
sequent studies [74]. Examination of RNA expression quan-
titative trait loci (eQTL) using the Religious Orders Study 
(ROS) and Memory and Aging Project (MAP) data yielded 
a significant lead SNP (rs56405341) eQTL (p = 0.038) for 
JADE1 (Fig. 2a) [25, 88]. As our GWAS quantitative trait 
was specific to tau pathology and our SNP eQTL was only 
modestly significant, we then examined mRNA expression 
levels of genes in the locus using a novel single-cell soma 
RNA sequencing data set which measured transcriptomic 
changes specifically in tangle-bearing neurons and non-
tangle-bearing neurons (Fig. 2b–d). Using this data set, we 
first looked at the overall change in JADE1 expression and 
found that tangle-bearing excitatory neurons significantly 

differentially upregulated JADE1 compared to non-tangle-
bearing excitatory neurons (p = 1.04 × 10–61). Conversely 
C4orf33 and SCLT1, the other genes in the locus, had low 
levels of expression regardless of cell type and tangle status. 
Given that the cell-type composition is slightly different in 
each type of neuronal group, we then looked at individual 
cell subclusters and observed two subpopulations of excita-
tory neurons in which JADE1 was significantly differentially 
expressed (adjusted p = 4.55 × 10–15, 7.82 × 10–8). We did 
not observe differences in JADE1 expression in the remain-
ing neuronal populations due to low cell numbers which 
decreased our statistical power (Supplemental Fig. 2a). We 
also examined the relative average expression and percent-
age of cells expressing JADE1 and observed increases in 
both metrics in tangle-containing neuronal populations 
compared to non-tangle-containing neuronal populations 
(Fig. 2e–g). SCLT1 and C4orf33 had negligible expression 
levels in a substantially smaller percentage of neurons (Sup-
plemental Fig. 5b, c). Taken together, these data suggest 

Table 2   Associations with Braak stage in PART (p < 5.0E − 06, n = 647)

Genome-wide significant difference in bold, chr = chromosome, SNP = single nucleotide polymorphism, SE = standard error

Chr Base pair SNP Genes A1 Beta SE L95 U95 t statistic p

2 11,935,322 rs78580932 GREB1, NTSR2, LPIN1, MIR4262 C  − 0.54 0.10 −0.76 −0.34 −5.15 3.55E-07
2 235,768,810 rs74600760 ARL4C, SH3BP4 T  − 0.53 0.11 −0.74 −0.32 −4.86 1.48E-06
3 61,518,166 rs111610564 FHIT, PTPRG C  − 0.49 0.10 −0.70 −0.30 −4.82 1.81E-06
3 140,216,029 rs349509 CLSTN2, CLSTN2-AS1, TRIM42 A  − 0.77 0.16 −1.08 −0.47 −4.97 8.64E-07
3 179,019,705 rs13323081 PIK3CA, KCNMB3, ZNF639, MFN1 G 0.24 0.05 0.15 0.33 5.17 3.16E-07
4 130,085,480 rs56405341 C4orf33, SCLT1, JADE1 A 0.25 0.05 0.16 0.35 5.52 4.82E-08
4 137,329,297 rs77506227 – A  − 0.79 0.16 −1.12 −0.48 −4.88 1.34E-06
5 150,473,104 rs6579838 GPX3, TNIP1, ANXA6 C 0.23 0.05 0.14 0.32 5.10 4.57E-07
10 124,487,608 rs150945906 DMBT1, C10orf120, DMBT1P1 A  − 0.64 0.14 −0.91 −0.38 −4.77 2.31E-06
15 24,515,682 rs147462127 PWRN2, PWRN1 T  − 0.84 0.17 −1.18 −0.51 −4.98 8.37E-07
15 36,865,219 rs185845364 C15orf41, CSNK1A1P1 G  − 0.79 0.16 −1.11 −0.48 −4.94 9.79E-07
17 1,879,293 rs12946465 RPA1, RTN4RL1, DPH1, OVCA2 C  − 0.21 0.05 −0.31 −0.13 −4.75 2.51E-06
19 45,719,790 rs10415392 TRAPPC6A, BLOC1S3, EXO3L2, MARK4 T 0.34 0.07 0.21 0.48 4.85 1.59E-06
20 56,754,110 rs78923929 C20orf85, PPP4R1L, RAB22A A  − 0.65 0.13 −0.92 −0.40 −4.95 9.76E-07

Table 3   Significant overlapping PART genetic associations with AD and PSP

AD = Alzheimer disease, PSP = progressive supranuclear palsy, Chr = chromosome, SNP = single nucleotide polymorphism

Associated 
disease

Chr Base pair SNP Gene A1 Beta SE L95 U95 t statistic p

AD 14 92,938,855 rs12590654 SLC24A4 A  − 0.14 0.044 −0.23 −0.05 −3.19 0.0015
AD 11 60,021,948 rs1582763 MS4A6A A  − 0.11 0.044 −0.19 −0.02 −2.47 0.0138
AD 11 59,958,380 rs2081545 MS4A6A A  − 0.10 0.044 −0.19 −0.02 −2.36 0.0185
AD 4 11,723,235 rs7657553 HS3ST1 A 0.11 0.048 0.01 0.20 2.24 0.0255
PSP 17 44,019,712 rs242557 MAPT A 0.10 0.047 0.01 0.20 2.24 0.0256
AD 11 59,942,815 rs7935829 MS4A6A G  − 0.10 0.043 −0.18 −0.01 −2.21 0.0274
PSP 2 88,895,351 rs7571971 EIF2AK3 T  − 0.10 0.047 −0.19 −0.01 −2.09 0.0373
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Fig. 2   Bulk and single-cell sequencing reveals JADE1 mRNA is 
modulated by rs56405341 and upregulated in tangle-bearing neu-
rons. a Bulk RNA sequencing data yielded a significant lead SNP 
(rs56405341) eQTL (p = 0.038) in the dorsolateral prefrontal cor-
tex of 452 postmortem human brain samples. Expression of JADE1 
decreases with in subjects carrying the minor allele. Single cell 
sequencing data of populations of neurons with and without neu-
rofibrillary tangles isolated from human post-mortem brain samples 
separated using fluorescence-activated cell sorting and transcriptomic 
profiles from single-cell RNA-sequencing were subsequently ana-
lyzed. b In 2 unique excitatory neuronal populations (Ex1 and Ex2) 
JADE1 mRNA was significantly differentially expressed in the tangle 
bearing neurons (adjusted p = 7.82 × 10–8, 4.55 × 10–15); in comparing 

the overall population of tangle-bearing excitatory neurons (Ex-total) 
to non-tangle bearing neurons the difference is highly significant 
(adjusted p = 1.04 × 10–61). c, d Other two genes in the locus, C4orf33 
and SCLT1, were overall nominally expressed in both excitatory 
neuronal groups, as well as subclusters (Supplementary Fig.  5 b, c, 
online resource). e Dot plot showing average relative expression and 
percent expression of the candidate genes in the locus. Both JADE1 
relative average expression and percentage of cells expressed was 
higher than C4orf33 and SCLT1. f, g t-Distributed stochastic neigh-
bor embedding (tSNE) plots showing the different populations neu-
rons, tangle bearing status, and relative expression of JADE1 in neu-
ronal subpopulations
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increased JADE1 mRNA expression is a characteristic of 
tangle-bearing neurons.

Given our evidence of a genetic signal in the 4q28.2 
locus, and single cell transcriptomic data indicating modu-
lation of JADE1 expression in neurons with NFT pathology, 
we conducted an immunohistochemical study using specific 

antisera to JADE1 in our collection of post-mortem tauopa-
thy brain tissue (Fig. 3). We assessed tauopathies that are 
known to involve preferentially tau isoforms with 3 micro-
tubule-binding domain repeats (3R), 4 microtubule-binding 
domain repeats (4R) or a mixture of the two [50]. We found 
strong and specific JADE1 immunopositivity in structures 

Fig. 3   Selective immunolabeling of tau aggregates containing tau 
with four microtubule-binding domain repeats (4R), but not three 
(3R), in post-mortem human tauopathy brains with antisera target-
ing JADE1 protein. Immunohistochemical staining with phospho-tau 
(p-tau) specific antisera (AT8) and JADE1 specific antisera demon-
strates neurofibrillary tangle (NFT) formation marked by the presence 
of JADE1 in specific populations of neurons and glia. a, b Primary 
age-related tauopathy (PART, n = 3) NFTs contain JADE1 posi-
tive staining in the soma and neurites in the entorhinal cortex. c, d 
Alzheimer disease (AD, n = 3) individual with Aβ and AT8-positive 
neuritic plaques and NFTs (subiculum) also display JADE1 immu-
nopositivity in dystrophic neurites and NFTs. e, f Chronic traumatic 
encephalopathy (CTE, n = 3) contains positive p-tau staining around a 
blood vessel in the depth of a neocortical sulcus that is immunoposi-
tive for JADE1. g, h AT8 positive tufted astrocytes, oligodendroglial 

coiled bodies, and NFTs are positive in the subthalamic nucleus in an 
individual with progressive supranuclear palsy (PSP, n = 3) which are 
also in immunopositive for JADE1. i, j Astrocytic plaques in corti-
cobasal degeneration (CBD, n = 3) and extensive thread-like pathol-
ogy positive for p-tau and JADE1 in the neocortex. k, l In the cornu 
ammonis 1 (CA1) sector in an individual with argyrophilic grain 
disease (AGD, n = 3), abundant grains that are immunopositive for 
p-tau and JADE1 are evident. m, n Pick disease (PiD), a 3R tauopa-
thy, with Pick bodies in the dentate gyrus that are immunopositive for 
p-tau but negative for JADE1. o Double staining of a PART entorhi-
nal cortex showing the absence of JADE1 (brown) staining in early 
pre-tangles, but the presence of p-tau (pink, see inset). p Negative 
control using a peptide competition despite the presence of a tangle 
(inset). Scale bar, 100 µm
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morphologically indicative of mature aggregate containing 
intracellular NFT in not only PART, but also the other mixed 
3R/4R tauopathies (i.e., AD and chronic traumatic encepha-
lopathy, Fig. 3a–f). In the 4R tauopathies (PSP, corticobasal 
degeneration, and argyrophilic grain disease), NFT were also 
immunopositive for JADE1 (Fig. 3g–l). Notably, gliofibril-
lary pathology in these diseases (i.e., aging-related tau astro-
gliopathy, tufted astrocytes, and astrocytic plaques) were 
also immunopositive. Surprisingly, no signal was detected 
in Pick bodies in Pick disease (PiD), a predominately 3R 
tauopathy (Fig. 3m, n). Double-labeling experiments showed 
that early pre-NFT that consist predominately of prefibril-
lary soluble oligomers were negative for JADE1 suggesting 
that this factor begins to coalesce into NFT at the transition 
to the aggregate stage (Fig. 3o). To ensure the antibody was 
specifically targeting the JADE1 protein rather than bind-
ing non-specifically to NFT, we added blocking peptides 
with the JADE1 antibody and did not observe any staining 
(Fig. 3p). These findings indicate that JADE1 protein expres-
sion is localized specifically in mature NFTs. Furthermore, 
translocation of JADE1 to NFTs does not occur in PiD, the 
only 3R tauopathy examined, suggesting selective tau iso-
form interactions.

We then biochemically examined JADE1 protein expres-
sion by immunoblot using lysates derived from the entorhi-
nal cortex and hippocampus proper (cornu ammonis 1–4 
and dentate gyrus) of PART and AD individuals. JADE1 
exists as 2 isoforms, JADE1 long (JADE1L) and JADE1 
short (JADE1S), both of which contain proline, glutamic 
acid, serine, threonine (PEST) domains and 2 PHD fingers. 
However, the long form is 333 amino acids longer and con-
tains an additional PEST domain as well as a nuclear locali-
zation signal (Fig. 4a). Immunoblot analysis revealed expres-
sion of JADE1S in both brain regions and diseases, but no 
bands were observed at the expected molecular weight for 
JADE1L, indicating the signal observed in IHC may be spe-
cific to the short isoform of JADE1 (Fig. 4b).

Cytoplasmic colocalization of JADE1 with NFTs immu-
nohistochemically raises the possibility that they form a 
functional complex in tauopathy brains. To examine this, 
co-immunoprecipitation experiments were conducted using 
postmortem brain lysate from individuals with PART. We 
first immunoprecipitated JADE1 and then performed immu-
noblots using antisera to tau and observed a ~ 45 kDa iso-
form that corresponds to 0N4R (Fig. 4c). We then reverse 
co-immunoprecipitated using 0N tau antisera and observed 
a ~ 50 kDa single band when probing with our JADE1 anti-
sera (Fig. 4d). We treated our pellets with protein phos-
phatase and observed a slight band shift (Fig. 4e), indicating 
the JADE1 bound to tau is phosphorylated. Immunoblotting 
isoform specific anti-tau antisera (3R and 4R tau) confirmed 
that the coimmunoprecipitated tau was predominately 4R, 
thus 0N4R (Fig. 4f, g). To further validate our findings, we 

repeated the same coimmunoprecipitation experiments using 
a non-commercially available JADE1S-specific antibody 
raised against a different epitope and observed the same 
results [106]. We then ran immunoblots on the immunopre-
cipitated JADE1 that we probed using a panel of phospho-
tau site-specific antibodies. The strongest signals relative to 
the input were with pThr231 (RZ3) and pSer409 (PG5), of 
which both have been reported to mark pre- and intercellular 
tangles, but not mature tangles [5] (Fig. 4h). Finally, to con-
firm the interaction of JADE1 and tau, proximity–ligation 
assays (PLA) were performed in fixed hippocampus from 
PART individuals. JADE1 and tau antibodies were labeled 
with oligonucleotides. The red fluorescent signal indicates 
the close proximity (maximum 30–40 nm) of these two pro-
teins (Fig. 4i). Controls did not show signal (Supplementary 
Fig. 7e, f, online resource). Therefore, JADE1S likely forms 
a complex with 0N4R tau in tangle bearing neurons.

Finally, given the association between JADE1 and 0N4R 
tau, we asked whether JADE1 plays a functional role in 
tau pathology. We used a Drosophila model that overex-
presses human mutant 0N4R tau [100] as well as RNAi-
mediated reduction of rhinoceros (rno), the highest matched 
JADE1 Drosophila ortholog. We blindly evaluated the fly 
eye phenotype using a semi-quantitative assessment of size, 
roughness, overall shape, and conical shape and observed a 
significant increase in severity between tau transgenic Dros-
ophila and tau transgenic Drosophila with rno knockdown 
(Fig. 5a–e , p = 8.7 × 10–5). We did not observe significant 
differences between rnoRNAi and controls in the absence of 
transgenic tau. To assess toxicity, we quantified TUNEL-
positive cells throughout the Drosophila brain. We find that 
rno knockdown significantly enhances neurotoxicity in tau 
transgenic Drosophila but not controls based on TUNEL 
staining at day 10 of adulthood (p = 0.008, Fig. 5f–i). These 
data provide in vivo evidence that JADE1/rno loss plays 
a mechanistic role in promoting neurotoxicity in tauopa-
thy and suggest that proper functioning of JADE1/rno is 
protective.

Discussion

Genome-wide association studies (GWAS) have enabled 
advances in our understanding of sporadic tauopathies [17, 
35, 42, 49, 81, 95, 102]. Yet, in the context of the growing 
numbers of genes associated with Alzheimer disease (AD) 
[44], direct links with tau proteinopathy have been challeng-
ing to pinpoint as association signals show minimal overlap 
with factors classically implicated in tauopathy (e.g., pro-
teostasis, tau protein kinases, prions, etc.) [34, 50, 59]. This 
is not surprising given the ubiquity and heterogeneity of tau 
and other pathological changes in the aging human brain 
that are variably associated with cognitive impairment [63]. 
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While dementia is the phenotype focused on in most genetic 
studies, it is non-specific. Here, we performed an autopsy-
based neuropathology-based GWAS, which minimizes 
classification errors and other issues, assembling the largest 
cohort of post-mortem brain tissues from aged individuals 

devoid of Aβ neuritic plaque pathology with a goal of iden-
tifying factors independently associated with primary age-
related tauopathy (PART). In doing so, we sought to obtain 
genetic evidence that might clarify the controversial relation-
ship between PART and AD, which are neuropathologically 
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similar. We failed to find an association with APOE ε4, the 
strongest common risk allele for sporadic late-onset AD, but 
did observe modest signals in other candidate risk loci. We 
also found a novel, albeit nominal, genome-wide significant 
association at the chromosome 4q28.2 locus. Our data indi-
cate that among genes in this locus, only the gene for apop-
tosis and differentiation in epithelia 1 (JADE1), a member of 
a small family of multifunctional adaptor proteins implicated 
in renal and other cancers [19, 104–106], is upregulated 
in tangle-bearing neurons at both the mRNA and protein 
levels. This accumulation of JADE1 protein in NFT is not 
specific to PART but occurs in AD and all tauopathies with 
accumulation of 4R isoforms, but not in Pick disease, a 3R 
tauopathy. We also show that JADE1 binds 0N4R tau, an 
isoform proposed to be a critical driver of tau pathology [86, 
98]. Finally, experiments in Drosophila show that reducing 
expression of the JADE1 homolog rhinoceros (rno) exacer-
bates tau-induced neurotoxicity in vivo. Together, these find-
ings strongly argue that JADE1 is a factor broadly capable of 
protecting neurons from neurofibrillary cell death that links 
PART to the tauopathic component of AD.

We confirm that the genetics of PART has a partial over-
lap with sporadic late-onset AD and replicated the consist-
ent finding showing the lack of a signal in the APOE locus 
despite its strong association with AD [4, 44, 52, 54, 58]. 
It has been shown previously that individuals with PART 
have a higher APOE ϵ2 allele frequency which distinguishes 
PART from AD both neuropathologically and genetically 
[41, 45, 79]. We have reported that the frequency of the 
APOE ε4 allele is lower in PART [83] and other studies 
have found similar results in independent cohorts [7, 61]. 
It should be noted that these values can fail to reach sig-
nificance when comparing groups with varying degrees of 

neuritic plaque pathology [9, 61]. Recent studies in mice 
and humans have indicated that the APOE ε4 allele may 
exacerbate tau pathology independently of Aβ plaques [87], 
while other human studies failed to show an interaction [1, 
30]. These results reinforce prior evidence that PART occurs 
independently of APOE ε4 irrespective of Aβ plaque pathol-
ogy. Alternatively, given the higher APOE ϵ2 and lower 
APOE ϵ4 allele frequency observed in PART, this enrich-
ment could suggest a functional epistatic interaction with 
JADE1 and APOE which also provides context to the lack 
of signal in the observed in the 4q28.2 locus in other large 
AD GWAS studies.

17q21.31 MAPT locus is the strongest genetic risk factor 
for PSP [35], which we and others had previously reported 
is associated with PART [43, 83]. The MAPT H1 haplotype 
has also been associated with AD [66, 82, 93]. However, this 
region has a complex haplotype structure and may be more 
important in specific AD subgroups given the modest signal 
and variable findings in these association studies [11, 92]. 
Intriguingly, in one AD GWAS using clinically ascertained 
individuals, removal of APOE ε4 carriers enhanced signals 
in the 17q21.31 locus [46]. In the present study, there was 
only a modest association of MAPT with PART. This result 
may stem from differences in cohort selection in case–con-
trol studies focusing on pathological extremes, while our 
study design included a range of pathological severity, spe-
cifically including mild to moderately affected individuals. 
Together, these data highlight that further investigation of 
the role of 17q21.31 MAPT locus in PART is warranted.

Beyond APOE and MAPT, we found four additional 
association signals in PART that overlap with either AD or 
PSP. Eukaryotic translation initiation factor 2 alpha kinase 
3 (EIF2AK3) encodes an endoplasmic reticulum (ER) 
membrane protein critical for the unfolded protein response 
(UPR) [91, 94]. Activation of the UPR has been observed 
and positively correlated with tau pathology, but not with 
Aβ plaque burden, in the hippocampus of aged cognitively 
normal individuals [94]. Solute carrier family 24 member 
4 (SLC24A4), a gene in the locus most strongly associated 
with PART and AD, is a member of the potassium-depend-
ent sodium/calcium exchanger protein family and is involved 
in neural development; however, little is known about its 
possible function in AD [55, 103]. We identified an associa-
tion of PART with the membrane spanning 4-domains A6A 
(MS4A6A) locus, which contains the binding regions for 
the transcription factor PU.1 which is selectively expressed 
in brain microglia and macrophages [29]. The last overlap-
ping genetic locus contains heparan sulfate-glucosamine 
3-sulfotransferase 1 (HS3ST1), which has been suggested 
to modulate heparan sulfate proteoglycans as receptors for 
the spreading of tau [36, 54]. Taken together, these data 
are compatible with the hypothesis that the candidate genes 

Fig. 4   JADE1S protein interacts with tau containing four microtu-
bule-binding domain repeats (4R) but not 3R in post-mortem human 
brain tissue (a) Schematic of the two JADE1 isoforms, JADE1S 
and JADE1L. b Representative immunoblot using antisera targeting 
JADE1 in entorhinal cortex and cornu ammonis in individuals with 
primary age-related tauopathy (PART) and Alzheimer disease (AD) 
shows JADE1S but not JADE1L at the expected molecular weight. 
GAPDH was used as a loading standard. c Immunoprecipitation 
using JADE1 antisera co-immunoprecipitates tau the with a molecu-
lar weight near the 0N4R isoform (40 kDa). d Reverse immunopre-
cipitation using 0N  tau antisera co-immunoprecipitates the JADE1S 
isoform. e Pulled down form of JADE1S molecular weight shifts 
downward after treatment with lambda protein phosphatase. f, g Co-
immunoprecipitated tau with JADE1 stained with C-terminal iso-
form specific anti-tau antisera are the 0N4R isoform and not the 3R 
isoform. h Co-immunoprecipitated tau was positively stained with a 
panel of phospho-tau specific antibodies with the most signal com-
ing from pThr231 (RZ3), pSer396/pSer404 (PHF1), pSer214 (S214), 
and pSer409 (PG5). i Proximity–ligation assay showing positive fluo-
rescence signal (red) around the nucleus of neurons (blue) indicating 
the close association between JADE1 and 0N tau detected using the 
corresponding two primary antibodies in the soma (inset). Scale bar, 
20 μm

◂
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we identified in our GWAS are possible modulators of tau 
pathology.

We identified a novel locus on chromosome 4q28.2 
associated with PART pathology. This locus was previ-
ously associated with Braak NFT stage in an AD autopsy 
GWAS, as well as a second GWAS focusing on dichoto-
mized CSF Aβ positivity [6, 37]. This prompted us to focus 
on this locus for further validation and functional studies. 
Because we only identified a nominally significant expres-
sion quantitative trait locus signal to JADE1, and given that 
our trait was tangle-specific, we reasoned that modulation 
of mRNA expression of genes in the locus might also be 
cell-type specific. This hypothesis was also motivated by the 
increase in genetic to transcriptomic associations found in 
cell specific populations in other contexts [47, 56, 107]. Our 
results indicate that of the genes in the 4q28.2 locus, only 
JADE1 mRNA was significantly and differentially expressed 
in tangle-bearing neurons. Our immunohistochemical stud-
ies revealed JADE1 protein accumulation in both neuronal 
and glial tau-immunopositive cells, validating these findings. 

Thus, JADE1 is most likely responsible for the GWAS signal 
at this locus; however, further genetic and expressions stud-
ies on perturbated cell populations are required in the future 
to validate these findings.

Our immunohistochemical studies indicate that JADE1 is 
potentially involved broadly in 4R and mixed 3R/4R tauopa-
thies. We observed immunopositivity not only in PART 
tangles, but also in tangles of tauopathies with aggregates 
containing 4R tau and in mixed tauopathies with aggregates 
containing both 3R and 4R tau. The absence of staining in 
Pick disease, the only tauopathy with 3R tau aggregates 
examined, was surprising. Our biochemical studies suggest 
that JADE1 protein specifically interacts with 0N4R tau that 
is phosphorylated on epitopes known to be hyperphospho-
rylated in NFT. Our proximity ligation assay confirms the 
direct interaction between JADE1 protein and tau. Studies 
using cryo-EM and mass spectrometry have shown the ultra-
structure of tau aggregates at unprecedented resolution, and 
it has been reported that 0N4R has a unique single β-sheet 
conformation for the fibril core [27, 32, 84]. Intriguingly, 

Fig. 5   RNAi-mediated knockdown of the JADE1 ortholog rhinoc-
eros (rno) enhances tau-induced toxicity in Drosophila. a–e Scanning 
electron micrograph images showing rnoRNAi significantly enhances 
the tau-induced rough eye phenotype (size, roughness, shape, and 
conical shape, p = 8.7 × 10–5, n = 16 per genotype). Scale bar 100 μm. 
f–j RnoRNAi significantly increases the number of terminal deoxynu-

cleotidyl transferase dUTP nick end-labels (TUNEL) in tau transgenic 
Drosophila compared to tau expressed alone (p = 0.008, n = 6 per 
genotype). TUNEL was performed at day 10 of adulthood and quanti-
fied in the entire fly brain. Representative images are shown from the 
cortex. An equal number of male and female flies were used for each 
experiment
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recent mass spectrometry profiling studies of human post-
mortem brain tissues have suggested that changes in 0N4R 
tau isoform specifically is an early event in tauopathy [98]. 
Double-labeling experiments indicate that JADE1 increases 
shortly after the pre-tangle stage, accumulating alongside 
insoluble tau aggregates during the transition to the intra-
cellular tangle stage possibly reflecting a reactive/protective 
compensatory role [14].

Our findings provide clues as to how JADE1 may be 
functioning in tauopathy. JADE1S protein has been previ-
ously implicated as a renal tumor suppressor involved in 
apoptosis, an inhibitor of Wnt signaling by ubiquitylating 
β-catenin, and an inhibitor of pro-survival kinase AKT and 
interactor with cell cycle regulators [12, 13, 19, 75, 90, 105]. 
Of the two JADE1 isoforms, the short form lacks a nuclear 
localization signal, consistent with the cytoplasmic localiza-
tion of the protein we observed by immunohistochemistry. 
This prompted us to hypothesize that JADE1S functions in 
the cytoplasm to modulate tauopathy. Our in vivo studies in 
which we reduced rno (the closest JADE1 ortholog) levels 
in Drosophila overexpressing mutant human 0N4R tau sig-
nificantly enhanced the tau-induced rough eye phenotype as 
well as TUNEL-positive cells, a marker of apoptotic DNA 
fragmentation. While JADE1 has been shown to promote 
apoptosis in some contexts, RNAi knockdown experiments 
suggest that proper functioning of JADE1 may be neuro-
protective. Other studies have demonstrated that loss of rno 
function attenuates apoptosis in Drosophila [96]. Because 
previous studies have found JADE1 to be stabilized by the 
von Hippel–Lindau tumor suppressor which is a component 
of an E3 ubiquitin–protein ligase activity and JADE1 is itself 
a single-subunit ubiquitin ligase for beta-catenin, JADE1 
may be working with 0N4R tau through a similar mecha-
nism to promote ubiquitin-mediated clearance of tau [57, 
89, 106].

Limitations of our study include small sample size for 
GWAS standards; however, it should be noted that it is still 
the largest study of its kind and limited by the availability 
of tissue that meet our diagnostic criteria for PART, rec-
ognizing that PART is currently only reliably diagnosed 
postmortem. To amass sufficient donors, our study relies 
on neuropathological assessments performed at multiple 
centers that could introduce batch effects (although none 
were detected). In addition, we were only able to identify 
a modestly significant eQTL signal between our lead SNP 
and JADE1 mRNA expression. However, our analysis of 
perturbed single soma RNA sequencing stratified by the 
presence or absence of NFTs allude to the fact that our lead 
SNP could be modulating JADE1 expression specifically in 
tangle containing neurons. Our attempt to replicate our find-
ings only identified candidate SNPs (p < 5 × 10–8, > 5 × 10–6) 
which were not in strong linkage disequilibrium with our 
lead SNP. We hypothesize this is likely a product of these 

studies containing subjects with amyloid pathology, and for 
these reasons future replication is required to validate our 
findings. Finally, while Braak staging is highly reproducible 
across neuropathologists and institutions, with one report 
showing that across brains and raters the kappa score was 
greater than 0.90 [67], it is a semiquantitative (ordinal) vari-
able. Braak NFT staging is also modeled after a subset of 
AD cases with patterns of NFT formation that may differ 
somewhat from the pattern seen in PART. Furture studies 
using a more quantitative approach to measuring tau bur-
den that we have shown more closely aligns with functional 
clinical measures in PART may reveal additional candidates 
[39].

In conclusion, drug development efforts are increasingly 
targeting tau due to the lack of clinical efficacy of Aβ mod-
ulating therapeutic approaches [22]. Here, by focusing on 
individuals with PART who lack Aβ neuritic plaques, we 
enriched our cohort for signals related to tau proteinopa-
thy. Our analysis provides additional evidence that PART 
overlaps with but has considerable differences from AD. 
This interdisciplinary approach led to the identification 
of JADE1, which interacts with 0N4R tau, and is protec-
tive in vivo. Additional studies in experimental models are 
necessary to further validate these findings. Further under-
standing the genetics of PART will provide opportunities for 
rationally designed therapeutics for tauopathies.
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